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Time-Frequency Foundations of Communications:
Concepts and Tools

Gerald Matz, Helmut Bolcskei, and Franz Hlawatsch

“Hitherto communication theory was based on two alternative methods of signal analysis. One is the description of
the signal as a function of time; the other is Fourier analysis. Both are idealizations, as the first method operates
with sharply defined instants of time, the second with infinite wave-trains of rigorously defined frequencies. But
our everyday experiences—especially our auditory sensations—insist on a description in terms of both time and

frequency.” — Dennis Gabor [1]

INTRODUCTION AND BACKGROUND

In the tradition of Gabor’s 1946 landmark paper [1], we
advocate a time-frequency (TF) approach to communications.
TF methods for communications have been proposed very
early (see “HISTORY”). While several tutorial papers and
book chapters on the topic are available (see, e.g., [2]-[4]
and references therein), the goal of this article is to present
the fundamental aspects in a coherent and easily accessible
manner. Specifically, we establish the role of TF methods
in communications across a range of subject areas including
TF dispersive channels, orthogonal frequency division mul-
tiplexing (OFDM), information-theoretic limits, and system
identification and channel estimation. Furthermore, we present
fundamental results that are stated in the literature for the
continuous-time case in simple linear algebra terms.

We consider a point-to-point communication scenario with
a single transmitter, a channel, and a single receiver as shown
in Fig. 1. The channel models the transmission medium
and imperfections of transmitter and receiver hardware like
oscillators, amplifiers, and antennas.

A basic element of TF analysis is the TF shift operator
M, D, which induces a delay (time shift) 7 and a modulation
(frequency shift) v according to (M, D, z)(t) = z(t—7)e/?™!
[6], [7]. TF shifts are fundamental to communications in a
twofold manner:

1) Many linear channels are TF dispersive, i.e., they in-
duce time dispersion (delays) and frequency dispersion
(modulation). These channels can be represented as a
weighted superposition of TF shift operators [6].

2) OFDM is a multicarrier transmission scheme that mod-
ulates the data symbols onto Weyl-Heisenberg (WH)
function sets, also known as Gabor sets [6], [8]. These
function sets consist of TF shifted versions of a proto-
type pulse (Gabor’s “logons” [1]).

OFDM and TF dispersive channels are at the heart of
a broad range of communication systems, including digital
audio/video broadcasting, wireless local area networks (IEEE
802.11), wireless metropolitan area networks (IEEE 802.16),
3GPP long-term evolution, wireless personal area networks
(e.g., WiMedia), vehicular ad hoc networks, L-band digital
aeronautical communication systems, digital subscriber lines,
powerline communications, and underwater acoustic com-
munications [5], [16]-[21]. In this article, we discuss the
relevance of TF analysis to OFDM and TF dispersive channels,

HISTORY

TF analysis has been linked with communications for a long
time. Gabor [1], the father of the Gabor expansion, proposed
the use of “TF logons” (TF shifts of a prototype pulse) to
represent communication signals. Zadeh [9] introduced a TF
transfer function of TF dispersive systems. Chang [10] pro-
posed the multicarrier transmission scheme known as OFDM.
Kailath [11] discussed the sampling and measurement of TF
dispersive systems. Bello [12] studied random TF dispersive
channels and introduced the concept of wide-sense stationary
uncorrelated scattering (WSSUS). The estimation of WSSUS
channel statistics was addressed by Gallager [13] and Gaarder
[14]. An extensive discussion of communication over random
TF dispersive channels was provided by Kennedy [15].

and we demonstrate that WH frame theory [22] and TF
operator representations are powerful tools for pulse design
[23]-[27], capacity analysis [28], and channel identification
(sounding, estimation) [29]-[31]. We note that parts of this
article draw on our previous work in [25], [27], [28], [31],
[32], and [33].

TF DISPERSIVE CHANNELS

In this section, we discuss the physics, system theory, and
statistics of TF dispersive channels.

Physics
First, we describe various physical mechanisms that entail
a superposition of TF shifts.

1) Multipath Propagation and Doppler Effect: In wireless
(radio or underwater) communications, the electromagnetic or
acoustic wave propagating from the transmitter to the receiver
may interact with objects in the environment. These objects are
commonly referred to as scatterers, even though the interaction
mechanism may include reflection and diffraction. The wave
usually propagates along several distinct paths with different
propagation delays and attenuation factors. This situation is
known as multipath propagation.

If transmitter, receiver, or scatterers are moving, the Doppler
effect entails a time scaling (equivalently, a frequency scaling)
of multipath components. For narrowband signals, i.e., signals
whose spectrum is supported in a small band around a carrier
frequency f., frequency scaling can be approximated by a
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Fig. 1.

Top: A communication system consisting of a transmitter, a noisy channel, and a receiver. Bottom: Illustration of the TF shift structure of an OFDM

modulator, a (measured) TF dispersive channel (see [5]), and an OFDM demodulator.

frequency shift of v = v f,/c, where c is the wave propagation
speed and v is the velocity of the moving object in the direction
of wave propagation.

In general, the transmitted signal x(t) is affected by both
multipath propagation and Doppler frequency shifts. Assuming
I specular paths with delays 7;, Doppler frequencies v;, and
complex gains S;, the receive signal is given by the following
weighted superposition of TF shifts of x(¢) (additive noise is
neglected throughout this section):

I

Z S; x(t — 7;) eI2mit

=1

y(t)

I
= Z SL (IMW]DTVI) (t)

i=1

2) Medium Variations: Many transmission media, such
as cables and optical fibers, are characterized by material
dispersion, i.e., a group velocity that varies with frequency.
Material dispersion can be modeled by a time-dispersive
channel that is described by the convolution relation y(t) =
Jg(r)z(t — 7)dr = [g(7)(D,2)(t)dr (integrals are over
the entire real line). Thus, the receive signal is a weighted
superposition of time-shifted versions of the transmit signal.

In the presence of environmental changes, switching ef-
fects, or component drift, the transmission medium varies
over time. Such variations can be modeled by a frequency-
dispersive channel with multiplicative input-output relation
y(t) = m(t)z(t). Denoting the Fourier transform of m(t)
by M (v), the equivalent relation y(t) = [ M (v)(M,z)(t) dv
shows that the receive signal is a weighted superposition
of frequency-shifted versions of the transmit signal. General
channels may exhibit both time and frequency dispersion.

3) Oscillator Imperfections and Timing Offsets: In most
communication systems, the baseband transmit signal is modu-
lated onto a sinusoidal carrier via an oscillator. The receive sig-
nal is then demodulated, ideally using the same sinusoidal car-
rier. However, practical oscillators exhibit imperfections such
as frequency offset and phase noise. Furthermore, transmitter
and receiver suffer from a timing (clock) offset. Consider, for
example, a receiver with frequency offset Af, phase noise
¢(t), and timing offset At, and an otherwise ideal transmission

medium. Here, the baseband receive signal is given by
y(t) = e I2mfAt / U(v+Af)(M,Dacz)(t) dv,

where ¥(v) denotes the Fourier transform of e~727%(*)  Fre-
quency offset, phase noise, and timing offset thus amount to
a superposition of TF shifts.

Elementary Channel Characterizations

We next review system-theoretic aspects of TF dispersive
channels. In what follows, frequency shifts will be referred to
as Doppler shifts even if the underlying physical mechanism
is not the Doppler effect. The basic input-output relation of a
TF dispersive channel H is denoted as y(t) = (Hx)(t).

1) Delay-Doppler Spreading Function: We have seen that
different physical effects amount to a weighted superposition
of TF shifts. In fact, it is shown in [6, Th. 14.3.5] that
virtually any linear channel (operator) H can be represented
as a (generally continuous) superposition of TF shift operators
in the sense that

y(t) = // Su(r,v) (M, D-z)(t) dr dv.

For the finite-dimensional case, a simple explanation of this
representation result is given in “OPERATOR REPRESENTA-
TION.” The function Sy (7, v) in (1) characterizes the complex
weight associated with delay 7 and Doppler shift v and is
known as delay-Doppler spreading function. We note that even
though (1) applies generally, in the (ultra)wideband regime
more parsimonious channel representations may be obtained
using Doppler scaling instead of Doppler shifts [21].

2) Channel Spread and Underspread Property: Most chan-
nels are underspread, i.e., the amount of delay-Doppler spread-
ing they induce is small in that their spreading function
Su(r,v) is effectively confined to a small region in the delay-
Doppler plane. An example is visualized in the bottom center
plot in Fig. 1. Selected aspects of the underspread property
are considered in “UNDERSPREAD CHANNELS,” again in a
finite-dimensional setting.

6]



OPERATOR REPRESENTATION

The input-output relation (1) describes a large class of linear
operators. This can easily be proved for a finite-dimensional
setting using basic linear algebra. We define the N x N
cyclic time-shift matrix D, which has ones in the subdiagonal
and in the top right corner and zero entries else, and the
diagonal N x N modulation (frequency shift) matrix M,
which has e=727C=D/N 4 < {1 .. N}, as its ith main
diagonal entry. The inner product on CN X is defined as
(A,B) = Tr(BYA), where Tr(-) denotes the trace and
the superscript 7 stands for Hermitian transposition. It can
be shown that the N2 matrices {ﬁMle}m,,ze{o,...,N—l}
form a complete orthonormal set for CV*~. Hence, every
H ¢ CV*N can be decomposed as

N-1N-1
H=> ) Sulm]MD" )
m=0 1=0
with Sgz[m, ] = (H, M'D™)/N. This is the discrete, finite-
dimensional counterpart of (1).

For spreading functions with finite support, a formal def-
inition of the underspread property can be obtained by cir-
cumscribing the support region with a rectangle that is cen-
tered around the origin and whose side lengths equal twice
the channel’s maximum delay 7,,,x and maximum Doppler
frequency v,ax, respectively. (The center of the rectangle is
immaterial for the definition of the underspread property and is
chosen to be the origin for simplicity of exposition.) The area
of this rectangle, dy = 4TmaxVmax, Measures the channel’s
overall TF dispersion and is referred to as the channel spread.
A channel is then said to be underspread if dy < 1 and
overspread if dp > 1. For spreading functions that do not
have finite support, the channel spread can be quantified in
terms of moments [32].

For multipath propagation, we have dg o 1/c? [33]. Hence,
the channel spread of radio channels (where c equals the speed
of light) is typically much smaller than that of underwater
acoustic channels (where c equals the speed of sound). In fact,
radio channels have dy; on the order of 1076 to 10~ and thus
are highly underspread, whereas underwater acoustic channels
can even be overspread.

3) TF Transfer Function: The spreading function represents
channels in the delay-Doppler domain. A dual TF representa-
tion, termed TF transfer function, represents channels in the
TF domain and is defined as the two-dimensional Fourier
transform of the spreading function [9], [32], [33]:

Lu(t, f) = / Spr(r,v) e I drdy.  (6)

For underspread channels, Ly (¢, f) is smooth and character-
izes the channel’s TF weighting behavior. This generalizes the
frequency response H (f) of time-invariant channels.

The complex exponentials z(t) = e/?7fot, f; € R, are
eigenfunctions of all linear time-invariant channels. For TF
dispersive channels, a universal set of structured eigenfunc-
tions does not exist. Underspread channels, however, satisfy

UNDERSPREAD CHANNELS

Consider a finite-dimensional channel H € CN*V, and
assume that the discrete spreading function Sy[m,l] in
(2) is supported on a small set S around the origin, i.e.,
Su[m,l] = 0 for (m,l) ¢ S. The sum in (2) then consists
of only |S| nonzero terms. The channel is underspread if
|S] < N, i.e., the number |S| of degrees of freedom of the
channel does not exceed the dimensionality /V of the ambient
signal space.

A key observation explaining many properties of underspread
channels is the fact that for small m and small [, time
shifts D™ and frequency shifts M! commute approximately.
Specifically, using the (non-)commutation relation M'D™ =
D™ M'e/2%'% and the bound |1—e/2™¢| < 27|¢|, one obtains

ml
DM - M <2 D @)

where ||-|| is an arbitrary matrix norm. Clearly, if |ml| is small
relative to NV, (3) implies DM ~ M'D™. In combination
with (2), this approximate commutation property implies that
underspread channels commute approximately.

We next demonstrate the approximate multiplicativity
property (8) in the finite-dimensional setting. Here, the
discrete TF transfer function Lyi[n,k] equals the dis-
crete two-dimensional Fourier transform of the dis-
crete spreading function Syg[m,l], ie., Lu[n,k] =
Zz;é figl SH[mJ]e*ﬂ”ka;"l (cf. (6)). For under-
spread channels H; and H, with identical spreading
function support S, the approximation Lyy ,[n, k] =
Ly, [n, k] Ly, [n, k] (cf. (8)) translates into the approximate
convolution

Smm[m ]~ Y Su,[m—m',1—-1|Su,[m,I']. 4)
(m/I")eS

To prove (4), we start with the expression Sg,m,[m,!] =
(H;H,, M'D™) /N and replace H; and H by their spread-
ing representations (2). This yields

Z SH1 [m”, l”] Z SHQ [m/’ l/]

(m”,1")eS (m/,lI")eS
(M D™ M'D™, M'D™)/N. (5)

SH1H2 [m7 l] =

Now, thanks to (3) and the orthogonality of the TF shift ma-
trices M'D™, we obtain (M!" D" ' M! D™ M'D™)/N ~
5(l—l/—l”) mod N 5(777,—m’—m/’) mod N - Inserting this into (5)
yields (4).

the approximate eigenrelation

(Hgto,7,) (t) = Lu(to, fo) 9o, 10 (1), @)

with gy, 7, (t) = (Ms,Dy,g)(t); the accuracy of (7) depends
on how well the function g(t) is localized (around time zero
and frequency zero). Thus, Ly(to, fo) is the approximate
eigenvalue associated with an approximate eigenfunction that
is TF localized around the TF point (¢o, fo). This property
entails an approximate diagonalization of the channel and
explains why OFDM is a natural choice for signaling over




underspread TF dispersive channels.
For underspread channels, the TF transfer function is fur-
thermore approximately multiplicative, i.e.,

L]H1]H2 (ta f) ~ L]H1 (t’ f)L]H2 (ta f) 3

This implies that underspread channels commute approxi-
mately, i.e., HiHs ~ HsH;. The approximate commutation
of underspread channels is of practical importance, e.g., in
channel sounding [30]. A derivation of (8) in the finite-
dimensional setting is given in “UNDERSPREAD CHANNELS.”

The approximations (7) and (8) nicely show that, in terms of
transfer function calculus, underspread TF dispersive channels
behave approximately like time-invariant channels. This is due
to the fact that underspread channels share a structured set of
approximate eigenfunctions.

In Fig. 2, we show the TF transfer function and spreading
function of a realization of Channel 6 specified in the DRM
standard [34]. This is an underspread channel that models sky-
wave propagation. The echoes visible in Fig. 2(b) correspond
to multiple reflections at the ionosphere.

Channel Statistics

Many channels are modeled as random; examples of the
underlying phenomena include fading, unknown time and
frequency offsets, and phase noise. The system functions
Su(r,v) and Ly(t, f) then become two-dimensional random
processes, with four-dimensional correlation (or covariance)
functions.

1) WSSUS Channels and Scattering Function: An impor-
tant simplification of the channel statistics is obtained for chan-
nels that are wide-sense stationary with uncorrelated scattering
(WSSUS). Here, L (t, f) is a process that is stationary in time
and frequency. Hence, its correlation function is independent
of t and f, i.e.,

E{Lu(t, f) Lji(t — At, f — Af)} = Ru(At,Af),

where Ry(At, Af) is known as the channel’s TF correlation
function and E{-} denotes expectation. Correspondingly, the
scatterer reflectivities described by the spreading function are
uncorrelated, i.e.,

E{Su(r,v) Su(r',V')} = Cu(r,v)8(r — ) 6(v = v/).

Here, Cy(7,v) > 0 describes the average intensity of scat-
terers with delay 7 and Doppler shift v and is referred to
as scattering function [12], [33]. The scattering function and
the TF correlation function are related via a two-dimensional
Fourier transform:

Cu(r,v) / Ru(At, Af) e 72 WAL=TAL) AL dAf.

This shows that Cy(7,v) can be interpreted as the delay-
Doppler domain power spectral density of Ly(t, f).

The scattering function relates the time-varying power spec-
tra of the transmit and receive signals according to [33]

(t f / C]H T V)P]M D, w(t f)deV
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Fig. 2. An example of an underspread TF dispersive channel with maximum
delay 6ms and Doppler spread 14.4Hz: (a) TF transfer function over a
duration of 1s and a bandwidth of 2.5kHz and (b) spreading function in
the delay-Doppler region [0, 8) msx[—40,40) Hz (outside this region, the
spreading function is at least 40dB below the maximum value). For both
representations, the magnitude is displayed on a log scale with a 40-dB
dynamic range.
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where P.(t, f) is an arbitrary type I TF energy spectrum [35].
This relation is the statistical TF counterpart of (1); it amounts
to a convolution, since Py, p, (¢, f) = Pe(t — 7, f — v).

A WSSUS random channel is said to be underspread if its
scattering function Cy(7,v) is effectively confined to a small
delay-Doppler region (the spreading function of every channel
realization then is confined to the same region). Wireless
(radio) channels are underspread also in this stochastic sense.

2) Non-WSSUS Channels and Local Scattering Function:
Recently, high-mobility applications like vehicular commu-
nications have spurred interest in non-WSSUS channels [5],
[33]. For non-WSSUS channels, Ly (¢, f) is a nonstationary
random process and different scatterer contributions are cor-
related. A generalization of the scattering function Cy(7,v)
to non-WSSUS channels is provided by the local scattering
function [33], which equals the (generalized) Wigner-Ville
spectrum [7], [35] of Ly(t, f). The local scattering function
Cul(t, f;,v) describes the average power of scatterers that
cause a delay 7 and a Doppler shift v of the transmit signal
component localized around time ¢ and frequency f.

OFDM

In the spirit of Gabor [1], OFDM transmits data symbols
via TF logons (TF shifts of a prototype pulse). OFDM is
used in a large number of wireless and wireline communi-
cation systems and standards. Among other reasons, OFDM
is popular because cyclic prefix (CP) OFDM diagonalizes
time-invariant channels and, more generally, well TF localized
WH sets approximately diagonalize underspread TF dispersive
channels. Here, we consider pulse-shaping OFDM, which
constitutes a unified framework for CP-OFDM [36], zero-
padded OFDM [2], discrete Fourier transform (DFT) filterbank
modulation [37], and, with a slight modification, OFDM with
offset quadrature amplitude modulation [25].

Modulation and Demodulation

The transmit signal in a pulse-shaping OFDM system is
formed by modulating data symbols ¢, ; onto TF shifted
versions of a transmit pulse g(t) (e.g., [17], [24], [25], [27]),

1.€.,
t) = Z z Cn,k gn,k,(t)7 (9)

n€EZkEZ



with
gn,k(t) = (IMkF]DnTg) (t) = g(t — nT)eJQWkFt.

Here, T' is the OFDM symbol duration and F' is the subcarrier
spacing. In practical OFDM systems, the sum with respect to
k involves only a finite number of subcarriers. We assume
infinitely many subcarriers to simplify the presentation. The
collection of “logons” { gy k(t)}n kez is known as a WH set.
Its TF localization structure is schematically illustrated in the
bottom left plot in Fig. 1 (in reality, the g, »(t) overlap in time
or in frequency). To recover the data symbols ¢, 1, the receiver
projects the receive signal y(t) onto TF shifted versions of a
receive pulse (t) by computing the inner products

b = (4, Y) = / y(t) Vi (8) dt,

with 1 (t) = (MprDpry)(t) = y(t — nT)e> ™t (see
the bottom right plot in Fig. 1). This OFDM demodulation
is followed by further receiver processing such as channel
estimation, demapping, and decoding.

In the absence of channel distortions and noise, it is
desirable to have perfect symbol recovery, ie., ¢, =
Cnk; this is guaranteed if the WH sets {gnx(t)}n kez
and {vn k() }nrez satisfy the biorthogonality condition
(Gn,kes k') = On—nsOgx—k. Biorthogonality presupposes
TF > 1, in which case the system is said to employ a TF
guard region [23]. CP-OFDM [36] and zero-padded OFDM [2]
are special cases, with the TF guard region being a temporal
guard region only. However, TF"'>1 can also be achieved by
introducing a spectral guard region via an increase of the sub-
carrier spacing F'; this can reduce intercarrier interference in
frequency-dispersive environments. The spectral efficiency of
an OFDM system is inversely proportional to T'F" and is thus
determined by the density of the TF grid {(nT,kF)}

(10)

n,k€Z’
Analysis-Synthesis Duality and WH Frames

WH frames are complete or overcomplete (i.e., redundant)
WH sets with a certain guaranteed numerical stability of recon-
struction [6], [8], [22] (see “WEYL-HEISENBERG FRAMES”).
When decomposing a signal z(¢) into a WH frame {g,, »(¢)}
with dual WH frame {~,, 1 (¢) }, we would first compute the ex-
pansion coefficients (x, vy 1) (analysis stage) and then recon-
struct x(t) according to x(t) = >, s > rez (T Ynk)Gn.k (1)
(synthesis stage). In OFDM systems, the transmitter performs
synthesis of the transmit signal according to (9) with the data
symbols ¢, ;. playing the role of the expansion coefficients,
and the receiver performs analysis according to (10). This
apparent duality is closely related to the duality and biorthog-
onality theory for WH frames [38]-[40].

Duality and biorthogonality theory states that the WH
sets (g, T,F) = {g(t — nT)e?>™ '}, ez and (7,T,F)
are biorthogonal if and only if the associated WH sets
(9,1/F,1/T) and (~,1/F,1/T) are dual frames; furthermore,
the WH set (g, T, F) is orthogonal if and only if the associ-
ated WH set (g,1/F,1/T) is a tight frame (cf. “DUALITY
AND BIORTHOGONALITY”). The design of biorthogonal and
orthogonal OFDM systems is therefore reduced to the widely
studied problem of designing, respectively, dual and tight WH
frames [42].

WEYL-HEISENBERG FRAMES

For g(t) € Lo(R) and T, F > 0, a function set (9,7, F) =
{g(t — nT)es?™kFtY 1 c7 is called a WH frame or Gabor
frame for Lo(R) if for all z(t) € Lo(R)

Allzl® < D03l gai)? < Blal?
n€EZLkEL
with 0 < A < B < oo [6], [8], [22]. In what follows, we
use the tightest constants A and B; these are called lower
and upper frame bound, respectively. The frame operator $
is defined as the positive definite linear operator that maps
L2(R) onto L2(R) according to

(S2)(t) = Z Z<m>gn7k>gn,k(t)-

nel kez
For a WH frame (g,7, F'), the (minimal) dual WH frame
is given by the set (v, T, F), where v(t) = ($71g)(t). The
lower and upper frame bounds of the dual frame are given by
1/B and 1/A, respectively. Using dual WH frames (g, 7T, F')
and (v, T, F), every signal z(t) € La(R) can be decomposed
as

2(t) = D) (@ yum)gnn() = D0 D (@ gw)n(t):

nez kez nez ker
1n

A WH frame is called tight if A= B. For a tight WH frame,
we have $ = AI, where I is the identity operator, and hence
v(t) = Lg(t). If (9, T, F) is a WH frame, (S~V/2¢, T, F) is
a tight WH frame with A= B=1. Here, $~/2 is the inverse
positive definite square root of S.

In general, it is difficult to determine whether a given WH
set (g, T, F) is a WH frame. Intuitively, choosing T and F'
too large leaves “gaps” in Lo(R). Indeed, it can be shown
that for g(¢) € Ly(R) and TF > 1, the WH set (¢,7, F)
cannot be a frame for Ly(R). The elements g, x(t) of a WH
frame with TF = 1 are necessarily linearly independent,
whereas WH frames with T'F' < 1 necessarily have linearly
dependent elements g, 1(t). Therefore, (¢,7,F) can be a
frame for Lo(R) only if TF < 1, i.e., when the TF grid
{(nT, kF)}n,keZ is sufficiently dense. We note that WH
analysis and synthesis can be interpreted as the analysis and
synthesis stage, respectively, of a DFT filter bank [41].

Effect of a Doubly Dispersive Channel

Consider an OFDM system with transmit pulse g(¢) and
receive pulse 7(t). The transmit signal x(t) is distorted by a
TF dispersive channel I and contaminated by additive noise
w(t), resulting in the receive signal y(t) = (Hz)(t) + w(t).
The OFDM demodulator output ¢, = (Y, V%) then equals

én,k = HnA,k Cn,k + In,k + Wn, k (15)

where H,, , = (Hgy, i, Vn,k) is the complex gain factor affect-
ing the desired symbol c¢,, 1, I,  summarizes the interference
caused by all other symbols ¢, x, (n,k") # (n,k), and
Wn,k = (W, Yn k). The interference term I, j is given by

Z <Hgn’,k’a ’Yn,k> Cn/ k! -
(n,k") € Z2\{(n,k)}

Ly = (16)




DUALITY AND BIORTHOGONALITY

In the finite-dimensional (cyclic) case, the duality and
biorthogonality relation for WH frames essentially fol-
lows from the Poisson summation formula [38]. We
take all signals to be discrete-time and N-periodic
and consider the WH frames {g,x[i] = g[i —
nL]es?™ i }nG{O AN/L-1}, ke{0,...M—13 and {ypeli] =
’Y[Z—HL]BJQ M} €{0,...,N/L—-1}, ke{0,..., M—1} with time-shift
parameter L and frequency-shift parameter 1/M, where
L,M € Nand M > L. We assume that N is an integer
multiple of both L and M.

We want to show that the WH frames {g,, x[¢]} and {7, x[¢]}
are dual if and only if the WH sets {g,x[i] = g[i —

nM]ei?" L}nG{O AN/M-1},ke{o,...L—1} and {Fnxli] =

yli — nM]e jem }nefo,....N/M =1}, kefo,...,L—1} With time-
shift parameter M and frequency-shift parameter 1/L are
biorthogonal, i.e.,

. - L
<gn,ka 7n’,k/> = M 5n—n’6k—k" .

We start by noting that duality of {g,, x[i]} and {7, x[¢]} (cf.
(11)) is equivalent to the completeness relation

N/L—1M—1
SN gnlilv pli) = diir - (12)
n=0 k=0

The left-hand side of this relation can be shown to equal

o N/L—-1
M [&MM o fali-n'Ll|, (3)
n=—oo n’=0
where f,[i] = g[i]y*[¢ — nM]. Furthermore, the Poisson
summation formula yields
N/L—-1
kN
3 hli )= ZF e as
with F,[k] = SN0 £, [i]le 727 % . Realizing that F,[kN/L]

= (G, ¥n k), and inserting into (14) and, in turn, (13), we see
that the left-hand side of (12) equals

M 00 L—-1
<. o ik
f Z [6i_i/_nM Z<gv’7n7k> e ] '

n=-—o0o k=0
Thus, we can conclude that {g,, x[7]} and {~, x[i]} are dual
if and only if (g, 7, k) = ﬁ 0,0k, 1.€., if and only if the WH
sets {gn k[¢]} and {7, x[¢]} are biorthogonal.

This comprises interference from symbols at different times
n’ # n (intersymbol interference, ISI) and at different fre-
quencies k' # k (intercarrier interference, ICI).

ISI and ICI are negligible if H is underspread and g(t),
~(t), T, and F are chosen appropriately as discussed in the
next subsection. In that case, the input-output relation (15)
decouples into a set of noninterfering parallel scalar channels
according to

én,k: ~ Hn,k Cn,k + W,k - (17)

T T

(a) (b) (c)
Fig. 3. An example of a biorthogonal pulse-shaping OFDM system with
TF = 1.33, optimized for a TF dispersive channel with Tmax = 7/10
and vmax = F/24: (a) transmit pulse g(t), (b) receive pulse (), and (c)
magnitude of the cross-ambiguity function Ay - (7,v) (displayed on a log
scale).

This approximate diagonalization of an underspread channel
H drastically simplifies receiver tasks like data detection and
channel estimation. Note that g, x(¢f) and -, x(t) can be
viewed as approximate singular functions of I and H,, , =
(Hgn i, ¥n,k) as the corresponding approximate singular val-
ues. For normalized pulses g(t) and ~y(t), it can be shown that
H, , ~ Lu(nT,kF). In the case of a time-invariant channel,
CP-OFDM turns linear convolution into cyclic convolution.
The corresponding channel matrix is circulant and diagonal-
ized by the FFT (on which CP-OFDM is based) [36], so that
(17) becomes exact.

Pulse Design

Next, we consider the problem of designing the transmit
pulse g(¢) and the receive pulse 7(t) such that small ISI
and ICI are obtained [25]-[27]. We note that OFDM systems
with sophisticated ISI/ICI-reducing pulse shapes are currently
hardly used in practice. This can be attributed to the fact that
IST and ICI can alternatively be mitigated using equalization
[26].

For WSSUS channels, the mean power of the interference
term I, ;, in (16) can be shown to equal [27]

Py = E{|To4?} = / Caa(r,v) A, . (7.v) dr dv,
with

Agw(Ta v) = Z |[Ag (T
(m,1) € Z2\{(0,0)}

where Ay (1,v) = [ g(t)y*(t—7) e 2™ dt = (g, M, D7)
is the cross-ambiguity functlon of g(t) and ~(t) [6], [7]. To
obtain small ISI/ICI power Py, the translates |A, - (7—mT, v—
LF)|?, (m,1) € Z*\{(0,0)}, should have little overlap with
the channel’s scattering function Cy(7,v). Clearly, making
P small by suitably choosing g,~, T, and F is easier for un-
derspread channels with C (7, v) better concentrated around
(0,0). We then have to design pulses g(t) and ~(¢) for which
Ay (1,v) decays rapidly, which in turn requires that the
pulses be well TF localized [27]. An example of well-localized
biorthogonal pulses is shown in Fig. 3. Biorthogonality implies
Ay ~(mT,lF)=0,,0;, and indeed the zeros of A, (7, v) for
(1,v) = (mT,IF), (m,1) € Z*\{(0,0)}, are clearly visible
in Fig. 3(c). Further numerical results for pulse designs and
the associated ISI/ICI levels are provided in [27].

The analysis above shows that small ISI/ICI power Pj
requires an underspread channel H and pulses g(t) and ~y(¢)

—mT,v—IF)|%



that are well localized both in time and in frequency. CP-
OFDM employs a rectangular g(¢) (usually with a slight
roll-off), whose excellent time localization is well suited to
purely time-dispersive channels; however, its poor frequency
localization leads to ICI in frequency-dispersive channels.
Since well TF localized WH frames (g, 7, F') exist only for
TF <1 [6], it follows from duality and biorthogonality theory
that well TF localized biorthogonal WH sets (g, 7T, F') and
(v, T, F) (which result in low ISI/ICI) exist only for TF > 1.
Thus, there is a tradeoff between spectral efficiency and the
amount of ISIICI incurred. Specifically, if (g,7,F) with
TF =1 (maximal spectral efficiency) is an orthogonal basis
for Lo(R), then g(t) and its Fourier transform G(f) cannot
satisfy both [t%[g(t)|>dt < oo and [ f2|G(f)|?df < o
simultaneously [6].

CHANNEL CAPACITY

We have seen that WH signal sets—corresponding to
OFDM modulation—are well suited to communication over
underspread TF dispersive channels since they approximately
diagonalize the channel. In addition, WH sets are also useful
for characterizing the capacity of continuous-time WSSUS
fading channels. We consider the noncoherent setting where
neither transmitter nor receiver knows the channel realization
but the transmitter knows the channel statistics (i.e., the
scattering function Cp(7,v)). The noncoherent capacity of
fading channels [15], [43], [44] is the ultimate limit on the
achievable rate since overhead transmissions like pilots and
training sequences reduce spectral efficiency.

The standard approach to information-theoretic analyses
of continuous-time channels is to discretize the input-output
relation through a projection onto the singular functions of the
channel [43]. This yields a diagonalized discretized channel
with noninteracting scalar input-output relations, similar to
(17). In the noncoherent case, this approach works only if
all channel realizations have the same singular functions. This
is the case for time-invariant channels, where the eigenfunc-
tions are complex sinusoids independently of the channel
realization. However, for TF dispersive channels, the singular
functions generally depend on the channel realization and do
not have a specific structure.

Nevertheless, approximate capacity expressions can be ob-
tained by using the channel discretization induced by OFDM
[28]. We consider an underspread Gaussian WSSUS channel
H with additive white Gaussian noise and OFDM modulation
and demodulation using an orthonormal WH set (g=~, T, F),
where TF > 1 and g is well TF localized. An impor-
tant advantage of using WH sets to discretize the channel
(even though they do not diagonalize the channel exactly)
is the fact that the channel coefficients H,, ; in (15) inherit
the two-dimensional stationarity property of the continuous-
time WSSUS channel. In the low signal-to-noise ratio (SNR)
regime, ignoring the ISI/ICI term I,, ;. (cf. (15)) in the capacity
computation leads to small approximation errors [28]. In the
high-SNR regime, ISI/ICI cannot be neglected [28].

Using OFDM-based channel discretization, we obtain the

capacity for low SNR as [28

]
C(p) =~ Cawan(p) — // log (14 pCu(r,v)) drdy,

where Cawgn(p) is the capacity of a nondispersive additive
white Gaussian noise channel and the SNR p is inversely pro-
portional to the bandwidth. We see that C(p) is approximately
equal to Cawgn(p) minus a penalty term that is due to the
unknown channel and increases with increasing channel spread
(i.e., effective support of Cy(,v)). Furthermore, C(p) — 0
as the bandwidth grows large. Intuitively, because of the
uncorrelated scattering nature of the channel, the number of
independent diversity branches increases as the channel spread
or the signal bandwidth increases, and thus the receiver can no
longer resolve the corresponding channel uncertainty. This also
implies that C(p) has a maximum at a certain finite bandwidth.
A detailed discussion of this phenomenon is provided in [28].

For high SNR, C(p) is close to Cawgn(p) for chan-
nel spreads occurring in wireless (radio) communications.
Information-theoretic guidelines for the design of (g,T, F)
reveal that choosing TF' slightly larger than one and using
a root-raised-cosine pulse for g yields a lower bound on C(p)
that is very close to the upper bound given by Cawgn (p) [281.

SYSTEM IDENTIFICATION

The goal of channel/system identification [11] is to de-
termine a channel/system H from the output signal y(t) =
(Hz)(t) given knowledge of the sounding (or probing)
signal x(t). This is relevant to dedicated channel sound-
ing/measurement [30], channel estimation in the course of data
transmission, and numerous other applications such as radar
and sonar [45]. Let us consider a TF dispersive channel H with
spreading function Sp(7,v) supported in [—Tmax, Tmax) X
[—Vmax, Vmax)- In a practical scenario with finite input signal
bandwidth B and finite output signal observation time D,
the input-output relation (1) is discretized, resulting in an
input-output relation of the form y = Xs as explained in
“DISCRETIZATION.”

The system identification problem thus amounts to recon-
structing s from y = Xs, i.e., solving a linear system of
equations. Clearly, for the existence of a unique solution s, it
is necessary that the number |S| of unknowns be smaller than
or equal to the number N of equations, which corresponds
to the discrete underspread condition |S| < N. Due to |S| =
[4TmaxVmaxBD] and N = [BD] (see “DISCRETIZATION),
this is equivalent to [4TmaxVmaxBD] < [BD] and hence,
effectively, to dg = 4TmaxVmax < 1, which implies that
only underspread systems are identifiable. Sufficiency of the
underspread condition di < 1 for identifiability is shown by
explicitly constructing a sounding signal x(¢) such that X
has full column rank. A viable choice for x(t) is a (possibly
weighted) Dirac train [11], [29], [30]. We have thus recovered
the classical result by Kailath [11], which states that a TF
dispersive system is identifiable if and only if it is underspread.
Intuitively, in the overspread case, the system varies too fast
to be identifiable. A generalized version of Kailath’s result
was proven in [29]. The results described above are non-
parametric in that they do not impose structural assumptions



DISCRETIZATION

We consider a transmit signal x(t) that is band-limited to
[-B/2,B/2), and we observe the receive signal y(t) =
(Hx)(¢) on the time interval [—D/2, D/2). Then, for ¢t €
[-D/2,D/2), the input-output relation (1) becomes [12]

w)~ s zsﬂ(g, 1’7) (My DD, 52)(0). (18)
mEZ IET

Thus, band-limiting the input and time-limiting the output
leads to a discretization of (1) with sample spacing 1/B and
1/D in delay and Doppler, respectively. For random (i.e.,
fading) channels, based on (18), the concept of TF coherence
regions and a TF rake receiver are developed in [46].
If the spreading function Sy(7,v) is supported in
[_Tmax; Tmax) X [_Vmaxa Vmax)» Only |S‘ = |—4TmameaxBD~|
terms in (18) are nonzero. For v, < B, the output signal
y(t) in (18) is approximately band-limited to [—B/2, B/2).
According to [47], y(t) restricted to [—D/2, D/2) then lives
in a signal space of dimension N = [BD] that is spanned
by an orthonormal basis of prolate spheroidal wave functions.
Arranging the basis expansion coefficients of y(t) in a vector
y € CV, the input-output relation (18) translates into

y = Xs. (19)

Here, s € C!S! contains the |S| samples Sy(m/B,1/D),
(m/B,l/D) € [—Tmax; Tmax) X [—Vmax;Vmax), and each
column of X € CN*ISI contains the expansion coefficients
of a TF shifted version (IM;, pID,,/5x)(t) of the input signal.

on the system. Developing parametric equivalents using, e.g.,
the basis expansion model [48] is an interesting direction for
further research.

The development above can be extended to systems whose
spreading function support region is scattered across the delay-
Doppler plane. Such systems are identifiable if the overall
support area of the spreading function is at most one [49].
This result holds even if the spreading function support region
is not known prior to identification [31].

It is commonly accepted that “good” sounding signals x(t)
have a rapidly decaying temporal autocorrelation function (see,
e.g., the references in [30]). This statement specifically applies
to time-invariant systems, which induce time shifts only. For
TF dispersive systems, which cause both time and frequency
shifts, our formulation of the identification problem shows
that, for X in (19) to be well conditioned, the TF translates
of the sounding signal z(¢) should be as orthogonal to each
other as possible. This means that the autoambiguity function
Ay o (7,v) should be small for (r,v) = (m/B,l/D) with
(m,1) € Z2\{(0,0)}.

CONCLUSIONS

TF dispersive channels and WH function sets are central
concepts in communications. Both are fundamentally based
on the notion of TF shifts. Our aim in this article was to
demonstrate that the corresponding TF framework is not only
conceptually interesting but also provides powerful tools for

solving problems such as pulse design in OFDM systems,
characterization of the noncoherent capacity of continuous-
time TF dispersive channels, and system identification and
channel estimation. Furthermore, this TF framework applies
in an almost one-to-one manner to other fields like radar and
sonar (doubly spread targets [50]) and quantum physics (quan-
tization and coherent states [51]). We hope that this article
will inspire innovative research and foster cross-fertilization
between the signal processing, communications, information
theory, physics, and mathematics communities.

ACKNOWLEDGMENTS

The authors are grateful to R. Heckel for helpful comments
and to the authors of [5] for permission to use the channel
measurement data in Fig. 1. The work of F. Hlawatsch and
G. Matz was supported by FWF grants S10603 and S10606,
respectively.

AUTHORS

Gerald Matz (gmatz@nt.tuwien.ac.at) received the Dr. techn.
degree in electrical engineering from Vienna University of
Technology, Austria, in 2000. He is an associate professor
with the Institute of Telecommunications, Vienna University
of Technology. He coedited Wireless Communications over
Rapidly Time-Varying Channels (Academic, 2011). His re-
search interests include signal processing, wireless commu-
nications, and information theory. He serves on the IEEE
Signal Processing Society Technical Committees on Signal
Processing for Communications and Networking and on Signal
Processing Theory and Methods. He currently is an associate
editor of IEEE TRANSACTIONS ON INFORMATION THEORY
and was on the editorial board of several signal processing
journals. He is a Senior Member of the IEEE.

Helmut Bolcskei (boelcskei @nari.ee.ethz.ch) received the
Dr. techn. degree in electrical engineering from Vienna Uni-
versity of Technology, Austria, in 1997. He has been with
ETH Zurich since 2002, where he is a professor of electrical
engineering. He was on the founding teams of Iospan Wireless
Inc. and Celestrius AG. His research interests are in informa-
tion theory, mathematical signal processing, learning theory,
and statistics. He received the 2001 IEEE Signal Processing
Society Young Author Best Paper Award, the 2006 IEEE
Communications Society Leonard G. Abraham Best Paper
Award, the 2010 Vodafone Innovations Award, and a 2005
ETH “Golden Owl” Teaching Award. He was editor-in-chief
of IEEE TRANSACTIONS ON INFORMATION THEORY. He is
a Fellow of the IEEE and a 2011 EURASIP Fellow.

Franz Hlawatsch (fhlawats @nt.tuwien.ac.at) received the Dr.
techn. degree in electrical engineering from Vienna University
of Technology, Austria, in 1988. Since 1983, he has been
with the Institute of Telecommunications, Vienna University
of Technology. His research interests include statistical signal
processing, wireless communications, and sensor networks.
He coedited Time-Frequency Analysis: Concepts and Methods
(London: ISTE/Wiley, 2008) and Wireless Communications
over Rapidly Time-Varying Channels (New York: Academic,
2011). He was an associate editor of IEEE TRANSACTIONS



ON

SIGNAL PROCESSING and IEEE TRANSACTIONS ON

INFORMATION THEORY and served on the IEEE Signal Pro-
cessing Society Technical Committee on Signal Processing for
Communications and Networking. He is a Fellow of the IEEE.

(1]
(2]
(3]

[4]
[5]

(6]
(71
(8]
[9]

[10]

[11]
[12]

[13]

[14]
[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

REFERENCES

D. Gabor, “Theory of communication,” J. IEE, vol. 93, no. 3, pp. 429—
457, 1946.

Z. Wang and G. B. Giannakis, “Wireless multicarrier communications,”
IEEE Signal Processing Magazine, vol. 17, no. 3, pp. 29-48, May 2000.
X. Ma and G. B. Giannakis, “Space-time coding for time- and frequency-
selective MIMO channels,” in Space-Time Wireless Systems, H. Bolcskei,
D. Gesbert, C. B. Papadias, and A.-J. van der Veen, Eds. Cambridge,
UK: Cambridge University Press, 2006, ch. 11, pp. 218-238.

F. Hlawatsch and G. Matz, Eds., Wireless Communications over Rapidly
Time-Varying Channels. New York: Academic Press, 2011.

C. F. Mecklenbriuker, A. F. Molisch, J. Karedal, F. Tufvesson, A. Paier,
L. Bernado, T. Zemen, O. Klemp, and N. Czink, “Vehicular channel
characterization and its implications for wireless system design and
performance,” Proc. IEEE, vol. 99, no. 7, pp. 1189-1212, 2011.

K. Grochenig, Foundations of Time-Frequency Analysis. Boston, MA:
Birkhéuser, 2001.

P. Flandrin, Time-Frequency/Time-Scale Analysis.
Academic Press, 1999.

H. G. Feichtinger and T. Strohmer, Eds., Gabor Analysis and Algo-
rithms: Theory and Applications. Boston, MA: Birkhiduser, 1998.

L. A. Zadeh, “Frequency analysis of variable networks,” Proc. IRE,
vol. 38, no. 3, pp. 291-299, March 1950.

R. W. Chang, “Synthesis of band-limited orthogonal signals for multi-
channel data transmission,” Bell Syst. Tech. J., vol. 45, pp. 1775-1796,
Dec. 1966.

T. Kailath, “Measurements on time-variant communication channels,”
IEEE Trans. Inf. Theory, vol. 8, no. 5, pp. 229-236, Sept. 1962.

P. A. Bello, “Characterization of randomly time-variant linear channels,”
IEEE Trans. Comm. Syst., vol. 11, no. 4, pp. 360-393, 1963.

R. G. Gallager, “Characterization and measurement of time- and
frequency-spread channels,” M.L.T. Lincoln Lab, Cambridge, MA, Tech.
Rep. 352, April 1964.

N. T. Gaarder, “Scattering function estimation,” IEEE Trans. Inf. Theory,
vol. 14, no. 5, pp. 684-693, 1968.

R. S. Kennedy, Fading Dispersive Communication Channels.
York, NY: Wiley, 1969.

U. Ladebusch and C. A. Liss, “Terrestrial DVB (DVB-T): A broadcast
technology for stationary portable and mobile use,” Proc. IEEE, vol. 94,
no. 1, pp. 183-193, Jan. 2006.

L. L. Hanzo, Y. Akhtman, L. Wang, and M. Jiang, MIMO-OFDM for
LTE, WiFi and WiMAX: Coherent versus Non-coherent and Cooperative
Turbo Transceivers. Chichester, UK: Wiley—IEEE Press, 2010.

E. Haas, “Aeronautical channel modeling,” IEEE Trans. Veh. Technol.,
vol. 51, no. 2, pp. 254-264, March 2002.

F. J. C. Corripio, J. A. C. Arrabal, L. D. del Rio, and J. T. E.
Munoz, “Analysis of the cyclic short-term variation of indoor power
line channels,” IEEE J. Sel. Areas Commun, vol. 24, no. 7, pp. 1327-
1338, July 2006.

B. Li, S. Zhou, M. Stojanovic, L. Freitag, and P. Willett, “Multicarrier
communication over underwater acoustic channels with nonuniform
Doppler shifts,” IEEE J. Oceanic Eng., vol. 33, no. 2, pp. 198-209,
April 2008.

A. Papandreou-Suppappola, C. Ioana, and J. J. Zhang, “Time-scale and
dispersive processing for wideband time-varying channels,” in Wireless
Communications over Rapidly Time-Varying Channels, F. Hlawatsch and
G. Matz, Eds. New York: Academic Press, 2011, ch. 9, pp. 375-416.
O. Christensen, An Introduction to Frames and Riesz Bases. Boston,
MA: Birkhiuser, 2003.

R. Haas, “Application des transmissions a porteuses multiples aux
communications radio mobiles,” Ph.D. dissertation, Ecole Nationale
Supérieure des Télécommunications Paris, Paris, France, Jan. 1996.

W. Kozek and A. F. Molisch, “Nonorthogonal pulseshapes for multicar-
rier communications in doubly dispersive channels,” IEEE J. Sel. Areas
Commun., vol. 16, no. 8, pp. 15791589, Oct. 1998.

H. Bolceskei, “Efficient design of pulse shaping filters for OFDM
systems,” in Proc. SPIE Wavelet Applications in Signal and Image
Processing VII, Denver, CO, July 1999, pp. 625-636.

San Diego, CA:

New

[26]

[27]

[28]

[29]

(30]

[31]

[32]

[33]

[34]

[35]

[36]

(371

[38]
[39]

[40]

[41]
[42]
[43]

[44]

[45]

[46]

(471

(48]

[49]

[50]

[51]

S. Das and P. Schniter, “Max-SINR ISI/ICI-shaped multi-carrier com-
munication over the doubly dispersive channel,” IEEE Trans. Signal
Process., vol. 55, no. 12, pp. 5782-5795, Dec. 2007.

G. Matz, D. Schathuber, K. Grochenig, M. Hartmann, and F. Hlawatsch,
“Analysis, optimization, and implementation of low-interference wire-
less multicarrier systems,” IEEE Trans. Wireless Comm., vol. 6, no. 5,
pp- 1921-1931, May 2007.

G. Durisi, V. 1. Morgenshtern, H. Bolcskei, U. G. Schuster, and
S. Shamai (Shitz), “Information theory of underspread WSSUS chan-
nels,” in Wireless Communications over Rapidly Time-Varying Channels,
F. Hlawatsch and G. Matz, Eds. New York: Academic Press, 2011,
ch. 2, pp. 65-116.

W. Kozek and G. E. Pfander, “Identification of operators with bandlim-
ited symbols,” SIAM J. Math. Anal., vol. 37, no. 3, pp. 867-888, 2005.
G. Matz, A. F. Molisch, F. Hlawatsch, M. Steinbauer, and I. Gaspard,
“On the systematic measurement errors of correlative mobile radio
channel sounders,” IEEE Trans. Commun., vol. 50, no. 5, pp. 808-821,
May 2002.

R. Heckel and H. Bolcskei, “Identification of sparse linear operators,”
submitted to IEEE Trans. Information Theory, Sept. 2012, available
online at http://arxiv.org/abs/1209.5187.

G. Matz and F. Hlawatsch, “Time-frequency transfer function calculus
(symbolic calculus) of linear time-varying systems (linear operators)
based on a generalized underspread theory,” J. Math. Phys., vol. 39,
no. 8, pp. 4041-4071, Aug. 1998.

G. Matz and F. Hlawatsch, “Fundamentals of time-varying communica-
tion channels,” in Wireless Communications over Rapidly Time-Varying
Channels, F. Hlawatsch and G. Matz, Eds. New York: Academic Press,
2011, ch. 1, pp. 1-63.

ETSI, “Digital radio mondiale (DRM): System specification,” EN 201
980, V2.1.1, 2004 (http://www.etsi.org).

G. Matz and F. Hlawatsch, “Nonstationary spectral analysis based
on time-frequency operator symbols and underspread approximations,”
IEEE Trans. Inf. Theory, vol. 52, no. 3, pp. 1067-1086, March 2006.
A. Peled and A. Ruiz, “Frequency domain data transmission using
reduced computational complexity algorithms,” in Proc. IEEE ICASSP-
80, Denver, CO, 1980, pp. 964-967.

Special Issue on Filter Banks for Next Generation Multicarrier Wireless
Communications, Eds. M. Renfors, P. Siohan, B. Farhang-Boroujeny,
and F. Bader, EURASIP J. Adv. Signal Process., no. 1, 2010.

J. Wexler and S. Raz, “Discrete Gabor expansions,” Signal Processing,
vol. 21, no. 3, pp. 207-220, Nov. 1990.

A. J. E. M. Janssen, “Duality and biorthogonality for Weyl-Heisenberg
frames,” J. Fourier Anal. Applicat., vol. 1, no. 4, pp. 403-436, 1995.
I. Daubechies, H. J. Landau, and Z. Landau, “Gabor time-frequency
lattices and the Wexler-Raz identity,” J. Fourier Anal. Applicat., vol. 1,
no. 4, pp. 437478, 1995.

P. P. Vaidyanathan, Multirate Systems and Filter Banks.
Cliffs, NJ: Prentice Hall, 1993.

1. Daubechies, Ten Lectures on Wavelets.
1992.

R. G. Gallager, Information Theory and Reliable Communication. New
York, NY: Wiley, 1968.

E. Biglieri, J. Proakis, and S. Shamai (Shitz), “Fading channels:
Information-theoretic and communications aspects,” IEEE Trans. Inf.
Theory, vol. 44, no. 6, pp. 2619-2692, Oct. 1998.

M. Herman and T. Strohmer, “High-resolution radar via compressed
sensing,” IEEE Trans. Signal Process., vol. 57, no. 6, pp. 2275-2284,
2009.

A. M. Sayeed and B. Aazhang, “Joint multipath-Doppler diversity in
mobile wireless communications,” IEEE Trans. Commun., vol. 47, no. 1,
pp. 123-132, Jan. 1999.

D. Slepian, “On bandwidth,” Proc. IEEE, vol. 64, no. 3, pp. 292-300,
March 1976.

M. K. Tsatsanis and G. B. Giannakis, “Modeling and equalization of
rapidly fading channels,” Int. J. Adapt. Control Signal Process., vol. 10,
pp. 159-176, March 1996.

P. A. Bello, “Measurement of random time-variant linear channels,”
IEEE Trans. Inf. Theory, vol. 15, no. 4, pp. 469475, July 1969.

H. L. Van Trees, Detection, Estimation, and Modulation Theory, Part
IlI: Radar-Sonar Signal Processing and Gaussian Signals in Noise.
Malabar, FL: Krieger, 1992.

G. B. Folland, Harmonic Analysis in Phase Space (vol. 122: Annals of
Mathematics Studies). Princeton, NJ: Princeton University Press, 1989.

Englewood

Philadelphia, PA: SIAM,





