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Abstract—System-level simulations forad hocnetworks require
the mean power that is received by an arbitrary unit of the piconet
as an input parameter. Since the radio channel in piconets depends
strongly on the environment in which two communicating units are
located, easily applicable models for the mean received power must
be determined by a few relevant, explicitly geometrical quantities.
Starting from a very general description of the stochastic radio
channel by an integral equation, it is shown that these quantities
are the surface area and the volume of the domain in which the
transmitter and the receiver can move. On the basis of an exponen-
tial pathloss model with pathloss exponent , a lower and an upper
bound for the mean received power are derived. The resulting ana-
lytical expressions are highly flexible and allow a quick calculation
of bounds for the mean received power in many practically rele-
vant cases.

Index Terms—Ad hoc networks, mean received power, stochastic
channel modeling, wave propagation.

I. INTRODUCTION

DURING recent years, there has been a growing interest in
ad hocnetworks such as IEEE 802.15 (Bluetooth) or IEEE

802.11. In contrast to networks with fixed access points, the
former are self-organizing within a piconet. Knowledge about
the radio channel is required for the design and test of such a
system. Of particular importance is the mean received power
(MRP); since results from numerous measurement campaigns
indicate that the received power is lognormal distributed [1], the
MRP is a fundamental quantity for stochastic channel models
as well as for system-level simulations. It refers not only to the
power between two communicating units. Any link between two
communicating units is a source of interference for other units,
and the ongoing discussion about the coexistence of Bluetooth
and IEEE 802.11b [2] requires in particular information about
the mean interference power. Since there is no clear hierarchy
between the users of a piconet, both quantities can from the
viewpoint of wave propagation be treated in a similar manner.

Clearly, the MRP depends strongly on the environment in
which the system operates. A flexible model with general ap-
plicability must thus allow a choice between different types of
architecture; it has, in addition to the wave propagation aspects,
to use explicitly geometrical parameters. All common stochastic
models, however, depend on geometrical parameters only on a
very intuitive level. They often rely on data derived from mea-
surements in some different scenarios. The received power is,
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for instance, treated in terms of pathloss models [3]–[5], i.e.,
an average over a number of environments is obtained, but the
distance between and is fixed. In other models a some-
what artificial definition of propagation scenarios in terms like
“small rooms,” “large rooms,” etc. [6], [7] is applied. The op-
posite holds for ray tracing models, which are based on com-
pletely defined environments. This approach hence does not di-
rectly lead to a stochastic model; strictly speaking, those that are
derived from ray tracing [8] are only valid for the single environ-
ment for which the ray tracer was run. But for such an integral
quantity as the MRP, this approach seems to need a large com-
putational effort; therefore the question arises as to whether it is
possible to achieve reasonable results with a simpler calculation
scheme.

A step in this direction has been made in [9], where methods
from geometric probability [10]–[12] were applied in order to
significantly simplify a ray tracing algorithm that was used for
the prediction of the received power within a building. As the
model operates site-specifically, it requires several site-related
input parameters and can only numerically be evaluated. Fur-
thermore, it is restricted to buildings composed of rectangular
substructures.

This paper shows that the MRP as required for statistical
channel models can be analytically derived. The obtained for-
mulas rely strongly on methods from geometric probability and
allow the calculation of the MRP not only for rectangular but
also for arbitrary convex domains, of which only the volume and
the surface area must be known. The starting point is a very gen-
eral description of the stochastic radio channel as a deterministic
function for wave propagation, which operates on stochastically
defined variables such as random positions of transmitter
and receiver , combined with the geometry of the environ-
ment. If the deterministic part is described by a simple pathloss
model, integral expressions arise that appear in channel mod-
eling not only for the presently discussed case but also for other
pathloss models, other network types, and other quantities than
just the MRP. Their solution is carried out in the second section
of this paper. In the third part, the resulting bounds are tested by
simulations. An Appendix gives additional details.

II. THEORY

One aim of stochastic channel modeling is to find conditional
distributions of particular channel parametersor any
of their th moment, . The parameter denotes any en-
vironment for which the model is developed. An environment
is usually characterized like “a floor of a building” or “office
environment,” and can hence be described by a set of precisely
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defined environments , where “precisely” means suffi-
ciently accurate for a correct simulation of the electric field dis-
tribution. The quantity can be, for instance, an amplitude, an
angle of arrival, or even an entire set of useful parameters. It is
random, since the positions of and are random in . Since
wave propagation is a function of the positions of, , and ,
one can express the stochastic nature of the radio channel using
the law of total probability [13]

(1)

In these two equations, is a domain of volume
in which is distributed; is a domain of

volume in which is distributed; and the density
describes the probability

that and are located at some points and .
The expression denotes the number of elements inand
normalizes the sum over all environments. The domainis
that in which the moments ofare calculated.

All deterministic models require the environment
to be completely defined; in this case, the expression

is a unit step function in several dimensions
and the evaluation of (1) becomes equivalent to Monte-Carlo
ray tracing [8], [14]. Empirical models, on the other hand, are
valid for an entire set of , which is equivalent to the summation
over all of the term within the integral.
This is done in the case of the well-known empirical pathloss
model [15]–[17], which states that the pathloss obeys a power
law of the form

(2)

where is the received power, is a constant, is the
distance between and , and is the pathloss exponent.
The brackets clarify that this model is an empirical
model, which is valid in all sets of environmentsthat can be
parameterized by particularand .

The integral expression (1) gives a starting point from which
various channel models can be deduced by applying various as-
sumptions about the environment, its wave propagation charac-
teristics, and the distribution of and . The possible po-
sitions define the boundaries of the integral in (1); the expres-
sion is hence of geometrical nature, and geometrical methods
are needed to solve it for specific cases.

In this paper, (1) is solved for a low-powerad hocnetwork.
For the description of wave propagation, the pathloss model (2)
is a suitable and simple starting point; the environment is not ex-
plicitly characterized but in fact parameterized by the pathloss
exponent and by . For most situations in low-power net-
works, is in the range around two and thus not much higher
than the pathloss in free space.

In an ad hoc network, all users are uniformly distributed
within the same particular domain, e.g., a part of a building.

For the following derivation, no assumption is required about
the particular shape of ; it must, however, be convex, i.e.,
for each pair of points in , the line segment that connects
these points belongs also to. This assumption is not a severe
drawback for the applicability of the model.

The MRP, i.e., the expectation of the received power for any
two communicating units 1 and 2 then equals the integral

(3)

In this expression, the differential denotes the density of the
position of user . The integration domain for is not but

, i.e.,a ball of radius is cut out around . This ball
ensures that the distancebetween and cannot be smaller
than , which is important for the application of the pathloss
model (2). This model is valid only in the far-field of the an-
tenna, where the field decays in free space with 1. The factor

normalizes the density to one; the entire volume of
is denoted by , and the volume of by .
Integral (3) is of a fundamental type, since it describes a 1

interaction between two point-like particles. It hence occurs in
numerous fields like statistical physics and solid-state physics
[18], [19]. Attempts to solve or to bound this integral in two di-
mensions and for general or particular shapes ofreach back
many decades [20], [21]. Explicit solutions in three dimensions,
however, are very hard to achieve and depend strongly on the
shape of [22]. Explicit solutions, however, do not seem nec-
essary, since one may already intuitively claim that due to the
double integration in (3) more robust approximations should
exist. The discovery that specific integrals of the above type
are indeed independent from the particular shape, but are only
determined by quantities like the surface or the perimeter of

, was first made in two dimensions [23]. This and some re-
lated results stimulated the development of a new mathemat-
ical branch called integral geometry; after some decades nu-
merous techniques for the solution of problems that arise at the
boundary between probability theory and geometry were devel-
oped [10]–[12], [24], [25] and are still under investigation today.

The key strategy for tackling (3) is the transformation of the
densities of points and into the densities of two points
on a line and the density of this line, . The derivation
of , its rigid treatment, and the proof that is a well and
uniquely defined measure requires techniques from differential
geometry and group theory [10]. Its geometrical meaning can,
however, be quickly outlined (Fig. 1). The perpendicular of the
line to the origin defines a distance of to .
The line segment lies in the plane , which is also perpen-
dicular to and thus uniquely defined. The point of intersection

of with can be described on in cylindrical coordinates
by its distance from and an angle relative to a fixed axis of

, here . Furthermore, has a direction that can be described
by the pair of angles . The density of lines is the volume
element of at , combined with the volume element of the
unit sphere . This density is motion
invariant, i.e., it does not depend on the location of.

Using , the density of the location of two points and
, given in Cartesian coordinates, can be transformed into the

density of these points on, multiplied with ; equivalent to
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Fig. 1. Sketch of the two pointsp andp on the lineG.

the transformation of the location of a single point from Carte-
sian to spherical coordinates, the expression must be weighted
with the square of the distance betweenand , so that one
obtains , where and are the
coordinates of the points relative to on . Hence, (3) can be
written as

(4)

where and the line segment arises
from the intersection of with and defines the integration
domain for and . Note that for this line is split in two
rays, since cannot be inside the ball .

The integral over is now an integral over the lines that
intersect . Integration of (4) over all
yields for a convex domain

(5)

In this expression, is the length of the chord that
arises when line intersects (Fig. 1). The integral does not
actually extend over all lines that intersect ,

, but only over all lines that intersect with a chord at least

of length . This condition
arises again due to the minimum distance, which must be kept
between both units of the network.

Equation (5) consists of three terms. For only the first
remains. However, this term diverges for , since the in-
tegral expression of this term has a finite value, and the denom-
inator tends to zero. The remaining two terms are thus required
to keep the entire expression bounded.

Expression (5) can now be tackled with the aid of the fol-
lowing relations, which are valid for integrals over the density
of lines [10]:

(6)

(7)

(8)

where is the surface of the–dimensional unit sphere and
the surface area of the convex bodywith volume . It holds
that [10], so that one has

, which is the surface of the unit sphere, ,
which is the perimeter of a circle, and . This triple of
equations reveals that certain integrals over the density of lines
over a convex body do not depend on the particular shape of the
body, but only on the very integral quantities volume and surface
area.

Equations (6)–(8) can be applied to solve (5). The required
exponent (4 ) of the chordlength of the first term in (5) is
obtained by applying Hölder’s inequality [26], which is demon-
strated in the Appendix. Strictly speaking, the three relations
can only be applied for , since the integration domain in
(6)–(8) includes all lines, and not only those that fulfill .
For their application in the case of , the volume and sur-
face of that convex body is required that emerges fromwhen
all parts of that can be covered by the lines for which
are removed. This body is hard to determine if the shape of
is unknown. For particular domains, such as rectangles, the dif-
ference between the two bodies can be shown to be not large (as
the MRP is given in dB scale) as long as the diameter 2of the
sphere is smaller than the smallest diameter ofand the
largest diameter is at least twice as large as 2. In the following,
this difference is neglected, and (6)–(8) are directly applied to
solve (5). The validity of this approach is verified through sim-
ulations.

Using (6)–(8) and the result obtained in the Appendix, one
obtains as approximate bounds for the MRP

(9)
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where the sign is required, since has been replaced by.
For , can be replaced by .

The results seem complicated because of the possible irra-
tionality of the exponent . For some numbers, the expression
simplifies significantly, e.g., for (the mean received field
strength in line-of-sight) and , one obtains

(10)

In these cases, the bounds depend in a very simple way on the
volume and the surface area of. On the one hand, such a
simple dependency seems surprising. On the other, these bounds
are merely a rigid formulation of the robustness of the radio
channel against changes in the environment. Any measurement
campaign is in fact based on the assumption that its results,
which arise from a particular way of moving and/or in
a chosen environment, are valid representatives for any envi-
ronment that is geometrically similar; if this assumption did not
hold, results from campaigns in similar environments would not
be comparable. The fact that they are comparable is simply ex-
pressed by (9) and (10).

III. SIMULATIONS

A. Examination of the Bounds

For the examination of the bounds, a simple simulation tool
was developed. This tool uniformly distributes two points, the

and the of thead hocnetwork, in a rectangular domain
with sidelengths , , and , constrained to a given min-

imum distance between the points. In combination with any
pathloss exponent, the mean can easily be evaluated
from the samples of the distancebetween the points. In the
following, this tool is used to examine the properties of the an-
alytical bounds with regard to, to the dimensions of , and to
the value of the pathloss exponent. All simulation results are
based on 10 000 realizations of and positions; the con-
stant equals one.

In Figs. 2 and 3, the dependence of the bounds on the dimen-
sions of and on the minimum distanceare investigated. The
setup resembles anad hocnetwork that includes all devices be-
tween 1.0 and 2.0 m height. In Fig. 2,has a length of 4 m and
a height of 1 m, and equals zero; in Fig. 3, the dimensions of

are the same, but . In both figures, the width of
the rooms is increased from 4 to 28 m. The analytically calcu-
lated bounds are displayed by dashed lines and circles, whereas
the simulated mean is shown by a continuous line and triangles.
The pathloss exponent is .

The bounds are comparably tight. The simulated values differ
by about 1–6 dB from the lower and the upper bound; they tend
to be closer to the lower bound, which is for always within
1–3 dB distance. The bounds are better if the domain is more

Fig. 2. MRP and analytical bounds for� = 0 m, q = 2, and a domain of 4 m
length, 1 m height, and variable width.

Fig. 3. Analytical bounds for� = 0:5 m, q = 2, and a domain of 4 m length,
1 m height, and variable width.

cubic, i.e., the ratio of the sidelengths is closer to one. For a
very flat disc, the upper bound actually becomes arbitrarily bad,
since remains about constant and ; according to (9),
the bound tends then to infinity. The decrease in the simulated
mean due to the difference inis about 2 dB, which means that
for and the given size of it is not strongly effected
by . The upper bound in Fig. 3 is also up to 2 dB lower than
in Fig. 2, whereas the lower bound has lost at least 4 dB. The
reason is the correcting terms for in (9), which are equal
for both bounds on linear scale and thus weigh stronger in dB
for smaller values.

The dependence of the bounds and the simulated values on
and on is examined for a domain of size 10 5 1 m

and m. Notice that for the domain needs not
necessarily refer to a single room with free space pathloss; it
can be any environment that does not encompass the given size
of and whose interior structure is absorbed into the value of
. The volume and the surface area refer again to the domain in

which and are uniformly distributed, and are thus only
indirectly related to the volume and the surface area of the actual
rooms of the indoor environment.
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Fig. 4. Analytical bounds (circles) for values ofq between 1.3 and 2.9, and
� = 0:5 m. The MRP is shown for� = 0:5 m (triangles) and� = 1 m
(diamonds).

The results are shown in Fig. 4. The simulated mean for
m (triangles) decreases slowly with increasing. The upper

bound is tightest for low , with about 3 dB difference; the dif-
ference increases for increasing. The lower bound is farthest
apart from the simulated mean for lowand approaches it as
increases. Without the correcting terms in (9) for , both
bounds would diverge. If these terms are included, the lower
bound is kept below the simulated mean; the upper bound, how-
ever, still diverges. For , the upper bound is very loose.
For the geometrical reasons outlined in Section II,cannot be
chosen larger than 0.5 m for the given domain of height 1 m.
The impact of this disadvantage of the model is, within limits,
not tremendous. The diamond marked line in Fig. 4 is the sim-
ulated mean for m. This mean decreases faster than the
simulated mean for m and crosses the lower bound
for this at . The deviation between the two means in-
creases with increasing; it is hardly noticeable for ,
but reaches 4 dB for . At , it is about 2 dB and still
well above the lower bound. The expressions for a particular
are hence also valid for a larger, where the lower bound serves
rather as a good practical approximation.

B. Comparison With Ray Tracing

The derived bounds are compared with ray tracing results.
The used ray tracer relies on a Monte Carlo technique and is
designed for the calculation of quantities of the stochastic radio
channel [14]. For the investigation of the bounds, simulations
are carried out at 2.4 GHz; empty rooms with various floor sizes
of 30 8, 30 4, 20 8, 20 4, 12 8, 8 8, and 4 4 m
are used. All rooms are 4 m high. The positions ofand
are randomly created according to a uniform distribution, the
bounds of which are the walls of the room, and a height 0.8 and
2.0 m above the floor of the rooms. The building materials are
also randomly chosen; the distribution corresponds to a rather
heavily constructed, old-fashioned office room with 70% con-
crete, 20% glass, and 10% light concrete building material. The
dielectric constants are for heavy concrete [27],

for glass [28], and for light
concrete [27]. The dielectric constants of the first and the last

TABLE I
MRPP FOR THETRANSMITTED AND RECEIVED COMPONENTBEING

PARALLEL TO THE WALLS AND CORRESPONDINGBOUNDS FORROOMS OF

4M HEIGHT AND DIFFERENTFLOOR SIZE

TABLE II
MRPP FOR THETRANSMITTED AND RECEIVED COMPONENTBEING

PARALLEL TO THE FLOOR AND CORRESPONDINGBOUNDS FORROOMS OF

4M HEIGHT AND DIFFERENTFLOOR SIZE

material are valid at 2.4 GHz, and that of glass at 3 GHz. The
antennas are isotropic, which corresponds, in the case of linear
polarization, to a uniformly distributed orientation of the an-
tennas and is a realistic assumption for anad hocnetwork. Field
vectors are transmitted and received either both parallel to the
floor of the rooms, or both parallel to the walls of the room. In
each run of the ray tracer, 2048 realizations ofand posi-
tions are simulated. The MRP for each realization is calculated,
using the power of the direct path and all reflections up to the
second order. Again m at this given wavelength

is set, which is almost the maximumallowed for a domain
of width 1.2 m. For the ray tracing simulations the distance is
slightly more relaxed to 8, so that the far-field condition is ful-
filled for all antennas with aperture smaller than 2[29] (see
also Fig. 4). The pathloss model (2) is fitted to the result. The
obtained pathloss exponents are all between about 1.7 and 1.9,
and the value of about 41 dB. This is realistic, since in en-
vironments with a strong direct path and many reflections, the
pathloss exponent is known to be a bit lower than two, and
the received power in 1 m distance from an isotropic antenna is

dB for 2.4 GHz. The analytic bounds are then
calculated using the obtained values forand ; the volume
and the surface area result from the floor size and the height
of the domain in which and can move. As their locations
are restricted between 0.8 and 2.0 m above the floor, this height
equals 1.2 m

In Tables I and II, the ray tracing results are compared to the
analytic bounds, where each table displays the values obtained
from a particular state of polarization. The results for the two
states of polarization are very similar. The validity of the model
is clearly demonstrated. For the seven investigated scenarios,
the simulated powers are between the analytically calculated
bounds.

The simulation results also indicate that the fit parameter
can be replaced by the pathloss in 1 m distance, . This
substitution makes the model much easier to apply; it then de-
pends only on , which can be chosen to represent a particular
scenario, the wavelength, and the dimensions of.
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IV. CONCLUSION

Analytical bounds on the mean received power inad hocnet-
works are presented. The bounds are sufficiently tight for many
relevant cases. Scenarios are characterized only by their pathloss
exponent , the pathloss in 1 m distance or the wavelength, re-
spectively, and the surface area and the volume of the domain,
in which the units of the communication system can move. Thus
the bounds can be applied very conveniently, since a system de-
signer needs only minimum information about the environment
in which thead hocnetworks operates. No classification of a
radio environment is required. The bounds do not require any
empirical input, and their validity for a typicalad hocnetwork
scenario is demonstrated with ray tracing data.

A drawback is that the upper bound diverges for ,
even though correcting factors are introduced to keepand

a minimum distance apart. But whereas the upper bound
becomes unreliable in this region, the lower bound actually ap-
proaches the MRP and is a good approximation. Also, the pre-
sented bounds are valid only for , but for many environ-
ments higher pathloss exponents are common. However, an ex-
tension of the bounds to arbitraryis already under investiga-
tion.

The model presented is a specific case derived from a very
general integral expression that characterizes the stochastic
radio channel. The integral contains all necessary field theo-
retical and geometrical information that is required to derive
stochastic channel properties. The crucial part is the derivation
of a solution for specific cases. The solution need not neces-
sarily be analytical, but can also be obtained numerically. Once
it is obtained, the resulting expressions have the advantage
that they are very general and free of any intuitive character,
since they do not rely on data or simulation results that refer to
particularly chosen scenarios.

In this case, the geometrical part of the integral can be solved
by integral geometric methods that have not previously been
applied to channel modeling. The potential benefit of integral
geometry for stochastic channel modeling seems to be high,
since the solution strategies that have been developed in this
field are anything but exhausted so far. As similar types of
integrals arise for the radio channels of communication systems
with a fixed access point or for more ray-tracing-like wave
propagation models, the application of an integral description
of the radio channel and its solution with geometrical methods
seems promising for the future development of stochastic
channel models.

APPENDIX

Hölders inequality [26] applied to an integral over two func-
tions and and the density of lines is

(11)

where and . Using (11), a lower and an
upper bound for the integral

(12)

can be derived as follows.
For the lower bound, set , on the left-hand side

of (11), and choose . Then , and

(13)
and the lower bound for can easily be evaluated using
(6) and (7).

For the upper bound, set , , on the left-hand
side of (11), and choosesuch that ; one
obtains , , and

(14)
Application of (6) and (8) yields the result.

One arrives at both lower and upper bounds of the MRP for
the special case

(15)
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