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Abstract

The reconstruction of images from data modeled by the spherical Radon transform plays
an important role in photoacoustic tomography - a rapidly developing modality for in
vivo imaging. We provide two novel kernel based reconstruction algorithms adapted to
this type of data: optimal recovery and algebraic reconstruction technique. The thesis
details the algorithms’ derivation, L2-error estimates in terms of the data density, con-
vergence results and a fast implementation. Several numerical examples for real and
artificially generated data are included.
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Plan of the Thesis

In the first chapter we present the image reconstruction problem from spherical Radon
data in the setting of photoacoustic tomography. We start by giving a brief overview
on the underlying imaging physics and on the mathematical modeling behind. Then we
formulate the inverse problem respectively the semi-discrete inverse problem of photo-
acoustic tomography.
The following chapter introduces the mathematical fundamentals for the kernel based
reconstruction process. We recall important notions of reproducing kernel Hilbert spaces
and examine the construction of fractional Sobolev spaces by a given positive definite
radial kernel function.
The new results are presented in the third chapter. We give a detailed description of
two solution methods for the semi-discrete inverse problem of photoacoustic tomography:
optimal recovery and algebraic reconstruction technique. For both methods we provide
L2-error estimates in terms of the data density and a proof of convergence.
Finally, we present a fast algorithm for the algebraic reconstruction technique and give
numerical results for real and artificially generated data. We study the behavior of
the method with respect to its image reconstruction capability and its computational
efficiency.
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1 Introduction

1 Introduction

The theory and practice of recovering a function from spherical Radon data has been
developed especially in the setting of photoacoustic tomography. In this chapter, we give
a brief overview on the underlying imaging physics and on the mathematical modeling
behind. Further, we formulate the reconstruction problem from continuous and discrete
spherical Radon data.

1.1 Scheme of Photoacoustic Tomography

Photoacoustic tomography (PAT) - a rapidly emerging imaging technique - proves to
have potential for biomedical in vivo imaging. The method is based on the generation
of an acoustic wave due to absorption of energy. A very short laser pulse triggers a ther-
moelastic expansion and contraction of the radiated tissue by absorption. The generated
pressure wave - the acoustic signal - propagates through the tissue and beyond and is
recorded by transducers distributed around the object. PAT aims to produce an image
which represents a map of the electromagnetic absorption properties of the tissue from
knowledge of the measured acoustic signals. Because the absorption properties of tissues
are highly related to their molecular constitution, PAT images reveal the pathological
condition of tissues and facilitate a wide-range of diagnostic tasks.

transducers	  

+me	  dependent	  	  
pressure	  signal	  	  

short	  laser	  pulse,	  
homogeneous	  illumina+on	  

+ssue	  

absorber	  

Figure 1: Photoacoustic procedure with a partially surrounding acquisition surface.
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1 Introduction

1.2 The Inverse Problem of Photoacoustic Tomography

In the following we describe the commonly accepted reconstruction problem of photo-
acoustic tomography from continuous spherical Radon data [3, 45]. The photoacoustic
effect is modeled in terms of the inhomogeneous wave equation

∂2
t p(x, t)− ν2

s∆p(x, t) = ∂tH(x, t), (1)

where p(x, t) is the pressure, νs(x) is the speed of sound within the medium and H(x, t)
is a function that models the heating of the material. Neglecting the effect of finite speed
propagation of the in-falling laser pulses, we assume that this function separates in its
variables, i.e. H(x, t) = f(x)ι(t). The function f models the spatial absorption of energy
and is assumed to be compactly supported. Due to the very short duration of the laser
pulses (in the nanosecond range [55]), we assume the function ι to be a delta function,
i.e. ι(t) = δt. Under these assumptions we can show by approximating δt through regular
distributions [46, Theorem 1.1] that (1) is equivalent to the following Cauchy problem

∂2
t p(x, t)− ν2

s∆p(x, t) = 0

p(x, 0) =f(x), ∂tp(x, 0) = 0.
(2)

Let the hypersurface ∂Ω - the boundary of an open bounded set Ω ⊆ Rd - be the location
of the transducers enclosing the support of f . Then, the inverse problem of PAT consists
in the determination of the absorption density f(x) for x ∈ Ω if p(x, t) is known for
(x, t) ∈ ∂Ω× R+.

In general, the speed of sound depends on the space variable. In this situation, in
order to recover f , we need to work with the wave equation directly [45, 48]. However,
experimental set ups very often allow to work with constant speed of sound. By rescaling
the time variable, we assume throughout this thesis νs = 1. As a result, the solution of
(2) for odd dimensions d ≥ 3 and a sufficiently well behaved function f is given as

p(x, t) =
1

1 · 3 · · · (d− 2)
∂t(t

−1∂t)
d−3

2 [td−2M(f)(x, t)], x ∈ Rd, t ≥ 0, (3)

where
M(f)(x, t) :=

1

wd−1

∫
Sd−1

f(x+ tu) dσ(u)

is the spherical mean operator [13]. Sd−1 := {x ∈ Rd | |x| = 1} denotes the (d − 1)-
dimensional unit sphere embedded in the Euclidean space Rd and σ denotes the surface
measure on Sd−1 with σ(Sd−1) = 2π

d
2 /Γ(d2) =: wd−1. We derive from (3) that knowledge

of the pressure signal p(x, t) for (x, t) ∈ ∂Ω× R+ is equivalent to knowing the spherical
mean M(f)(x, t) of the function f for any (x, t) ∈ ∂Ω × R+. Therefore, the inverse
problem of PAT essentially amounts to the inversion of the spherical mean operator
restricted to the hypersurface ∂Ω. In the literature, the restriction ofM to ∂Ω is known
as spherical Radon transform and defined by

M∂Ω(f)(x, t) :=
1

wd−1

∫
Sd−1

f(x+ tu) dσ(u), x ∈ ∂Ω, t ≥ 0. (4)
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1 Introduction

The inverse problem of photoacoustic tomography as well as various aspects of PAT
have attracted considerable attention in the last decade with several results appearing
in various articles. Especially work on the spherical mean transform respectively the
spherical Radon transform has been done in great detail. We refer the interested reader
to [3, 17, 38] for exact inversion formulas, to [6] for a description of its range and to [5]
for a characterization of so-called injectivity sets. Further, a variety of image reconstruc-
tion algorithms have been developed for three-dimensional PAT data assuming point-like
transducers [16,30].

1.3 Facing Discrete Data: the Semi-Discrete Inverse Problem

The inverse problem of PAT aims to solve the operator equation

M∂Ω(f) = g, (5)

where M∂Ω : H(Ω) → H(Ω′) is the spherical Radon transform (4) defined on Hilbert
spaces H(Ω) and H(Ω′) of real valued functions f : Ω → R respectively f : Ω′ → R.
However, in much of experimental science, the given information (here, the right hand
side of the equation) is rather discrete than continuous. In PAT, the data are obtained
by measuring the pressure signal p(x, t) using acoustic transducers located at discrete
locations Ξ = {ξk}Kk=1 on the acquisition surface ∂Ω at fixed measurement times T =
{tl}Ll=1 ⊆ (0 T ]. Hence, the final output of a photoacoustic experiment is a finite vector
of real numbers ḡ ∈ RK·L, where the elements of the Euclidean space RK·L have the
representation as a vector (not as a matrix)

ḡ = (g11, g21, . . . , g(K−1)1, gK1, g12, g22, . . . , g(K−1)L, gKL)T .

Throughout this thesis, we assume the output vector ḡ to be a sampled version of the
spherical mean g(x, t) for an unknown absorption function f , i.e.

gkl := g(ξk, tl) :=
1

wd−1

∫
Sd−1

f(ξk + tlu) dσ(u) (6)

for ξk ∈ Ξ and tl ∈ T . By considering the experimental information, we replace the con-
tinuous operator equation (5) by its semi-discrete analogueMX (f) = ḡ with collocation
operator

MX : H(Ω)→ RK·L, (MX (f))kl =M∂Ω(f)(ξk, tl), (ξk, tl) ∈ X := Ξ× T . (7)

Then, the semi-discrete inverse problem of PAT can be formulated as follows: given
spherical Radon data (Ξ, T , ḡ), find a solution f+ ∈ H(Ω) of the equation

MX (f) = ḡ. (8)
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1 Introduction

1.4 Objective of the Thesis

This thesis presents two innovative algorithms for the reconstruction of f from sphe-
rical Radon data (Ξ, T , ḡ) by solving the semi-discrete inverse problem of PAT (8). In
particular, we determine solutions f+ of (8) in finite-dimensional subspaces X (recovery
spaces) of a reproducing kernel Hilbert space H(Ω) with radial kernel Φ. The advantages
of using such an approach are

- an analytical description of the action of the spherical mean operator (respectively
spherical Radon transform) on a great class of radial kernels Φ, which provides
explicit and manageable ways for the computation of f+,

- a-priori smoothness information of f+ due to the identification of reproducing ker-
nel Hilbert spaces with Sobolev spaces of fractional order,

- “meshless” recovery of f by exploiting the geometry of the problem (determined
by the transducer locations on the acquisition surface ∂Ω) by using kernel related
basis functions for the recovery spaces.

Clearly, the explicit choice of a recovery space determines the solution of (8). In this
thesis, our focus is on two recovery spaces leading to different reconstruction algorithms:

XK·L := span{My
∂Ω(Φ(·, y))(ξk, tl) | k = 1, . . . ,K and l = 1, . . . , L},

where the superscript y at the operator indicates the argument to which the operator is
applied, and

XY := span{Φ(·, yi) | i = 1, . . . , N},

where Y := {y1, . . . , yN} ⊆ Ω is an arbitrary, but fixed, set. According to the well-known
Golomb and Weinberger theory [24], we refer to the situation X = XK·L as optimal
recovery problem. For X = XY , we call the recovery problem algebraic reconstruction
technique.

The present thesis gives sufficient answers to the following questions:

1. How do the solutions of (8) for X = XK·L and X = XY look like? How does the
kernel Φ of the reproducing kernel Hilbert space H(Ω) influence the smoothness of
the resulting approximation f+?

2. Under which assumptions can we determine a function which solves the equation
(8) exactly? When does a function satisfy the equation (8) just approximatively?

3. Can we guarantee the approximation f+ to be uniquely determined? And if so, in
which sense do we have to understand the uniqueness?

4. Are there requirements on the transducer locations Ξ, on the measurement times
T or on the set Y in order to calculate f+?

4



1 Introduction

5. What is the approximation order of f+ with respect to the unknown absorption
density f?

6. Can we compute f+ in a fast and efficient way?

1.5 Notes and Comments

The spherical Radon transformM∂Ω resembles the classical Radon transform: the com-
mon tool of computerized tomography [31], which integrates functions over planes rather
than spheres. This analogy with the classical Radon transform - although often purely
ideological rather than technical - provides important intuition and frequently points in
reasonable directions of study. However, if the speed of sound νs cannot be assumed
to be constant, the relation between photoacoustic tomography and integral transforms
breaks down [45, chapter 19].

With the problem formulation in (8), we regularize the continuous operator equation
(5) by the method of collocation in reproducing kernel Hilbert spaces [27, chapter 3].
Roughly speaking, the collocation scheme consists in seeking an approximate solution
by requiring that the continuous equation (5) is satisfied only at a finite number of
collocation points. Hence, by formulating the recovery of f as a semi-discrete inverse
problem, we stabilize the inversion of the spherical Radon transform. However, addi-
tional regularization methods for the semi-discrete equation (8) should be considered,
such as truncated singular value decomposition, the Tikhonov-Phillips method or iter-
ative procedures such as the Landweber and conjugate gradient method. We refer the
reader to [9, 10,28] for a comprehensive discussion.

5



2 Mathematical Fundamentals

2 Mathematical Fundamentals

In this chapter, we introduce the fundamentals for the solution methods of the semi-
discrete inverse problem of PAT (8). We review the definition and basic properties of
reproducing kernel Hilbert spaces and examine the construction of fractional Sobolev
spaces by a given positive definite radial kernel function.

2.1 Preliminaries

We require fundamental knowledge about functional analysis, integral and measure the-
ory, operator theory and inverse problems. The topics can be studied in the textbooks
of Halmos [25], Rudin [40], Werner [53] and Rieder [36].

The following notation is used throughout this thesis. The Euclidean inner product
of two vectors x, y ∈ Rd is denoted by 〈x, y〉 :=

∑d
i=1 xiyi. For the associated Euclidean

norm of the vector x ∈ Rd we use the notation |x| :=
√
〈x, x〉. We denote with V ′ the

topological dual space of a real topological vector space V . S denotes the space of rapidly
decreasing functions. The Fourier transform of φ ∈ S is defined by

φ̂(ξ) := (2π)−
d
2

∫
Rd
φ(x)e−i〈x,ξ〉dx.

For any real number s ∈ R,

Hs(Rd) := {f ∈ S ′ | f̂ ∈ L1
loc(Rd), ‖f‖Hs(Rd)

:= ‖(1 + | · |2)
s
2 f̂‖

L2(Rd)
<∞}

is the Sobolev space of fractional order. Hs(Rd) for s ∈ N0 consists of functions whose
(generalized) derivatives up to the order s are square integrable [44, Theorem 2.55].
Hence, the larger s the smoother are the elements in Hs(Rd). For more details on
fractional Sobolev spaces and their definition on “sufficiently regular” sets Ω ⊆ Rd, see
Appendix 6.2.

2.2 Reproducing Kernel Hilbert Spaces

We follow the textbook of Wendland [52, chapter 10], as it provides a very structured
and comprehensive introduction into the topic of reproducing kernel Hilbert spaces. Ad-
ditional information is taken from [28].

Definition 1.
Let Ω ⊆ Rd be a given domain and let H(Ω) be a real Hilbert space of functions f : Ω→ R.
H(Ω) is called reproducing kernel Hilbert space (RKHS) with reproducing kernel Φ, if a
function Φ : Ω× Ω→ R exists with

1. Φ(·, y) ∈ H(Ω) for all y ∈ Ω,

2. f(y) = 〈f,Φ(·, y)〉H for all y ∈ Ω and for all f ∈ H(Ω).

6



2 Mathematical Fundamentals

It is easy to see that the reproducing kernel of a Hilbert space is uniquely determined.
Suppose there are two kernels Φ1 and Φ2. Then the second property gives 〈f,Φ1(·, y)−
Φ2(·, y)〉H = 0 for all f ∈ H(Ω) and all y ∈ Ω. Setting f = Φ1(·, y)− Φ2(·, y) for a fixed
y ∈ Ω shows the uniqueness.

Let us give a first characterization of a RKHS which makes use of point evaluation
functionals δy(f) := f(y), y ∈ Ω, f ∈ H(Ω).

Lemma 1. [52, Theorem 12.3]
Let H(Ω) be a Hilbert function space. Then the following statements are equivalent:

1. Point evaluation functionals are continuous, i.e. δy ∈ H(Ω)′ for all y ∈ Ω;

2. H(Ω) has a reproducing kernel.

Proof. Suppose that the point evaluation functionals are continuous. By the Riesz repre-
sentation theorem [Appendix 6.1] we find for every y ∈ Ω a unique Φy ∈ H(Ω) such that
δy(f) = 〈f,Φy〉H for all f ∈ H(Ω). Thus, Φ(x, y) := Φy(x) is the reproducing kernel.
Now suppose that H(Ω) has a reproducing kernel Φ. This means that δy = 〈·,Φ(·, y)〉H
for y ∈ Ω. Since the inner product is continuous, so is δy.

Interesting features of a RKHS are collected in the following lemma.

Lemma 2. [52, Theorem 10.3]
Suppose H(Ω) is a Hilbert space with reproducing kernel Φ. Then

1. Φ(x, y) = 〈Φ(·, x),Φ(·, y)〉H = 〈δx, δy〉H′ ,

2. Φ(x, y) = Φ(y, x)

for every x, y ∈ Ω.

Proof. By the reproducing property of the kernel [Definition 1] and the uniqueness of
the Riesz representers [Appendix 6.1] it follows that Φ(·, y) is the Riesz representer of
δy, where y ∈ Ω. The Riesz representation theorem [Appendix 6.1] yields 〈δx, δy〉H′ =
〈Φ(·, x),Φ(·, y)〉H and therefore

Φ(x, y) = δx(Φ(·, y)) = 〈Φ(·, y),Φ(·, x)〉H = 〈Φ(·, x),Φ(·, y)〉H .

Hence, the first property is proven and the second follows immediately from it.

The next result focuses on the action of linear continuous functionals on elements of a
reproducing kernel Hilbert space.

Proposition 3. [52, Theorem 16.7]
Suppose H(Ω) is a real Hilbert space with reproducing kernel Φ. Let λ, µ ∈ H(Ω)′. Then

1. λyΦ(·, y) ∈ H(Ω),

7



2 Mathematical Fundamentals

2. λ(f) = 〈f, λyΦ(·, y)〉H ∀f ∈ H(Ω),

3. 〈λ, µ〉H′ = λxµyΦ(x, y),

where the superscripts x and y at the functionals indicate the arguments to which the
functionals are applied.

Proof. Let λ ∈ H(Ω)′. The Riesz representation theorem [Appendix 6.1] guarantees the
existence of a unique hλ such that λ(f) = 〈f, hλ〉H for all f ∈ H(Ω). Let fx := Φ(·, x) ∈
H(Ω) for x ∈ Ω, then

λ(fx) = 〈fx, hλ〉H = 〈hλ, fx〉H = 〈hλ,Φ(·, x)〉H = hλ(x)

by the reproducing property of the kernel. Thus λyΦ(y, x) = hλ(x) for all x ∈ Ω. Since
the kernel of a RKHS is symmetric [Lemma 2], we have λyΦ(·, y) = hλ ∈ H(Ω). Further,

〈λ, µ〉
H′ = 〈hλ, hµ〉H = 〈hµ, hλ〉H = λ(hµ) = λ(µyΦ(·, y)) = λxµyΦ(x, y).

One of the most important examples of reproducing kernel Hilbert spaces are Sobolev
spaces of fractional order.

Theorem 4. [44, Example 2.59]
The fractional Sobolev space Hs(Rd) is a reproducing kernel Hilbert space if s > d

2 .

Proof. From Lemma 1 we know that Hs(Rd) is a reproducing kernel Hilbert space if and
only if point evaluation functionals are continuous, i.e. δξ ∈ (Hs(Rd))′ for every ξ ∈ Rd.
As (Hs(Rd))′ is isometrically isomorphic to H−s(Rd) [Appendix 6.2, Remark 7 c)] it is
sufficient to show that δξ ∈ H−s(Rd) for every ξ ∈ Rd. Further, δξ ∈ S ′ [Appendix 6.2,
Example 9] and δ̂ξ = (2π)−

d
2 e−i〈·,ξ〉 as

δ̂ξ(φ) = δξ(φ̂) = φ̂(ξ) = (2π)−
d
2

∫
Rd
φ(x)e−i〈x,ξ〉dx = ((2π)−

d
2 e−i〈·,ξ〉)(φ)

for every φ ∈ S. Therefore, δ̂ξ ∈ L1
loc(Rd) and

‖δξ‖2
H−s(Rd)

=

∫
Rd
|1 + |x|2|−s|δ̂ξ(x)|2dx = (2π)−d

∫
Rd

(1 + |x|2)−sdx

=(2π)−dwd−1

∫ ∞
0

(1 + r2)−srd−1dr <∞,

if and only if −2s+ d− 1 < −1 [18, chapter 9]. Thus s > d
2 .

Note that the reproducing kernel of a fractional Sobolev space for s > d
2 is difficult to

determine. The next section helps to handle this problem by constructing a fractional
Sobolev space with reproducing property by a given kernel function.

8



2 Mathematical Fundamentals

2.3 Construction of a Fractional Sobolev Space by a Kernel Function

Given a kernel function Φ, we aim to construct a reproducing kernel Hilbert space re-
spectively a Sobolev space of fractional order. For the subsequent construction process,
the notion of positive (semi)-definiteness is crucial.

Definition 2.
A continuous function Φ : Rd → R is called positive (semi)-definite if for all M ∈ N and
for all sets of pairwise distinct centers C = {x1, . . . , xM} ⊆ Rd, the quadratic matrix

AΦ,C := (Φ(xi, xj))1≤i,j≤M

is positive (semi)-definite.

We call a function positive definite if the associated matrices AΦ,C are positive definite
and positive semi-definite if AΦ,C are positive semi-definite. Although this seems to be
natural, for historical reasons an alternative terminology exists in the literature: some au-
thors call a function positive definite if the associated matrices are positive semi-definite
and strictly positive definite if the matrices are positive definite. We do not follow this
historical approach here.

Our next result shows that a kernel of a RKHS is positive semi-definite.

Corollary 5. [52, Theorem 10.4]
Suppose H(Ω) is a RKHS with kernel Φ : Ω× Ω→ R. Then Φ is positive semi-definite.
Further, Φ is positive definite if and only if the point evaluation functionals are linearly
independent in H(Ω)′.

Proof. For pairwise distinct x1, . . . , xN and α ∈ RN\{0} we have

〈α,AΦ,Cα〉 =
N∑
j=1

N∑
k=1

αjαkΦ(xj , xk) = 〈
N∑
j=1

αjδxj ,
N∑
k=1

αkδxk〉H′ = ‖
N∑
j=1

αjδxj‖2H′ ≥ 0.

The last expression will only be zero if point evaluation functionals are linearly depen-
dent.

The reproducing kernel of a function space H(Ω) is positive semi-definite and symmetric
[Corollary 5, Lemma 2]. It is therefore not too surprising that the usage of a symmetric
positive definite kernel function Φ is already sufficient for the construction of a RKHS
with Φ as its reproducing kernel.

Proposition 6. [52, Theorem 10.7]
Let Φ : Ω × Ω → R be continuous, symmetric and positive definite. Define the R-linear
space

HΦ(Ω) := span{Φ(·, y) | y ∈ Ω}

9



2 Mathematical Fundamentals

with the bilinear form

〈
N∑
j=1

αjΦ(·, xj),
M∑
k=1

βkΦ(·, xk)〉Φ :=

N∑
j=1

M∑
k=1

αjβkΦ(xj , xk).

Then HΦ(Ω) is a pre-Hilbert space with inner product 〈·, ·〉Φ and reproducing kernel Φ.

Proof. It is strainghtforward to see that 〈·, ·〉Φ is bilinear and symmetric due to the
symmetry of Φ. Further, if we choose an arbitrary function f̃ =

∑N
j=1 αjΦ(·, xj) ∈

HΦ(Ω)\{0} it follows that

〈f̃ , f̃〉Φ =

N∑
j=1

N∑
k=1

αjαkΦ(xj , xk) = 〈α,AΦ,Cα〉 > 0

due to the positive definiteness of Φ. Finally, we obtain for f̃

〈f̃ ,Φ(·, y)〉Φ =
N∑
j=1

αjΦ(xj , y) = f̃(y),

which establishes the reproducing property of the kernel.

The completion of HΦ(Ω) with respect to the ‖ · ‖Φ norm is the suitable candidate for a
Hilbert space with reproducing kernel Φ.

Lemma 7. [52, Theorem 10.10]
Suppose Φ : Ω× Ω→ R is a continuous, symmetric and positive definite kernel. Then

NΦ(Ω) := HΦ(Ω)
‖·‖

Φ

is a Hilbert space with reproducing kernel Φ. NΦ(Ω) is called the native space.

Remark 1.

a) The functions in NΦ(Ω) are continuous, i.e. NΦ(Ω) ⊆ C(Ω). This can be shown
by using the reproducing property of the kernel Φ, the Cauchy Schwartz inequality
and the continuity of the kernel Φ.

b) The native space is unique in the following sense: if G(Ω) is a Hilbert space with
positive definite kernel Φ, then NΦ(Ω) = G and the inner products are the same [52,
Theorem 10.11].

The upcoming result forges the bridge between native spaces and fractional Sobolev
spaces. The theorem makes use of the Fourier transform and certain invariance properties
of the kernel Φ. Especially the invariance properties seem quite restrictive, but we refer
the reader to [52, chapter 10] for a discussion about invariances of function spaces which
are inherited by their reproducing kernels. In particular for Ω = Rd those invariance
properties seem to arise naturally.

10
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Definition 3.
Let Φ : Rd × Rd → R be a given kernel function. We call the kernel Φ translation
invariant, if there exists a function Φ̃ : Rd → R such that Φ(x, y) = Φ̃(x − y) for every
x, y ∈ Rd. Further, we call Φ radial, if there exists a continuous function φ : [0 ∞)→ R
such that Φ(x, y) = φ(|x− y|) for every x, y ∈ Rd.

Theorem 8. [52, Corollary 10.13, Theorem 10.45, Corollary 10.48]
Suppose that Φ̃ ∈ C(Rd) ∩ L1(Rd) and let the kernel Φ(x, y) := Φ̃(x − y) be positive
definite. If

C1(1 + |ξ|2)−s ≤ ̂̃Φ(ξ) ≤ C2(1 + |ξ|2)−s, ξ ∈ Rd, (9)

with s > k + d
2 for k ∈ N0 and constants C1, C2 > 0, then

NΦ(Rd) = Hs(Rd) ⊆ Ck(Rd), Φ̃ ∈ C2k(Rd),

where the native space inner product

〈f, g〉
NΦ(Rd)

:=

∫
Rd

f̂(ξ)ĝ(ξ)̂̃Φ(ξ)
dξ

and the usual inner product on Hs(Rd) are equivalent. If in addition Ω ⊆ Rd is a Lipschitz
domain and s ∈ N, then NΦ(Ω) = Hs(Ω) again with equivalent inner products, where

NΦ(Ω) = {f |Ω | f ∈ NΦ(Rd)}.

Given a continuous integrable function whose Fourier transform decays like (9), we can
construct a native space for a translation invariant kernel function which is in particular a
fractional Sobolev space (up to the equivalence of the norms). In the upcoming subsection
we present well-known radial kernels satisfying the conditions stated in Theorem 8. Even
though most kernels which generate fractional Sobolev spaces are radial, there exist also
kernels which are not even translation invariant [33].

2.4 Positive Definite Radial Kernel Functions

In this thesis we turn our attention to positive definite radial kernels which generate
fractional Sobolev spaces of particular order. Radial kernels have the property of being
invariant under all Euclidean transformations, i.e. under translations, rotations and
reflections. This is due to fact that Euclidean transformations are characterized by
orthogonal transformation matrices and are therefore Euclidean norm invariant. Further,
the usage of radial kernels benefits from the fact that the problem becomes insensitive to
the dimension d ∈ N of the space in which the problem is embedded. Instead of having
to deal with a multivariate function Φ (whose complexity will increase with increasing
space dimension d ∈ N) we work with the same univariate function φ for all choices of d.
When dealing with a radial kernel function

Φ(x, y) = Φ̃(x− y) = φ(|x− y|),

11
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it is convenient to also refer to the univariate function φ as a positive definite radial func-
tion. While this presents a slight abuse of the terminology for positive definite functions,
this is what is commonly done in the literature. With this notational convention we can
give the subsequent integral characterization proved by Wendland [52], which is nothing
else than Bochner’s characterization [11] for the radial kernel case.

Theorem 9. [52, Theorem 6.18]
Suppose that φ ∈ C([0 ∞)) satisfies r 7→ rd−1φ(r) ∈ L1([0 ∞)). Then φ is positive
definite on Rd if and only if φ is bounded and the d-dimensional Fourier transform

Fd(φ)(r) := r−
d−2

2

∫ ∞
0

φ(t)t
d
2J d−2

2
(rt)dt

is non-negative and non-vanishing. Here, J d−2
2

is the classical Bessel function of the first

kind of oder d−2
2 .

The operator Fd defined by Fd(φ) = ̂̃Φ acts on univariate functions. Hence, if working
with radial functions we are in a situation where we can do most of the analysis in a
univariate setting, which often makes things easier.

We now present a number of functions that are covered by the theory presented thus
far and give as a reference the textbook of Fasshauer [14]. In order to influence the
shape and localization of a given kernel, we make use of a shape parameter ε > 0 by
rescaling x ∈ Rd to εx. Our use of the shape parameter as a factor applied directly to
x has the advantage of providing a unified treatment in which a decrease of the shape
parameter always has the effect of producing a “flat” kernel, while increasing ε leads to
a more “peaked” (or localized) kernel. The correct choice of the shape parameter in a
particular reconstruction problem is crucial.

Example 1. Gaussian kernel
Let φ : [0 ∞)→ R, φ(r) := e−r

2 . The Gaussian kernel

Φε(x, y) = φ(ε|x− y|) = e−ε
2|x−y|2 , x, y ∈ Rd

is positive definite and radial on Rd for any dimension d ∈ N [52, Theorem 6.10], since

̂̃Φε(ξ) = 2−
d
2 ε−de−

|ξ|2

4ε2 > 0, ξ ∈ Rd.

The native space of a Gaussian is contained in the fractional Sobolev space Hs(Rd) for
any s ∈ R+ [41] , i.e.

NΦε(Rd) ⊆
⋂
s∈R+

Hs(Rd) ⊆ C∞(Rd).

For a bounded Lipschitz set Ω ⊆ Rd, NΦε(Ω) ⊆
⋂
s∈NH

s(Ω) holds [41]. Even though
the native space of Gaussians is small, it contains the important class of so-called band-
limited functions, i.e. functions whose Fourier transform is compactly supported.

12
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Figure 2: Gaussian kernel Φ̃ε with shape parameter ε = 2 (left) and ε = 6 (right) in R2.

Example 2. Wendland’s compactly supported functions
Probably the most popular family of compactly supported radial functions presently in
use was constructed by Wendland in [51]. To this end, let the cut-off function be defined
as

(x)+ :=

{
x, x ≥ 0
0, x < 0

.

Wendland starts with the truncated power function φε,l(r) = (1 − εr)l+ and then walks
through dimensions by repeatedly applying an integral operator to generate further po-
sitive radial functions of higher smoothness [15,51,52]. Functions constructed in this way
are positive definite, radial and have compact support. On their support they can be
represented by univariate polynomials. An overview about the most important Wendland
functions is given in Table 1. For the solution of problem (8), it is mainly important
that they satisfy the condition of Theorem 8 with s = τ + d+1

2 , where τ ∈ N0 is a given
smoothness index. Thus, NΦε(Rd) = Hτ+ d+1

2 (Rd) [52, Theorem 10.35]. For a bounded
Lipschitz domain Ω ⊆ Rd and τ + d+1

2 ∈ N, NΦε(Ω) = Hτ+ d+1
2 (Ω) holds.

dimension function smoothness

d = 1
φε,1,0(r) = (1− εr)+

φε,1,1(r) = (1− εr)3
+(3εr + 1)

φε,1,2(r) = (1− εr)5
+(8ε2r2 + 5εr + 1)

C0(Rd)
C2(Rd)
C4(Rd)

d ≤ 3

φε,3,0(r) = (1− εr)2
+

φε,3,1(r) = (1− εr)4
+(4εr + 1)

φε,3,2(r) = (1− εr)6
+(35ε2r2 + 18εr + 3)

φε,3,3(r) = (1− εr)8
+(32ε3r3 + 25ε2r2 + 8εr + 1)

C0(Rd)
C2(Rd)
C4(Rd)
C6(Rd)

Table 1: Wendland functions φε,d,τ .

13



2 Mathematical Fundamentals

Figure 3: Wendland’s compactly supported kernel Φ̃ε with generating univariate func-
tions φ1,3,0 (left) and φ1,3,1 (right) in R2.

2.5 Notes and Comments

RKHS are also frequently used in machine learning or learning theory, which considers
the synthesis of an unknown function f∗ from discrete data (x1, y1), . . . , (xN , yN ) from a
statistical point of view. A reconstruction f should have a good approximation property
on training data sites xi, i.e. f(xi) ≈ yi. Further, the reconstruction should predict
function values on previously unknown data. Central questions are how to choose the
hypothesis space H(Ω) in which an approximation is to be reconstructed, and in which
way the given data is to be used efficiently [12,35].

Positive (semi)-definite functions play an important role not only in the construction
of a RKHS, but also in other mathematical areas such as scattered data interpolation or
probability theory. In probability theory, a positive (semi)-definite function is nothing
other than the characteristic function of a probability distribution. But in contrast with
probability theory, where semi-definite functions work as well as positive definite ones,
scattered data interpolation has to stick with positive definite functions. This is due to
the fact that being positive definite is crucial for the inversion of the fundamental inter-
polation matrix. For a comprehensive textbook on multivariate approximation theory
and scattered data interpolation, see [52].
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3 Solving the Semi-Discrete Inverse Problem of
Photoacoustic Tomography

In this chapter, we give a detailed description of two solution methods for the semi-
discrete inverse problem of PAT (8). The basic idea is to formulate (8) as a generalized
interpolation problem. To explain the general framework of generalized interpolation, let
λ1, . . . , λM be real-valued linear functionals on a Hilbert function space H(Ω). Suppose
we are given a data vector (g1, . . . , gM )T ∈ RM . Then a generalized interpolant is a
function f+ ∈ H(Ω) satisfying

λi(f
+) = gi, i = 1, . . . ,M. (10)

This general framework covers our reconstruction problem (8) when not only the data
vector is given as in (6), but also linear functionals λkl : H(Ω) → R exist such that the
collocation operator (7) satisfies

MX : H(Ω)→ RK·L, (MX (f))kl = λkl(f).

The existence of these functionals is examined in section 3.1.

In order to solve the generalized interpolation problem (10), we introduce the theory
of optimal recovery [section 3.2] and the algebraic reconstruction technique [section 3.3].
Both methods determine a generalized interpolant in a finite-dimensional subspace X
(recovery space) of a native space H(Ω) = NΦ(Ω) generated by a radial kernel Φ. First,
let us collect assumptions used within this chapter.

Assumption 1.

1. The acquisition surface ∂Ω is the boundary of the open ball of radius r > 0 centered
around the origin, i.e. Ω = Br(0) and ∂Ω = rSd−1.

2. For a fixed integer τ > d
2 , the experimental output vector ḡ ∈ RK·L is a sampled

version of the spherical mean g = M∂Ω(f∗) of an unknown absorption function
f∗ ∈ Hτ

c (Ω) , i.e.

gkl = g(ξk, tl) =M∂Ω(f∗)(ξk, tl), (ξk, tl) ∈ Ξ× T .

3. We are given a radial kernel

Φ : Rd × Rd → R, Φ(x, y) = Φ̃(x− y) = φ(|x− y|), (11)

where Φ̃ satisfies the conditions of Theorem 8 with the above specified τ > d
2 . Hence,

according to Theorem 8, NΦ(Ω) = Hτ (Ω) with equivalent inner products.
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3.1 Getting Started: Generalized Interpolation Formulation

In order to solve the semi-discrete inverse problem of PAT (8), we formulate it as a
generalized interpolation problem (10). To this end, we need to prove the existence of
linear functionals λkl : NΦ(Ω)→ R to write the collocation operator (7) as

MX : NΦ(Ω)→ RK·L, (MX (f))kl = λkl(f). (12)

The two solution methods we propose for the generalized interpolation problem (10) have
different requirements in terms of the continuity of the functionals. Continuity is essential
when solving (10) with the theory of optimal recovery [section 3.2] (due to the usage of
the Riesz representation theorem [Appendix 6.1]). Whereas continuity can be neglected
when dealing with the algebraic reconstruction technique [section 3.3]. We therefore
present two different sets of experimental functionals: one with continuous functionals
for the optimal recovery theory and another with not necessarily continuous functionals
for the algebraic reconstruction technique.

Let us start with the functionals for the algebraic reconstruction technique. Clearly,
the functionals

λkl : NΦ(Ω)→ R, λkl := δ(ξk,tl) ◦M∂Ω, (ξk, tl) ∈ Ξ× T (13)

satisfy (12). However, continuity of the functionals in (13) cannot be guaranteed, since a
continuity result is so far missing for the spherical Radon transformM∂Ω as an operator
defined on the whole space NΦ(Ω) respectively Hτ (Ω). Solely a weaker version exists
[Proposition 10].

Definition 4.
Given spherical Radon data (Ξ, T , ḡ), the set of experimental functionals for the algebraic
reconstruction technique is denoted by ΛΩ := {λ11, . . . , λKL}, where λkl is defined in (13).

In order to prove the existence of linear continuous functionals admitting a representation
of the collocation operator as in (12), the subsequent Sobolev space estimates for the
spherical Radon transform are essential.

Proposition 10. [34, Corollary 8.1]
Let K be a compact subset of Ω. The spherical Radon transformM∂Ω : L2(Ω)→ L2(∂Ω×
(0 T ]) is smoothing of degree d−1

2 , i.e. for every s ∈ R there are positive constants ms,K,
Ms,K such that

ms,K‖f‖Hs(Ω)
≤ ‖M∂Ω(f)‖

Hs+(d−1)/2(∂Ω×(0 T ])
≤Ms,K‖f‖Hs(Ω)

for every f ∈ Hs(Ω) with supp(f) ⊆ K.

The previous proposition provides an important continuity result for the spherical Radon
transform as an operator defined on fractional Sobolev spaces consisting of functions with
compact support. Therewith we can give the following existence theorem.
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Theorem 11.
Let K ⊆ Ω be an arbitrary, but fixed, compact set and let (ξ, t) ∈ ∂Ω × (0 T ]. Suppose
there exists a linear continuous extension operator

E : Hτ+ d−1
2 (∂Ω× (0 T ])→ Hτ+ d−1

2 (Rd+1)

such that E(g)(x) = g(x) for almost every x ∈ ∂Ω× (0 T ] and every g ∈ Hτ+ d−1
2 (∂Ω×

(0 T ]). Then there exists a linear continuous functional λc(ξ,t) : NΦ(Ω) → R such that
λc(ξ,t)(f) =M∂Ω(f)(ξ, t) for every f ∈ NΦ(Ω) with supp(f) ⊆ K.

Proof. Define Hτ
K(Ω) := {f ∈ Hτ (Ω) | supp(f) ⊆ K}. From Proposition 10 it follows

thatM∂Ω is continuous as an operator from Hτ
K(Ω) into Hτ+ d−1

2 (∂Ω× (0 T ]). Theorem
4 shows that Hτ+ d−1

2 (Rd+1) is a RKHS, as τ + d−1
2 > d+1

2 for any space dimension d ≥ 2.
Hence, point evaluation functionals defined on Hτ+ d−1

2 (Rd) are continuous [Lemma 1].
Let E be the linear continuous extension operator, then

λ̃c(ξ,t) := δ(ξ,t) ◦ E ◦M∂Ω ∈ Hτ
K(Ω)′

for every (ξ, t) ∈ ∂Ω × (0 T ]. As Hτ
K(Ω) is a subspace of Hτ (Ω), the Hahn-Banach

Theorem [Appendix 6.1] guarantees the existence of a linear continuous extension λc(ξ,t) :

Hτ (Ω)→ R of the functional λ̃c(ξ,t) such that

λ̃c(ξ,t)(f) =M∂Ω(f)(ξ, t) = λc(ξ,t)(f)

for every f ∈ Hτ
K(Ω). Due to the equivalence of the native space norm and the Hτ -norm

[Theorem 8], λc(ξ,t) is continuous as a functional from NΦ(Ω) into R. This proves the
assertion.

Remark 2.

a) To the present days, results for an extension of f ∈ Hs(Ω′) to a function in
Hs(Rd+1) are solely given for Ω′ being an open subset of Rd+1 [2,50]. As ∂Ω×(0 T ]
is not open in Rd+1, the requirement in the theorem is needed. However, throughout
this thesis we assume the existence of such an extension.

b) Note that, given a fixed compact set K ⊆ Ω, the functional λc(ξ,t) has the repre-
sentation λc(ξ,t)(f) = M∂Ω(f)(ξ, t) only for functions f with support in K. Its
representation for functions which are not supported in K, is not explicitly given.
This illustrates the strong dependency of the functional λc(ξ,t) on the compact set
K. In order to have an explicit representation for a large class of functions, let us
consider the previous theorem for

Kδ := {x ∈ Ω | dist(x, ∂Ω) ≥ δ}

with an arbitrary small δ > 0.
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With the previous result, we note the continuous analogue to Definition 4.

Definition 5.
Let Kδ ⊆ Ω for an arbitrary small δ > 0. Given spherical Radon data (Ξ, T , ḡ), the
set of experimental functionals for the optimal recovery theory is denoted by ΛKδ :=
{λc11, . . . , λ

c
KL} ⊆ NΦ(Ω)′, where

λckl : NΦ(Ω)→ R, λckl(f) =M∂Ω(f)(ξk, tl), (ξk, tl) ∈ X = Ξ× T

for every f ∈ NΦ(Ω) with supp(f) ⊆ Kδ.

In comparison to the set ΛΩ, we gained continuity for the functionals, but we lost an
explicit representation for functions not supported in Kδ. Furthermore, the collocation
operatorMX (7) satisfies

(MX (f))kl =M∂Ω(f)(ξk, tl) = λckl(f)

solely for functions f ∈ NΦ(Ω) with supp(f) ⊆ Kδ. In order to have a representation of
the collocation operator as in (12), let us define, in the presence of ΛKδ ,

MX : NΦ(Ω)→ RK·L, (MX (f))kl := λckl(f). (14)
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3.2 Optimal Recovery

The theory of optimal recovery is a well-known solution method for the generalized
interpolation problem (10), which determines the norm-minimal generalized interpolant
[24]. As the norm-minimal solution of (10) is an element of

XK·L = span{λc ykl Φ(·, y) | λckl ∈ ΛKδ},

XK·L arises “naturally” as a recovery space. In the following we detail the determination
of the norm-minimal generalized interpolant, a L2-error bound in terms of the data
density and a proof of convergence.

3.2.1 Solution Concept

Assume we are given continuous experimental functionals Λ = ΛKδ [Definition 5] for a
sufficiently small δ > 0. For the sake of notational simplicity, we drop the superscript c
at the continuous functionals λckl ∈ Λ.

In order to determine the norm-minimal generalized interpolant, an analysis of the
collocation operatorMX (14) is expedient. Essential for the analysis is the Riesz repre-
sentation theorem [Appendix 6.1], which identifies with every functional in Λ its unique
Riesz representer. Even though the Riesz representation theorem only guarantees the
existence of a unique Riesz representer, in our particular case, we know their explicit
form: Proposition 3 yields that the Riesz representer of a functional in a RKHS is simply
given by applying the functional to one argument of the kernel.

Definition 6.
The set of Riesz representers of the functionals in Λ is denoted by

V := {λyklΦ(·, y) | λkl ∈ Λ} ⊆ NΦ(Ω).

We call the linear span of V optimal recovery space and denote it by XD := span(V),
where the index D ∈ N describes its dimension.

With the previous considerations, we can give the following characterization of the col-
location operatorMX .

Proposition 12.
The collocation operatorMX : NΦ(Ω)→ RK·L has the following properties:

1. MX is linear and continuous,

2. (MX (f))kl = 〈f, λyklΦ(·, y)〉NΦ
,

3. Ran(MX ) = RK·L if and only if Λ is linear independent,

4. Ker(MX ) = X⊥D.
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Proof. The linearity and continuity of the collocation operator is due to the definition
of MX (14) and the fact that Λ ⊆ NΦ(Ω)′. The second property follows from (14)
and Proposition 3. Let us now focus on the range of MX . First, note that the set
of functionals Λ is linear independent if and only if the set V is linear independent.
Suppose MX is not surjective, i.e. MX (NΦ(Ω))  RK·L. Then, there exists a vector
x ∈MX (NΦ(Ω))⊥\{0} such that 〈MX (f), x〉 = 0 for all f ∈ NΦ(Ω). Thus

〈MX (f), x〉 =
K∑
k=1

L∑
l=1

〈f, λyklΦ(·, y)〉NΦ
xkl = 〈f,

K∑
k=1

L∑
l=1

xklλ
y
klΦ(·, y)〉NΦ

= 0 (15)

for all f ∈ NΦ(Ω). Inserting f =
∑K

k=1

∑L
l=1 xklλ

y
klΦ(·, y) ∈ NΦ(Ω) in (15) yields

‖
K∑
k=1

L∑
l=1

xklλ
y
klΦ(·, y)‖NΦ

= 0

and thus
K∑
k=1

L∑
l=1

xklλ
y
klΦ(·, y) = 0.

As x 6= 0, the linear dependency of Λ follows; this is in contradiction to the assumption.
The opposite direction is shown by applying the same steps backwards. The assertion
about the nullspace Ker(MX ) is a direct consequence of the definition ofMX (14) and
the definition of the orthogonal complement, as

f ∈ X⊥D ⇔ 〈f, λ
y
klΦ(·, y)〉NΦ

= 0⇔ (MX (f))kl = 0

for every k = 1, . . . ,K and l = 1, . . . , L.

Clearly, we are interested in solutions of the equationMX (f) = ḡ in NΦ(Ω). Existence
is guaranteed in the situation of linear independency of Λ.

Corollary 13.
Let the set of functionals Λ ⊆ NΦ(Ω)′ be linearly independent. Then

{f ∈ NΦ(Ω) | MX (f) = ḡ} 6= ∅.

Proof. As the set Λ is linear independent, the collocation operatorMX is surjective.

The previous corollary implies - in the situation of linear independency of Λ - that there
exists a function in NΦ(Ω) satisfyingMX (f) = ḡ. However, the function is not unique.
To this end, let Λ be linear independent and let f0 ∈ NΦ(Ω) be a function satisfying
MX (f0) = ḡ. Further, X⊥K·L is of infinite dimension, as NΦ(Ω) = XK·L ⊕X⊥K·L. Since
Ker(MX ) = X⊥K·L, it follows that for any function f1 ∈ X⊥K·L, f = f0 + f1 solves the
semi-discrete equation. Thus, there is a lack of uniqueness. However, we can enforce
uniqueness by searching for a minimal norm solution.
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Theorem 14. [52, Theorem 16.1]
Let the set Λ be linear independent. The solution of the optimal recovery problem

‖f+‖NΦ
= min

f∈NΦ(Ω)
MX (f)=ḡ

‖f‖NΦ
(16)

is unique and is given by

f+ =
K∑
k=1

L∑
l=1

αklλ
y
klΦ(·, y) ∈ XK·L,

where the coefficient vector α ∈ RK·L is determined by the system of linear equations
MΛ,Φα = ḡ with

(MΛ,Φ)kl,k′l′ = 〈λyklΦ(·, y), λyk′l′Φ(·, y)〉NΦ
= 〈λkl, λk′l′〉NΦ

′ .

Further, the optimal recovery problem (16) is well-posed in the sense of Hadamard [Ap-
pendix 6.3, Definition 9].

Proof. By definition, the matrix MΛ,Φ is Gramian and hence positive definite, as the set
of functionals Λ is linear independent. Positive definite matrices are invertible and so
f+ =

∑K
k=1

∑L
l=1 αklλ

y
klΦ(·, y) is well-defined. It is straightforward to see that f+ is a

solution of equation (8), as

(MX (f+))kl = λkl(f
+) =

K∑
k′=1

L∑
l′=1

αk′l′λ
x
klλ

y
k′l′Φ(x, y)

=
K∑
k′=1

L∑
l′=1

αk′l′〈λyk′l′Φ(·, y), λyklΦ(·, y)〉NΦ

=
K∑
k′=1

L∑
l′=1

αk′l′〈λyklΦ(·, y), λyk′l′Φ(·, y)〉NΦ
=

K∑
k′=1

L∑
l′=1

(MΛ,Φ)kl,k′l′αk′l′ = gkl

for k = 1, . . . ,K and l = 1, . . . , L.
Next, we show that f+ is norm-minimal. To this end, let f̃ ∈ NΦ(Ω) satisfyMX (f̃) = ḡ.
Then f+ − f̃ ∈ X⊥K·L, as

〈f+ − f̃ , λyklΦ(·, y)〉NΦ
= 〈f+, λyklΦ(·, y)〉NΦ

− 〈f̃ , λyklΦ(·, y)〉NΦ
= 0

for k = 1, . . . ,K and l = 1, . . . , L. Since f+ ∈ XK·L, this shows that

‖f+‖2
NΦ

= 〈f+, (f+ − f̃) + f̃〉NΦ
= 〈f+, f̃〉NΦ

≤ ‖f+‖NΦ
‖f̃‖NΦ

.

As f+ 6= 0, the minimal norm property follows. Let us now focus on the uniqueness of
the solution. Let f ′ be any solution of the optimal recovery problem, then necessarily
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〈f ′, h〉NΦ
= 0 for all h ∈ X⊥K·L\{0}. Otherwise define s = f ′ + βh with β <

−2〈f ′,h〉
NΦ

‖h‖2
NΦ

.

Then, λkl(s) = λkl(f
′) + βλkl(h) = gkl and

‖s‖2
NΦ

= ‖f ′‖2
NΦ

+ β2‖h‖2
NΦ

+ 2β〈f ′, h〉NΦ
< ‖f ′‖2

NΦ
,

which would make s to a solution of the optimal recovery problem with strictly smaller
norm than f ′. Thus, if f+

1 and f+
2 are both solutions of the optimal recovery problem,

then 〈f+
1 , f

+
1 − f

+
2 〉NΦ

= 0 and 〈f+
2 , f

+
1 − f

+
2 〉NΦ

= 0 as f+
1 − f

+
2 ∈ X⊥K·L. This shows

〈f+
1 , f

+
1 − f

+
2 〉NΦ

− 〈f+
2 , f

+
1 − f

+
2 〉NΦ

= ‖f+
1 − f

+
2 ‖

2
NΦ

= 0,

which proves the uniqueness.
In order to show the well-posedness of the optimal recovery problem, only the stability
is left to prove. To this end, note that the Gramian matrix MΛ,Φ is invertible due to the
linear independency of Λ. Further, denote with (M−1

Λ,Φ)kl,k′l′ the matrix components of
the inverse of MΛ,Φ. Then we introduce in XK·L the dual basis

wkl =
K∑
k′=1

L∑
l′=1

(M−1
Λ,Φ)kl,k′l′λ

y
k′l′Φ(·, y) (17)

for k = 1, . . . ,K and l = 1, . . . , L. It follows that

f+ =

K∑
k=1

L∑
l=1

gklwkl (18)

by inserting (17) into (18) and using the fact that M−1
Λ,Φḡ = α. This representation of

f+ clearly shows the continuous dependency: if δḡ denotes a variation of ḡ and δf+ the
corresponding variation of f+, then ‖δf+‖NΦ

tends to zero when |δḡ| tends to zero. It
follows that the computation of f+ is well-posed in the sense of Hadamard.

Remark 3.

a) The latter shows that XK·L arises “naturally” as a recovery space for the semi-
discrete inverse problem (8).

b) We can interpret the previous theorem as follows: the finite vector ḡ ∈ RK·L only
allows the determination of the projection of the unknown absorption density f∗ on
the subspace XK·L. As a result, the solution f+ ∈ XK·L gives no information about
the component of f∗ orthogonal to XK·L. The characterization of the component of
f∗ orthogonal to XK·L depends not only on the set of functionals Λ, but also on the
choice of the reproducing kernel Φ, as XK·L is spanned by the functions λyklΦ(·, y).

c) As an effect of the ill-posedness of the continuous problem [Proposition 10 and
Appendix 6.3], the collocation matrix MΛ,Φ can be extremely ill-conditioned [9,42].
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This phenomenon arises when the number of data is large, since in that case the
finite-dimensional problem is “closer” to the infinite-dimensional one. By adding
more and more spherical Radon data, we add smaller and smaller eigenvalues and
therefore we get a collocation matrix with smaller and smaller determinant.

d) It is easy to see that the matrix MΛ,Φ with components

(MΛ,Φ)kl,k′l′ = 〈λyklΦ(·, y), λyk′l′Φ(·, y)〉NΦ
= 〈λkl, λk′l′〉NΦ

′

is Gramian and hence symmetric positive semi-definite. Positive definiteness (and
thus regularity) follows, when the set of functionals Λ is linear independent. Hence,
linear independency is crucial for the determination of f+. Though, the actual
number of linearly independent functionals can be much smaller than the number
K · L of data we are dealing with. Unfortunately, a handy method for checking
linear independency of the set Λ is not developed thus far.

In order to determine the functions inXK·L and the components of the collocation matrix
MΛ,Φ, we have to examine the expressions λyklΦ(·, y) and

〈λyklΦ(·, y), λyk′l′Φ(·, y)〉NΦ
= λxklλ

y
k′l′Φ(x, y).

Following Remark 2, an explicit representation for both expressions is given solely in the
situation of Φ̃ (11) and λyklΦ(·, y) being functions supported in Kδ (respectively in Ω).
Fortunately in that case, we are able to express λyklΦ(·, y) and λxklλ

y
k′l′Φ(x, y) with the

help of Theorem 26 in Appendix 6.4. Additionally, Sigl showed in [47] that for a large
class of radial kernel functions, λyklΦ(·, y) can be given even analytically.

Assumption 2.
The function Φ̃ and the functions in the set V = {λyklΦ(·, y) | λkl ∈ Λ} are compactly
supported in Kδ (respectively in Ω).

The solution method presented so far is very attractive as there is no use of pre-defined
reconstruction points or even a mesh. We fully operate with the given spherical Radon
data (Ξ, T , ḡ). To solve the optimal recovery problem explicitly, though, not only a
couple of assumptions (Assumption 1, 2 and linear independency of the set Λ) have to
be fulfilled, but also the generation of the functions λyklΦ(·, y) and the collocation matrix
MΛ,Φ is needed. Especially the computation of the matrix components by double integrals
with spherical weight functions involved might cause numerical difficulties [Algorithm
1]. Therefore, we present in section 3.3 a second method for the determination of a
generalized interpolant by a change of the recovery space. This method avoids calculation
of spherical double integrals and implies a relaxation of assumptions.
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Algorithm 1 Optimal recovery solution in XK·L
Assume linear independency of Λ and the conditions stated in Assumption 1, 2. Let f∗

be the solution of the continuous operator equationM∂Ω(f) = g.
Input: Spherical Radon data (Ξ, T , ḡ), where

Ξ = {ξk}Kk=1 ⊆ ∂Ω,

T = {tl}Ll=1 ⊆ (0 T ],

ḡ ∈ RK·L.
1: Generate the collocation matrix

(MΛ,Φ)kl,k′l′ =
w2
d−2

w2
d−1

∫ 1

−1

∫ 1

−1
φ
(

Ψkl
k′l′(τ1, τ2)

)
(1− τ2

1 )
d−3

2 (1− τ2
2 )

d−3
2 dτ2dτ1,

with

Ψkl
k′l′(x, y) =

(
|ξk−ξk′ |2+t2l +t

2
l′+2tl|ξk−ξk′ |x+2tl′y (|ξk−ξk′ |2+t2l +2tl|ξk−ξk′ |x)

1
2

) 1
2

for k, k′ = 1, . . . ,K and l, l′ = 1, . . . , L.
2: Generate the basis functions

vkl =
wd−2

wd−1

∫ 1

−1
φ
(√
|ξk − ·|2 + t2l + 2tl|ξk − ·|τ

)
(1− τ2)

d−3
2 dτ

for k=1,. . . ,K and l = 1, . . . , L.
3: Solve the linear system

MΛ,Φα = ḡ.

Output:

f+ =
K∑
k=1

L∑
l=1

αklvkl ∈ XK·L,

which is the unique norm-minimal solution ofMX (f) = ḡ and satisfies

M∂Ω(f+)(ξk, tl) =M∂Ω(f∗)(ξk, tl)

for every k = 1 . . . ,K and l = 1, . . . , L.
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3.2.2 L2-Error Bound and Convergence

In the following we derive a L2-error bound for the residual f+ − f∗, where f∗ ∈ Hτ
c (Ω)

is the solution of the continuous problemM∂Ω(f) = g. We start by calculating a bound
on the residual in the RKHS norm. We proceed with a L2-error bound by the usage of
a sampling inequality. As before, we consider Assumption 1, 2 and assume throughout
this paragraph linear independency of the set of functionals Λ.

Proposition 15. [52, chapter 16]
Assume linear independency of Λ and the conditions stated in Assumption 1, 2. The
optimal recovery solution f+ is stable in terms of the native space norm, i.e.

‖f+‖NΦ
≤ ‖f∗‖NΦ

, ‖f∗ − f+‖NΦ
≤ ‖f∗‖NΦ

.

Proof. Clearly, f∗ satisfies MX (f∗) = ḡ. As f∗ ∈ Hτ
c (Ω), it follows that f∗ ∈ NΦ(Ω).

The optimality of f+ yields ‖f+‖NΦ
≤ ‖f∗‖NΦ

. Further, f+ − f∗ ∈ X⊥K·L, as

〈f+ − f∗, λyklΦ(·, y)〉NΦ
= 〈f+, λyklΦ(·, y)〉NΦ

− 〈f∗, λyklΦ(·, y)〉NΦ
= 0

for k = 1, . . . ,K and l = 1, . . . , L. The Pythagorean theorem yields

‖f∗ − f+‖2
NΦ

+ ‖f+‖2
NΦ

= ‖(f∗ − f+) + f+‖2
NΦ

= ‖f∗‖2
NΦ
.

To derive a L2-error bound, we introduce the concept of data density. We measure the
data density of X = Ξ× T in ∆ = ∂Ω× (0 T ] by the fill distance

hX ,∆ := sup
(ξ,t)∈∆

min
(ξk,tl)∈X

√
|ξ − ξk|2 + |t− tl|2.

The fill distance hX ,∆ can be interpreted in the following way: hX ,∆ is the radius of the
largest ball which is completely contained in ∆ and which does not contain any point of
X . In this sense, the fill distance describes the largest data-site-free hole in ∆.

h

Figure 4: Scheme of the fill distance hX ,∆.

The following sampling inequality is essential in order to incorporate the concept of fill
distance into the optimal recovery theory.
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Proposition 16. [28, Theorem 4.8]
Let Ω ⊆ Rd be a Lipschitz domain and let θ > d

2 . Then for any arbitrary discrete set
X ⊆ Ω with sufficiently small data density h = hX ,Ω, there is a constant C > 0 such that
for all f ∈ Hθ(Ω)

‖f‖
Hσ(Ω)

≤ C
(
hθ−σ‖f‖

Hθ(Ω)
+ h

d
2
−σ
( ∑
xi∈X

|f(xi)|2
) 1

2
)

(19)

for σ ∈ [0, bθc].

Theorem 17. L2-error bound and convergence
Assume linear independency of Λ and the conditions stated in Assumption 1, 2. Let
f∗ ∈ Hτ

c (Ω) be the solution of the continuous operator equation M∂Ω(f) = g. Then the
following error estimate holds for sufficiently small data density h = hX ,∆:

‖f∗ − f+‖
L2(Ω)

≤ Chτ‖f∗‖NΦ(Ω)

with a constant C > 0. Thus, the solution f+ of the optimal recovery problem (16) is
convergent of order τ .

Proof. Due to Assumption 1, 2, f∗ − f+ ∈ Hτ (Ω) with supp(f∗ − f+) ⊆ Kδ for a
sufficiently small δ > 0. Hence, the Sobolev space estimates in Proposition 10 can be
applied to f∗ − f+ with K = Kδ. Further, Proposition 10 and the sampling inequality
(19) for θ = τ + d−1

2 and σ = d−1
2 yield

‖f∗ − f+‖
L2(Ω)

≤ 1

m0,K
‖M∂Ω(f∗ − f+)‖

H(d−1)/2(∆)

≤ C

m0,K

(
hτ‖M∂Ω(f∗ − f+)‖

Hθ(∆)
+
(
h

K∑
k=1

L∑
l=1

|M∂Ω(f∗ − f+)(ξk, tl)|2
) 1

2

)
=

C

m0,K

(
hτ‖M∂Ω(f∗ − f+)‖

Hθ(∆)
+ h1/2|MX (f∗ − f+)|

)
=

C

m0,K
hτ‖M∂Ω(f∗ − f+)‖

Hθ(∆)
≤
CMτ,K
m0,K

hτ‖f∗ − f+‖
Hτ (Ω)

≤ C̃hτ‖f∗ − f+‖
NΦ(Ω)

≤ C̃hτ‖f∗‖
NΦ(Ω)

,

by using the equivalence of the native space norm and the corresponding fractional
Sobolev norm.

The error bound in the previous theorem can be generalized to Hs-error estimates easily
when applying the sampling inequality (19) with θ = τ + d−1

2 + s and σ = d−1
2 + s.
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3.3 Algebraic Reconstruction Technique

The algebraic reconstruction technique (ART) is a solution method for the generalized
interpolation problem (10), which determines a generalized interpolant in the recovery
space

XY = span{Φ(·, yi) | i = 1, . . . , N}.

In the following we detail the determination of the ART-solution, a L2-error bound in
terms of the data density and a proof of convergence.

3.3.1 Solution Concept

Assume we are given experimental functionals Λ = ΛΩ [Definition 4]. Let us denote with
Y := {y1, . . . , yN} ⊆ Ω an arbitrary, but fixed, set of reconstruction points.

In order to find a solution of the semi-discrete problem MX (f) = ḡ in XY , we can
restrict ourselves to functions of the form

fY =

N∑
i=1

αiΦ(·, yi) (20)

with coefficients αi to be determined. Inserting the expression (20) into the equation
MX (f) = ḡ yields

(MX (fY ))kl =
N∑
i=1

αiλ
x
klΦ(x, yi) = gkl (21)

for k = 1, . . . ,K and l = 1, . . . , L. (21) shows that the determining equation for the
coefficient vector α ∈ RN is given by

NYΛ,Φα = ḡ, (22)

with asymmetric collocation matrix

NYΛ,Φ ∈ R
K·L×N , (NYΛ,Φ)kl,i := λxklΦ(x, yi).

By the ansatz of searching for a generalized interpolant in the recovery space XY , we
thus deal with a collocation matrix generated by only one spherical integral

(NYΛ,Φ)kl,i = λxklΦ(x, yi) =
wd−2

wd−1

∫ 1

−1
φ
(√
|ξk − yi|2 + t2l + 2tl|ξk − yi|τ

)
(1− τ2)

d−3
2 dτ,

see Theorem 26 in Appendix 6.4. Unless the size K ·L of the data vector ḡ coincides with
the number N of reconstruction points, the linear system (22) is either overdetermined
or underdetermined. Note that in either case, existence of a solution for (22) is not
guaranteed. This is due to the fact that the range of NYΛ,Φ depends not only on the set
of functionals Λ, but also on the reconstruction points Y ⊆ Ω.
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We focus in the following on a solution concept for (22), which produces a “solution” in
any case. In particular, we determine a coefficient vector α ∈ RN (generalized solution)
which minimizes the defect functional

JY,ḡΛ,Φ : RN → R, JY,ḡΛ,Φ(α) = |NYΛ,Φα− ḡ|.

To this end, we apply the theory of generalized solutions stated in [36, chapter 2] to our
particular finite-dimensional setting.

Lemma 18.
Let NYΛ,Φ ∈ RK·L×N and ḡ ∈ RK·L. There is at least one solution of the minimization
problem

min
α∈RN

|NYΛ,Φα− ḡ|. (23)

Among all solutions of (23), there exists exactly one with minimal Euclidean norm.
This element is called Moore-Penrose generalized solution of (22) and is denoted by α+.
Further, the set of solutions of (23) is equal to the set of solutions of the matrix normal
equation

(NYΛ,Φ)TNYΛ,Φα = (NYΛ,Φ)T ḡ.

The previous lemma shows that a unique generalized solution for (22) exists. Though, the
usage of α+ ∈ RN as a coefficient vector in (20) does not guarantee that the corresponding
function

f+
Y :=

N∑
i=1

α+
i Φ(·, yi) ∈ XY

satisfies the equationMX (f) = ḡ. However, we can give the following result.

Theorem 19.
Let α+ ∈ RN be the Moore-Penrose generalized solution of (22). Then f+

Y is a solution
of the minimization problem

min
f∈XY

|MX (f)− ḡ|. (24)

If f̃ ∈ XY is another solution of (24), then

‖f+
Y ‖NΦ

≤
√
κ(AΦ,Y)‖f̃‖NΦ

, (25)

where κ(AΦ,Y) is the condition number of the matrix AΦ,Y = (Φ(yi, yj))1≤i,j≤N .

Proof. Consider the defect functional

JY,ḡX : XY → R, JY,ḡX (f) = |MX (f)− ḡ|.

28



3 Solving the Semi-Discrete Inverse Problem of Photoacoustic
Tomography

Let f =
∑N

i=1 αiΦ(·, yi) ∈ XY , then

(JY,ḡX (f))2 = |MX (f)− ḡ|2 =

K∑
k=1

L∑
l=1

(λkl(f)− gkl)2 =

K∑
k=1

L∑
l=1

(

N∑
i=1

αiλ
x
klΦ(x, yi)− gkl)2

=
K∑
k=1

L∑
l=1

((NYΛ,Φα)kl − gkl)2 = |NYΛ,Φα− ḡ|
2 = (JY,ḡΛ,Φ(α))2.

Hence, the minimization problem (24) is equivalent to the minimization problem (23).
Consequently, f+

Y is a solution of (24). The bound (25) is left to show. To this end,
let f̃ =

∑N
i=1 βiΦ(·, yi) ∈ XY be another solution of (24). Hence, the coefficient vector

β ∈ RN is a solution of (23). Lemma 18 yields thus

|α+|2 = 〈α+, α+〉 < 〈β, β〉 = |β|2.

Further, the native space norms satisfy

‖f+
Y ‖

2
NΦ

= 〈
N∑
i=1

α+
i Φ(·, yi),

N∑
j=1

α+
j Φ(·, yj)〉NΦ

=
N∑
i=1

N∑
j=1

α+
i α

+
j 〈Φ(·, yi),Φ(·, yj)〉NΦ

=

N∑
i=1

N∑
j=1

α+
i α

+
j Φ(yi, yj) = 〈α+, AΦ,Yα

+〉

and similarly ‖f̃‖2
NΦ

= 〈β,AΦ,Yβ〉 with positive definite matrixAΦ,Y = (Φ(yi, yj))1≤i,j≤N .
Since AΦ,Y is symmetric, the Courant-Fischer minimax theorem [22, Theorem 8.1.2]
yields

µmin〈x, x〉 ≤ 〈x,AΦ,Yx〉 ≤ µmax〈x, x〉, x ∈ RN ,

where µmin and µmax are the smallest and largest eigenvalues of AΦ,Y . Therefore

‖f+
Y ‖

2
NΦ

= 〈α+, AΦ,Yα
+〉 ≤ µmax〈α+, α+〉

< µmax〈β, β〉 ≤
µmax
µmin

‖f̃‖2
NΦ

= κ(AΦ,Y)‖f̃‖2
NΦ
.

Remark 4.

a) We refer to the solution f+
Y of the minimization problem (24) as ART-solution.

b) So far, no restrictions on the reconstruction grid Y = {y1, . . . , yN} ⊆ Ω have been
formulated. Any arbitrary, but fixed, set Y can be used. However, the choice of Y
dramatically influences the size and form of the recovery space XY = span{Φ(·, yi) | yi ∈
Y}. Further, as we see in section 4, specific choices of Y can lead to a fast and
efficient algorithm to determine the coefficient vector α+.
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Algorithm 2 ART-solution in XY
Assume the conditions stated in Assumption 1. Let f∗ be the solution of the continuous
operator equationM∂Ω(f) = g.
Input: Spherical Radon data (Ξ, T , ḡ), where

Ξ = {ξk}Kk=1 ⊆ ∂Ω,

T = {tl}Ll=1 ⊆ (0 T ],

ḡ ∈ RK·L.
1: Choose reconstruction points Y = {y1, . . . , yN} ⊆ Ω.
2: Generate the asymmetric collocation matrix

(NYΛ,Φ)kl,i =
wd−2

wd−1

∫ 1

−1
φ
(√
|ξk − yi|2 + t2l + 2tl|ξk − yi|τ

)
(1− τ2)

d−3
2 dτ

for k = 1, . . . ,K, l = 1, . . . , L and i = 1, . . . , N .
3: Determine the solution α+ of

(NYΛ,Φ)TNYΛ,Φα = (NYΛ,Φ)T ḡ

with minimal Euclidean norm.
Output:

f+
Y =

N∑
i=1

α+
i Φ(·, yi) ∈ XY ,

which is a solution of the problem

min
f∈XY

|MX (f)− ḡ|

with
M∂Ω(f+

Y )(ξk, tl) ≈M∂Ω(f∗)(ξk, tl)

for every k = 1 . . . ,K and l = 1, . . . , L.
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3.3.2 L2-Error Bound and Convergence

In the following we derive a L2-error bound for the residual f+
Y − f∗, where f∗ ∈ Hτ

c (Ω)
is the solution of the continuous problemM∂Ω(f) = g. Similar to section 3.2.2, we use
the sampling inequality (19) and the Sobolev space estimates in Proposition 10. To this
end, we give restrictions on the reconstruction grid Y = {y1, . . . , yN} ⊆ Ω and on the
support of the kernel Φ̃.

The set of reconstruction points Y plays an important role in the solution theory of
ART, as it influences the size and form of the recovery space XY dramatically. For the
derivation of the error bound, we assume Y to be “large enough” such that f∗ ∈ XY . This
assumption can be interpreted as a denseness condition for XY = span{Φ(·, yi) | yi ∈ Y}
in Hτ (Ω), as

Hτ (Ω) = NΦ(Ω) = span{Φ(·, y) | y ∈ Ω}‖·‖Φ ,

see Lemma 7.

Proposition 20.
Assume the conditions stated in Assumption 1. Let Y ⊆ Ω such that f∗ ∈ XY . Then the
ART-solution f+

Y satisfies

MX (f+
Y ) = ḡ, ‖f+

Y ‖NΦ
≤
√
κ(AΦ,Y)‖f∗‖NΦ

.

Proof. Clearly, f∗ satisfies MX (f∗) = ḡ. As f∗ ∈ XY , it follows that JY,ḡX (f∗) =
|MX (f∗) − ḡ| = 0. Hence, f∗ and f+

Y are both solutions of the minimization problem
(24). Therefore, JY,ḡX (f∗) = 0 yields JY,ḡX (f+

Y ) = 0 and thusMX (f+
Y ) = ḡ. The assertion

about the bound follows from Theorem 19.

We now turn our attention to restrictions on the kernel function. According to Propo-
sition 10, the Sobolev space estimates for the spherical Radon transform hold solely for
functions compactly supported in Ω. Hence, the estimates can be applied to f+

Y − f
∗

only if the residual is supported in Ω. We can realize this as follows: assume the kernel
Φ̃ to have compact support in Ω and rescale the variables of the kernel with a shape
parameter ε > 0,

Φε(x, y) := Φ(εx, εy) = Φ̃(ε(x− y)).

A decrease of the shape parameter ε has the effect of producing a “flat” function, while an
increase of ε leads to a more “peaked” (or localized) function. Thus, the shape parameter
influences the size of the support of a compactly supported kernel.

Proposition 21.
Assume the conditions stated in Assumption 1. Let Y ⊆ Ω be arbitrary, but fixed. Sup-
pose the kernel Φ̃ has compact support in Ω. Then there exists δ > 0 such that for
all sufficiently large shape parameters ε > 0, the functions in {Φε(·, yi) | yi ∈ Y} are
supported in Kδ = {x ∈ Ω | dist(x, ∂Ω) ≥ δ}.
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Proof. As Ω is open, there exists δ > 0 such that supp(Φ̃) ⊆ Kδ and Y ⊆ int(Kδ) :=
Kδ\∂Kδ. Then

supp(Φε(·, yi)) ⊆ Kδ for every yi ∈ Y ⇔ supp(Φ̃(ε(· − yi))) ⊆ Kδ for every yi ∈ Y
⇔ supp(Φ̃(· − yi)) ⊆ εKδ for every yi ∈ Y
⇔ supp(Φ̃) ⊆ {εKδ + yi} for every yi ∈ Y.

As 0 ∈ Kδ, the assertion follows.

Theorem 22. L2-error bound and convergence
Assume the conditions stated in Assumption 1. Let Y ⊆ Ω be arbitrary, but fixed. Suppose
the kernel Φ̃ has compact support in Ω. Consider the algebraic reconstruction technique
for the recovery space

XY,Φε := span{Φε(·, yi) | yi ∈ Y}
for a sufficiently large shape parameter ε. Let f∗ ∈ Hτ

c (Ω), the solution of the continuous
operator equation M∂Ω(f) = g, be an element of the recovery space XY,Φε . Then the
following error estimate holds for sufficiently small data density h = hX ,∆:

‖f∗ − f+
Y ‖L2(Ω)

≤ Chτ
(

1 +
√
κ(AΦ,Y)

)
‖f∗‖NΦ(Ω)

with a constant C > 0. Thus, the ART-solution f+
Y ∈ XY,Φε is convergent of order τ .

Proof. Due to Assumption 1 and Proposition 21, f∗−f+
Y ∈ Hτ (Ω) with supp(f∗−f+

Y ) ⊆
Kδ for a sufficiently small δ > 0. Hence, the Sobolev space estimates in Proposition 10
can be applied to f∗ − f+

Y with K = Kδ. Further, Proposition 10 and the sampling
inequality (19) for θ = τ + d−1

2 and σ = d−1
2 yield

‖f∗ − f+
Y ‖L2(Ω)

≤ 1

m0,K
‖M∂Ω(f∗ − f+

Y )‖
H(d−1)/2(∆)

≤ C

m0,K

(
hτ‖M∂Ω(f∗ − f+

Y )‖
Hθ(∆)

+
(
h

K∑
k=1

L∑
l=1

|M∂Ω(f∗ − f+
Y )(ξk, tl)|2

) 1
2

)
=

C

m0,K

(
hτ‖M∂Ω(f∗ − f+

Y )‖
Hθ(∆)

+ h
1
2 |MX (f∗ − f+

Y )|
)

=
C

m0,K
hτ‖M∂Ω(f∗ − f+

Y )‖
Hθ(∆)

≤
CMτ,K
m0,K

hτ‖f∗ − f+
Y ‖Hτ (Ω)

≤ C̃hτ‖f∗ − f+
Y ‖NΦ(Ω)

≤ C̃hτ
(
‖f∗‖

NΦ(Ω)
+ ‖f+

Y ‖NΦ(Ω)

)
≤ C̃hτ

(
1 +
√
κ(AΦ,Y)

)
‖f∗‖NΦ(Ω)

by using the equivalence of the native space norm and the corresponding fractional
Sobolev norm.

Again, the error bound in the previous theorem can be generalized to Hs-error estimates
easily when applying the sampling inequality (19) with θ = τ + d−1

2 + s and σ = d−1
2 + s.
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Figure 5: Influence of the shape parameter on a function in XY,Φε with ε = 0.5 (left)
and ε = 2 (right) for Wendland’s compactly supported kernel with generating
univariate function φε,3,0 in R2 [Example 2]. The set Y consists of 6 non-uniform
reconstruction points lying in the open ball Ω = B6.5(0).

3.4 Notes and Comments

Firstly described in the late 1950s by Michael Golomb and Hans Weinberger [24], optimal
recovery has attracted much attention in the last years for solving various linear inverse
problems with discrete data. For an interesting discussion on the solution of partial dif-
ferential equations using the optimal recovery theory, see [52, chapter 16].

Continuity of the functionals λ1, . . . , λN is essential for the optimal recovery theory.
To derive the set of continuous functionals ΛKδ , we used Sobolev space estimates for the
spherical Radon transform [Proposition 10]. Even though Proposition 10 has been proven
only for the case Ω = Br(0), we strongly assume that a generalization to a case, where
Ω has just a sufficiently regular boundary, is possible. This would relax the assumption
on the acquisition surface in Assumption 1.

Frank Natterer introduced the term algebraic reconstruction technique as a method to
derive reconstruction algorithms in the setting of computerized tomography [31]. Note
that Natterer’s understanding of an algebraic reconstruction technique differs from ours:
he means the application of Kaczmarz’s method (an iterative method for solving linear
systems of equations [31]) to Radon’s integral equation. Several algorithms were de-
rived by Kaczmarz’s method (ART, SIRT, SART) and we refer the interested reader
to [29, chapter 7] and [4, 8, 21] for further information.

This sampling inequality (19) can be used to derive convergence orders for very general
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recovery processes when assuming that the unknown function f is of finite smoothness
(see [43] for machine learning algorithms and [49] for PDE solvers). We refer the reader
to [41] for sampling inequalities for infinitely smooth functions, where the convergence
order turns out to depend exponentially on the fill distance. Those inequalities are of
great interest when analyzing the convergence order for e.g. a Gaussian or a generalized
multiquadrics kernel function.
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4 Fast Implementation and Numerical Results for the
Algebraic Reconstruction Technique

In this chapter, we present a fast algorithm for the algebraic reconstruction technique and
give numerical results to study the image reconstruction capability and the computational
efficiency of the method.

4.1 A Fast Algorithm

In order to determine the ART-solution f+
Y by given spherical Radon data (Ξ, T , ḡ) and

arbitrary, but fixed, reconstruction points Y = {y1, . . . , yN}, we need to compute the
norm-minimal solution α+ of the normal equation

(NYΛ,Φ)TNYΛ,Φα = (NYΛ,Φ)T ḡ. (26)

In general, the size K ·L of a real experimental data vector ḡ is extremely large and thus,
NYΛ,Φ ∈ RK·L×N is of large dimension. Hence, direct methods for the solution of (26) are
computing time and storage intensive. For instance, the Gaussian elimination applied to
(26) has arithmetic complexity of O(N2(KL+N)) and storage complexity of O(NKL),
if the components of NYΛ,Φ are assumed to be pre-computed.

With the application of the conjugate gradient method [section 4.1.1] to (26) and the
usage of reconstruction points Y adapted to spherical transducer locations Ξ [section
4.1.2], we can enhance the computing time and storage complexity dramatically. This is
due to the fact that only a few auxiliary vectors have to be stored and circulant block
structures in NYΛ,Φ enable a fast implementation by the fast Fourier transform (FFT).

4.1.1 Conjugate Gradient Method

The conjugate gradient method (CGM) was proposed by Hestens and Stiefel [26] in the
1950s as an iterative method for solving linear systems with positive definite matrices.
It is an alternative to the direct method of Gaussian elimination that is very well suited
for solving large problems. In the following we make use of the CGM to determine an
approximation to the coefficient vector α+, where we follow the textbook of Nocedal and
Wright [32].
Briefly, the conjugate gradient method works as follows: suppose (NYΛ,Φ)TNYΛ,Φ is positive
definite, then, given a starting vector α(0) ∈ RN and a set of nonzero vectors (conjugate
directions) {p(0), p(1), . . . , p(n−1)} ⊆ RN satisfying

〈NYΛ,Φp
(i), NYΛ,Φp

(j)〉 = 0, i 6= j,

the conjugate gradient method generates the sequence {α(k)}k∈N defined by

α(k+1) = α(k) − 〈r
(k), p(k)〉

|NYΛ,Φp(k)|2
p(k), (27)
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where r(k) = (NYΛ,Φ)T (NYΛ,Φα
(k) − ḡ).

Proposition 23. [32, Theorem 5.1]
Let (NYΛ,Φ)TNYΛ,Φ be positive definite. For any α(0) ∈ RN , the sequence {α(k)}k∈N ge-
nerated by the conjugate gradient algorithm (27) converges to the norm-minimal solution
α+ of the linear system (26) in at most N steps.

Remark 5.

a) The positive definiteness of (NYΛ,Φ)TNYΛ,Φ is crucial for the convergence. Though, a
sufficient criteria to check the positive definiteness has not been developed so far.

b) There are many ways to choose the set of conjugate directions. One possibility is the
set of eigenvectors of (NYΛ,Φ)TNYΛ,Φ. However, for large scale problems, the determi-
nation of the eigenvectors is not efficient. Another way of choosing the conjugate
directions is presented in the subsequent algorithm: a new p(k) can be computed
using only the previous vector p(k−1). It does not need to know all the previous ele-
ments p(0), p(1), . . . , p(k−2) of the conjugate set. This remarkable property implies
that the method below requires little storage and computation. We give [32, Algo-
rithm 5.2] as a reference.

Algorithm 3 Conjugate gradient method
Assume positive definiteness of (NYΛ,Φ)TNYΛ,Φ.

Input: α(0) ∈ RN , ḡ ∈ RK·L and NYΛ,Φ ∈ RK·L×N .
1: r(0) = (NYΛ,Φ)T (NYΛ,Φα

(0) − ḡ); p(0) = −r(0); k = 0;
2: while r(k) 6= 0 do
3: γ(k) = |r(k)|2

|NYΛ,Φp(k)|2 ;

4: α(k+1) = α(k) + γ(k)p(k);
5: r(k+1) = r(k) + γ(k)(NYΛ,Φ)TNYΛ,Φp

(k);

6: β(k+1) = |r(k+1)|2
|r(k)|2 ;

7: p(k+1) = −r(k+1) + β(k+1)p(k);
8: k = k + 1;
9: end while

10: α+ = α(k+1);
Output: α+, which is the norm-minimal solution of the normal equation

(NYΛ,Φ)TNYΛ,Φα = (NYΛ,Φ)T ḡ.

Arithmetic complexity: O(NKL).
Storage complexity: O(NKL).

Let us focus on the arithmetic and storage complexity. The major computational
tasks to be performed at each step are the computation of the matrix-vector products
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with NYΛ,Φ and (NYΛ,Φ)T , calculation of the norms |r(k)|2 and |NYΛ,Φp(k)|2 and calculation
of three vector sums. The norms and vector sums can be performed in O(N + KL)
floating-point operations, while the cost of the matrix-vector products is O(NKL), if
the components of NYΛ,Φ are assumed to be pre-computed.
The storage complexity arises by storing the entire collocation matrix NYΛ,Φ throughout
the whole algorithm. Other vectors in the algorithm are not as storage demanding as
NYΛ,Φ. This is due to the fact that, at any given point of the algorithm, we never need to
know the vectors α, r and p for more than the last two iterations.

In order to decrease the arithmetic and storage complexity of the conjugate gradient
method, we focus on reconstruction points Y generating block circulant matrix structures
in NYΛ,Φ. This enables not only the usage of the FFT for the matrix-vector products with
NYΛ,Φ and (NYΛ,Φ)T , but also the possibility to store these matrices via a few auxiliary
vectors.

4.1.2 Circulant Block Matrices

The basic idea to enhance arithmetic and storage complexity of the CGM is the effi-
cient storage of the matrix NYΛ,Φ and a fast implementation of the matrix vector pro-
ducts with NYΛ,Φ and (NYΛ,Φ)T . We realize this by choosing a reconstruction grid Y =
{y1, . . . , yK·J} ⊆ Ω, J ∈ N, which generates circulant block structures in the collocation
matrix, i.e.

NYΛ,Φ =

N11 · · · N1J
...

...
NL1 · · · NLJ

 ∈ RK·L×K·J (28)

where a blockmatrix Nlj ∈ RK×K takes the form

Nlj :=



nlj1 nljK · · · nlj3 nlj2
nlj2 nlj1 nljK nlj3
... nlj2 nlj1

. . .
...

nljK−1

. . . . . . nljK
nljK nljK−1 · · · nlj2 nlj1


and is fully specified by its first column

clj := (nlj1 , . . . , n
lj
K)T ∈ RK .

The remaining columns of Nlj are each cyclic permutations of the first column. The
following proposition illustrates the particular efficiency of circulant block structures for
the conjugate gradient method.
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Proposition 24. [22, chapter 4.7]
Let N ∈ RK×K be a circulant matrix with first column c ∈ RK . Further, let FK ∈ CK×K

be the Fourier matrix with entries (FK)jk := K−
1
2 e−

(j−1)(k−1)2πi
K . Then the identity

Nv = F ∗K(FKc� FKv), v ∈ RK

holds. Thus, the matrix-vector product Nv can be performed in O(K log(K)) floating
point operations by the usage of the fast Fourier transform. Here, the point-wise multi-
plication operator � is defined by

x� y := (x1y1, . . . , xKyK)T , x, y ∈ RK .

Algorithm 4 Fast matrix vector product (FMVP)
Assume NYΛ,Φ ∈ RK·L×K·J has a circulant block structure (28).

Input: {clj | l = 1, . . . , L and j = 1, . . . , J} ⊆ RK , v ∈ RK·J .
1: w = 0 ∈ RK·L;
2: for l = 1, . . . , L do
3: for j = 1, . . . , J do
4: (wk)1+(l−1)K≤k≤lK = (wk)1+(l−1)K≤k≤lK + FKclj � FK(vk)1+(j−1)K≤k≤jK ;
5: end for
6: (wk)1+(l−1)K≤k≤lK = F ∗K(wk)1+(l−1)K≤k≤lK ;
7: end for
Output: w = NYΛ,Φv.

Arithmetic complexity: O(JK log(K)L).
Storage complexity: O(JKL).

Remark 6.

a) Clearly, an analogue algorithm can be given for the matrix-vector product with the
transposed collocation matrix (NYΛ,Φ)T . We refer to it as “fast transposed matrix
vector product” (FTMVP).

b) It has been shown in [47] that for a large class of radial kernel functions Φ, the
components of NYΛ,Φ can be given analytically. Hence, the input set {clj | l =

1, . . . , L and j = 1, . . . , J} ⊆ RK is not needed. The actual storage complexity is
thus O(K(J + L)).

Before we provide the final algorithm for solving (26), let us focus on examples of Y
which generate block circulant entries in NYΛ,Φ.

Example 3. Two-dimensional data
Consider we are given two-dimensional experimental information

(Ξ, T , ḡ) ⊆ rS1 × (0 T ]× RK·L.
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Figure 6: Polar reconstruction grid YΘΞ,RJ in B1(0) ⊆ R2. Non-uniform trans-
ducer locations Ξ ⊆ S1 (left, asterisks) with reconstruction radii R6 =
{0.15, 0.3, 0.5, 0.6, 0.75, 0.95}. Uniform transducer locations Ξ ⊆ S1 (right,
asterisks) with radii R5 = {0, 0.2, 0.4, 0.6, 0.8}.

Define for an arbitrary, but fixed, J ∈ N the polar reconstruction grid

YΘΞ,RJ := {ykj = rj(cos(θk), sin(θk))
T | (θk, rj) ∈ ΘΞ ×RJ}, (29)

where
ΘΞ := {θk ∈ [0 2π) | ξk = r(cos(θk), sin(θk))

T ∈ Ξ}

and
RJ := {rj ∈ [0 r) | rj < rj+1, j = 1, . . . , J − 1}.

The reconstruction points lie therefore on concentric circles around the origin. For a
fixed measurement time tl ∈ T and a fixed radius rj ∈ RJ ,

Nlj = ((NYΛ,Φ)kl,k′j)1≤k,k′≤K

is a circulant matrix. To this end,

|ξ(k+c) − y(k′+c)j | = |r(cos(θ(k+c)), sin(θ(k+c)))
T − rj(cos(θ(k′+c)), sin(θ(k′+c)))

T |
= |r(cos(θk), sin(θk))

T − rj(cos(θk′), sin(θk′))
T |

= |ξk − yk′j |
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and thus

(NYΛ,Φ)kl,k′j =
1

π

∫ 1

−1
φ
(√
|ξk − yk′j |2 + t2l + 2tl|ξk − yk′j |τ

)
(1− τ2)−

1
2 dτ

=
1

π

∫ 1

−1
φ
(√
|ξ(k+c) − y(k′+c)j |2 + t2l + 2tl|ξ(k+c) − y(k′+c)j |τ

)
(1− τ2)−

1
2 dτ

= (NYΛ,Φ)(k+c)l,(k′+c)j

for k, k′ = 1, . . . ,K, l = 1, . . . , L, j = 1, . . . , J and any c ∈ N0 with 1 ≤ k+c, k′+c ≤ K.

Example 4. Three-dimensional data
Consider we are given three-dimensional experimental information

(Ξ, T , ḡ) ⊆ rS2 × (0 T ]× RK·L.

Define for an arbitrary, but fixed, J ∈ N the spherical reconstruction cloud

YΘΞ,RJ :=

{
ykj = rj

sin(θk) cos(φk)
sin(θk) sin(φk)

cos(θk)

 | (θk, φk, rj) ∈ ΘΞ ×RJ

}
where

ΘΞ :=

{
(θk, φk) ∈ [0 π]× [0 2π) | ξk = r

sin(θk) cos(φk)
sin(θk) sin(φk)

cos(θk)

 ∈ Ξ

}
and

RJ := {rj ∈ [0 r) | rj < rj+1, j = 1, . . . , J − 1}.

The reconstruction points lie therefore on concentric spheres around the origin. For a
fixed measurement time tl ∈ T and a fixed radius rj ∈ RJ ,

Nlj = ((NYΛ,Φ)kl,k′j)1≤k,k′≤K

is a circulant matrix. The proof is similar as in Example 3, since

|ξ(k+c) − y(k′+c)j | = |ξk − yk′j |

and thus

(NYΛ,Φ)kl,k′j =
1

2

∫ 1

−1
φ
(√
|ξk − yk′j |2 + t2l + 2tl|ξk − yk′j |τ

)
dτ

=
1

2

∫ 1

−1
φ
(√
|ξ(k+c) − y(k′+c)j |2 + t2l + 2tl|ξ(k+c) − y(k′+c)j |τ

)
dτ

= (NYΛ,Φ)(k+c)l,(k′+c)j

for k, k′ = 1, . . . ,K, l = 1, . . . , L, j = 1, . . . , J and any c ∈ N0 with 1 ≤ k+c, k′+c ≤ K.
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Figure 7: Spherical reconstruction cloud YΘΞ,RJ in B1(0) ⊆ R3. Non-uniform transducer
locations Ξ ⊆ S2 (left, outermost spherical points) with reconstruction radii
R3 = {0.2, 0.5, 0.8}. Uniform transducer locations Ξ ⊆ S2 (right, outermost
spherical points) with radii R3 = {0.25, 0.5, 0.75}.

Algorithm 5 Fast conjugate gradient method
Let Y = {y1, . . . , yK·J} be a reconstruction grid such that NYΛ,Φ has circulant block
structure (28). Assume positive definiteness of (NYΛ,Φ)TNYΛ,Φ. Further, assume Φ to be a
radial kernel such that the components of NYΛ,Φ are analytically given [47].

Input: α(0) ∈ RK·J and ḡ ∈ RK·L.
1: r(0) = FTMV P (FMV P (α(0))− ḡ);
2: p(0) = −r(0);
3: k = 0;
4: while r(k) 6= 0 do
5: p̃(k) = FMV P (p(k));
6: γ(k) = |r(k)|2

|p̃(k)|2
;

7: α(k+1) = α(k) + γ(k)p(k);
8: r(k+1) = r(k) + γ(k)FTMV P (p̃(k));
9: β(k+1) = |r(k+1)|2

|r(k)|2 ;

10: p(k+1) = −r(k+1) + β(k+1)p(k);
11: k = k + 1;
12: end while
13: α+ = α(k+1);
Output: α+, which is the norm-minimal solution of the normal equation

(NYΛ,Φ)TNYΛ,Φα = (NYΛ,Φ)T ḡ.

Arithmetic complexity: O(JK log(K)L).
Storage complexity: O(K(J + L)).
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4.2 Numerical Results

We give numerical results to study the behavior of the algebraic reconstruction technique
with respect to its image reconstruction capability and its computational efficiency. The
reconstructions are considered in dimension two, which is a case of practical interest.

We provide reconstructions for artificial phantoms and for real absorption densities.
Both, the phantoms and the absorption densities, are assumed to have support in the
unit disc B1(0) ⊆ R2. The artificial data has been generated by the efficient and accu-
rate algorithm by Görner, Hielscher and Kunis [20]. For the real experimental data, we
give thanks to the Institute for Biological and Medical Imaging at Helmholtz Zentrum
München.

In order to apply the fast conjugate gradient method [Algorithm 5] for the reconstruc-
tion process, we use a polar reconstruction grid YΘΞ,RJ (29) to generate block circulant
structures in NYΛ,Φ and a kernel function for which the components of the collocation
matrix are analytically given. In particular, we use the Gaussian kernel with shape
parameter ε > 0

Φε(x, y) = e−ε
2|x−y|2 , x, y ∈ R2.

With the usage of the Gaussian kernel, Example 10 in Appendix 6.4 yields that the
matrix components are given by

(NYΛ,Φ)kl,i = π−
1
2 e−ε

2(|ξk−yi|2+t2l )I0(2tlε
2|ξk − yi|), (30)

where I0 is the modified Bessel function of the first kind of order zero.

Figure 8: Matrix components of the collocation matrix NYΛ,Φ with Gaussian kernel func-
tion. Displayed is the expression (30) as a function of yi for ξk = (0, 0)T , tl = 2
with shape parameter ε = 0.5 (left) and ε = 1.5 (right).
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Algorithm 5 requires a couple of parameters which have to be set a-priori: the maximal
number k of iterations, the reconstruction radii RJ for the polar grid YΘΞ,RJ and the
shape parameter ε. In Example 6, we discuss their influence on the performance and
give advice for a parameter selection.

In our implementation of Algorithm 5, we work with the initial vector α(0) = 0 ∈ RK·J .
When having reached the maximal number k of iterations, we proceed with the coefficient
vector α(k) by evaluating the function

f
(k)
Y :=

N∑
i=1

α
(k)
i Φε(·, yi)

at M ×M uniformly distributed evaluation points xj in the unit cube [−1, 1]2. For-
tunately, this can be done by a single matrix vector multiplication with the matrix
(Φε(xj , yi))1≤j≤M2,1≤i≤N and the vector α(k).

In order to measure the error between the approximation f
(k)
Y and the phantom f∗,

we use the standard root-mean-square error (RMS-error)√√√√ 1

M2

M2∑
j=1

(
f∗(xj)− f (k)

Y (xj)
)2
,

where {xj}M
2

j=1 are the uniformly distributed evaluation points from above. The closer
the RMS-error to zero, the more the approximation f (k)

Y is considered to be accurate.

For the comparison of computational efficiency, all simulations are run in MATLAB
(R2012a) 1 on a computer equipped with a 2.7 GHz Intel Core i5 CPU and 4GByte main
memory.
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Figure 9: Shepp-Logan head phantom and its spherical mean values for spherical trans-
ducer geometry.

1MATLAB R© is a trademark of The MathWorks, Inc. and is used with a student license.
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Example 5.
We start by giving the reconstructed result from the spherical mean values of the Shepp-
Logan head phantom [Figure 9]. The experimental setup is as follows: there are K = 360
detectors uniformly distributed on the unit circle S1. Further, the spherical means have
been measured L = 500 times within the time interval (0 2]. In addition, the image
resolution of the phantom is 300× 300, i.e. M = 300.
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Figure 10: Reconstructed Shepp-Logan head phantom (left) and cross-section plot (right)
through horizontal pixel line 140.

On the left in Figure 10, we see the reconstruction for a shape parameter ε = 165
reconstructed on a polar reconstruction grid with radii R50 = {rj = j

125 | j = 1, . . . , 50}.
We stopped the fast conjugate gradient method [Algorithm 5] after k = 29 iterations with
CPU time 387.4s. The initial residual has been reduced by a factor of 10−3. Comparing
the reconstructed result in Figure 10 with the original phantom in Figure 9, we observe
that the method performs fairly good with a RMS-error of 0.064.

Figure 11: Error plot for the reconstruction of the Shepp-Logan head phantom.
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We can see clearly in the cross-section plot on the right in Figure 10 and in the error plot
[Figure 11] that most of the error is concentrated near the boundary of the characteristic
functions. This is no surprise since the Shepp-Logan phantom (as a superposition of cha-
racteristic functions) is not an element of the native space NΦε(B1(0)) ⊆

⋂
s∈NH

s(B1(0))
of the Gaussian kernel [Example 1]. Hence, by the theory presented in this thesis, it is not
surprising that the reconstructed picture is smoother and thus a bit blurred compared
to the original phantom.

Example 6. Reconstruction parameters
The fast conjugate gradient method [Algorithm 5] requires three parameters to be set
a-priori: the number k of iterations, the reconstruction radiiRJ for the polar grid YΘΞ,RJ
and the shape parameter ε. In this example we discuss how these parameters influence
the reconstruction process. Further, we give advice for a parameter selection.

We discuss the influence of the parameters by reconstructing the smiley phantom from
its spherical mean values [Figure 12]. Let us give the experimental setup: there are
K = 360 detectors uniformly distributed on the unit circle S1. Further, the spherical
means have been measured L = 500 times within the time interval (0 2]. In addition, the
image resolution of the phantom is 450× 450.
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Figure 12: Smiley phantom and its spherical mean values for spherical transducer
geometry.

Let us start with investigating the number of iterations. Recall, that under the as-
sumption of positive definiteness of (NYΛ,Φ)TNYΛ,Φ, the iterates α(k) in Algorithm 5 tend
to produce better and better approximations f (k)

Y to the ART-solution f+
Y (and thus to

the phantom f∗). It is further a well-known fact [32, chapter 5.1], that the conjugate
gradient method [Algorithm 3] is likely to converge after the first few iterations. In late
stages of the iteration, though, the convergence may become very slow. The question
thus arises, when to stop the iteration in Algorithm 5 in order to balance the trade-off
between the approximation quality (measured by the RMS-error) and the computational
efficiency (measured by the number of iterations respectively CPU time).
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Figure 13: Convergence history for the fast conjugate gradient method applied to the
spherical mean values of the smiley phantom [Figure 12].

In Figure 13, we see the convergence history of Algorithm 5, i.e. the residual r(k)

respectively the RMS-error as functions of k. The algorithm has been executed for a
shape parameter ε = 120 and reconstruction radii R100 = {rj = 2j

225 | j = 1, . . . , 100}.
Both graphs illustrate fast initial convergence and slow convergence after k = 20 itera-
tions, which corresponds to a decrease of the initial residual by a factor of 10−3. Figure
14 shows the reconstructed images for a few iterations. All experiences with Algorithm
5 (even applied to different phantoms) showed a similar behavior: the convergence es-
sentially stagnates after the initial residual decreased by a factor of 10−3. Therefore, we
recommend to consider the latter as a stopping condition for the fast conjugate gradient
method.

We now turn our attention to the set of reconstruction radii RJ . According to the
convergence result for the algebraic reconstruction technique in section 3.3.2, the accuracy
of ART improves when more reconstruction points are used. In fact, this corresponds to
an increase of the number of reconstruction radii for the polar reconstruction grid YΘΞ,RJ .
Due to the trade-off between approximation quality and computational efficiency, we are
interested in a reasonable choice for RJ . Clearly, a reasonable choice for RJ depends on
the desired image resolution M ×M . In the following we give an advice for M ≈ 500.
In Table 2, we report results of a series of experiments for increasingly larger sets of
reconstruction points. We used the fixed shape parameter ε = 120 for all the experiments
and stopped the fast conjugate gradient method after a decrease of the initial residual
by a factor of 10−3. Further, we reconstructed on equidistant circles and used the a-
priori information provided by the sinogram [Figure 12] that the phantom’s support is
contained in B0.8(0). Table 2 illustrates a stagnation of convergence when reconstructing
with more than J = 100 reconstruction circles. On the other side, we see an increase of
the CPU time. Other experiences with Algorithm 5 (even applied to different phantoms)
have provided similar results. Therefore, we recommend to consider 50-100 (depending
on a-priori information of the phantom’s support) equidistant reconstruction circles for
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Figure 14: Reconstructed smiley phantom for different iteration steps.

J # of elements in YΘΞ,RJ RMS-error CPU time
20 7200 2.116637 58.7
40 14400 0.513901 130.5
60 21600 0.175194 208.9
80 28800 0.159030 277.1
100 36000 0.155130 346.7
120 43200 0.154910 419.7
140 50400 0.154036 493.9
160 57600 0.153489 562.1

Table 2: RMS-error and CPU time for increasingly larger sets of reconstruction points
YΘΞ,RJ with reconstruction radii RJ = {0.8 i

J | i = 1, . . . , J}.
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an image resolution with M ≈ 500 in order to have a fairly good computational
efficiency and approximation quality.

Finally, let us analyze the influence of the the shape parameter ε. It is well-known in
the theory of interpolation with radial basis functions [15,52], that the shape parameter
ε governs a trade-off between approximation quality (measured by the RMS-error) and
numerical stability (measured by the condition number of the interpolation matrix).
There are several strategies to balance this trade-off by an “optimal” choice of ε, and we
refer the interested reader to [15, 37, 54] for a comprehensive study. Our strategy used
within this chapter is as follows: we scale ε according to the average distance between
two neighbouring reconstruction circles of the polar grid YΘΞ,RJ . Hence, we end up
using a recovery space XY,Φε with “peaked” basis functions Φε(·, yi) for densely spaced
reconstruction circles and “flat” basis functions for coarsely spaced circles. Let us focus
on an experiment which justifies this strategy for the parameter selection.
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Figure 15: RMS-error as a function of the shape parameter ε for reconstruction sets
YΘΞ,RJ with equidistant radii RJ = {0.8 i

J | i = 1, . . . , J} for J =50 (left),
J =100 (middle) and J =150 (right).

In Figure 15, we display the RMS-error as a function of the shape parameter ε for
three fixed reconstruction sets YΘΞ,RJ with equidistant radii RJ = {0.8 i

J | i = 1, . . . , J}
for J = 50, 100, 150. We clearly see that the error curves are not monotonic. Further,
we can identify a range for a value of ε for which the RMS-errors are minimal. The
interesting fact about the three curves is the following: the bigger the distance between
neighbouring reconstruction circles the smaller the value of ε for which the minimum
RMS-error is obtained. Therefore, ε has to be chosen according to the distance between
two neighbouring reconstruction circles. Of course, if the data we are trying to reconstruct
are not generated from a known phantom, then we are not able to choose an “optimal”
shape parameter by monitoring the RMS-error as in Figure 15. However, we can give the
following heuristically derived rule of thumb for equidistant reconstruction circles, which
provided fairly good results in most of the experiments: ε ≈ −5000ω + 170, where ω is
the distance between neighbouring reconstruction circles.
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Example 7. Noisy data
We test Algorithm 5 on data corrupted by white Gaussian noise. To this end, let us
consider spherical Radon data as in Example 6, where we added 5% white Gaussian
noise to the spherical mean values [Figure 16]. On the left in Figure 17, we see the
reconstruction for a shape parameter ε = 65 reconstructed on a polar reconstruction grid
with radii R100 = {rj = 2j

225 | j = 1, . . . , 100}. We stopped Algorithm 5 after k = 11
iterations with CPU time 180.3s, where the initial residual has been reduced by a factor
of 10−2. Further, the reconstruction has a RMS-error of 0.31. It is interesting to note that
the reconstruction quality is fairly good even though no explicit regularization strategy
has been incorporated.
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Figure 16: Spherical mean values of the smiley phantom with 5% white Gaussian noise.
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Figure 17: Reconstructed smiley phantom (left) and cross-section plot (right) through
horizontal pixel line 150.
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Example 8. Reconstruction of real experimental data
In the following we reconstruct experimental data (pressure signals) provided by the
Institute for Biological and Medical Imaging at Helmholtz Zentrum München. As Algo-
rithm 5 works solely with spherical mean values, we transformed the pressure data into
spherical mean values via numerical integration. In what follows, we display the images
in grayscale.

On the left in Figure 18, we see pressure signals recorded with a sampling rate of
100MHz. A cylinder containing inked acoustic gel was laterally scanned with K = 180
detectors uniformly distributed on a spherical acquisition surface of diameter 0.081m.
Figure 19 shows the reconstruction for a shape parameter ε = 80 reconstructed on a
grid with radii R50 = {rj = 3j

225 | j = 1, . . . , 50}. We stopped Algorithm 5 after k = 11
iterations with CPU time 121.3s, where the initial residual has been reduced by a factor
of 10−3.
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Figure 18: Experimental pressure data for an inked acoustic gel cylinder scan (left) and
the corresponding spherical mean values (right).
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Figure 19: Reconstruction of an inked acoustic gel cylinder phantom.
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Figure 20: Experimental pressure data (left) for a mouse scan and the corresponding
spherical mean values (right).
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Figure 21: Reconstruction of a mouse scan.

A second data set is displayed on the left in Figure 20. The pressure signals were
recorded with a sampling rate of 100MHz. K = 400 uniformly distributed detectors la-
terally scanned a mouse to record the pressure signals. The spherical acquisition surface
had a diameter of 0.0418m. In Figure 21, we see the reconstruction for a shape parameter
ε = 300 reconstructed on a polar grid with radii R100 = {rj = 2j

500 | j = 1, . . . , 100}. We
stopped Algorithm 5 after k = 25 iterations with CPU time 3632.2s, where the initial
residual has been reduced by a factor of 10−3.
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4.3 Notes and Comments

The conjugate gradient method is recommended only for large problems; otherwise, Gaus-
sian elimination or other factorization algorithms for the solution of (26) are to be pre-
ferred, since they are less sensitive to rounding errors.

The performance of the conjugate gradient method is tied to the distribution of the
eigenvalues of the involved matrix. By preconditioning the linear system, it is possible
to make the distribution more favorable and improve the convergence of the method
significantly [32, chapter 5].

A lot of work has been done in investigating strategies for the selection of an “optimal”
shape parameter for radial basis functions. We refer the interested reader to [37] for
a method based on cross validation, to [15, chapter 17.1.2] for a method based on the
so-called power function, and to [54] for the Contour-Padé algorithm.
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5 Conclusion and Open Problems

In this master thesis we proposed innovative image reconstruction techniques for data
modeled by the spherical Radon transform in the setting of photoacoustic tomogra-
phy. In particular, we detailed the derivation of two kernel based solution methods for
the semi-discrete inverse problem of PAT: optimal recovery and algebraic reconstruction
technique. For both methods, we gave L2-error estimates in terms of the data density
and convergence results. Further, we presented a fast algorithm for the algebraic re-
construction technique. The algorithm’s fairly good image reconstruction capability and
computational efficiency were proved by several numerical experiments for real and arti-
ficially generated data.

Interesting problems arose during the development of this master thesis. Due to the
more involved nature of complexity, their elaboration has not been possible.

1. A continuity result for the spherical Radon transformM∂Ω as an operator defined
on the whole space NΦ(Ω) respectively Hτ (Ω) for a sufficienty regular set Ω ⊆ Rd
should be investigated. Only a weaker version exists [Proposition 10].

2. An extension of f ∈ Hs(Ω) to a function in Hs(Rd) is given if Ω is an open subset
of Rd [2, 50]. Similar results for not necessarily open “thick” sets are missing.

3. Fractional Sobolev spaces Hs(Rd) are reproducing kernel Hilbert spaces if s > d
2

[Theorem 4]. Similar results for spaces Hs(Ω), defined for not necessarily open sets
Ω, should be investigated.

4. Linear independency of the set of functionals ΛKδ [Definition 5] is crucial for the
determination of the optimal recovery solution f+. A handy method for checking
linear independency should be developed.

5. An implementation of the optimal recovery algorithm [Algorithm 1] is missing.

6. The positive definiteness of (NYΛ,Φ)TNYΛ,Φ is important for the convergence of the
conjugate gradient method [Algorithm 3]. A sufficient criteria to check the positive
definiteness has not been developed so far.

7. As the performance of the conjugate gradient method is tied to the distribution of
the eigenvalues of the matrix (NYΛ,Φ)TNYΛ,Φ, preconditioning should be considered
as a means to make the distribution of the eigenvalues more favorable for improving
the convergence of the method.

8. Strategies to select an “optimal” shape parameter for the algebraic reconstruction
technique should be developed by cross validation [37] or the Contour-Padé algo-
rithm [54].
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6.1 Useful Facts from Functional Analysis

Riesz Representation Theorem. [39, Theorem 6.19]
Let H be a Hilbert space and H ′ be its topological dual space. Then for every λ ∈ H ′

there exists a unique xλ ∈ H such that

λ(y) = 〈y, xλ〉H , y ∈ H.

The vector xλ is called Riesz representer of the functional λ. Further, let λ, µ ∈ H ′ and
let xλ, xµ ∈ H be their Riesz representers, then

〈λ, µ〉
H′ = 〈xλ, xµ〉H .

Hahn-Banach Theorem. [40, Thereom 3.6]
Let V be a normed vector space with subspace U ⊆ V (not necessarily closed). Let
ψ : U → R be a linear continuous functional on U , then there exists a linear continuous
extension Ψ : V → R of ψ such that Ψ|U = ψ.

6.2 Sobolev Spaces of Fractional Order

In the following we introduce fractional Sobolev spaces. The members of fractional
Sobolev spaces are tempered distributions whose Fourier transform satisfies certain decay
properties. In order to define these function spaces, let us review the Fourier transform of
tempered distributions. For more details we refer the interested reader to [2,40,44]. The
Schwartz space S is the set of rapidly decreasing functions, i.e. functions f ∈ C∞(Rd)
for which

‖f‖N := sup
|α|≤N

sup
x∈Rd

(1 + |x|2)N |(Dαf)(x)| <∞

for every N ∈ N0 with multi-index α. The family of semi-norms {‖ · ‖N}N∈N induces a
topology on S, which makes S locally convex. Due to the fact that S ′ can be identified
with a certain subspace of distributions [40, chapter 7] with particular growth restrictions
at infinity, one refers to S ′ as tempered distributions.

Example 9.
Every f ∈ Lp(Rd) with 1 ≤ p ≤ ∞ is a tempered distribution. So is every point
evaluation functional, every polynomial and, more generally, every measurable function
whose absolute value is majorized by some polynomial. Note that in general f ∈ Lploc(R

d)
for 1 ≤ p ≤ ∞ is not a tempered distribution. The proofs can be found in [40].

Definition 7.
Let f ∈ S ′. Then the Fourier transform of a tempered distribution is defined by

f̂(φ) := f(φ̂), φ ∈ S.
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With the extension of the Fourier transform to tempered distribution, we can now define
Sobolev spaces of fractional order.

Definition 8.
The Sobolev space of fractional order s ∈ R is defined by

Hs(Rd) := {f ∈ S ′ | f̂ ∈ L1
loc(Rd), ‖f‖Hs(Rd)

:= ‖(1 + | · |2)
s
2 f̂‖

L2(Rd)
<∞}.

Remark 7.

a) Hs(Rd) is a Hilbert space with the inner product

〈f, g〉
Hs(Rd)

:=

∫
Rd

(1 + |ξ|2)sf̂(ξ)ĝ(ξ)dξ.

b) The inclusions

Hs(Rd) ⊆ H s̃(Rd), S ⊆ Hs(Rd),
⋂
s∈R

Hs(Rd) ⊆ C∞(Rd)

hold for every s, s̃ ∈ R with s̃ ≤ s and can be proved with the subsequent Sobolev
embedding theorem [44, Theorem 2.60]:

Hs(Rd) ↪→ Ck(Rd) for s > k +
d

2
.

c) It is interesting to note that the topological dual space (Hs(Rd))′ is isometrically
isomorphic to H−s(Rd) for every s ∈ R [44, Theorem 2.58].

d) It is possible to define fractional Sobolev spaces even for Lipschitz sets Ω, i.e. for
open bounded connected sets Ω with a boundary ∂Ω “sufficiently regular” in the sense
that it can be thought of as being locally the graph of a Lipschitz-continuous function.
We define Hs(Ω) for s ∈ N as the space consisting of all functions f : Ω→ R with
distributional derivatives Dαf ∈ L2(Ω) for all α ∈ Nd0 with |α| ≤ s. Associated
with this space is the norm

‖f‖2
Hs(Ω)

:=
( ∑
|α|≤k

(∫
Ω
|f(x)|2dx

)2) 1
2
.

One approach for defining Hs(Ω) for s = k + τ with k ∈ N0 and 0 < τ < 1 is via
the norm

‖f‖
Hk+τ (Ω)

:=
(
‖f‖2

Hk(Ω)
+ |f |2

Hk+τ (Ω)

) 1
2 ,

with involved semi-norm

|f |
Hk+τ (Ω)

:=
( ∑
|α|=k

∫
Ω

∫
Ω

|Dαf(x)−Dαf(y)|2

|x− y|d+2τ
dxdy

) 1
2
.

For further information we refer the interested reader to [2].
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e) In some settings it is essential that the functions involved have compact support.
Therefore, we define for s ∈ R and a Lipschitz domain Ω ⊆ Rd

Hs
c (Ω) := {f ∈ Hs(Ω) | supp(f) := {x ∈ Ω | f(x) 6= 0} ⊆ Ω}.

6.3 Characterization of Ill-posedness via Sobolev Space Estimates

In the following we introduce fundamental notions of the theory of ill-posed problems
and give a characterization via Sobolev space estimates. Note that we discuss ill-posed
problems only in the framework of linear bounded operators between Hilbert function
spaces.

Definition 9.
Let H(Ω) and H(Ω′) be Hilbert function spaces and let A : H(Ω) → H(Ω′) be a linear
bounded operator. The equation A(f) = g is called well-posed in the sense of Hadamard
if the following holds:

1. Existence: for every g ∈ H(Ω′) there is (at least one) f ∈ H(Ω) such that A(f) = g.

2. Uniqueness: for every g ∈ H(Ω′) there is at most one f ∈ H(Ω) such that A(f) = g.

3. Stability: the solution f depends continuously on the data g. That is, for every
sequence {fn}n∈N ⊆ H(Ω) with limn→∞A(fn) = A(f), then limn→∞ fn = f .

Equations for which at least one of these properties does not hold are called ill-posed.

Remark 8.

a) Existence and uniqueness of solutions for the operator equation A(f) = g depend
only on the algebraic nature of the spaces and the operator; that is, whether the
operator is surjective or even invertible. Stability, however, depends also on the
topologies of the spaces, i.e., whether the inverse operator A−1 : H(Ω′)→ H(Ω) is
continuous

b) The practical difficulty with an ill-posed problem is the following. Either A(f) = g
is not solvable or not uniquely solvable; this is the case if A is not invertible. If A
is invertible with A−1 not continuous, then ‖A−1(g′)−A−1(g)‖

H(Ω)
need not to be

small even if ‖g − g′‖
H(Ω′) is. Thus, it is difficult to solve an ill-posed problem in

the presence of experimental errors.

In the following we show that a smoothing effect of an operator, described by Sobolev
space estimates, is a sufficient criteria for the ill-posedness of an operator equation in a
L2- setting.

Definition 10.
Let Ω ⊆ Rd, Ω′ ⊆ Rq be Lipschitz domains and let s ∈ R be arbitrary, but fixed. We
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call a linear bounded operator A : L2(Ω) → L2(Ω′) smoothing of degree α, if there is a
number α > 0 such that there exist positive constants ms,Ms with

ms‖f‖Hs(Ω)
≤ ‖Af‖

Hs+α(Ω′)
≤Ms‖f‖Hs(Ω)

for all f ∈ Hs
c (Ω).

Clearly, a linear bounded operator with smoothing effect is injective and thus invertible
by restricting it on its range. Further, the inverse is a continuous operator from Hs+α(Ω′)
into Hs

c (Ω). In particular, if s = −α, Hs
c (Ω) is a Sobolev space with negative order whose

norm is weaker than the L2- norm on L2(Ω), i.e., there exists a constant C > 0 such that
‖f‖

H−α(Ω)
≤ C‖f‖

L2(Ω)
for every f ∈ H−αc (Ω). This shows that A−1 is not continuous

as an operator from L2(Ω′) into L2(Ω). Hence, the equation A(f) = g is ill-posed in the
sense of Hadamard.

Corollary 25. [31, chapter 4]
Let A : L2(Ω)→ L2(Ω′) be a linear bounded α-smoothing operator for Lipschitz domains
Ω ⊆ Rd and Ω′ ⊆ Rq. Then the equation A(f) = g is ill-posed in the sense of Hadamard.

Proof. The proof follows directly from the considerations above.

Remark 9.
The smoothing effect of an operator A is nothing else than a continuity result for A and
its inverse A−1 between fractional Sobolev spaces of certain orders. It is interesting to
mention that those continuity results are important for many theoretical and practical
purposes in various types of tomography. Several work has been done in these fields.
For a good introductory discussion in the setting of X-ray, spherical and classical Radon
transform, see [45].

6.4 Action of the Spherical Mean Operator on Radial Kernel Functions

Theorem 26.
Let Φ : Rd × Rd → R be a radial kernel function, i.e. Φ(x, y) = φ(|x− y|) for x, y ∈ Rd.
Then

Mx(Φ(x, y))(ξ, t) =
wd−2

wd−1

∫ 1

−1
φ(
√
|ξ − y|2 + t2 + 2t|ξ − y|τ)(1− τ2)

d−3
2 dτ

for every t ≥ 0 and y, ξ ∈ Rd with y 6= ξ. The superscript at the operator indicates the
argument to which the operator is applied. Further,

Mx(My(Φ(x, y))(ν, s))(ξ, t) =
w2
d−2

w2
d−1

∫ 1

−1

∫ 1

−1
φ(Ψξ,t

ν,s(τ1, τ2))(1− τ2
1 )

d−3
2 (1− τ2

2 )
d−3

2 dτ2dτ1

with

Ψξ,t
ν,s(x, y) =

√
|ξ − ν|2 + s2 + t2 + 2t|ξ − ν|x+ 2sy

√
|ξ − ν|2 + t2 + 2t|ξ − ν|x

for every t, s ≥ 0 and ν, ξ ∈ Rd with |ξ − ν| /∈ {0, t}.
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Proof. The essential idea of the proof is to use the Funk-Hecke formula [1, chapter 9.7]
in order to transform a spherical integral into an univariate integral: for every function
f ∈ C([−1, 1]) and every unit vector α ∈ Sd−1,

1

wd−2

∫
Sd−1

f(〈u, α〉) dσ(u) =

∫ 1

−1
f(τ)(1− τ2)

d−3
2 dτ .

Let us prove the first identity. For y 6= ξ and u ∈ Sd−1 we have

|ξ + tu− y|2 = |ξ − y|2 + t2 + 2〈tu, ξ − y〉
= |ξ − y|2 + t2 + 2t|ξ − y|〈u, (ξ − y)|ξ − y|−1〉

and therefore

Mx(Φ(x, y))(ξ, t) =
1

wd−1

∫
Sd−1

Φ(ξ + tu, y) dσ(u)

=
1

wd−1

∫
Sd−1

φ(
√
|ξ − y|2 + t2 + 2t|ξ − y|〈u, (ξ − y)|ξ − y|−1〉) dσ(u)

=
wd−2

wd−1

∫ 1

−1
φ(
√
|ξ − y|2 + t2 + 2t|ξ − y|τ)(1− τ2)

d−3
2 dτ .

For the second identity we apply the Funk-Hecke formula twice. For u,w ∈ Sd−1 and
|ξ − ν| /∈ {0, t} we have

|ξ + tu− (ν + sw)|2 = |(ξ − ν − sw) + tu|2 = |ξ − ν − sw|2 + 2〈ξ − ν − sw, tu〉+ t2

= |ξ − ν|2 + s2 + t2 + 2t〈ξ − ν, u〉 − 2s〈ξ − ν, w〉 − 2st〈w, u〉
= |ξ − ν|2 + s2 + t2 + 2t〈ξ − ν, u〉 − 2s〈ξ − ν + tu, w〉
= |ξ − ν|2 + s2 + t2 + 2t〈ξ − ν, u〉
+ 2s|ξ − ν + tu|〈(ν − ξ − tu)|ν − ξ − tu|−1, w〉
= |ξ − ν|2 + s2 + t2 + 2t|ξ − ν|〈(ξ − ν)|ξ − ν|−1, u〉

+ 2s
√
|ξ − ν|2 + t2 + 2t|ξ − ν|〈(ξ − ν)|ξ − ν|−1, u〉〈 ν − ξ − tu

|ν − ξ − tu|
, w〉.

Hence,

Mx(My(Φ(x, y))(ν, s))(ξ, t) =
1

w2
d−1

∫
Sd−1

∫
Sd−1

Φ(ξ + tu, ν + sw) dσ(u) dσ(w)

=
1

w2
d−1

∫
Sd−1

∫
Sd−1

φ(|ξ + tu− (ν + sw)|) dσ(u) dσ(w)

=
w2
d−2

w2
d−1

∫ 1

−1

∫ 1

−1
φ(Ψξ,t

ν,s(τ1, τ2))(1− τ2
1 )

d−3
2 (1− τ2

2 )
d−3

2 dτ2 dτ1

with

Ψξ,t
ν,s(x, y) =

√
|ξ − ν|2 + s2 + t2 + 2t|ξ − ν|x+ 2sy

√
|ξ − ν|2 + t2 + 2t|ξ − ν|x.
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6 Appendix

Example 10.
Consider the Gaussian kernel in R2 with shape parameter ε > 0

Φε(x, y) = φ(ε|x− y|) = e−ε
2|x−y|2 , x, y ∈ R2.

Then

Mx(Φε(x, y))(ξ, t) =
w0

w1

∫ 1

−1
φ
(
ε
√
|ξ − y|2 + t2 + 2t|ξ − y|τ

)
(1− τ2)−

1
2 dτ

=
1

π
e−ε

2(|ξ−y|2+t2)

∫ 1

−1
e−ε

22t|ξ−y|τ (1− τ2)−
1
2 dτ

= π−
1
2 e−ε

2(|ξ−y|2+t2)J0(2tiε2|ξ − y|)

= π−
1
2 e−ε

2(|ξ−y|2+t2)I0(2tε2|ξ − y|)

by using the Poisson representation formula for Bessel functions [23, Equation 8.411.10]

Jv(z) =
( z2)v

Γ(v + 1
2)

∫ 1

−1
eizs(1− s2)v−

1
2 ds, v > −1

2
, z ∈ C

and the definition of modified Bessel functions of the first kind

Iα(x) := Jα(ix)i−α, x ≥ 0.
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