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The Mean Received Power A&d HocNetworks and
Its Dependence on Geometrical Quantities

Jan HanserStudent Member, IEEBNd Peter E. LeuthoJdember, IEEE

Abstract—System-level simulations forad hocnetworks require  for instance, treated in terms of pathloss models [3]-[5], i.e.,
the mean power that is received by an arbitrary unit of the piconet  an average over a number of environments is obtained, but the
as an input parameter. Since the radio channel in piconets depends distance betweefi. andR.. is fixed. In other models a some-

strongly on the environment in which two communicating units are e L . N .
located, easily applicable models for the mean received power mustWhat artificial definition of propagation scenarios in terms like
" “large rooms,” etc. [6], [7] is applied. The op-

be determined by a few relevant, explicitly geometrical quantities. “Small rooms,
Starting from a very general description of the stochastic radio posite holds for ray tracing models, which are based on com-
channel by an integral equation, it is shown that these quantities pletely defined environments. This approach hence does not di-
are the surface area and the volume of the domain in which the o4y jead to a stochastic model; strictly speaking, those that are

transmitter and the receiver can move. On the basis of an exponen- derived f tracing I8 | lid for the singl .
tial pathloss model with pathloss exponeny, a lower and an upper erived from ray tracing [8] are only valid for the single environ-

bound for the mean received power are derived. The resulting ana- Ment for which the ray tracer was run. But for such an integral
Iytical expressions are highly flexible and allow a quick calculation quantity as the MRP, this approach seems to need a large com-

of bounds for the mean received power in many practically rele- putational effort; therefore the question arises as to whether it is

vant cases. possible to achieve reasonable results with a simpler calculation
Index Terms—Ad hoc networks, mean received power, stochastic scheme.
channel modeling, wave propagation. A step in this direction has been made in [9], where methods
from geometric probability [10]-[12] were applied in order to
I. INTRODUCTION significantly simplify a ray tracing algorithm that was used for

the prediction of the received power within a building. As the

D URING recent years, there has been a growing interestifyqe| operates site-specifically, it requires several site-related
ad hocnetworks such as IEEE 802.15 (Bluetooth) or IEEE,, ¢ harameters and can only numerically be evaluated. Fur-
802.11. In contrast to _netwqu_s W|th fixed access points, tli‘ﬁermore, it is restricted to buildings composed of rectangular
former are self-organizing within a piconet. Knowledge abow,pstructures.
the radio channel is required for the design and test of such arpis paper shows that the MRP as required for statistical
system. Of particular importance is the mean received POW§{annel models can be analytically derived. The obtained for-
(MRP); since results from numerous measurement campaignsas rely strongly on methods from geometric probability and
|nd|ca_te that the received power is Iognormal_dlstrlbuted [1], th8iow the calculation of the MRP not only for rectangular but
MRP is a fundamental quantity for stochastic channel modelgq for arbitrary convex domains, of which only the volume and
as well as for system-level S|_mul_at|ons_. It refer_s not only to the surface area must be known. The starting point is a very gen-
power between two communicating units. Any link between tweya| description of the stochastic radio channel as a deterministic
commumcatmg un.|ts is a source of mterfergnce for other unitg,nction for wave propagation, which operates on stochastically
and the ongoing discussion about the coexistence of Bluetogifyined variables such as random positions of transmiiftey
and IEEE 802.11b [2] requires i!’l particular information'abmgnd receivet R, ), combined with the geometry of the environ-
the mean interference power. Since there is no clear hierar¢hynt. |f the deterministic part is described by a simple pathloss
between the users of a piconet, both quantities can from theqe| integral expressions arise that appear in channel mod-
viewpoint of wave propagation be treated in a similar mannekjing not only for the presently discussed case but also for other
Clearly, the MRP depends strongly on the environment [f,|0ss models, other network types, and other quantities than
w'h|ch't.he system operates. A fI.eX|bIe model Wlth general aRist the MRP. Their solution is carried out in the second section
plicability must thus allow a choice between different types Qf this paper. In the third part, the resulting bounds are tested by

architecture; it has, in addition to the wave propagation aspelgyyiations. An Appendix gives additional details.
to use explicitly geometrical parameters. All common stochastic

models, however, depend on geometrical parameters only on a
very intuitive level. They often rely on data derived from mea- Il. THEORY

surements in some different scenarios. The received power ispne aim of stochastic channel modeling is to find conditional
distributionsP(£|T") of particular channel parametefor any
Manuscript received December 21, 2001; revised June 7, 2002. of their k&th moment,E[¢*|']. The parameter denotes any en-
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defined environments € T', where “precisely” means suffi- For the following derivation, no assumption is required about
ciently accurate for a correct simulation of the electric field dighe particular shape ab; it must, however, be convex, i.e.,
tribution. The quantity¢ can be, for instance, an amplitude, afor each pair of points inD, the line segment that connects
angle of arrival, or even an entire set of useful parameters. ltiese points belongs also fo. This assumption is not a severe
random, since the positions &if. andT, are randominy. Since drawback for the applicability of the model.

wave propagation is a function of the positiongdf, T.., andy, The MRP, i.e., the expectation of the received power for any
one can express the stochastic nature of the radio channel using communicating units 1 and 2 then equals the integral
the law of total probability [13]
1 Iy = 7, / / —dpldpz )
PN =—+——+— d d
7€' Dr, Dr, In this expression, the differentidp; denotes the density of the
X P(§|pT ,PR,»7)P(PT, PR, ) position of user. The integration domain fop; is not D but
k D\B,(p2), i.e.,a ball of radiug is cut out aroungb,. This ball
Bl = Vr, VR |F| Z / dpz. / dpr. / ensures that the distancdetweerp; andp, cannot be smaller

than p, which is important for the application of the pathloss
x kp (§|(me,pRI,”y) (me ,pRm). (1) model (2). This model is valid only in the far-field of the an-
In these two equationsDr. is a domain of volume tenna, where the field decays in free space wjth The factor
Vo in which T, is distribated' Dy is a domain of V'V normalizes the densityp; dp, to one; the entire volume of
volume Vg, in which R, is distributed; and the densityl iS denoted by, and the volume oD\ B, (p») by V.
(1/ (Ve Vi ))p(pr.. . pr. )dpr. dpr. describes the probability Integral (3) is of a fundamental type, since it describeg:d 1
that TI ar;d R gr/e located at some poings;. and px interaction between two point-like particles. It hence occurs in
The eipressioﬁﬂ denotes the number of elenz1entinrarI1d numerous fields like statistical physics and solid-state physics
normalizes the sum over all environments. The dorniis [18], [19]. Attempts to solve or to bound this integral in two di-
that in which the moments afare calculated. mensions and for general or particular shape® atach back
Al deterministic models require the environment many decades [20], [21]. Expliqit solutions in three dimensions,
to be completely defined; in this case, the expressidifWever. are very hard to achieve and depend strongly on the
P(¢lpr. . pr..~) is a unit step function in several dlmen3|on§hape ofD [22]. Explicit solutions, however, do not seem nec-

and the evaluation of (1) becomes equivalent to Monte- cafssary. since one may already intuitively claim that due to the

ray tracing [8], [14]. Empirical models, on the other hand, aIg)ouble integration in (3) more robust approximations should
valid for an entire set of, which is equivalent to the summation€XiSt: The discovery that specific integrals of the above type

over ally € T of the termP(E|pr. . pn. , 7) within the integral, '€ indeed independent from the particular shape, but are only

This is done in the case of the well-known empirical pathlo&€termined by quantities like the surface or the perimeter of

model [15][17], which states that the pathloss obeys a po p Was first made in two dimensions [23]. This and some re-
law of the form Iated results stimulated the development of a new mathemat-

ical branch called integral geometry; after some decades nu-
1 . . .
(Pr,|r\q, k) = k— (2) merous techniques for the solution of problems that arise at the
rd boundary between probability theory and geometry were devel-
where Pg_ is the received powers is a constanty is the oped[10]-[12], [24], [25] and are still under investigation today.
distance betweeft,, and R.., andq is the pathloss exponent. The key strategy for tackling (3) is the transformation of the
The brackets(.|.) clarify that this model is an empirical densities of pointdp; anddp. into the densities of two points
model, which is valid in all sets of environmerighat can be on a lineG and the density of this lineJG. The derivation
parameterized by particulgrandx. of dG, its rigid treatment, and the proof thé&€ is a well and
The integral expression (1) gives a starting point from whiamiquely defined measure requires techniques from differential
various channel models can be deduced by applying various ggemetry and group theory [10]. Its geometrical meaning can,
sumptions about the environment, its wave propagation charaowever, be quickly outlined (Fig. 1). The perpendicular of the
teristics, and the distribution &f, and R,.. The possible po- line G to the originO defines a distance = ||py|| of G to O.
sitions define the boundaries of the integral in (1); the expreEhe line segmen®p, lies in the pland”’, which is also perpen-
sion is hence of geometrical nature, and geometrical methatisular toG and thus uniquely defined. The point of intersection
are needed to solve it for specific cases. po of G with F' can be described afi in cylindrical coordinates
In this paper, (1) is solved for a low-powad hocnetwork. by its distance from O and an anglé relative to a fixed axis of
For the description of wave propagation, the pathloss model ) herez. Furthermore(s has a direction that can be described
is a suitable and simple starting point; the environment is not esy the pair of angle$y, ). The density of lines is the volume
plicitly characterized but in fact parameterized by the pathlostement ofF" at py, combined with the volume element of the
exponentg and byx. For most situations in low-power net-unit spheredG = 7d7d¢ - sin #dfd. This density is motion
works, ¢ is in the range around two and thus not much highémvariant, i.e., it does not depend on the locatioof
than the pathloss in free space. Using dG, the density of the location of two points and
In an ad hocnetwork, all users are uniformly distributedp,, given in Cartesian coordinates, can be transformed into the
within the same particular domain, e.g., a part of a building. density of these points afd, multiplied withdG; equivalent to
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f of lengthe > p ({(GN D) # 0,0 > p}). This condition
a (1,0) arises again due to the minimum distapchich must be kept
between both units of the network.

Equation (5) consists of three terms. o 0 only the first
remains. However, this term diverges fpr— 3, since the in-
tegral expression of this term has a finite value, and the denom-
inator tends to zero. The remaining two terms are thus required
to keep the entire expression bounded.

Expression (5) can now be tackled with the aid of the fol-

lowing relations, which are valid for integrals over the density

of lines [10]:
' On—2
dG=—-——F—-A 6
Y41 F / (7’L — 1)00 ( )
7 t DNG#0

' On—l

Do odG = 0 V (7
0
DNG#D
D
oG = —”(”; Dy ®)
DNG#D

whereQO,, is the surface of the—dimensional unit sphere and
the surface area of the convex boBywith volumeV'. It holds
thatO,, = (2r(+1/2)/(I'((n + 1)/2)) [10], so that one has
O, = 4w, which is the surface of the unit spher®@; = 2,

) . ] ] which is the perimeter of a circle, a@, = 2. This triple of
the transformation of the location of a single point from Cartgsquations reveals that certain integrals over the density of lines

sian to spherical coordinates, the expression must be weighigd a convex body do not depend on the particular shape of the

with the square of the distance betwganandps, so that one oy, but only on the very integral quantities volume and surface
obtainsdpydps = [t; — t1]2dt1dtodG, wheret; andt, are the greg.

coordinates of the points relative g on . Hence, (3) canbe  Equations (6)—(8) can be applied to solve (5). The required

Fig. 1. Sketch of the two points, andp. on the lineG.

written as exponent (4-¢) of the chordlengthr of the first term in (5) is
[ id J obtained by applying Hélder’s inequality [26], which is demon-
T vV . q P1AP2 strated in the Appendix. Strictly speaking, the three relations
D D\B,(p2) can only be applied fop = 0, since the integration domain in
__K5 / ' / 2141, dtydG (4) (6)—(8) includes all lines, and not only those that fulil> p.
vV . For their application in the case pf> 0, the volume and sur-
DNG#D t1 €DNG\B, (p2) t2€DNG face of that convex body is required that emerges fionvhen

wherer = |t —#;| and the line segmedt; |t; € DN G} arises all parts of D that can be covered by the lines for whieh< o

from the intersection oD with G and defines the integration are removed. This body is hard to determine if the shape of
domain fort, andt,. Note that fort; this line is split in two 1S unknown. For particular domains, such as rectangles, the dif-

rays, sincg; cannot be inside the balt,(p). ference between the two bodies can be shown to be not large (as
The integral ovedG is now an integral over the lines thatth® MRP is given in dB scale) as long as the diamegeofzhe
intersectD. Integration of (4) over ally, t, € D, t1 & B,(p2), sphereB,(p2) is smaller than the smallest diametefdand the

yields for a convex domain largest diameter is at least twice as large @adr2the following,
this difference is neglected, and (6)—(8) are directly applied to
I, = 2% - solve (5). The validity of this approach is verified through sim-
B-qg-qVV ulations.
Using (6)—(8) and the result obtained in the Appendix, one
X / o*71dG + (3 — q)p*? obtains as approximate bounds for the MRP
a>p 2K 7—2 2—q 4q—3 4—qm A
2 (I,n-V 7 A4 + 3— q_
[a0-6- a0 o eE ey I E
X dG — 4—qp_’1/adG . 5 _or
J : —(4-q)p’ q—}
a>p a>p 14
In this expressiong is the length of the chord D N G} that <I. < 2K {61—% (f)% V‘%A%+(3—q)p4"1
arises when ling intersectsD (Fig. 1). The integral does not = *~ (3—¢)(4—q) 2
actually extend over all line§' that intersectD, {(G N D) # T A

227 (44— 3—q 20
¢}, but only over all lines that intersed with a chord at least X5y (4=a)p % } (a<3) (9)
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where the< sign is required, sinc& has been replaced By. 5
Forp = 0, < can be replaced b¥.
The results seem complicated because of the possible irra- Q.
tionality of the exponeny. For some numbers, the expression Or '
simplifies significantly, e.g., fog = 1 (the mean received field ™
strength in line-of-sight) angd = 2, one obtains <)
-5
327V . KT p? Q _ g &
"T3az Ty 3V =
2
B K1 _ 4 A4TA  Kmp ﬂ_ -10¢
sB(7]=eilae w5 a2
8T Kkmp {A/} }
e+ —— {0 4 - : ~
AV 2V % 10 20 30
K 3rA  kmp [ Ap Width (m)
< R < K - R —
NE[TJ ST+ {2V 4}. (10)

. . Fig. 2. MRP and analytical bounds fpr= 0 m, ¢ = 2, and a domain of 4 m
In these cases, the bounds depend in a very simple way onigagth, 1 m height, and variable width.

volume and the surface area Bf. On the one hand, such a
simple dependency seems surprising. On the other, these bound~ 5
are merely a rigid formulation of the robustness of the radio
channel against changes in the environment. Any measurement
campaign is in fact based on the assumption that its results, ol
which arise from a particular way of moviri§. and/orR,. in

a chosen environment, are valid representatives for any envi- _Eg
ronment that is geometrically similar; if this assumption did not ~—
hold, results from campaigns in similar environments would not &
be comparable. The fact that they are comparable is simply ex- =
pressed by (9) and (10).

_5’-

10

I1l. SIMULATIONS

A. Examination of the Bounds -15

For the examination of the bounds, a simple simulation tool 10 Width (m)
was developed. This tool uniformly distributes two points, the
R, and theT,, of thead hocnetwork, in a rectangular domainFig. 3. - Analytical bounds fop = 0.5 m, ¢ = 2, and a domain of 4 m length,
D with sidelengthsa, b, and ¢, constrained to a given min- * ™ neight, and variable width.
imum distancen between the points. In combination with any
pathloss exponent, the meanF [« /r?] can easily be evaluatedcubic, i.e., the ratio of the sidelengths is closer to one. For a
from the samples of the distaneebetween the points. In the very flat disc, the upper bound actually becomes arbitrarily bad,
following, this tool is used to examine the properties of the asince A remains about constant ald— 0; according to (9),
alytical bounds with regard to, to the dimensions ab, and to the bound tends then to infinity. The decrease in the simulated
the value of the pathloss exponentAll simulation results are mean due to the difference inis about 2 dB, which means that
based on 10000 realizations Bf, and7, positions; the con- for ¢ = 2 and the given size oD it is not strongly effected
stantx equals one. by p. The upper bound in Fig. 3 is also up to 2 dB lower than
In Figs. 2 and 3, the dependence of the bounds on the dimén¥ig. 2, whereas the lower bound has lost at least 4 dB. The
sions of D and on the minimum distangeare investigated. The reason is the correcting terms for> 0 in (9), which are equal
setup resembles ad hocnetwork that includes all devices be-for both bounds on linear scale and thus weigh stronger in dB
tween 1.0 and 2.0 m height. In Fig. 2,has a length of 4 m and for smaller values.
a height of 1 m, an@ equals zero; in Fig. 3, the dimensions of The dependence of the bounds and the simulated values on
D are the same, byt = 0.5 m. In both figures, the width of p and ong is examined for a domain of size 205 x 1 m
the rooms is increased from 4 to 28 m. The analytically calcandp = 0.5 m. Notice that forg > 2 the domain needs not
lated bounds are displayed by dashed lines and circles, wheneesessarily refer to a single room with free space pathloss; it
the simulated mean is shown by a continuous line and trianglean be any environment that does not encompass the given size
The pathloss exponent is= 2. of D and whose interior structure is absorbed into the value of
The bounds are comparably tight. The simulated values diffgrThe volume and the surface area refer again to the domain in
by about 1-6 dB from the lower and the upper bound; they temdhich 7}, and R,. are uniformly distributed, and are thus only
to be closer to the lower bound, which is foe 0 always within  indirectly related to the volume and the surface area of the actual
1-3 dB distance. The bounds are better if the domain is mamoms of the indoor environment.

20 30
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5 T - ' TABLE |

7 MRP Pr, FOR THE TRANSMITTED AND RECEIVED COMPONENT BEING
; PARALLEL TO THE WALLS AND CORRESPONDINGBOUNDS FORROOMS OF

7’ 4M HEIGHT AND DIFFERENT FLOOR SIZE

floor size (m?) | 30x8 30x4 20x8 20x4 12x8 8x8 4x4
upper bound (dB) -474  -46.0 -46.3 -445 -446 -43.8 -40.7

1 Pr. (|| to walls) (dB) | -50.0 -51.1 -51.1 -49.4 -495 -485 -44.2
M lower bound (dB) = | -57.5 -55.8 -55.6 <-53.3 -52.8 -51.4 -47.0

-10} _-9-=©
B At A
A TABLE I
MRP Pg, FOR THE TRANSMITTED AND RECEIVED COMPONENT BEING
PARALLEL TO THE FLOOR AND CORRESPONDINGBOUNDS FORROOMS OF
-15 ' . ! 4M HEIGHT AND DIFFERENT FLOOR SIZE
1 1.5 2 2.5 3

Pathloss Exponent ¢

floor size (m?) | 30x8 30x4 20x8 20x4 12x8 8x8 4x4

Fig. 4. Analytical bounds (circles) for values gfoetween 1.3 and 2.9, and ~ upper bound (dB) | -47.4 454 -463 -444 450 -439 -40.8

p = 0.5 m. The MRP is shown fop = 0.5 m (triangles) angp = 1 m  Px. (Il to floor) (dB) | -50.2  -50.9 -50.7 -49.5 -49.3 -48.2 -44.5
(diamonds). lower bound (dB) -57.7 -55.2 -55.6 -53.2 -53.4 -51.6 -47.1

The results are shown in Fig. 4. The simulated meam fer
0.5 m (triangles) decreases slowly with increasinghe upper material are valid at 2.4 GHz, and that of glass at 3 GHz. The
bound is tightest for lovy, with about 3 dB difference; the dif- antennas are isotropic, which corresponds, in the case of linear
ference increases for increasipgThe lower bound is farthest polarization, to a uniformly distributed orientation of the an-
apart from the simulated mean for lapand approaches it @ tennas and is a realistic assumption fomarhocnetwork. Field
increases. Without the correcting terms in (9) for- 0, both  vectors are transmitted and received either both parallel to the
bounds would diverge. If these terms are included, the lowkgor of the rooms, or both parallel to the walls of the room. In
bound is kept below the simulated mean; the upper bound, hayach run of the ray tracer, 2048 realizationg?gfandT), posi-
ever, still diverges. Fog > 2.5, the upper bound is very loose.tions are simulated. The MRP for each realization is calculated,
For the geometrical reasons outlined in Sectiop ikannot be using the power of the direct path and all reflections up to the
chosen larger than 0.5 m for the given domain of height 1 isecond order. Agaip = 0.5 m ~ 4\ at this given wavelength
The impact of this disadvantage of the model is, within limits) is set, which is almost the maximupnallowed for a domain
not tremendous. The diamond marked line in Fig. 4 is the sirpf width 1.2 m. For the ray tracing simulations the distance is
ulated mean fop = 1 m. This mean decreases faster than thglightly more relaxed to 8, so that the far-field condition is ful-
simulated mean fop = 0.5 m and crosses the lower boundilled for all antennas with aperture smaller thah 9] (see
for this p atq = 2.5. The deviation between the two means inalso Fig. 4). The pathloss model (2) is fitted to the result. The
creases with increasing it is hardly noticeable fo = 1.5, obtained pathloss exponents are all between about 1.7 and 1.9,
but reaches 4 dB fay = 2.9. At ¢ = 2, itis about 2 dB and still and the value of; about—41 dB. This is realistic, since in en-
well above the lower bound. The expressions for a partiulavironments with a strong direct path and many reflections, the
are hence also valid for a largerwhere the lower bound servespathloss exponent is known to be a bit lower than two, and

rather as a good practical approximation. the received power in 1 m distance from an isotropic antenna is
) _ ) A?/(4m)% = —40 dB for 2.4 GHz. The analytic bounds are then
B. Comparison With Ray Tracing calculated using the obtained values fandx; the volumel’

The derived bounds are compared with ray tracing resultsd the surface are result from the floor size and the height
The used ray tracer relies on a Monte Carlo technique andoighe domain in whichR, andT,, can move. As their locations
designed for the calculation of quantities of the stochastic radice restricted between 0.8 and 2.0 m above the floor, this height
channel [14]. For the investigation of the bounds, simulatiorgjuals 1.2 m
are carried out at 2.4 GHz; empty rooms with various floor sizesIn Tables | and I, the ray tracing results are compared to the
of30x 8,30x 4,20x 8,20x 4,12x 8,8x 8,and4x 4 m’ analytic bounds, where each table displays the values obtained
are used. All rooms are 4 m high. The positions/pfand R,  from a particular state of polarization. The results for the two
are randomly created according to a uniform distribution, thetates of polarization are very similar. The validity of the model
bounds of which are the walls of the room, and a height 0.8 aisdclearly demonstrated. For the seven investigated scenarios,
2.0 m above the floor of the rooms. The building materials atee simulated powers are between the analytically calculated
also randomly chosen; the distribution corresponds to a ratt@unds.
heavily constructed, old-fashioned office room with 70% con- The simulation results also indicate that the fit parameter
crete, 20% glass, and 10% light concrete building material. Than be replaced by the pathloss in 1 m distanég(47)?. This
dielectric constants ake= 5.5 — 50.10 for heavy concrete [27], substitution makes the model much easier to apply; it then de-
e = 5.0 — 50.025 for glass [28], and = 2.2 — j0.15 for light pends only ory, which can be chosen to represent a particular
concrete [27]. The dielectric constants of the first and the lastenario, the wavelength, and the dimensiond of
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IV. CONCLUSION can be derived as follows.
For the lower bound, set = o, ¢ = 1 on the left-hand side

Analytical bounds on the mean received poweadrhocnet- {/(11)’ and choosé= 4 — . Thenl’ = (4— )/(3 — q), and

works are presented. The bounds are sufficiently tight for mafl

relevant cases. Scenarios are characterized only by their pathloss ~ azg
exponenyy, the pathloss in 1 m distance or the wavelength, re-

spectively, and the surface area and the volume of the domain,/ odG < / o*"1dG / 1dG

in which the units of the communication system can move. Thys-¢ DAG#£D DAGD

the bounds can be applied very conveniently, since a system de- (13)

signer needs only minimum information about the environmeatd the lower bound fof 0*79dG can easily be evaluated using
in which thead hocnetworks operates. No classification of &6) and (7).
radio environment is required. The bounds do not require anyFor the upper bound, s¢t= ¢*~7, ¢ = 1, on the left-hand
empirical input, and their validity for a typicald hocnetwork side of (11), and choosesuch that(4 — ¢)I = (3 + 1); one
scenario is demonstrated with ray tracing data. obtainsl = (1 — (¢/4)) %, I’ = 4/q, and

A drawback is that the upper bound diverges jor— 3,

. R 1—4 a
even though correcting factors are introduced to ké€g@and ! !
R, a minimum distance apart. But whereas the upper bound / o146 < / otda / 1daG
becomes unreliable in this region, the lower bound actually a%—ng;éw B D D0
proaches the MRP and is a good approximation. Also, the pre- (14)

sented bounds are valid only fgr< 3, but for many environ- Application of (6) and (8) yields the resuilt.

ments higher pathloss exponents are common. However, an exone arrives at both lower and upper bounds of the MRP for
tension of the bounds to arbitragyis already under investiga- e special casp = 0

tion.
The model presented is a specific case derived from a very 2K 97—24. 1724 ga—3
general integral expression that characterizes the stochastic B-q)4—-1q)
radio channel. The integral contains all necessary field theo- < < 2K g (T i
retical and geometrical information that is required to derive =TT B-qd—-9) (5)
stochastic channel properties. The crucial part is the derivation V-4 A% (q < 3). (15)

of a solution for specific cases. The solution need not neces-
sarily be analytical, but can also be obtained numerically. Once
it is obtained, the resulting expressions have_t_he advantage REFERENCES
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