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Elementary algebraic topology via codes on graphs

G. David Forney, Jr.
forney@mit.edu

Laboratory for Information and Decision Systems
Massachusetts Institute of Technology

Cambridge, MA 02139

This paper aims to introduce the concepts of elementary algebraic topology using concepts from
the field of codes on graphs, namely normal realizations and normal factor graphs, and thereby to
show their close relationship. As in prior work (e.g., Molkaraie–Loeliger, Al-Bashabsheh–Vontobel),
the main application is to Ising-type models of statistical physics.
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Generalized Random Gilbert-Varshamov Codes
Anelia Somekh-Baruch

Bar-Ilan University
somekha@biu.ac.il

Jonathan Scarlett
National University of Singapore
scarlett@comp.nus.edu.sg

Albert Guillén i Fàbregas
ICREA & Universitat Pompeu Fabra

University of Cambridge
guillen@ieee.org

Abstract

We introduce a random coding technique for transmission over discrete memoryless channels reminiscent of the
basic construction attaining the Gilbert-Varshamov bound for codes in Hamming spaces. The code construction is
based on drawing codewords recursively from a fixed type class, in such a way that a newly generated codeword
must be at a certain minimum distance from all previously chosen codewords, according to some generic distance
function. We show that the random coding scheme attains an error exponent that is at least as high as both the
random-coding exponent and the expurgated exponent, recovering the Csiszár and Körner exponent as a special
case. We show that cost-constrained version of the proposed random coding scheme yields the dual expression of
the above error exponent and extends its validity for general alphabets, possibly non-finite.

This work was supported in part by the Israel Science Foundation under grant 631/17, the European Research Council under Grant 725411,
by the Spanish Ministry of Economy and Competitiveness under Grant TEC2016-78434-C3-1-R, and by an NUS Early Career Research
Award.
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"On Sliding Window Decoding of Convolutional Codes for 
Streaming Applications" 

 
by Daniel J. Costello Jr.1, Min Zhu2, and David G. M. Mitchell3 

 
The increasing demand for high-speed data streaming services over the Internet 
has focused attention on the need for reliable, low latency error control coding 
strategies suitable for continuous transmission.  Convolutional codes lend 
themselves naturally to this environment, and conventional decoding methods, 
such as Viterbi decoding and sequential decoding, can provide moderate coding 
gains with low decoder complexity and latency.  However, as channel resources 
become stressed by increasing traffic, the use of capacity-approaching code 
designs will be needed to meet service requirements.  In this paper, we discuss 
two such approaches - braided convolutional codes (BCCs) and spatially 
coupled low-density parity-check (SC-LDPC) codes - that, combined with sliding 
window decoding (SWD), promise capacity-approaching performance with 
moderate decoder complexity and latency requirements. 
 
It has been noted, however, that decoder error propagation is a significant 
problem that arises in the use of these capacity-approaching methods in a 
streaming environment.  Particularly for small window sizes, i. e., low latency 
operation, an initial burst of decoding errors can trigger additional decoding 
errors that continue indefinitely and result in unacceptably high decoded error 
rates.  Also, we have noted that it can be difficult to assess the extent of the 
damage with traditional computer simulation techniques, which require that 
"jobs" be submitted in frames of a fixed length, thus masking the full effect of 
decoder error propagation. 
 
In this paper, we discuss several methods, based on monitoring the log-
likelihood ratios (LLRs) of decoded symbols, designed to combat decoder error 
propagation in BCCs, including extending the size of the decoding window 
(increasing latency), a resynchronization mechanism, and a retransmission 
strategy.  We also discuss how such methods may be similarly applied to 
combating decoder error propagation in SWD of SC-LDPC codes. 
 
1 Dept. of Electrical Engineering, University of Notre Dame, IN, USA 
 
2 State Key Lab. of ISN, Xidian University, Xi’an, China 
 
3 Dept. of Electrical and Computer Engineering, New Mexico State University, NM, USA  
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Abstract— There are many big ideas proposed for wireless technology. Those related to transmit are usually 
called out in the standards and those related to receive only are usually not explicit in standards. We focus on 
4G/5G systems.  

Though big ideas are well defined at the time of original invention and initial academic research, their impact in 
practical systems get complicated and intertwined with many other concepts.  

In this talk we list some big ideas and comment on which ideas are used, not yet used or no longer used (and if 
there is time – why?) 

Big Ideas in Wireless Inside 4/5G Mobile 
Networks 

 

Arogyaswami Paulraj 
Stanford University 

apaualraj@stanford.edu 
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AGE OF INFORMATION AND DATA SEMANTICS 

 

Anthony Ephremides 

University of Maryland 

 

ABSTRACT 

One of the aspects of the emerging discipline of Data Science concerns the reasons that underlie the 
transmission of information. That is, instead of focusing only on duly executing as fast as possible the 
transfer of as many messages as possible (which is the traditional objective of the communication 
process), attention is paid also to the purpose and/or value of the transfer of information. Without 
considering message “meaning”, we are interested in other measures of “significance” for the transmitted 
messages. Such measures can be referred to as the “Semantics” of the data. For example, we may want 
to transmit messages for the purpose of executing some computation task or for implementing a control 
function. 

One such example of semantics is the “freshness” of the data, better known as the Age of Information 
(AoI), which has been experiencing fast-growing interest.  In this presentation, we review the basics of AoI 
and identify some of the potential fundamental aspects of freshness. To maintain the Age of Information 
at the lowest possible level, it is not sufficient to minimize the delay that accompanies transmission. It is 
also important to consider the sampling pattern of the signal. It is through this connection to sampling 
that interesting connections between Information Theory and Signal Processing may arise. In fact, Age 
alone may not be the most meaningful measure of freshness. Rather, a notion of “effective” Age is 
needed.  

A step in that direction is the consideration of the Age of Incorrect Information (AoII), which captures the 
intrinsic value of freshness which, in turn, is to minimize the error in estimating and predicting the value 
of an evolving signal. If the objective of the transmission is indeed to enable the receiver to estimate with 
minimum error, the AoI (or, better, the AoII) is a suitable surrogate for the error itself. Rather than 
minimizing the error directly, it may be simpler to minimize the Age. 

The objective of this talk will be to elaborate these points and identify potential challenges and benefits 
from the use of this “Semantic” measure.   
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On Least Squares with NUV Priors

Hans-Andrea Loeliger

ETH Zurich

Normal priors with unknown variance (NUV) include a large class of convex and nonconvex
sparsity promoting priors and blend well with Gaussian message passing. Such priors and
algorithms can be put to many uses: least-squares with sparsity and outliers, priors for imaging
problems, clustering, dictionary learning, linear-Gaussian dynamical systems with jumps, blind
signal parsing, sparse control of dynamical systems, and more.

References

[1] H.-A. Loeliger, Boxiao Ma, H. Malmberg, and F. Wadehn, “Factor graphs with NUV priors
and iteratively reweighted descent for sparse least squares and more”, Int. Symposium on
Turbo Codes and Iterative Information Processing (ISTC) 2018, Hongkong, China, Dec. 3–7,
2018.

[2] H.-A. Loeliger, L. Bruderer, H. Malmberg, F. Wadehn, and N. Zalmai “On sparsity by
NUV-EM, Gaussian message passing, and Kalman smoothing,” 2016 Information Theory &
Applications Workshop (ITA), San Diego, CA, Feb. 2016.

[3] N. Zalmai, A State Space World for Detecting and Estimating Events and Learning Sparse
Signal Decompositions, PhD thesis 24360 at ETH Zurich, 2017.
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Rényi Entropy and Guessing: Old and New Results
Igal Sason

Abstract

We introduce in this talk the Rényi entropy and the Arimoto-Rényi conditional entropy, together with asymptotically tight
bounds on the guessing moments by Arikan (1996) which are expressed as a function of these Rényi information measures. For a
discrete random variable X which takes a finite n of possible values, the problem of maximizing the Rényi entropy of a function
of X over all functions which are mappings from a set of cardinality n to a set of a smaller cardinality m (with fixed values of
m < n) is strongly NP-hard. We provide an upper bound on this maximal Rényi entropy with a guarantee on its largest possible
gap from the exact value, together with a simple algorithm to construct this function. This work was inspired by the recently
published paper by Cicalese et al. (IEEE Trans. on IT, 2018), which is focused on the Shannon entropy, and it strengthens and
generalizes the results of that paper to Rényi entropies of arbitrary positive orders by the use of majorization theory. We discuss
the implications of these results in the context of the guessing problem.

The new findings in this talk are based on the paper: I. Sason, “Tight bounds on the Renyi entropy via majorization with
applications to guessing and compression,” Entropy, vol. 20, no. 12, paper 896, pp. 1–25, November 2018.
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Flash Helping for Additive-Noise Channels
Amos Lapidoth and Gian Marti

Abstract

Flash helping is proposed as a technique for a helper to assist the encoder by providing it
with a rate-limited description of the noise. It is optimal on the single-user Gaussian channel,
the multiple-access Gaussian channel, and on the Exponential channel. It is applicable and
optimal irrespective of whether the helper observes the noise causally or noncausally.

I. INTRODUCTION

To gain some insight into the promise of cooperative communications, we consider
an additive Gaussian noise channel with an altruistic helper that observes the noise and
wishes to help the encoder by providing it with a rate-limited description of said noise.
Since the description is rate limited, the helper must quantize the noise, and it seeks
to do so in a way that will provide the encoder with the greatest possible information-
theoretic benefit. Here we show that “flash helping,” which was originally proposed
for decoder assistance [1] (with extensions to multi-terminal settings in [2]) is optimal.
In fact, it is optimal irrespective of whether the assistance is provided noncausally or
causally. Extensions to multiple-access channels and to the Exponential channel are
discussed in [3].

The time-k output Yk of the additive Gaussian noise channel is

Yk = xk + Zk, (1)

where xk ∈ R is the time-k input, and the noise sequence {Zk} is IID ∼ N (0,N),
where N > 0. A rate-R blocklength-n communication scheme for our setting can be
described as follows. A message m is picked from the message set M = {1, . . . , 2nR}.
Since the decoder receives no help, it guesses the message based on the channel output
sequence y alone. It is thus a mapping ψdec : Rn → M that maps y ∈ Rn to the
decoder’s guess m̂.

The description of the encoder and the helper depends on whether or not we impose
a causality constraint. A noncausal helper φnc-help is a mapping φnc-help : Rn → T , where
T = {1, . . . , 2nRh} is the set of possible descriptions. Applying φnc-help to the noise
sequence Zn produces its description T . A noncausal encoder φnc-enc :M× T → Rn

maps the message m and the noise’s description t to the transmitted length-n sequence
x(m, t), which is required to satisfy for every m ∈ M the average power constraint
E
[
‖x(m,T )‖2

]
≤ nP, where ‖ · ‖ denotes the Euclidean norm, and P > 0.

A causal helper describes the noise sequence zn causally using an n-tuple (t1, . . . , tn),
where tk takes values in the set Tk and must be computable from the noise samples zk.
(We use Ak to denote A1, . . . , Ak, and we use An and A interchangeably.) It is thus
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described by n mappings {φ(k)
c-help}nk=1, with the k-th mapping φ(k)

c-help : Rk → Tk mapping
zk to tk. To satisfy the description-rate constraint, we impose the cardinality constraint

n∏

k=1

|Tk| ≤ 2nRh . (2)

Wishing to convey the message m and having observed the descriptions t1, . . . , tk,
the encoder emits the time-k channel input xk(m, t1, . . . , tk). A causal encoder thus
comprises n mappings {φ(k)

c-enc}nk=1,

φ(k)
c-enc :M×T1 × · · · × Tk → R, (3)

satisfying the power constraint

1

n

n∑

k=1

E
[
xk
(
m, t1(Z

1), t2(Z
2) . . . , tk(Z

k)
)2] ≤ P, ∀m ∈M. (4)

The capacity is defined as the supremum of rates that allow for arbitrarily small
probability of error. Our main result on the single-user channel is given in the following
theorem. It relates the capacity C(Rh) of the channel with a helper to its capacity C(0)
witout one.

Theorem 1. The capacity of the encoder-assisted average-power constrained additive
Gaussian noise channel is

C(Rh) =
1

2
log
(
1 +

P

N

)
+Rh (5)

= C(0) +Rh (6)

irrespective of whether the help is provided causally or noncausally.

• No rate exceeding the RHS of (5) can be achieved even if the noise’s description
that is provided to the encoder is also provided to the decoder.

• If the noise is not Gaussian but satisfies the hypotheses that guarantee Bennett’s
high-resolution quantization result [4], [5, Theorem 6.2], then (6) is achievable
with causal help even for non-Gaussian noise, provided that in (6) we interpret
C(0) as the capacity of the non-Gaussian noise channel in the absence of help.

REFERENCES

[1] S. I. Bross and A. Lapidoth, “The additive noise channel with a helper,” in 2019 IEEE Information Theory
Workshop (ITW). Visby, Sweden: IEEE, Aug. 2019.

[2] I. S. Bross, A. Lapidoth, and G. Marti, “Decoder-assisted communications over additive noise channels,”
submitted, 2019.

[3] A. Lapidoth and G. Marti, “Encoder-assisted communications over additive noise channels,” submitted, 2019.
[4] W. Bennett, “Spectra of quantized signals,” Bell Systems Technical Journal, vol. 27, pp. 446–472, July 1948.
[5] S. Graf and H. Luschgy, Foundations of quantization for probability distributions. Springer, 2007.
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Data Privacy for a ρ-Recoverable Function

Ajaykrishnan Nageswaran and Prakash Narayan
Department of Electrical and Computer Engineering

and Institute for Systems Research
University of Maryland, College Park, MD 20742, USA

E-mail: {ajayk, prakash}@umd.edu

A user’s data is represented by a finite-valued random variable. Given a function of the data,
a querier is required to recover, with at least a prescribed probability ρ, the value of the function
based on a query response provided by the user. The user devises the query response, subject to
the recoverability requirement, so as to maximize privacy of the data from the querier. Privacy is
measured by the probability of error incurred by the querier in estimating the data from the query
response, and is nonincreasing in ρ. We discuss single and multiple independent query responses,
with each response satisfying the recoverability requirement, that provide maximum privacy to the
user. Achievability schemes with explicit randomization mechanisms for query responses are given
and their privacy compared with converse upper bounds. Also mentioned will be more stringent
forms of privacy, viz. predicate privacy and list privacy, and the notion of divergence privacy of
the probability distribution of the data.

Workshop on Mathematical Data Science (MDS) 2019, October 13 – 15, 2019

13



Conferencing in Arbitrarily Varying Channels:
New Models and Observations

Yossef Steinberg
Dept. of Electrical Engineering

Technion - IIT
Haifa 32000, ISRAEL

Email: ysteinbe@technion.ac.il

Abstract—This talk focuses on recent advances in the study
of multi-user communication systems, that suffer from high
degree of uncertainty in the channel model. Specifically, we
study arbitrarily varying (AV) network models with cooperation
links between users. It has long been observed that cooperation
between users in a regular (not necessarily AV) communication
network can considerably increase the network capacity, as
it can be used to generate dependence between transmission
signals of remotely located users. In AV settings, the task of
the cooperation link is twofold: besides its traditional function
of creating correlation between different users, it can be used to
distribute small amounts of common randomness between users,
thus facilitating the use of deterministic codes for users whose
channels are symmetrisable. Thus a small amount of cooperation
can have little effect on the capacity of a regular (non-AV)
network, but a dramatic effect on the capacity of an AV system.
This fact has already been observed by Wiese and Boche in the
context of the multiple access channel.

Another source of variability in modern communication chan-
nels, independent of whether the channel is AV or not, is
the uncertainty of cooperation. In modern ad-hoc networks,
users come and go, and their willingness to serve as relays
or helpers is not guaranteed a priori. Moreover, in complex,
non-centralised ad hoc networks, part of the users cannot be
informed about the situation of the cooperation link, thus coding
schemes cannot be swapped per scenario. Traditional cooperation
schemes, developed so far in the IT literature, rely heavily on the
cooperation - if the link is absent, decoding cannot be performed.
A new approach to uncertain cooperation, explored in recent
works in the context of regular (non-AV) systems, is to devise
coding scheme that are robust in the following sense: the decoders
exploit the cooperation when it is present, but can still operate
when it is absent, possibly leading to lower decoding rates.

An interesting family of problems arise in networks with these
two sources of uncertainty: the channel statistics is AV, and
cooperation links are not guaranteed to exist a priori. Although
this seems a complex model, it is realistic in modern networks, as
statistical properties of channels do change in time in an arbitrary
manner (due to fading, jammers, malicious attacks, and more),
and the dynamic nature of modern networks induces uncertainty
not only in their statistics, but also in their topology. Interestingly,
it turns out that closed form results can be obtained for these
involved scenarios.

In this talk I will give an overview of the state of the art, and
describe recent works and results on the topics described above.
The goal is to study networks with the highest possible degree of
uncertainty, that can still yield meaningful models and results.

The presentation is based on joint works with Dor Itzhak, Wasim
Huleihel and Uzi Pereg.
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Dimensions of Uncertainty in Communication Theory

Ezio Biglieriy

The uncertainty concept usually dealt with in communication theory is associated with unknown outcomes

that di�er each time one runs an experiment under similar conditions. The standard tool used in this situation

is probability theory, as all forms of uncertainty are treated in terms of the single dimension of probability.

However, one should realize that uncertainty can take multiple aspects: speci�cally, the �aleatory� uncertainty

caused by the randomness of system behavior, and the �epistemic� uncertainty due to ignorance. Aleatory

uncertainty is attributed to outcomes that for practical purposes cannot be predicted and are therefore treated

as stochastic (e.g., the result of a coin �ip), whereas epistemic uncertainty is attributed to missing information

or expertise or inadequacy of one's model of aleatory uncertainty. For example, in performance evaluation of

wireless communication no single fading-channel model can be fully accurate for a wide variety of channels.

Performance can be computed once a model is chosen, but the actual physical channel model pertains to

epistemic uncertainty.

Under epistemic uncertainty, citing verbating from [4], �it is better to have an analysis which is correct

and honestly distinguishes between variability and incertitude than an analysis that depends on unjusti�ed

assumptions and wishful thinking. (� � � ) If the price of a correct assessment is broad uncertainty as a

recognition or admission of limitations in our scienti�c knowledge, then we must pay that price.�

To deal with epistemic uncertainty, we need appropriate mathematical tools: a calculus by which this type

of uncertainty can be properly manipulated, a meaningful way of measuring the amount of relevant uncertainty

in any situation that is formalizable in the theory, and a way to develop methodological aspects of the theory,

including procedures of making the various uncertainty principles operational within the theory [5]. We advocate

the use of �probability boxes,� which are interval-type bounds on cumulative distribution functions that can

handle a great deal of model uncertainties, imprecisely speci�ed distributions, and poorly known or unknown

dependences of random variables.

Bibliography

[1] C. Alsina, M. J. Frank, and B. Schweizer, Associative Functions: Triangular Norms and Copulas. Singapore:
World Scienti�c Publ. Co., 2006.

[2] B. M. Ayyub and G. J. Klir, Uncertainty Modeling and Analysis in Engineering and the Sciences. Boca Raton,
FL: Chapman & Hall/CRC, 2006.

[3] S. Ferson, �Model uncertainty in risk analysis,� Proceedings of the 6th International Workshop of Reliable En-

gineering Computing: Reliability and Computations of Infrastructures, Chicago, IL, pp. 27�43, May 25�28,
2014.

[4] S. Ferson, V. Kreinovich, L. Ginzburg, D. S. Myers, and K. Sentz, Constructing Probability Boxes and Dempster�

Shafer Structures. Albuquerque, NM: Sandia National Laboratory Report SAND 2002â��4015, January 2003.

[5] G. J. Klir, Uncertainty and Information: Foundations of Generalized Information Theory. Hoboken, NJ: J.
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Abstract—The well-known Shannon capacity expression for the bandlimited additive gaussian-noise channel is correct from 

the point-of-view of the mathematics, but incomplete from the point-of-view of the  physics. This is because of the emergent 
granularity of a lightwave at low signal levels.  Quantum information theory, though formally the proper tool to study this, is a tool 
too sharp to obtain insightful answers.  We propose an intermediate  semiclassical information theory based on the Poisson transform 
of Mandel and Wolf. The wave and particle views of a lightwave are seen to be the two sides of the Poisson transform. The  capacity 
of a photon channel conjectured by Gordon (1962) and Forney (1963) based on maximum-entropy considerations is proved to be 
correct, and the Shannon capacity of  the bandlimited gaussian noise channel is  shown to be the emergent capacity formula as the 
number of photons becomes large. 

 
 

Channel Capacity: From Waves to Particles 
and Back Again 

 
Richard E. Blahut 
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Abstract—It is the purpose of this presentation to recall some of the reasons why engineers and mathematicians are interested 
in the Fourier transform. As a student, I was told, that the Fourier transform is important because it transforms the complicated 
operation of convolution into simple pointwise multiplication. But why should we be interested in convolution? A valid answer came 
to me from the engineers, who are teaching linear time-invariant systems, impulse response and transfer functions in their first 
courses. 

Comparing the two sides of Fourier Analysis, the applied and the theoretical one (which in fact via the theory of tempered 
distributions by Laurent Schwartz, with important applications to partial differential equations), one observes that they have not 
too much to do. I will provide a few striking examples in the talk. 

Given this situation, I suggest a reconciliation of the two worlds, based on long-term cooperation with engineers, both in research 
and teaching. The theory of Banach Gelfand Triples, also known as Rigged Hilbert Spaces, provides such a possibility. The modern 
approach to time-frequency analysis (TFA) allows a simple description of the Segal algebra $S_0(R^d)$, which forms an algebra of 
test-functions (via integrability of the STFT). The dual space (or equivalently distributional completion), also called space of ``mild 
distributions'' can be described as the space of all tempered distributions which have a bounded spectrogram (STFT). As time 
permits we will give a few examples, showing that within this setting a mathematically justified treatment of most expressions arising 
in engineering applications (such as Shannon's Sampling Theorem, representation of systems as convolution operators, etc.) is 
possible. 

The material presented is part of a long-term project by the speaker, and there is a list of talks and papers available from the NuHAG 
web-page, e.g. www.nuhag.eu/talks  (access via ``visitor''  and ``nuhagtalks''). 

Convolutions, Fourier Transforms, and Rigged 
Hilbert Spaces 

 
H. G. Feichtinger 
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Abstract—Graph signal processing is a modern paradigm to deal with large data sets. It captures the intrinsic structure of the 
data via the topology of a graph. By capitalizing on the graph structure, diverse large-scale learning and inference problems can be 
tackled. Graph signal processing is promising in applications like sensor networks, social networks, infrastructure networks, or 
biological networks. 

In this talk I will report some of our recent work in which we build on the notion of graph total variation to formulate a consistent 
theoretical framework and efficient distributed algorithms for data reconstruction, network structure inference, and clustering. 

Data Science by TV on the Graph 
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Capacity of dynamical storage systems
Ohad Elishco Alexander Barg

Abstract

We introduce a dynamical model of node repair in distributed storage systems wherein the storage nodes
are subjected to failures according to independent Poisson processes. The main parameter that we study is the
time-average capacity of the network in the scenario where a fixed subset of the nodes support a higher repair
bandwidth than the other nodes. The sequence of node failures generates random permutations of the nodes
in the encoded block, and we model the state of the network as a Markov random walk on permutations of
n elements. As our main result we show that the capacity of the network can be increased compared to the
static (worst-case) model of the storage system, while maintaining the same (average) repair bandwidth, and
we derive estimates of the increase. We also quantify the capacity increase in the case that the repair center
has information about the sequence of the recently failed storage nodes.

Preprint of the full paper is available as arXiv:1908.09900.
The authors are with Institute for Systems Research and Department of ECE, University of Maryland, College Park, MD 20742,

USA, emails {ohadeli,abarg}@umd.edu. Research supported by NSF grants CCF1618603 and CCF1814487.
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Expectation-Consistent Approximate Inference
with Vector-Valued Diagonalization —

An Unbiasing Interpretation

Robert F.H. Fischer

Institut für Nachrichtentechnik, Universität Ulm, Ulm, Germany, Email: robert.fischer@uni-ulm.de

ABSTRACT

In 2005, Opper and Winther [12] presented a general frame-

work for solving inference problems, called expectation con-

sistent (EC) approximate inference. The main idea is to replace

a non-tractable, high-dimensional probability density function

(pdf) by a suitably chosen one from an exponential family.

They argue that their approximation is good, as long as the

moments of the original and substitute pdf match. Moreover,

a simple “single loop” algorithm was given, which realizes

loopy belief propagation. Later, Fletcher et al. [6] presented

a generalization (basically to maximum-a-posteriori (MAP)

estimation) and studied the convergence behavior.

It is of interest to apply the general framework to the

standard linear regression problem where noisy linear mea-

surements of the form

y = Ax+ n

are present. Thereby, A ∈ RM×N is a known (sensing) matrix,

the elements of x ∈ RN are i.i.d. with known marginal pdf

fx (x), and n is zero-mean Gaussian with variance σ2
n per

component.

For M < N and choosing the pdf fx (x) suitable, the

compressed sensing (CS) problem [2], [4] is included. A huge

bunch of recovery algorithms exists; among them the powerful

family of approximate message passing (AMP) [5], [10].

Recently, vector approximate message passing (VAMP) [13],

[14] has been proposed; it can be straightforwardly derived

from the EC framework. Similar (but not identical) approaches

are orthogonal AMP [9] and iterative MMSE estimation and

soft feedback (IMS) [15].

One degree of freedom when applying the EC approach

is to define which moments have to match—this step is

also called diagonalization. Often (e.g., in VAMP) “uniform

diagonalization” (diagonal restricted in [12]) is chosen. Here,

besides the first-order moments (means of the elements of

x) the average second-order moment (and hence variance)

should match—we call this strategy average variance. As a

consequence, within the algorithm mi = E{xi}, i = 1, . . . , N ,

and σ2
avg = 1

N

∑N
i=1 E{(xi −mi)

2} are tracked.

This work was supported by the Deutsche Forschungsgemeinschaft (DFG)
within the framework “Compressed Sensing in der Informationsverarbeitung
(CoSIP)” — grant FI 982/16-1.

Alternatively, a “vector-valued diagonalization” (diagonal

in [12]) can be employed where the first- and second-

order moments of all elements of x should match. Here,

mi = E{xi}, i = 1, . . . , N , and σ2
i = E{(xi − mi)

2},

i = 1, . . . , N , are tracked. Hence, individual variances char-

acterize the reliabilities of the N unknowns in x—in contrast

to a single average reliability over the entire vector. However,

in numerical simulations it turns out that applying the EC

approach to the CS setup, using an average variance leads

to better performance than using individual variances (which,

unfortunately, has higher numerical complexity).

In the present contribution, we enlighten the main reasons

for this effect. To that end, the single-loop EC algorithm is

reformulated as iterating over two minimum mean-squared

error (MMSE) estimation problems (cf. [14]). Noteworthy,

since both diagonalization strategies consider the two first

moments, inherently Gaussian distributions are treated. The

relation between the natural parameters [1], [11] of the three

pdfs involved in the EC algorithm are shown to be nothing else

than the removal of the bias inherent in any MMSE solution

[3], [7]—which, in turn, is nothing else than the calculation

of extrinsic information [8].

For the step of non-linear, per-component estimation of the

unknowns obeying the signal pdf (the “q to r” step in [12]; the

“denoising” block in [14, Alg. 3]), following [16], two versions

of unbiasing are presented, namely a “signal-oriented” and a

“noise-oriented” approach. The adequate unbiasing relations

(in particular for the conditional variances) are derived.

Numerical simulations are provided for a discrete CS

setting—the elements of x are drawn from the finite alphabet

{−1, 0, +1}. The results cover that using individual variances

in combination with “noise-oriented” unbiasing provides the

best results; in all cases VAMP, i.e., utilizing an average

variance, is outperformed.
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Abstract—Shannon information theory has served as a bedrock for advances in communication and storage systems over the 
past six decades.  However, this theory does not handle well higher order structures (e.g., graphs, geometric structures), temporal 
aspects (e.g., real-time considerations), or semantics, which are essential aspects of data and information that underlie a broad class 
of current and emerging data science applications. In this talk, we present some recent results on structural and temporal 
information in dynamic networks/graphs, in which nodes and edges are added and removed over time.   

We focus on two related problems: (i) compression of structures -- for a given graph model, we exhibit an efficient algorithm for 
invertibly mapping network structures (i.e., graph isomorphism types) to bit strings of minimum expected length, and (ii) node 
arrival order inference -- for a dynamic graph model, we determine the extent to which the order of node arrivals can be inferred 
from a snapshot of the graph structure. For both problems, we apply analytic combinatorics, probabilistic, and information-
theoretic methods to find statistical limits and efficient algorithms for achieving those limits. 

Analysis of Information Content in Dynamic 
Networks 
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