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Abstract

A mathematically rigorous derivation of the evolution of angular momentum expec-
tation value is given, under assumptions which include Hamiltonians with potential wells.

Die Zeitentwicklung des Erwartungswertes des Drehimpulses wird mathematisch exakt
hergeleitet, unter Annahmen, die Hamilton Operatoren mit Potentialtöpfen beinhalten.
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Introduction

In classical mechanics, the time evolution of position, momentum and other observables
f = f(q, p) is given by

d

dt
f(q, p) = −∂f

∂p

∂H

∂q
+
∂f

∂q

∂H

∂p
=: {H, f},

where H = H(q, p) is the Hamiltonian of the system and (q, p) are the canonical coordi-
nates on the phase space. In contrast to quantum physics, the classical theory considers
observables as values of real-valued functions on phase space, and not as spectral values
of self-adjoint operators on a Hilbert space. When quantizing the classical concept of the
time evolution of observables, we are concerned with the quantum mechanical analogy
– Ehrenfest’s theorem [Ehr27]. This well known result relates the time derivative of the
expectation value for a quantum mechanical operator A to the Hamiltonian H of the
system as follows

d

dt
〈A〉ψ(t) = i〈[H,A]〉ψ(t).

Heuristic justifications can be found in any text book on quantum mechanics. They
make mathematically sense when A and H are bounded, but realistic quantum Hamil-
tonians and observables are unbounded and only defined on dense domains. A math-
ematically rigorous derivation of Ehrenfest’s equation for the evolution of position and
momentum expectation values is given by [FK09], proving

d

dt
〈Xij 〉ψ(t) =

1
mij

〈Pij 〉ψ(t) and
d

dt
〈Pij 〉ψ(t) = 〈− ∂V

∂xij
〉ψ(t)

under general and natural assumptions on the Hamiltonian which include atomic and
molecular Hamiltonians with Coulomb interaction.

Due to the fact that these equations are of Newtonian form, i.e. the mean values
of position and momentum operator correspond to Newton’s second law of motion, it
is natural to make a similar assumption about the angular momentum operator. The
main purpose of this thesis is to derive rigorously an Ehrenfest equation for the angular
momentum expectation, which is, to the best of my knowledge, so far missing from the
literature. We prove

d

dt
〈Lij 〉ψ(t) = 〈−(Xi• ∧∇iV )j〉ψ(t)

under assumptions which include Hamiltonians with potential wells.

The plan of this thesis is as follows: in section one mathematical concepts of quan-
tum mechanics are introduced, including the analysis of operators on the Hilbert space
L2(R3n), which are essential for discussions in quantum mechanics. The second section
provides the framework for the derivation of the evolution of angular momentum expec-
tation value and presents the main result of this thesis, Theorem 2.3.1, which is proved
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in the third section by functional analytic methods. The last chapter deals with a short
interpretation of the results and illustrates an application to Hamiltonians with potential
wells and rotationally symmetric potentials.
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1 Mathematical Concepts of Quantum Mechanics

1 Mathematical Concepts of Quantum Mechanics

1.1 Wave functions and state space

In quantum mechanics, the state of a particle is described by a complex-valued function
(called wave function) of position and time, ψ : R3× [0,∞)→ C, where all functions that
are scalar multiples of ψ describe the same state as ψ. To describe the state of a quantum
system of n particles at a certain time t, superposition of n wave functions of those n
particles leads to a complex-valued function, ψ : R3n × [0,∞) → C – the wave function
of the quantum system in R3n. Motivated by the well known “double-slit experiment”, it
is required that |ψ(·, t)|2 is the probability distribution for the particles’ position, x, at
time t. That is, the probability that n particles are in the region Ω ⊂ R3n at time t is∫

Ω |ψ(x, t)|2dx. Thus the normalization
∫

R3n |ψ(x, t)|2dx = 1 is required.
The space of all possible states of n particles at a given time is called the state space,
which is here the space of square-integrable functions

L2(R3n) := {ψ : R3n → C |
∫

R3n

|ψ(x)|2dx <∞}.

In fact, it is a Hilbert space with inner product given by 〈ψ, φ〉 :=
∫

R3n ψ(x)φ(x)dx. Here,
and in what follows, the notation ‖ · ‖L2 is used for ‖ · ‖L2(R3n) :=

√
〈·, ·〉. Due to the fact

that scalar multiples of an element of L2(R3n) describe the same state as the element
itself, one-dimensional subspaces in L2(R3n) are associated with the states of the system.

1.2 Operators on the Hilbert space L2(R3n)

As outlined above, the space of quantum mechanical states of a system is a Hilbert
space. The theory of operators on a Hilbert space provides the mathematical frame-
work of quantum mechanics, so it is inevitable to study them. A linear operator A
on the Hilbert space L2(R3n) is a map from L2(R3n) to itself, satisfying the linearity
property A(αψ + βφ) = αA(ψ) + βA(φ) for α, β ∈ C, ψ, φ ∈ L2(R3n). For functional
analytic motives, an operator A is required to be defined only on a dense domain, i.e.
D(A)

‖·‖L2 = L2(R3n), where the set D(A) := {ψ ∈ L2(R3n) | Aψ ∈ L2(R3n)} is called
the domain of A. An example of a dense subset of L2(R3n) is C∞0 (R3n), the infinitely
often differentiable functions with compact support (for the proof, see [Eva10b]). The
domain D(A) is dense in L2(R3n) if it contains C∞0 (R3n).

It is notable that every operator defined in this thesis satisfies the linearity property.
We focus not only on linearity property, but also on several other ones, defined as follows:

1



1 Mathematical Concepts of Quantum Mechanics

Definition 1.2.1 (operator properties)
Let A be a densely defined operator on D(A) ⊂ L2(R3n). Then

(i) A is continuous if for every sequence {ψn}n∈N ⊂ D(A) converging to ψ ∈ L2(R3n)
one has

lim
n→∞

Aψn = Aψ.

(ii) A is bounded if ‖Aφ‖L2 ≤ C‖φ‖L2 for all φ ∈ L2(R3n).

(iii) A is bounded on S ⊂ L2(R3n) if ‖Aφ‖L2 ≤ CS‖φ‖L2 for all φ ∈ S.

(iv) A is closed if for every sequence {ψn}n∈N ⊂ D(A) converging to ψ ∈ L2(R3n) such
that Aψn → φ ∈ L2(R3n) as n→∞ one has

ψ ∈ D(A) and Aψ = φ.

(v) A is symmetric if for all ψ, φ ∈ D(A) : 〈Aψ, φ〉 = 〈ψ,Aφ〉.

(vi) The adjoint of the operator A is the operator A∗ satisfying

〈A∗ψ, φ〉 = 〈ψ,Aφ〉

for all φ ∈ D(A), for ψ in the domain

D(A∗) : = {ψ ∈ L2(R3n) | φ 7→ 〈ψ,Aφ〉 is continuous on D(A)}
= {ψ ∈ L2(R3n) | |〈ψ,Aφ〉| ≤ CD(A),ψ‖φ‖L2 ∀ φ ∈ D(A)}.

Further A is self-adjoint if A = A∗ ( i.e. D(A) = D(A∗) and Ax = A∗x for all
x ∈ D(A)).

�

It is important to mention that for linear operators, the elementary concepts of “bound-
edness” and “continuity” are equivalent (for the proof, see [Wer00a]). Furthermore, every
self-adjoint operator is by definition symmetric. And if D(A) = L2(R3n), then every
bounded operator is closed. The next lemma is useful for extensions of bounded opera-
tors on dense domains and the connection between bounded, symmetric operators and
self-adjoint ones.

Lemma 1.2.2
Let A be a densely defined operator on D(A) ⊂ L2(R3n).

(i) If A is bounded on its domain D(A), i.e. ‖Aψ‖L2 ≤ CD(A)‖ψ‖L2 for all ψ ∈ D(A),
then it extends to a bounded operator (also denoted A) on L2(R3n), satisfying the
same bound, ‖Aψ‖L2 ≤ CD(A)‖ψ‖L2 for all ψ ∈ L2(R3n).

(ii) If A is bounded and symmetric then it is self-adjoint.

2



1 Mathematical Concepts of Quantum Mechanics

Proof:

ad (i) As D(A) is dense in L2(R3n), for any ψ ∈ L2(R3n) there is a sequence {ψn}n∈N ⊂
D(A) such that ψn → ψ in L2 as n→∞. As a convergent sequence, {ψn}n∈N is a
Cauchy sequence. Then the relation ‖Aψn −Aψm‖L2 ≤ CD(A)‖ψn − ψm‖L2 shows
that {Aψn}n∈N ⊂ L2(R3n) is a Cauchy sequence as well, so Aψn → φ in L2, for
some φ ∈ L2(R3n) (by completeness of L2(R3n)). Setting Aψ := φ, this extends A
to a bounded operator on L2(R3n) with the same constant CD(A), because

‖Aψ‖L2 = ‖φ‖L2 = lim
n→∞

‖Aψn‖L2 ≤ lim
n→∞

CD(A)‖ψn‖L2 = CD(A)‖ψ‖L2 ,

by continuity of the norm.

ad (ii) Since A is bounded, by Definition 1.2.1(i) A is well-defined on L2(R3n). By
Lemma 1.2.2(i) we may extend A to a bounded operator with D(A) = L2(R3n).
Since (using the Cauchy Schwartz inequality)

|〈ψ,Aφ〉| ≤ ‖ψ‖L2CD(A)‖φ‖L2 ≤ CD(A),ψ‖φ‖L2

for ψ, φ ∈ L2(R3n), we have D(A∗) = L2(R3n), so it follows D(A) = D(A∗). Hence,
A is self-adjoint.

�

Motivated by Lemma 1.2.2(i), we assume of a bounded operator A that its domain
D(A) equals L2(R3n). The following operators play an important role for our further
considerations; because of that, they are analysed in terms of the properties stated in
the Definition 1.2.1.

Example 1.2.3

(i) Multiplication operator : Let V ∈ L∞(R3n,R) and denote by the same letter V the
linear operator “multiplying by V ”, that is (V ψ)(x) := V (x)ψ(x). Defining V on the
domain L2(R3n), this multiplication operator is well-defined, since V ψ ∈ L2(R3n)
for ψ ∈ L2(R3n) as ‖V ψ‖L2 ≤ ‖V ‖L∞‖ψ‖L2 <∞. This proves the continuity of V
(with bound CV := ‖V ‖L∞).
V is real-valued and hence 〈V ψ, φ〉 = 〈ψ, V φ〉 for all ψ, φ ∈ L2(R3n). Since the
integral

∫
R3n V (x)ψ(x)φ(x)dx converges (using the Cauchy Schwarz inequality and

boundedness of V ), it follows that V is symmetric. Due to the fact that V is
bounded and symmetric, it follows from Lemma 1.2.2(ii) that V is self-adjoint.

3



1 Mathematical Concepts of Quantum Mechanics

(ii) Laplace operator : Let 4 :=
∑n

i=1

∑3
j=1 ∂

2/∂x2
ij

be the Laplace operator (“Lapla-
cian”). 4 is naturally well-defined on the Sobolev space of second order,

D(4) := H2(R3n) := {ψ ∈ L1
loc(R3n) | ∂αψ ∈ L2(R3n) ∀ α ∈ N3n

0 , |α|1 ≤ 2},

where ∂α := ∂|α|1

∂
α11 x11 ...∂

αn3 xn3

with |α|1 :=
∑n

i=1

∑3
j=1 |αij |. It is obvious that

C∞0 (R3n) ⊂ H2(R3n), hence the operator is densely defined. For completeness, the
H2-norm is defined as follows (for the proof that this is a norm on H2(R3n), see
e.g. [Eva10b]):

‖ψ‖H2(R3n) :=
( ∑
|α|1≤2

‖∂αψ‖2L2

) 1
2

.

If ψ ∈ H2(R3n), then (4̂ψ)(k) = −‖k‖22ψ̂(k) and ‖k‖22ψ̂ ∈ L2(R3n) (using Fourier
transforms, see e.g. [Wer00b]). Here, ‖ · ‖2 stands for the Euclidean norm on R3n.
4 is symmetric on H2(R3n), since (using Plancherel’s theorem, see e.g. [Wer00b])
for any ψ, φ ∈ H2(R3n)

〈4ψ, φ〉 = −
∫

R3n

‖k‖22ψ̂(k)φ̂(k)dk = −
∫

R3n

ψ̂(k)‖k‖22φ̂(k)dk = 〈ψ,4φ〉

and the fact that both integrals converge using again the Cauchy Schwartz in-
equality. For the proof of self-adjointness of 4 on H2(R3n), see [HS96b], and
for an example that differential operators are usually unbounded on L2(R3n), see
[Wer00c].

(iii) Position operator : LetX : R3n → R3n, x 7→ x and – in analogy to the multiplication
operator V – denote by the same letter X the linear operator “multiplying by X”,
that is (Xψ)(x) := xψ(x). The operator X is well-defined on the domain

D(X) := {ψ ∈ L2(R3n) |
∫

R3n

‖x‖22|ψ(x)|2dx <∞}.

Using the same arguments as in (i), applied to integrals with vector valued inte-
grands, it is straightforward to show that X is symmetric on D(X).
Similar analysis leads to the symmetry of the coordinate multiplication operator
Xij : R3n → R, x 7→ xij on the domain

D(Xij ) := {ψ ∈ L2(R3n) |
∫

R3n

|xijψ(x)|2dx <∞}.

D(Xij ) contains C∞0 (R3n), hence it is dense in L2(R3n). Further, Xij is unbounded
on L2(R3n), which can be shown with the function

ψ(x) =
1

(1 + ‖x‖22)
3n+1

4

,

i.e., ψ ∈ L2(R3n) but Xijψ /∈ L2(R3n).

4



1 Mathematical Concepts of Quantum Mechanics

(iv) Momentum operator : Let Pij := −i∂/∂xij on L2(R3n) with domain

D(Pij ) := {ψ ∈ L2(R3n) |
∫

R3n

|kij ψ̂(k)|2dk <∞}

be the jth component of the momentum operator of the ith particle (for convenience
the focus is on components of particle’s momentum operator, rather than on the
whole momentum operator P := −i∇). If ψ ∈ D(Pij ), then P̂ijψ(k) = kij ψ̂(k) and
kij ψ̂ ∈ L2(R3n), so it is obvious that Pij is well-defined on D(Pij ). Again, it is
not hard to prove that C∞0 (R3n) ⊂ D(Pij ), so the operator is densely defined.
Pij is symmetric on D(Pij ), since (again using Plancherel’s theorem) for any ψ,
φ ∈ D(Pij )

〈Pijψ, φ〉 =
∫

R3n

kij ψ̂(k)φ̂(k)dk =
∫

R3n

ψ̂(k)kij φ̂(k)dk = 〈ψ, Pijφ〉

and the fact that both integrals converge using again the Cauchy Schwartz inequa-
lity. Analogue to (ii), differential operators are usually unbounded on L2(R3n).

Having analysed various symmetric and self-adjoint operators, the following definition
is mentioned for completeness.

Definition 1.2.4 (observable)
An observable is a densely defined symmetric operator on the state space L2(R3n).

�

1.3 Evolution of wave function

Not only is it interesting to know the state of n particles at a given time, but also to
focus on the time evolution of the particles’ wave function. The equation which governs
the evolution of particles’ wave function is called the Schrödinger equation and can be
written as

∂

∂t
ψ = −iHψ, (1)

where the linear operator H, given by

H := −
n∑
i=1

3∑
j=1

mij

2
∂2

∂x2
ij

+ V, (2)

is called the Hamiltonian, acting on D(H) ⊂ L2(R3n) (for well-definedness and dense
domain, see section 1.5). Here a physical system is considered, consisting of n particles
of massesm1, ...,mn which interact via the potential V . All information about a quantum
mechanical system (atoms, molecules, nuclei, solids, etc.) is contained in the Hamiltonian

5



1 Mathematical Concepts of Quantum Mechanics

for the system. Supplementing equation (1) with the initial condition ψ|t=0 = ψ0, for
some ψ0 ∈ L2(R3n), the initial value problem

∂

∂t
ψ = −iHψ, ψ|t=0 = ψ0 (3)

is called the Cauchy problem. It is far from obvious that both existence and uniqueness
of solutions of the Cauchy problem do not depend on the particular form of the operator
H, but rather follow from the self-adjointness property of the Hamiltonian.

But firstly it is not clear, under which assumptions H is a self-adjoint operator. And
secondly, we do not know anything about the fact, whether self-adjointness of H is al-
ready sufficient for uniqueness and existence of solutions of the Cauchy problem (3). The
introduction of strongly continuous one-parameter unitary groups helps for the latter.

1.4 Strongly continuous one-parameter unitary groups

Definition 1.4.1 (strongly continuous one-parameter unitary groups)
A one-parameter family of bounded, linear operators (Tt| t ∈ R) on L2(R3n) is called
strongly continuous one-parameter unitary group if

(i) T0 = Id

(ii) Ts+t = TsTt for all s, t ∈ R

(iii) limt→0 Ttx = x for all x ∈ L2(R3n)

(iv) Tt is unitary for all t ∈ R (i.e. TtT ∗t = T ∗t Tt = Id).

The generator of such a strongly continuous one-parameter unitary group is the following
operator

Ax = lim
h→0

Thx− x
h

on the domain
D(A) := {x ∈ L2(R3n) | lim

h→0

Thx− x
h

exists}.

�

Due to the fact that 0 ∈ D(A), every strongly continuous one-parameter unitary group
has a generator with non-empty domain. The notation Ttx =: etAx is pretty helpful as
we will see in the Theorem 1.4.4 about solutions of the abstract Cauchy problem.

Remark : In fact, this notation could be misleading when thinking about the definition
of the exponential power series for bounded operators A. But in general, the generator
is a unbounded operator, hence the definition by power must not be used.

6



1 Mathematical Concepts of Quantum Mechanics

The following lemma deals with further properties of the generator.

Lemma 1.4.2
Let A be the generator of a strongly continuous one-parameter unitary group (etA | t ∈ R)
on L2(R3n). Let t ∈ R, then

(i) etA(D(A)) ⊂ D(A).

(ii) etAAx = AetAx for all x ∈ D(A).

(iii) A is densely defined, i.e. D(A)
‖·‖L2 = L2(R3n).

Proof: See [Wer00c].

�

We recall here two frequently used facts about strongly continuous one-parameter uni-
tary groups, which are helpful for solving the Cauchy problem (3).

Lemma 1.4.3 (Stone’s theorem on one-parameter unitary groups)
Let (Tt | t ∈ R) be a strongly continuous one-parameter unitary group on L2(R3n). Then
there exists a unique self-adjoint operator A such that Tt = eitA, t ∈ R. Conversely, let
A be a self-adjoint operator on L2(R3n), then Tt := eitA, t ∈ R, is a strongly continuous
one-parameter family of unitary operators.

Proof : See [Sto32].

�

Theorem 1.4.4 (solution of the abstract Cauchy problem)
Let A be the generator of a strongly continuous one-parameter unitary group (etA | t ∈ R)
on L2(R3n), x0 ∈ D(A). Define u : R→ L2(R3n), u(t) = etAx0. Then u is continuously
differentiable, u(R) ⊂ D(A) and the unique solution of the abstract Cauchy problem

u′ = Au, u(0) = x0.

Proof: See [Wer00c].

�

Having quoted some results on the analysis of strongly continuous one-parameter uni-
tary groups, the Cauchy problem (3) for a self-adjoint Hamiltonian can be solved. In
addition, important properties used in this thesis are outlined in the following corollary.

7



1 Mathematical Concepts of Quantum Mechanics

Corollary 1.4.5
Let H : D(H) → L2(R3n) be a self-adjoint Hamiltonian of form (2). For ψ0 ∈ D(H),
define ψ(t) := e−itHψ0. Then

(i) t 7→ ψ(t) is a continuously differentiable map from R to L2(R3n) and is the unique
solution of the Cauchy problem (3).

(ii) e−itH leaves D(H) invariant, i.e. e−itH(D(H)) ⊂ D(H), and commutes on D(H)
with H.

(iii) ‖ψ(t)‖L2 and‖Hψ(t)‖L2 are conserved quantities, i.e.

‖ψ(t)‖L2 = ‖ψ0‖L2

and
‖Hψ(t)‖L2 = ‖Hψ0‖L2

for all t ∈ R.

Proof : (i) follows directly from Lemma 1.4.3 and Theorem 1.4.4, since −H is again a
self-adjoint operator. Lemma 1.4.2 leads to (ii). Unitarity of e−itH and (ii) yield (iii),
since unitary operators U are isometries, as follows from 〈Uψ,Uψ〉 = 〈ψ,U∗Uψ〉 = 〈ψ,ψ〉
for all ψ ∈ D(U).

�

We conclude this section by emphasizing that for Schrödinger equation formulation
of quantum mechanics to make sense, the Hamiltonian must be self-adjoint. We will
focus the important question of which properties of the Hamiltonian H give rise to self-
adjointness in the next chapter.

1.5 Hamilton operator

As outlined in section 1.3, the Hamilton operator

H := −
n∑
i=1

3∑
j=1

mij

2
∂2

∂x2
ij

+ V

enters the Schrödinger equation governing the evolution of states. Since H is an operator,
it is a map H : D(H) → L2(R3n). For convenience we write H = −1

24 + V , where the
potential V : R3n → R acts by multiplication. So far, it is not obvious for which domain
D(H) the operator H is well-defined or even self-adjoint. The target in this section is
to focus on requirements on V , which lead to self-adjointness of H. According to our
considerations in section 1.2, the precise meaning of the statement “the operator H is
self-adjoint” is as follows: there is a domain D(H), with C∞0 (R3n) ⊂ D(H) ⊂ L2(R3n),
for which H is self-adjoint. The exact form of D(H) depends on V .

8



1 Mathematical Concepts of Quantum Mechanics

Identifying H = −1
24 + V as a sum of two operators A = −1

24 and B = V with
certain domains D(A) and D(B), now the following question is studied. Suppose A is
self-adjoint and B is a symmetric operator such that D(A) ∩D(B) is dense in L2(R3n);
what conditions does B have to satisfy in order that A + B is self-adjoint? This ques-
tion will be answered in a very satisfactory manner by the Kato-Rellich theorem 1.5.2,
which forms the basic tool for proving self-adjointness of Hamiltonians. But to apply the
Kato-Rellich theorem, we have to define the relatively bounded operators.

Definition 1.5.1 (relatively bounded operator)
Let A be a densely defined self-adjoint operator on D(A) ⊂ L2(R3n) and B be a densely
defined symmetric operator on D(B) ⊂ L2(R3n) with D(A) ⊂ D(B). B is A- bounded
with relative bound α if there are positive constants α, β such that

‖Bψ‖L2 ≤ α‖Aψ‖L2 + β‖ψ‖L2

for all ψ ∈ D(A).

�

It is obvious, but important to note, that any bounded operator B is A- bounded for any
linear operator A with relative bound α = 0.

Theorem 1.5.2 (the Kato-Rellich theorem)
Let A be a densely defined self-adjoint operator on D(A) ⊂ L2(R3n) and B be a
densely defined, closed, symmetric, A-bounded operator with relative bound α < 1 on
D(B) ⊂ L2(R3n) with D(A) ⊂ D(B). Then A+B is self-adjoint on D(A).

Proof : See [HS96c].

�

An interesting interpretation of the Kato-Rellich theorem is the following: H is con-
sidered as a perturbation of −1

24 by the potential V . Considering the problem in pertur-
bation theory, which potentials V preserve the self-adjointness of −1

24, the Kato-Rellich
theorem says that for any sufficiently regular V that is small relative to −1

24 in a certain
sense, the resulting Hamiltonian is again self-adjoint. For interesting discussions in the
mathematics literature, see e.g. [HS96a].

As a consequence, the Kato-Rellich theorem can be applied to the following situation.

Corollary 1.5.3
Let V ∈ L∞(R3n,R) be the multiplication operator with D(V ) = L2(R3n). Then the
operator H = −1

24+ V , defined on D(4) = H2(R3n), is self-adjoint.

9
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Proof : This is an immediate consequence of Example 1.2.3(i),(ii) and the Kato-Rellich
theorem. Since V is bounded on L2(R3n), V is a −1

24- bounded operator with relative
bound α = 0. Further V is closed and symmetric and 4 is self-adjoint on H2(R3n).
Scaling a self-adjoint operator by a constant different from zero does not change the
self-adjointness property. Hence, −1

24 is again self-adjoint. The Kato-Rellich theorem
yields the assertion.

�

As mentioned in Corollary 1.4.5, the abstract Cauchy problem (3) can be solved in
the situation of Corollary 1.5.3. In fact, the requirement on V to be an element of
L∞(R3n,R) with the condition that ∇V is an element of L∞(R3n,R3n) forms the main
setting in this thesis. But before concentrating on this situation, the focus is on mean
values and commutators of operators.

1.6 Mean values and commutators

We recall that in quantum mechanics, the probability distribution for the position, x,
of n particles at a given time t, is |ψ(·, t)|2. According to that, the mean value of the
position at time t is given by

∫
R3n x|ψ(x, t)|2dx (note that this is a vector in R3n). Ap-

plying this to the coordinate multiplication operator (see Example 1.2.3), 〈ψ, xijψ〉 is the
mean value of the jth component of the ith particle’s coordinate xi• ∈ R3 in the state
ψ ∈ D(Xij ). Motivated by this, the mean value for a general linear operator is defined
as follows.

Definition 1.6.1 (mean value)
Let A be a densely defined operator on D(A) ⊂ L2(R3n). The mean value of A in the
state ψ ∈ D(A) is

〈A〉ψ := 〈ψ,Aψ〉.

�

It is notable that the mean value 〈A〉ψ exists for all ψ ∈ D(A), since

|〈ψ,Aψ〉| ≤ ‖ψ‖L2‖Aψ‖L2 <∞.

Due to the fact that the composition of two linear operators is generally not commu-
tative, the next definition is quite useful.

Definition 1.6.2 (commutator)
Let A and B be two bounded operators on L2(R3n). Then the commutator [A,B] is the
operator defined by

[A,B] := AB −BA, D([A,B]) := L2(R3n).

�

10



1 Mathematical Concepts of Quantum Mechanics

Again, it should be noted that the commutator of two bounded operators is well-
defined, since for any ψ ∈ L2(R3n)

‖[A,B]ψ‖L2 ≤ ‖ABψ‖L2 + ‖BAψ‖L2 ≤ C1‖Bψ‖L2 + C2‖Aψ‖L2 ≤ 2C1C2‖ψ‖L2 <∞,

with C1, C2 boundedness constants of A and B. But defining the commutator of two
operators when at least one of them is unbounded requires caution, due to domain
considerations. Of course, when ψ belongs to the smaller set D(AB) ∩ D(BA), where
D(AB) := {ψ ∈ D(B) | Bψ ∈ D(A)}, the commutator, even for unbounded operators,
is well-defined. But this domain does not need to be dense in L2(R3n). An interesting
basic example from physics about the “domain problem” is explained in Example 1.6.5
at the end of this section. But before concentrating on this “domain problem”, the focus
is on basic commutator properties and commutator examples.

Lemma 1.6.3
Let A, B and C be three bounded operators on L2(R3n), then the commutator [·, ·] has
the following properties:

· antisymmetric, i.e. [A,B] = −[B,A].

· linear, i.e. [λA+B,C] = λ[A,C] + [B,C] for all λ ∈ C.

· product rule, i.e. [A,BC] = [A,B]C +B[A,C].

· unbounded case, i.e. if at least one of the operators A, B or C is unbounded,
properties (i)–(iii) are still applicable to the domain

D(AB) ∩D(BA) or
⋂

X,Y ∈{A,B,C}

D(XY ).

Proof: These properties follow from elementary calculations. We omit them here.

�

It is often useful to compute the commutator of two unbounded operators just for
functions in C∞0 (R3n), which is done in the next Example 1.6.4. To extend the analysis
to functions not contained in C∞0 (R3n), a lot of care is needed. A good example for such
an extension can be found in the proof of Theorem 2.3.1 b).

Example 1.6.4
Let Xij , Pij be defined as in Example 1.2.3(iii),(iv) and H = −1

24 + V with V ∈
L∞(R3n,R), ∇V ∈ L∞(R3n,R3n). Then for all i, k ∈ {1, ..., n} and j, l ∈ {1, 2, 3}
and for any ψ ∈ C∞0 (R3n)

(i) [Xij , Xkl ] = 0 on C∞0 (R3n), since

([Xij , Xkl ]ψ)(x) = xijxklψ(x)− xklxijψ(x) = 0.

11
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(ii) [Pij , Pkl ] = 0 on C∞0 (R3n), since

([Pij , Pkl ]ψ)(x) = − ∂2ψ

∂xij∂xkl
(x) +

∂2ψ

∂xkl∂xij
(x) = 0

(using symmetry of second derivatives).

(iii) [Xij , Pkl ] = iδijklId on C∞0 (R3n) (where δ is the well known Kronecker-delta), since

([Xij , Pkl ]ψ)(x) = −ixij
∂ψ

∂xkl
(x) + i

∂(ψxij )
∂xkl

(x) = iδijklψ(x).

(iv) [H,Xij ] = −iPij on C∞0 (R3n), since

([H,Xij ]ψ)(x) = ([−1
2
4, Xij ]ψ)(x) + ([V,Xij ]ψ)(x)

= −1
2

n∑
α=1

3∑
β=1

(
∂

∂xαβ

[
∂

∂xαβ
, Xij

]
+
[

∂

∂xαβ
, Xij

]
∂

∂xαβ

)
ψ(x)

= −1
2

n∑
α=1

3∑
β=1

(2δijαβ )
∂ψ

∂xαβ
(x) = − ∂ψ

∂xij
(x) = −iPijψ(x)

using properties of the commutator stated in Lemma 1.6.3.

(v) [H,Pij ] = i( ∂V
∂xij

) on C∞0 (R3n), since

([H,Pij ]ψ)(x) = ([−1
2
4, Pij ]ψ)(x) + ([V, Pij ]ψ)(x)

= ([V, Pij ]ψ)(x) = i
( ∂V
∂xij

)
ψ(x)

again using properties of the commutator stated in Lemma 1.6.3.

This section of introductory mathematical concepts is concluded with a basic problem
from physics about the “domain problem”:

Example 1.6.5
Let H = −1

24+ V , V : R3 → R, V (x) = −1/‖x‖2 be the Hamiltonian of the hydrogen
atom and P be the momentum operator. The commutator HP − PH is not defined
on C∞0 (R3n), since i[H,P ] = [H,∇] = [−1

24,∇] + [V,∇] = −∇V (x) = −x/‖x‖32. But
−x/‖x‖32 does not map C∞0 (R3) into L2(R3), because the singularity at zero behaves
like ‖x‖−2

2 and hence ‖∇V ψ‖2L2 =
∫

R3 |∇V (x)ψ(x)|2dx = ∞ for all ψ ∈ C∞0 (R3) with
ψ(0) 6= 0. Hence, we found an operator whose domain is not dense in L2(R3n).

12



2 Evolution of Angular Momentum Expectation

2 Evolution of Angular Momentum Expectation

2.1 Ehrenfest’s theorem and its abstract version

In quantum physics, a well known result asserts that the mean position and momentum
of a quantum system in R3n with Hamiltonian

H = −
n∑
i=1

3∑
j=1

mij

2
∂2

∂x2
ij

+ V

evolve “classically”
d

dt
〈Xij 〉ψ(t) =

1
mij

〈Pij 〉ψ(t) (4)

and
d

dt
〈Pij 〉ψ(t) = 〈− ∂V

∂xij
〉ψ(t) (5)

(Ehrenfest’s equations, [Ehr27]). These are equations of Newtonian form for the time
rate of change of the quantum mechanical mean values of position and momentum. The
evolution of mean values as in (4), (5), besides being of interest in its own right, plays
an important role in the study of quantum-classical coupling in molecular dynamics (see
e.g. [BNS96]).
The heuristic justification, which can be found in any text book on quantum mechanics

(see e.g. [GS03]), goes as follows. When H and A are symmetric, formally differentiating
the mean value and substituting it into the Schrödinger equation (1) yields

d

dt
〈A〉ψ(t) = i〈[H,A]〉ψ(t). (6)

When H is of the form (2) and A is a component of the position or momentum opera-
tor, formal evaluation of the commutator gives (4) and (5). While (6) and its derivation
make mathematically sense when H and A are bounded, realistic quantum Hamiltonians
and observables are unbounded and only defined on dense domains. Rigorous versions
are not difficult to obtain in the context of classical, rapidly decaying solutions for smooth
potentials [BEH94] or when A is relatively bounded with respect to H. For a rigorous
treatment of operators A which are not relatively bounded and for an application to
atomic and molecular systems with Coloumb interactions see [FK09], and for a sharper
version for general self-adjoint operators, see [FS10].

One of the main results in [FK09] is Theorem 2.1.1 about the abstract Ehrenfest the-
orem. It is the basis for a rigorous derivation of the evolution of angular momentum
expectations.
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Theorem 2.1.1 (abstract Ehrenfest theorem)
Let H and A be two densely defined linear operators on a Hilbert space H such that

(H1) H : D(H)→ H is self-adjoint, A : D(A)→ H is symmetric.

(H2) e−itH leaves D(A) ∩D(H) invariant for all t ∈ R.

(H3) For any ψ0 ∈ D(A) ∩D(H),

supt∈I‖Ae−itHψ0‖L2 <∞

for I ⊂ R bounded.

Then for ψ0 ∈ D(A)∩D(H), the expected value 〈A〉ψ(t), ψ(t) := e−itHψ0, is continuously
differentiable with respect to t and satisfies

d

dt
〈A〉ψ(t) = i

(
〈Hψ(t), Aψ(t)〉 − 〈Aψ(t), Hψ(t)〉

)
. (7)

Proof : See [FK09].

�

The right hand side in (7) allows to overcome the domain difficulties described in
Example 1.6.5. This representation in (7) exploits the elementary but important obser-
vation that in equation (6), the commutator is not needed as an operator, but only as a
quadratic form. When ψ belongs to the smaller set D(AH)∩D(HA), (7) reduces to the
classical definition 〈ψ, (HA−AH)ψ〉.

2.2 Angular momentum operator

In this thesis, the abstract Ehrenfest theorem forms the basis for the derivation of an
Ehrenfest equation for the angular momentum. To be able to apply the abstract Ehren-
fest theorem, we have to define the angular momentum operator on a certain domain in
such a way that the operator is well-defined and symmetric.

Definition 2.2.1 (angular momentum operator)
The angular momentum operator L is the cross product of the position and momentum
operator, i.e. L := X∧P on domain D(L) ⊂ L2(R3n). The jth component of the angular
momentum operator of the ith particle of a quantum system in R3n is

Lij := εj,α,βXiαPiβ , (Lijψ)(x) = εj,α,βxiαpiβψ(x) on D(Lij ) ⊂ L2(R3n), (8)

using the Levi-Civita symbol and the Einstein notation.

�
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For convenience – similar to the momentum operator – the focus is on components,
rather than on the whole angular momentum operator L. Note that without loss of
generality all proofs are done for the first component of the angular momentum operator
of the ith particle of a quantum system in R3n. Without this convention, the Levi-Civita
symbol and the Einstein notation would cause needless case differentiations. So the
reader’s focus should be on

Li1 = Xi2Pi3 −Xi3Pi2 , (Li1ψ)(x) = (xi2pi3 − xi3pi2)ψ(x).

Up to now, it is not obvious on which domain D(Lij ) the operator is well-defined, but
the following lemma provides a satisfactory domain.

Lemma 2.2.2 (well-definedness of Lij )
Let Lij be given by (8) and

D(Lij ) := H2(R3n) ∩ {ψ ∈ L2(R3n)|
∫

R3n

|x2
ik
ψ(x)|2dx <∞, k ∈ {1, 2, 3}}. (9)

Then Lij is a well-defined operator with a dense domain, i.e

Lij : D(Lij )→ L2(R3n) and C∞0 (R3n) ⊂ D(Lij ) ⊂ L2(R3n).

Proof : First we consider the denseness. Let ψ ∈ C∞0 (R3n) and choose a ball BR(0) ⊂
R3n containing the support of ψ. Then ψ ∈ H2(R3n) and∫

R3n

|x2
ik
ψ(x)|2dx =

∫
BR(0)

|x2
ik
ψ(x)|2dx ≤ supx∈BR(0)|x4

ik
|
∫
BR(0)

|ψ(x)|2dx ≤ R4‖ψ‖2L2 .

Hence, C∞0 (R3n) ⊂ D(Li1) and the domain is dense in L2(R3n). For well-definedness let
ψ ∈ D(Li1), then (using integration by parts and the notation ∂ij := ∂

∂xij
)

‖Li1ψ‖2L2 =
∫

R3n

|(xi2pi3 − xi3pi2)ψ(x)|2dx

=
∫

R3n

(xi2∂i3 − xi3∂i2)ψ(x)(xi2∂i3 − xi3∂i2)ψ(x)dx

=
∫

R3n

xi2xi2(∂i3ψ)(x)(∂i3ψ)(x)dx+
∫

R3n

xi3xi3(∂i2ψ)(x)(∂i2ψ)(x)dx

−
∫

R3n

xi2xi3(∂i3ψ)(x)(∂i2ψ)(x)dx−
∫

R3n

xi2xi3(∂i2ψ)(x)(∂i3ψ)(x)dx

= −
∫

R3n

xi2xi2ψ(x)(∂2
i3ψ)(x)dx−

∫
R3n

xi3xi3ψ(x)(∂2
i2ψ)(x)dx

+
∫

R3n

xi3(∂i3ψ)(x)ψ(x)dx+
∫

R3n

xi2xi3(∂i2∂i3ψ)(x)ψ(x)dx

+
∫

R3n

xi2(∂i2ψ)(x)ψ(x)dx+
∫

R3n

xi2xi3(∂i3∂i2ψ)(x)ψ(x)dx.
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The symmetry of second derivatives and the Cauchy Schwartz inequality lead to

‖Li1ψ‖2L2 ≤ ‖x2
i2ψ‖L2‖∂2

i3ψ‖L2 + ‖x2
i3ψ‖L2‖∂2

i2ψ‖L2

+ ‖xi3ψ‖L2‖∂i3ψ‖L2 + ‖xi2ψ‖L2‖∂i2ψ‖L2

+ 2‖xi2xi3ψ‖L2‖∂i2∂i3ψ‖L2 .

(10)

Finally with the Young inequality (ab ≤ a2

2 + b2

2 for a, b ∈ R+) we obtain

‖xi2xi3ψ‖2L2 =
(∫

R3n

x2
i2x

2
i3 |ψ(x)|2dx

)
≤
(∫

R3n

(x4
i2

2
+
x4
i3

2
)
|ψ(x)|2dx

)
=

1
2

(
‖x2

i2ψ‖
2
L2 + ‖x2

i3ψ‖
2
L2

)
and

‖xijψ‖2L2 ≤
1
2

(
‖x2

ijψ‖
2
L2 + ‖ψ‖2L2

)
, j ∈ {2, 3}.

Since ψ ∈ D(Li1), all norms are finite and this establishes the assertion.

�

Lemma 2.2.3 (symmetry of Lij on D(Lij ))
Let Lij be given by (8) and (9). Then Lij is symmetric.

Proof : Let ψ, φ ∈ D(Li1), then (using integration by parts)

〈Li1ψ, φ〉 =
∫

R3n

(xi2pi3 − xi3pi2)ψ(x)φ(x)dx

=
∫

R3n

xi2(pi3ψ)(x)φ(x)dx−
∫

R3n

xi3(pi2ψ)(x)φ(x)dx

=
∫

R3n

xi2ψ(x)(pi3φ)(x)dx−
∫

R3n

xi3ψ(x)(pi2φ)(x)dx

= 〈ψ,Li1φ〉.

The inequalities of Cauchy Schwartz and Young yield convergence of all integrals
(c.f. proof of Lemma 2.2.2); hence, Li1 is symmetric.

�
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2.3 Evolution of expected angular momentum

The goal in this thesis is to derive the evolution of angular momentum expectation in
the following situation:

H = −1
2
4+ V, H = L2(R3n), D(H) = H2(R3n) (11)

with
V ∈ L∞(R3n,R) and ∇V ∈ L∞(R3n,R3n). (12)

The main result of this thesis is the following Theorem 2.3.1. The result in b) is to
the best of my knowledge, so far missing from the literature.

Theorem 2.3.1 (evolution of expected angular momentum)
LetH be a Hamiltonian of form (2) satisfying (11) and (12). Let Lij be the jth component
of the angular momentum operator of the ith particle of a quantum system in R3n (see
(8), (9)). Abbreviate ψ(t) := e−itHψ0, then

a) e−itH leaves D(Lij ) ∩D(H) invariant for all t ∈ R.

b) 〈Lij 〉ψ(t) is continuously differentiable with respect to t for any ψ0 ∈ D(Lij )∩D(H)
and satisfies

d

dt
〈Lij 〉ψ(t) = 〈−(Xi• ∧∇iV )j〉ψ(t), (13)

where Xi• is the position operator of the ith particle and ∇iV is the partial derivative of
V in the xi• direction.

The invariance in a) amounts to the, far from obvious, assertion that finiteness of
the fourth moment of the probability distribution of position,

∫
R3n |x|4|ψ(x, t)|2dx, is

preserved by the Schrödinger evolution (called “dynamics”) for bounded potentials. For
higher moments, or even for monomials M(x1, ..., xl) of degree n in the coordinates,
[HU66] provides interesting results in terms of preservation of finiteness of integrals∫

R3n |M(x1, ...xl)|2|ψ(x, t)|2dx by the dynamics.

The requirement that V ∈ L∞(R3n,R) guarantees that H is self-adjoint with domain
H2(R3n), and hence generates a unique strongly continuous unitary group e−itH , t ∈ R
(see Corollary 1.5.3 and Corollary 1.4.3). The requirement that ∇V ∈ L∞(R3n,R3n) is
related to the appearance of ∇V in (13).
Similar to the heuristic justification of Ehrenfest equations (4) and (5), formal eval-

uation of the commutator [H,Lij ] and substituting in equation (6) gives (13). But a
mathematically rigorous derivation leads directly to the following issues, some of which
have been pointed out in the physics literature, see e.g. [Hil73].
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2 Evolution of Angular Momentum Expectation

(1) First, the expected value 〈ψ(t), Lijψ(t)〉 is only well-defined provided ψ(t) belongs
to the domain D(Lij ), as pointed out in Definition 1.6.1. But it is not clear that
D(Lij ) is invariant under the dynamics.

(2) Second, even if ψ(t) stays in the domain D(Lij ), it needs to be shown that 〈Lij 〉ψ(t)

is differentiable in time. A priori, it does not seem obvious that this expression is
even continuous.
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3 Proof of Theorem 2.3.1

The proof of Theorem 2.3.1 relies on the verification of (H1), (H2) and (H3) of the ab-
stract Ehrenfest theorem. (H1) is already verified by Corollary 1.5.3 and Lemma 2.2.3.
Hence, the focus is on proving (H2) and (H3). Important for proving Theorem 2.3.1 is a
derivation of bounds for ‖Lijψ(t)‖L2 , which is done in the next lemma. For convenience,
we note all constants with the same letter C, except of the constant CV which is intro-
duced in Example 1.2.3(i). The reason is that as long as the constants are finite and
independent of t, we are not interested in the specific value of them.

Lemma 3.1
Let H be a Hamiltonian of form (2) satisfying (11) and (12) and Lij be given by (8), (9).
Let ψ0 ∈ D(H) ∩D(Lij ) and abbreviate ψ(t) := e−itHψ0, then

‖Lijψ(t)‖2L2 ≤ CM(1 + |t|)2supA (14)

with a constant C independent of t, M :=
(
‖Hψ0‖L2 + ‖ψ0‖L2

)
and the set

A :=
{
‖ψ0‖L2 , ‖xikψ0‖L2 , ‖x2

ik
ψ0‖L2 , ‖Hψ0‖L2 | k ∈ {1, 2, 3}\{j}

}
.

Proof : The idea of the proof is to use inequality (10) for ψ(t); all steps to obtain
inequality (10) (the Cauchy Schwartz inequality, symmetry of second derivatives and
integration by parts) are applicable to the here stated situation, since ψ(t) ∈ H2(R3n)
by Lemma 1.4.5(ii).

‖Li1ψ(t)‖2L2 ≤ ‖x2
i2ψ(t)‖L2︸ ︷︷ ︸
∗∗∗∗

‖∂2
i3ψ(t)‖L2︸ ︷︷ ︸
∗

+ ‖x2
i3ψ(t)‖L2︸ ︷︷ ︸
∗∗∗∗

‖∂2
i2ψ(t)‖L2︸ ︷︷ ︸
∗

+ ‖xi3ψ(t)‖L2︸ ︷︷ ︸
∗∗∗

‖∂i3ψ(t)‖L2︸ ︷︷ ︸
∗

+ ‖xi2ψ(t)‖L2︸ ︷︷ ︸
∗∗∗

‖∂i2ψ(t)‖L2︸ ︷︷ ︸
∗

+ 2 ‖xi2xi3ψ(t)‖L2︸ ︷︷ ︸
∗∗

‖∂i2∂i3ψ(t)‖L2︸ ︷︷ ︸
∗

.

ad (∗): Due to the fact that ψ(t) ∈ H2(R3n), all norms are finite for fixed t ∈ R.
It is possible to bound these differential operators relatively to the Hamiltonian using
Plancherel’s theorem and the fact that V is a bounded operator (see Example 1.2.3(i)).
To show the relatively boundedness, note that

√
a2 + b2 ≤ a + b for any a, b ∈ R+; let

i, τ ∈ {1, ..., n}, j, l ∈ {1, 2, 3}, then
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‖∂ijψ(t)‖L2 = ‖∂̂ijψ(t)‖L2 = ‖kij ψ̂(t)‖L2

Young
≤

(
1
2
(
‖k2

ij ψ̂(t)‖2L2 + ‖ψ̂(t)‖2L2

)) 1
2

≤
(

1
2
(
‖

n∑
α=1

3∑
β=1

k2
αβ
ψ̂(t)‖2L2 + ‖ψ̂(t)‖2L2

)) 1
2

=
(

1
2
(
‖4ψ(t)‖2L2 + ‖ψ(t)‖2L2

)) 1
2

≤ C
(
‖4ψ(t)‖L2 + ‖ψ(t)‖L2

)
≤ C

(
‖ − 1

2
4ψ(t)‖L2 + ‖ψ(t)‖L2

)
= C

(
‖(H − V )ψ(t)‖L2 + ‖ψ(t)‖L2

)
≤ C

(
‖Hψ(t)‖L2 + ‖V ψ(t)‖L2 + ‖ψ(t)‖L2

)
≤ C

(
‖Hψ(t)‖L2 + CV ‖ψ(t)‖L2 + ‖ψ(t)‖L2

)
≤ C

(
‖Hψ(t)‖L2 + ‖ψ(t)‖L2

)
= C

(
‖Hψ0‖L2 + ‖ψ0‖L2

)
by the conservation of quantities (Corollary 1.4.5(iii)). The bound for the partial deriva-
tives of second order is left:

‖∂ij∂τlψ(t)‖L2 = ‖ ̂∂ij∂τlψ(t)‖L2 = ‖kijkτlψ̂(t)‖L2

Young
≤

(
1
2
(
‖k2

ij ψ̂(t)‖2L2 + ‖k2
τl
ψ̂(t)‖2L2

)) 1
2

≤ ‖
n∑

α=1

3∑
β=1

k2
αβ
ψ̂(t)‖L2 = ‖4ψ(t)‖L2 ≤ C‖ −

1
2
4ψ(t)‖L2

≤ C
(
‖Hψ(t)‖L2 + ‖V ψ(t)‖L2

)
≤ C

(
‖Hψ(t)‖L2 + CV ‖ψ(t)‖L2

)
≤ C

(
‖Hψ(t)‖L2 + ‖ψ(t)‖L2

)
= C

(
‖Hψ0‖L2 + ‖ψ0‖L2

)
.

ad (∗∗): The Young inequality yields

‖xi2xi3ψ(t)‖L2 ≤
(

1
2
(
‖x2

i2ψ(t)‖2L2 + ‖x2
i3ψ(t)‖2L2

)) 1
2

≤ C
(
‖x2

i2ψ(t)‖L2 + ‖x2
i3ψ(t)‖L2

)
.

These are norms examined in (∗ ∗ ∗∗).

ad (∗ ∗ ∗): Thanks to [HU66], these norms are easy to handle. As a result, we can
assume that finiteness of the second moment of the probability distribution of position
is preserved under dynamics, i.e. for any ψ0 ∈ D(H) ∩D(Xij )

‖xijψ(t)‖L2 ≤ C
(
1 + |t|)sup

{
‖ψ0‖L2 , ‖xijψ0‖L2 , ‖Hψ0‖L2

}
. (15)

For definition of D(Xij ), see Example 1.2.3(iii). By the Young inequality, it is easy to
show that

(
D(Lij )∩D(H)

)
⊂
(
D(Xij )∩D(H)

)
. Thus, the inequality (15) is applicable

to the situation stated in this lemma.
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3 Proof of Theorem 2.3.1

ad (∗ ∗ ∗∗): Again we use [HU66]. We can assume that for any ψ0 ∈ D(X2
ij

) ∩D(H)

‖x2
ijψ(t)‖L2 ≤ C

(
1 + |t|)2sup

{
‖ψ0‖L2 , ‖xijψ0‖L2 , ‖x2

ijψ0‖L2 , ‖Hψ0‖L2

}
, (16)

where
D(X2

ij ) := {ψ ∈ L2(R3n) |
∫

R3n

|x2
ijψ(x)|2dx <∞}.

Hence,
(
D(Lij ) ∩D(H)

)
⊂
(
D(X2

ij
) ∩D(H)

)
and the inequality (16) is applicable.

Additionally, (1 + |t|) ≤ (1 + |t|)2 for any t ∈ R. The analysis of all norms yields the
assertion.

�

The bound (14) given by Lemma 3.1 is already sufficient for applying the abstract
Ehrenfest theorem on H and Lij .

Proposition 3.2
Let H be a Hamiltonian of form (2) satisfying (11) and (12) and Lij be given by (8), (9).
Let ψ0 ∈ D(H) ∩D(Lij ) and abbreviate ψ(t) := e−itHψ0. Then:
〈Lij 〉ψ(t) is continuously differentiable with respect to t for any ψ0 ∈ D(Lij )∩D(H) and
satisfies

d

dt
〈Lij 〉ψ(t) = i

(
〈Hψ(t), Lijψ(t)〉 − 〈Lijψ(t), Hψ(t)〉

)
. (17)

Proof : So far, the entire analysis was done to apply the abstract Ehrenfest theorem to
the situation stated in this proposition. (H1) is already verified by Corollary 1.5.3 and
Lemma 2.2.3.

(H2): By Corollary 1.4.5(ii), e−itH leaves D(H) invariant for all t ∈ R. Hence, there is
only left to prove that ‖x2

ij
ψ(t)‖L2 is finite for any ψ0 ∈ D(Lij )∩D(H) and all t ∈ R.

Using inequality (16), we have to show that the norms ‖ψ0‖L2 , ‖xijψ0‖L2 , ‖x2
ij
ψ0‖L2

and ‖Hψ0‖L2 are finite. But this follows from ψ0 ∈ D(Lij ) ∩ D(H) and the fact
that the Young inequality yields ‖xijψ0‖L2 ≤ C

(
‖x2

ij
ψ0‖L2 + ‖ψ0‖L2

)
.

(H3): Applying bound (14), it follows that ‖Lijψ(t)‖L2 stays bounded for t in a bounded
set I ⊂ R.

The assertion follows from the abstract Ehrenfest theorem. Additionally, the considera-
tions for proving (H2) lead to a proof for Theorem 2.3.1 a).

�
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3 Proof of Theorem 2.3.1

Note, however, that so far the Ehrenfest equation for angular momentum is not fully
derived, since it remains to be verified that the right hand side in (17) agrees with the
right hand side in (13). For this, the additional assumption ∇V ∈ L∞(R3n,R3n) is
needed.

Proof of Theorem 2.3.1. b):
To complete the proof of the statements, we need to show that

i

(
〈Hψ,Li1ψ〉 − 〈Li1ψ,Hψ〉

)
= 〈−(Xi• ∧∇iV )1〉ψ (18)

for all ψ ∈ H2(R3n) ∩D(Li1).

first step: For functions ψ ∈ C∞0 (R3n), this follows from an elementary calculation. We
know by Corollary 1.5.3 and Lemma 2.2.3 that H and Lij are symmetric on C∞0 (R3n),
and hence

i

(
〈Hψ,Li1ψ〉 − 〈Li1ψ,Hψ〉

)
= i

(
〈ψ,HLi1ψ〉 − 〈ψ,Li1Hψ〉

)
= i

(
〈ψ,
(
HLi1 − Li1H

)
ψ〉
)

= i

(
〈ψ, [H,Li1 ]ψ〉

)
.

(19)

Using again the Cauchy Schwartz inequality, it is straightforward to show that the inner
products in (19) converge for all ψ ∈ C∞0 (R3n) and hence calculation (19) is correct.
Further, the calculation of [H,Li1 ] on C∞0 (R3n) is needed. But Example 1.6.4 leads to

[H,Li1 ] = [H,Xi2Pi3 ]− [H,Xi3Pi2 ]
= [H,Xi2 ]Pi3 +Xi2 [H,Pi3 ]− [H,Xi3 ]Pi2 −Xi3 [H,Pi2 ]
= −iPi2Pi3 + iXi2(∂i3V ) + iPi3Pi2 − iXi3(∂i2V )
= i(Xi• ∧∇iV )1,

(20)

using commutator properties stated in Lemma 1.6.3 and the symmetry of second deriva-
tives. Hence (19) and (20) establish (18) for functions in C∞0 (R3n).

second step: Simplifying equation (18), one obtains

i

(
〈Hψ,Xi2Pi3ψ〉 − 〈Hψ,Xi3Pi2ψ〉 − 〈Xi2Pi3ψ,Hψ〉+ 〈Xi3Pi2ψ,Hψ〉

)
!= −〈ψ,Xi2(∂i3V )ψ〉+ 〈ψ,Xi3(∂i2V )ψ〉 for all ψ ∈ H2(R3n) ∩D(Li1).
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3 Proof of Theorem 2.3.1

Now consider functions ψ ∈ H2(R3n) with compact support. Clearly, it suffices to
approximate ψ by a sequence ψε of C∞0 (R3n) functions in such a way that the six terms
appearing inside the inner products,

Hψε, Xi2Pi3ψε, Xi3Pi2ψε, Xi2(∂i3V )ψε, Xi3(∂i2V )ψε, ψε,

converge in L2 to the corresponding terms for ψ. Therefore, choose a ball BR(0) con-
taining the support of ψ. Consider the following standard approximation obtained by
mollification:

ψε(x) := (ηε ∗ ψ)(x) =
∫

R3n

ηε(x− y)ψ(y)dy,

where ηε(x) = ε−3nη(x\ε), ε ∈ (0, 1), η ∈ C∞0 (R3n), η = 0 outside B1(0); then (see e.g.
[Eva10a]) ψε ∈ C∞0 (R3n), supp(ψ), supp(ψε) ⊂ BR+1(0) and ψε → ψ in H2.

It is easy to check that the identity Id and Pij are continuous operators from H2(R3n)
to L2(R3n) (to show this, use the H2 norm defined in Example 1.2.3(ii)); hence, ψε → ψ
in L2 and Pijψε → Pijψ in L2. Moreover, H is a continuous operator from H2(R3n) to
L2(R3n), since

‖Hψ‖L2 = ‖(−1
2
4+ V )ψ‖L2 ≤ ‖ −

1
2
4ψ‖L2 + ‖V ψ‖L2

≤ C‖ψ‖H2 + CV ‖ψ‖L2 ≤ C‖ψ‖H2 ,

so that Hψε → Hψ in L2.

Further, Xij is continuous on the subspace of L2(R3n) functions with support in
BR+1(0), since

‖Xijψ‖L2 = ‖Xijψ‖L2(BR+1(0)) ≤ supx∈BR+1(0)|xij |‖ψ‖L2 = (R+ 1)‖ψ‖L2 .

In addition, ψε ∈ H2(R3n), supp(ψε) ⊂ BR+1(0) and so Pijψε ∈ H1(R3n) ⊂ L2(R3n)
with supp(Pijψε) ⊂ BR+1(0). Hence, Xi2Pi3ψε → Xi2Pi3ψ in L2 and Xi3Pi2ψε →
Xi3Pi2ψ in L2, using continuity of Pij as a map from H2(R3n) to L2(R3n).

And finally we need the assumption that ∇V ∈ L∞(R3n,R3n). It follows that (∂ijV )ψε
is a L2(R3n) function with support in BR+1(0). Again, Xij is continuous on the subspace
of L2(R3n) functions with support in BR+1(0). As a result, Xi3(∂i2V )ψε → Xi3(∂i2V )ψ
and Xi2(∂i3V )ψε → Xi2(∂i3V )ψ in L2 by continuity of ∇V .

Thus we have proved that the six terms appearing inside the inner products (depen-
dent on ψε) converge in L2 to the corresponding terms for ψ. This establishes (18) for
compactly supported H2(R3n) functions.
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3 Proof of Theorem 2.3.1

third step: Finally let ψ be a general function in D(H) ∩ D(Lij ). Let η ∈ C∞0 (R3n)
with η(0) = 1. Then ψR(x) := η(x\R)ψ(x) is a compactly supported H2(R3n) function,
so (18) holds for ψR by the previous step. Further, it is straightforward to check that
ψR → ψ in H2. Similar to the considerations in the second step, we have to show that
the six terms appearing inside the inner products

HψR, Xi2Pi3ψR, Xi3Pi2ψR, Xi2(∂i3V )ψR, Xi3(∂i2V )ψR, ψR,

converge in L2 to the corresponding terms for ψ. Here, it is trivial that ψR → ψ in L2,
since ψR → ψ in H2.

‖H(ψR − ψ)‖L2 ≤ ‖4(ψR − ψ)‖L2 + ‖V (ψR − ψ)‖L2

≤ ‖ψR − ψ‖H2 + ‖V ‖L∞‖ψR − ψ‖L2 ,

and hence HψR → Hψ in L2. Further let k, l ∈ {1, 2, 3} with k 6= l, then

‖XikPil(ψR − ψ)‖2L2 =
∫

R3n

|xik∂ilψR(x)− xik∂ilψ(x)|2dx

=
∫

R3n

x2
ik
ψR(x)

(
(∂2
il
ψ)(x)− (∂2

il
ψR)(x)

)
dx

+
∫

R3n

x2
ik
ψ(x)

(
(∂2
il
ψR)(x)− (∂2

il
ψ)(x)

)
dx

by integration by parts. With the Cauchy Schwartz inequality we obtain

‖XikPil(ψR − ψ)‖2L2 ≤ ‖X2
ik
ψR‖L2‖∂2

il
(ψ − ψR)‖L2 + ‖X2

ik
ψ‖L2‖∂2

il
(ψR − ψ)‖L2

≤ ‖X2
ik
ψR‖L2‖(ψ − ψR)‖H2 + ‖X2

ik
ψ‖L2‖(ψR − ψ)‖H2 .

It can be shown that X2
ik
ψ, X2

ik
ψR ∈ L2(R3n) by elementary calculations. As a conse-

quence, XikPilψR converges to XikPilψ in L2. And finally

‖Xik

(
∂ilV

)
(ψR − ψ)‖2L2 ≤ ‖∇V ‖2L∞‖Xik(ψR − ψ)‖2L2

≤ ‖∇V ‖2L∞
(
‖X2

ik
ψR‖L2‖ψR − ψ‖L2 + ‖X2

ik
ψ‖L2‖ψ − ψR‖L2

)
again by integration by parts and the Cauchy Schwartz inequality. Hence,

Xik(∂ilV )ψR → Xik(∂ilV )ψ in L2.

Consequently all the six terms appearing inside the inner products converge in L2 to
the corresponding terms for ψ, establishing (18) in the general case.

�
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4 Interpretation

4 Interpretation

The motivation for the derivation of an Ehrenfest theorem for the angular momentum
expectation was given by the equations

d

dt
〈Xij 〉ψ(t) =

1
mij

〈Pij 〉ψ(t) and
d

dt
〈Pij 〉ψ(t) = 〈− ∂V

∂xij
〉ψ(t),

which are of Newtonian form. In other words, the mean values of position and momentum
operator correspond to Newton’s second law of motion F = ma,

〈− ∂V

∂xij
〉ψ(t) = mij

d2

dt2
〈Xij 〉ψ(t).

Here, F is the net force applied, m and a are the mass and acceleration of the body.
Since in classical mechanics the time derivative of angular momentum is given by

d

dt
(q ∧ p) = q ∧ ṗ = q ∧ F,

(where q∧F is defined as the torque) in fact we derived the quantum mechanical analogy

d

dt
〈Lij 〉ψ(t) = 〈−(Xi• ∧∇iV )j〉ψ(t)

under boundedness assumptions on V and ∇V . Consequently, the time evolution of an-
gular momentum expectation equals the expected quantum mechanical torque.

Prototypical Hamiltonians satisfying these boundedness assumptions on V and ∇V
are the Hamiltonians with potential wells of form

V (x) =
n∑
i=1

min{‖xi•‖22, ci}, ci ∈ R, xi• ∈ R3,

and for the smooth case

V (x) =
‖x‖22
‖x‖22 + c

, c ∈ R+.

Though, boundedness of V and ∇V is a strong assumption and does not include a
variety of important potentials. A prospective goal could be to modify the assump-
tions to include atomic and molecular Hamiltonians with Coulomb interactions, e.g. the
electronic Hamiltonian of a general molecule

Hel = −1
2
4+

n∑
i=1

v(xi•) +
∑

1≤i<j≤n

1
‖xi• − xj•‖2

, v(xi•) = −
m∑
α=1

Zα
‖xi• −Rα‖2

,

where Zα > 0 and Rα ∈ R3 are the charges and coordinates of the nuclei. Atomic units
have been used so that ~ = 1 and the electrons have mass 1 and charge -1.
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4 Interpretation

At the end of this thesis, we show that the time rate of change of angular momentum
expectation vanishes, when assuming the potential V to be rotationally symmetric.

Corollary 4.1
Let H be a Hamiltonian of form (2) satisfying (11), (12) with a rotationally symmetric
potential V . Further let Lij be given by (8), (9). Then

d

dt
〈Lij 〉ψ(t) = 0.

Proof: We can apply Theorem 2.3.1b) to the here stated situation. Since V is a
rotationally symmetric potential, we may assume V = u(r) with r(x) := ‖x‖2 and
u : R→ R. Hence,

∇iV (x) =
xi•
r(x)

u′(r(x)) ∈ R3

and
Xi• ∧∇iV =

u′(r)
r

(
Xi• ∧Xi•

)
= 0.

�

When the time rate of change of observable’s expectation equals zero, we name the
observable a quantum mechanical conserved quantity. Motivated by Ehrenfest’s equation
for a general quantum mechanical operator,

d

dt
〈A〉ψ(t) = i〈[H,A]〉ψ(t),

we say that those conserved quantities commute with the Hamiltonian H. For further
discussions on quantum mechanical conserved quantities, see [Sch02].
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