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Abstract

A central task in machine learning, computer vision, and signal pro-
cessing is to extract characteristic features of signals. Feature extrac-
tors based on deep convolutional neural networks (DCNNs) have been
applied with significant success in a wide range of practical machine
learning tasks such as classification of images in the ImageNet data set
(Krizhevsky et al., 2012), image captioning (Vinyals et al., 2015), or
control-policy-learning to play Atari games (Mnih et al., 2015) or the
board game Go (Silver et al., 2016). Since DCNN architectures lead to
remarkable results across a broad range of applications, it is essential
to understand their underlying mechanisms. In this thesis, we develop
a mathematical theory of DCNNs for feature extraction using concepts
from applied harmonic analysis. We investigate the impact of DCNN
topology and building blocks—convolution filters, non-linearities, and
pooling operators—on the network’s feature extraction capabilities.

The mathematical analysis of feature extractors generated by DC-
NNs was initiated by Mallat in (Mallat, 2012). Specifically, (Mallat,
2012) analyzed so-called scattering networks, where signals are pro-
pagated through layers that employ directional wavelet filters and
modulus non-linearities but no intra-layer pooling. The resulting
wavelet-modulus feature extractor is horizontally (i.e., in every net-
work layer) translation-invariant (where the wavelet scale parameter
determines the amount of invariance) and stable with respect to
(w.r.t.) certain non-linear deformations, both properties of signifi-
cance in practical feature extraction applications.
In the first part of this thesis, we complement Mallat’s results by
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developing a theory of DCNNs for feature extraction encompassing
general convolutional transforms, or in more technical parlance, ge-
neral semi-discrete frames (including Weyl-Heisenberg, curvelet, shear-
let, ridgelet, and wavelet frames), general Lipschitz-continuous non-
linearities (e.g., rectified linear units, shifted logistic sigmoids, hy-
perbolic tangents, and modulus functions), and general Lipschitz-
continuous pooling operators emulating sub-sampling and averaging.
In addition, all of these elements can be different in different network
layers. For the resulting network (called generalized scattering net-
work) we prove a translation invariance result which is of vertical
nature in the sense of the network depth determining the amount
of invariance, and we establish deformation sensitivity bounds that
apply to signal classes with inherent deformation insensitivity such as,
e.g., band-limited functions, cartoon functions (Donoho, 2001) (which
provide a good model for natural images), and Lipschitz functions.
The essence of our results is that vertical (i.e., asymptotically in
the network depth) translation invariance and limited sensitivity to
non-linear deformations are guaranteed by the network structure per
se rather than the specific convolution filters, non-linearities, and
pooling operators.
In the second part of this thesis, we study the DCNN topology,

specifically the depth and width. Many practical machine learning
tasks employ very deep convolutional neural networks (He et al.,
2015). Such large depths pose formidable computational challenges
in training and operating the network. It is therefore important to
understand how fast the energy contained in the propagated signals
(a.k.a. feature maps) decays across layers. In addition, it is desirable
that the feature extractor generated by the network be informative
in the sense of the only signal mapping to the all-zeros feature vector
being the zero input signal. This “trivial null-set” property can be
accomplished by asking for “energy conservation” in the sense of
the energy in the feature vector being proportional to that of the
corresponding input signal. We address these questions for the class
of scattering networks that employ the modulus non-linearity, no
pooling, and general filters that are allowed to be different in different
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network layers. We establish conditions for energy conservation (and
thus for a trivial null-set) and characterize corresponding feature map
energy decay rates. Specifically, we find that under mild analyticity
and high-pass conditions on the filters (which encompass, inter alia,
various constructions of Weyl-Heisenberg filters, wavelets, ridgelets,
(α)-curvelets, and shearlets) the feature map energy decays at least
polynomially fast. For broad families of wavelets and Weyl-Heisenberg
filters, the guaranteed decay rate is shown to be exponential. Moreover,
we provide handy estimates of the number of layers needed to have
at least ((1 − ε) · 100)% of the input signal energy be contained in
the feature vector.

In the third and final part of this thesis, we focus on the practically
relevant discrete-time case, introduce new DCNN architectures, and
propose a mathematical framework for their analysis. We establish
deformation and translation sensitivity results of local and global
nature, and we investigate how certain structural properties of the
input signal are reflected in the corresponding feature vectors. Our
theory applies to general filters and general Lipschitz-continuous
non-linearities and pooling operators. Experiments on handwritten
digit classification and facial landmark detection—including a feature
importance evaluation—complement the theoretical findings.
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Kurzfassung

Das Extrahieren von charakteristischen Merkmalen aus Signalen ist
ein wichtiges Problem im maschinellen Lernen und Sehen sowie in
der Signalverarbeitung. Feature extractors1, die auf tiefen neuronalen
Faltungsnetzwerken (TNFNs) basieren, werden mit grossem Erfolg
in vielen Bereichen des maschinellen Lernens angewandt. Beispiele
dafür sind die Klassifizierung von Bildern des ImageNet Datensatzes
(Krizhevsky et al., 2012), das Generieren von Bildbeschreibungen
(Vinyals et al., 2015) oder das Lernen von Strategien, die es er-
möglichen, Computerspiele (Mnih et al., 2015) oder das Brettspiel
„Go“ (Silver et al., 2016) zu spielen. Aufgrund des breiten Anwen-
dungsspektrums und der bemerkenswerten Erfolge ist es von zen-
traler Bedeutung, diejenigen Mechanismen zu verstehen, die der Netz-
werkarchitektur zugrunde liegen. In dieser Dissertation entwickeln
wir eine mathematische Theorie für das Extrahieren von features
mittels TNFNs, die auf Konzepten der angewandten harmonischen
Analyse basiert. Wir untersuchen dabei, wie die TNFN-Topologie und
-Bausteine—Filter, Nichtlinearitäten und pooling2 Operatoren—die
Fähigkeit der Netzwerke, charakteristische features aus Signalen zu
extrahieren, beeinflussen.

Die mathematische Analyse von feature extractors, die auf TNFNs
basieren, wurde in (Mallat, 2012) initiiert. Mallat analysierte soge-
nannte scattering networks3, in denen Signale durch Netzwerkschich-

1Auf Deutsch: Merkmalsextraktoren.
2Auf Deutsch: Bündelung.
3Auf Deutsch: Streunetzwerke.
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ten, die wavelet Filter und modulus Nichtlinearitäten verwenden,
jedoch auf pooling Operatoren verzichten, propagiert werden. Der
korrespondierende wavelet-modulus feature extractor ist horizontal
(d.h. in jeder Netzwerkschicht) translationsinvariant (wobei der Grad
der Invarianz durch den wavelet Skalierungsparameter bestimmt wird)
und stabil gegenüber gewissen nichtlinearen Deformationen.

Im ersten Teil dieser Dissertation ergänzen wir die Ergebnisse von
Mallat, indem wir eine Theorie für das Extrahieren von features mit-
tels TNFNs entwickeln, die es ermöglicht, i) allgemeine semi-diskrete
frames (z.B. Weyl-Heisenberg, curvelet, shearlet, ridgelet und wavelet
frames), ii) allgemeine Lipschitz-stetige Nichtlinearitäten (z.B. rec-
tified linear units, logistic sigmoids, hyperbolic tangents und den
modulus) und iii) allgemeine Lipschitz-stetige pooling Operatoren
(z.B. sub-sampling oder averaging) zu verwenden. Ferner ist es möglich,
unterschiedliche Filter, Nichtlinearitäten und pooling Operatoren in
unterschiedlichen Netzwerkschichten zu benutzen. Für diese Architek-
turen, die wir generalized scattering networks nennen, beweisen wir
ein Translationsinvarianz-Resultat, das von vertikaler Natur ist (d.h.
die Netzwerktiefe bestimmt den Grad der Invarianz), und wir leiten
Deformationssensibilitäts-Garantien her, die für Signalklassen gelten,
die inhärent insensibel gegenüber Deformationen sind. Beispiele für
solche Signalklassen sind bandbegrenzte Funktionen, Lipschitz-stetige
Funktionen sowie cartoon functions (Donoho, 2001), welche sich gut
dazu eignen, Bilder zu modellieren. Die Essenz unserer Ergebnisse ist,
dass vertikale (d.h. in der Netzwerktiefe asymptotische) Translations-
invarianz und Insensibilität gegenüber nichtlinearen Deformationen
durch die Netzwerkstruktur an sich gewährleistet sind, und nicht
durch die spezifische Wahl der Filter, Nichtlinearitäten und pooling
Operatoren.
Im zweiten Teil dieser Dissertation untersuchen wir die TNFN-

Topologie, insbesondere die Tiefe und Breite der Netzwerke. In vielen
Anwendungsbereichen des maschinellen Lernens werden sehr tiefe neu-
ronale Faltungsnetzwerke vewendet (He et al., 2015). Solche grossen
Netzwerktiefen bereiten sowohl im Training als auch in der Anwen-
dung der Netzwerke rechentechnische Probleme. Es ist daher von
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zentraler Bedeutung zu verstehen, wie schnell die Energie, die in
den feature maps4 enthalten ist, mit zunehmender Netzwerktiefe
abfällt. Ferner ist es wünschenswert, dass das einzige Signal, das
durch den feature extractor auf den Null-Vektor abgebildet wird,
das Null-Eingangssignal ist. Diese „triviale Nullmengen“ Eigenschaft
gilt, wenn die Energie des feature vectors proportional zu der Ener-
gie des Eingangssignals ist. Konkret untersuchen wir das Abfallen
der feature map Energie und die Erhaltung der feature vector Ener-
gie für scattering networks, welche allgemeine Filter, die modulus
Nichtlinearität und keine pooling Operatoren verwenden. Wir leiten
Bedingungen für Energieerhaltung (und damit für eine triviale Null-
menge) her und charakterisieren die Energieabklingraten der feature
maps. Wir zeigen, dass unter Analytizitäts- und Hochpassbedingung-
en an die Filter (die z.B. von gewissen Weyl-Heisenberg Filtern,
wavelets, ridgelets, (α)-curvelets und shearlets erfüllt werden) die
Energie mindestens polynomiell in der Netzwerktiefe abfällt. Für
einige Familien von wavelet und Weyl-Heisenberg Filtern beweisen
wir, dass die Abklingrate sogar exponentiell in der Netzwerktiefe
ist. Unsere Energieabkling-Resultate ermöglichen es uns, diejenige
Netzwerktiefe zu spezifizieren, die benötigt wird, damit mindestens
((1− ε) · 100)% der Eingangssignalenergie im feature vector enthalten
ist.

Im dritten und letzten Teil dieser Dissertation betrachten wir den
praktisch relevanten zeitdiskreten Fall, präsentieren neue TNFN-
Architekturen und stellen die mathematischen Grundlagen vor, die für
deren Analyse notwendig sind. Wir beweisen Resultate zur Deforma-
tions- und Translationssensibilität des feature extractors, die von
lokaler und globaler Natur sind, und wir untersuchen, wie sich be-
stimmte strukturelle Eigenschaften des Eingangssignals im feature vec-
tor widerspiegeln. Die von uns entwickelte Theorie kann auf Netzwerke
angewandt werden, die allgemeine Filter, allgemeine Lipschitz-stetige
Nichtlinearitäten und allgemeine Lipschitz-stetige pooling Operatoren
verwenden. Experimente zur Klassifizierung von handgeschriebenen

4Auf Deutsch: Propagierte Signale.
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Ziffern und zur Erkennung von Gesichtspartien ergänzen die theore-
tischen Ergebnisse.
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CHAPTER 1

Introduction

Deep convolutional neural networks (DCNNs) have led to
breakthrough results in numerous practical machine learning
tasks (Rumelhart et al., 1986; LeCun et al., 1990, 1998, 2010,

2015; Krizhevsky et al., 2012; Bengio et al., 2013; He et al., 2015; Mnih
et al., 2015; Goodfellow et al., 2016; Silver et al., 2016). While DCNNs
can be used to perform classification (or other machine learning tasks
such as, e.g., control-policy-learning to play Atari games (Mnih et al.,
2015) or the board game Go (Silver et al., 2016)) directly, typically
based on the output of the last network layer, they can also act as
stand-alone feature extractors (Serre et al., 2005; Huang and LeCun,
2006; Mutch and Lowe, 2006; Ranzato et al., 2006, 2007; Pinto et al.,
2008; Jarrett et al., 2009) with the resulting features fed into a classifier
such as a support vector machine (SVM) (Cortes and Vapnik, 1995).
The present thesis pertains to the latter philosophy and develops a
mathematical theory of DCNNs for feature extraction.
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1 INTRODUCTION

1.1. DEEP CONVOLUTIONAL FEATURE EXTRACTION:
ARCHITECTURES, INVARIANCES, AND
DEFORMATION SENSITIVITY (CHAPTER 3)

A central task in machine learning is feature extraction (Duda et al.,
2001; Bishop, 2009; Bengio et al., 2013) as, e.g., in the context of hand-
written digit classification (LeCun and Cortes, 1998). The features to
be extracted in this case correspond, for example, to the edges of the
digits. The idea behind feature extraction is that feeding characteris-
tic features of the signals—rather than the signals themselves—to a
classifier (such as, e.g., a SVM) improves classification performance.
Specifically, non-linear feature extractors can map input signal space
dichotomies that are not linearly separable into linearly separable
feature space dichotomies (Bishop, 2009). Sticking to the example of
handwritten digit classification, we would, moreover, want the feature
extractor to be invariant to the digits’ spatial location within the
image, which leads to the requirement of translation invariance. In
addition, it is desirable that the feature extractor be robust with
respect to (w.r.t.) handwriting styles. This can be accomplished by
demanding limited sensitivity of the features to certain non-linear
deformations of the signals to be classified.

Feature extractors based on DCNNs have been applied with tremen-
dous success in a wide range of practical machine learning tasks
(Rumelhart et al., 1986; LeCun et al., 1990, 1998, 2015; Krizhevsky
et al., 2012; Bengio et al., 2013; He et al., 2015; Mnih et al., 2015;
Goodfellow et al., 2016; Silver et al., 2016). These networks are
composed of multiple layers, each of which computes convolutional
transforms, followed by the application of non-linearities and pooling
operators.

The mathematical analysis of feature extractors generated by DC-
NNs was pioneered by Mallat in (Mallat, 2012). Mallat’s theory
applies to so-called scattering networks, where signals are propagated
through layers that compute a semi-discrete wavelet transform (i.e.,
convolutions with filters that are obtained from a mother wavelet

2



1.1 DEEP CONVOLUTIONAL FEATURE EXTRACTION

through scaling and rotation operations), followed by the modulus
non-linearity, without subsequent pooling. The resulting feature ex-
tractor is shown to be translation-invariant (asymptotically in the
scale parameter of the underlying wavelet transform) and stable w.r.t.
certain non-linear deformations. Moreover, Mallat’s scattering net-
works lead to state-of-the-art results in various classification tasks
(Bruna and Mallat, 2013; Andén and Mallat, 2014; Sifre, 2014).

DCNN-based feature extractors that were found to work well in
practice employ a wide range of i) filters, namely pre-specified struc-
tured filters such as wavelets (Serre et al., 2005; Mutch and Lowe,
2006; Pinto et al., 2008; Jarrett et al., 2009), pre-specified unstruc-
tured filters such as random filters (Ranzato et al., 2007; Jarrett
et al., 2009), and filters that are learned in a supervised (Huang and
LeCun, 2006; Jarrett et al., 2009) or an unsupervised (Ranzato et al.,
2006, 2007; Jarrett et al., 2009) fashion, ii) non-linearities, beyond
the modulus function (Mutch and Lowe, 2006; Jarrett et al., 2009;
Mallat, 2012), namely hyperbolic tangents (Huang and LeCun, 2006;
Ranzato et al., 2007; Jarrett et al., 2009), rectified linear units (Nair
and Hinton, 2010; Glorot et al., 2011), and logistic sigmoids (Glorot
and Bengio, 2010; Mohamed et al., 2011), and iii) pooling operators,
namely sub-sampling (Pinto et al., 2008), average pooling (Huang
and LeCun, 2006; Jarrett et al., 2009), and max-pooling (Serre et al.,
2005; Mutch and Lowe, 2006; Ranzato et al., 2007; Jarrett et al.,
2009). In addition, the filters, non-linearities, and pooling operators
can be different in different network layers. This motivates to develop
generalized scattering networks that encompass all these elements in
full generality, which is the first main contribution of Chapter 3.

Convolutional transforms as applied in DCNNs can be interpreted
as semi-discrete signal transforms (Mallat and Zhong, 1992; Unser,
1995; Vandergheynst, 2002a; Candès and Donoho, 2005; Mallat, 2009;
Grohs, 2012; Kutyniok and Labate, 2012b; Grohs et al., 2015) (i.e.,
convolutional transforms with filters that are countably parametrized).
Corresponding prominent representatives are curvelet (Candès and
Donoho, 2004, 2005; Grohs et al., 2015) and shearlet (Guo et al., 2006;
Kutyniok and Labate, 2012b) transforms, both of which are known to

3



1 INTRODUCTION

be highly effective in extracting features characterized by curved edges
in images. The theory developed in Chapter 3 allows for general semi-
discrete signal transforms, general Lipschitz-continuous non-linearities
(e.g., rectified linear units, shifted logistic sigmoids, hyperbolic tan-
gents, and modulus functions), and incorporates continuous-time
Lipschitz pooling operators that emulate discrete-time sub-sampling
and averaging. Finally, different network layers may be equipped
with different convolutional transforms, different Lipschitz-continuous
non-linearities, and different Lipschitz-continuous pooling operators.
Regarding translation invariance, it was argued, e.g., in (Serre

et al., 2005; Huang and LeCun, 2006; Mutch and Lowe, 2006; Ranzato
et al., 2007; Jarrett et al., 2009), that in practice invariance of the
extracted features is crucially governed by the network depth and
by the presence of pooling operators (such as, e.g., sub-sampling
(Pinto et al., 2008), average-pooling (Huang and LeCun, 2006; Jarrett
et al., 2009), or max-pooling (Serre et al., 2005; Mutch and Lowe,
2006; Ranzato et al., 2007; Jarrett et al., 2009)). We show that
the generalized scattering networks considered in this thesis, indeed,
exhibit such a vertical translation invariance and that pooling plays
a crucial role in achieving it. Specifically, we prove that the depth of
the network determines the extent to which the extracted features are
translation-invariant. We also show that pooling is necessary to obtain
vertical translation invariance as otherwise the features remain fully
translation-covariant irrespective of network depth. We furthermore
establish a deformation sensitivity bound valid for signal classes such
as, e.g., band-limited functions, cartoon functions (Donoho, 2001)
(which provide a good model for natural images such as those in the
Caltech-256 (Griffin et al., 2007), CIFAR-100 (Krizhevsky, 2009), and
MNIST (LeCun and Cortes, 1998) data sets), and Lipschitz functions.
This bound shows that small non-linear deformations of the input
signal lead to small changes in the corresponding feature vector.
In terms of mathematical techniques, we draw heavily from con-

tinuous frame theory (Ali et al., 1993; Kaiser, 1994). We develop a
proof machinery that is completely detached from the structures of
the semi-discrete transforms and the specific form of the Lipschitz

4



1.2 ENERGY PROPAGATION IN DEEP CONVOLUTIONAL NETWORKS

non-linearities and Lipschitz pooling operators. The proof of our de-
formation sensitivity bound is based on two key elements, namely a
Lipschitz continuity property for the feature extractor and a deforma-
tion sensitivity bound for the signal class under consideration (e.g.,
band-limited functions, cartoon functions, and Lipschitz functions).
This “decoupling” approach has important practical ramifications as
it shows that whenever we have deformation sensitivity bounds for
a signal class, we automatically get deformation sensitivity bounds
for the DCNN feature extractor operating on that signal class. Our
results hence establish that vertical translation invariance and limited
sensitivity to deformations—for signal classes with inherent defor-
mation insensitivity—are guaranteed by the network structure per
se rather than the specific convolution kernels, non-linearities, and
pooling operators.

1.2. ENERGY PROPAGATION IN
DEEP CONVOLUTIONAL NEURAL NETWORKS
(CHAPTER 4)

Many practical machine learning tasks, such as, e.g., the classification
of images in the ImageNet data set, employ very deep networks with
potentially hundreds of layers (He et al., 2015). Such network depths
entail formidable computational challenges in the training phase due
to the large number of parameters to be learned (e.g., in (Simonyan
and Zisserman, 2014), the DCNN has 144 million parameters), and in
operating the network due to the large number of convolutions that
need to be carried out (e.g., the DCNN in (He et al., 2015) entails
11.3 billion FLOPS to pass a single image through the network). It is
therefore paramount to understand how fast the energy contained in
the signals generated in the individual network layers (a.k.a. feature
maps) decays across layers. In addition, it is important that the
feature vector—obtained by aggregating filtered versions of the feature
maps—be informative in the sense of the only signal mapping to the
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all-zeros feature vector being the zero input signal. This “trivial null-
set” property for the feature extractor can be obtained by asking for
the energy in the feature vector being proportional to that of the
corresponding input signal, a property we shall refer to as “energy
conservation”.
First steps towards addressing these questions were made—for

scattering network-based feature extractors—in (Waldspurger, 2015,
Section 5) and (Czaja and Li, 2017). Specifically, it was shown that
the energy in the feature maps generated by scattering networks
employing, in every network layer, the same set of certain Parseval
wavelets (Waldspurger, 2015, Section 5) or “uniform covering” (Czaja
and Li, 2017) filters (both satisfying analyticity and vanishing mo-
ments conditions), the modulus non-linearity, and no pooling, decays
at least exponentially fast and “strict” energy conservation (which, in
turn, implies a trivial null-set) for the infinite-depth feature vector
holds. Specifically, the feature map energy decay was shown to be at
least of order O(a−N ), for some unspecified a > 1, where N denotes
the network depth. We note that d-dimensional uniform covering
filters as introduced in (Czaja and Li, 2017) are a family of functions
whose Fourier transforms’ support sets can be covered by a union
of finitely many balls. This covering condition is satisfied by, e.g.,
Weyl-Heisenberg filters (Gröchenig, 2001) with a band-limited proto-
type function, but fails to hold for multi-scale filters such as wavelets
(Daubechies, 1992; Mallat, 2009), (α)-curvelets (Candès and Donoho,
2004, 2005; Grohs et al., 2015), shearlets (Guo et al., 2006; Kutyniok
and Labate, 2012b), or ridgelets (Candès, 1998; Candès and Donoho,
1999; Grohs, 2012), see (Czaja and Li, 2017, Remark 2.2 (b)).

The first main contribution of Chapter 4 is a characterization of the
feature map energy decay rate in scattering networks employing the
modulus non-linearity, no pooling, and general filters that constitute
a frame (Daubechies, 1992; Ali et al., 1993; Kaiser, 1994; Christensen,
2003), but not necessarily a Parseval frame, and are allowed to be
different in different network layers. We find that, under mild analy-
ticity and high-pass conditions on the filters, the energy decay rate is
at least polynomial in the network depth, i.e., the decay is at least of

6
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order O(N−α), and we explicitly specify the decay exponent α > 0.
This result encompasses, inter alia, various constructions of Weyl-
Heisenberg filters, wavelets, ridgelets, (α)-curvelets, shearlets, and
learned filters (of course as long as the learning algorithm imposes the
analyticity and high-pass conditions we require). For broad families
of wavelets and Weyl-Heisenberg filters, the guaranteed energy decay
rate is shown to be exponential in the network depth, i.e., the decay
is at least of order O(a−N ) where an arbitrary decay factor a > 1 can
be realized through suitable choice of the mother wavelet bandwidth
or the Weyl-Heisenberg prototype function bandwidth.

Our second main contribution in Chapter 4 shows that the energy
decay results above are compatible with a trivial null-set for finite-
and infinite-depth networks. Specifically, this is accomplished by
establishing energy proportionality between the feature vector and
the underlying input signal with the proportionality constant lower-
and upper-bounded by the frame bounds of the filters employed in
the different layers. We show that this energy conservation result is a
consequence of a demodulation effect induced by the modulus non-
linearity in combination with the analyticity and high-pass properties
of the filters. Specifically, in every network layer, the modulus non-
linearity moves the spectral content of each individual feature map to
base-band (i.e., to low frequencies), where it is subsequently extracted
(i.e., fed into the feature vector) by a low-pass output-generating
filter.
For input signals that belong to the class of Sobolev functions1,

our energy decay and conservation results are shown to yield handy
estimates of the number of layers needed to have at least ((1−ε)·100)%
of the input signal energy be contained in the feature vector. Finally,
we show how networks of fixed (possibly small) depth N , say N = 2,
can be designed that capture most of the input signal’s energy.

We emphasize that throughout energy decay results pertain to the

1A wide range of practically relevant signal classes are Sobolev functions, for
example, band-limited functions and—as established in the present thesis—cartoon
functions (Donoho, 2001) which are a good model for natural images such as, e.g.,
images of handwritten digits (LeCun and Cortes, 1998).
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feature maps, whereas energy conservation statements apply to the
feature vector, obtained by aggregating filtered versions of the feature
maps.

1.3. FROM THEORY TO PRACTICE:
DISCRETE-TIME DEEP CONVOLUTIONAL
NEURAL NETWORKS (CHAPTER 5)

The purpose of Chapter 5 is to build the bridge between theory
and practice. Specifically, we introduce new discrete-time DCNN
architectures and propose a mathematical framework for their analysis.
The architectures we present incorporate general filters, Lipschitz
non-linearities, and Lipschitz pooling operators, and build the feature
vector from subsets of the layers. This leads us to the notions of
local and global feature vector properties with globality pertaining to
characteristics brought out by the union of features across all network
layers, and locality identifying attributes made explicit in individual
layers.

Besides providing analytical performance results of general validity,
we also investigate how certain structural properties of the input
signal are reflected in the corresponding feature vectors. Specifically,
we analyze the (local and global) deformation and translation sensi-
tivity properties of feature vectors corresponding to sampled cartoon
functions (Donoho, 2001).
Our theoretical results are complemented by extensive numerical

studies on facial landmark detection and handwritten digit classi-
fication. Specifically, we elucidate the role of local feature vector
properties through a feature relevance study.

1.4. PUBLICATIONS

The majority of the results in this thesis have been published during
the course of the PhD studies. Specifically, the results in Chapter 3
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appear in (Wiatowski and Bölcskei, 2015, 2018; Grohs et al., 2016).
Moreover, the results presented in Chapter 4 have been published in
(Grohs et al., 2017; Wiatowski et al., 2017, 2018), and the results in
Chapter 5 were presented in (Wiatowski et al., 2016).
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CHAPTER 2

Mathematical Prerequisites

The basic building block of a DCNN consists of a convolutional
transform followed by a non-linearity and a pooling opera-
tion. In this chapter, we review the theory of convolutional

transforms (specifically, of semi-discrete frames) and give a list of
structured example transforms of interest in the context of this thesis.
Moreover, we give a brief overview of non-linearities and pooling
operators that are widely used in the deep learning literature, and
establish that these non-linearities and pooling operators all satisfy
the Lipschitz property.

We start this chapter by introducing the notation employed in this
thesis.

2.1. NOTATION

Throughout the thesis, we employ the following notation.

Scalars, vectors, matrices, and tensors

The complex conjugate of z ∈ C is denoted by z. We write Re(z) for
the real, and Im(z) for the imaginary part of z ∈ C. The Euclidean
inner product of x, y ∈ Cd is 〈x, y〉 :=

∑d
i=1 xiyi, with associated

norm |x| :=
√
〈x, x〉. We denote the identity matrix by E ∈ Rd×d.

For the matrix M ∈ Rd×d, Mi,j designates the entry in its i-th row

11
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and j-th column, and for a tensor T ∈ Rd×d×d, Ti,j,k refers to its
(i, j, k)-th component. The supremum norm of the matrix M ∈ Rd×d
is defined as |M |∞ := supi,j |Mi,j |, and the supremum norm of the
tensor T ∈ Rd×d×d is |T |∞ := supi,j,k |Ti,j,k|.

Sets and groups

We write Br(x) ⊆ Rd for the open ball of radius r > 0 centered at
x ∈ Rd. The Minkowski sum of sets A,B ⊆ Rd is (A+B) := {a+b | a ∈
A, b ∈ B}, and A∆B := (A\B) ∪ (B\A) denotes their symmetric
difference. The cardinality of the set A is denoted by card(A). The
indicator function of a set B ⊆ Rd is defined as 1B(x) = 1, for x ∈ B,
and 1B(x) = 0, for x ∈ Rd\B. The support supp(f) of a function
f : Rd → C is the closure of the set {x ∈ Rd | f(x) 6= 0} in the topology
induced by the Euclidean norm | · |. O(d) stands for the orthogonal
group of dimension d ∈ N, and SO(d) for the special orthogonal group.
The first canonical orthant is H := {x ∈ Rd | xk > 0, k = 1,..., d},
and we define the rotated orthant HA := {Ax | x ∈ H}, for A ∈ O(d).

Lebesgue-measurable functions

For a Lebesgue-measurable function f : Rd → C, we write
∫
Rd f(x)dx

for the integral of f w.r.t. Lebesgue measure µL. For p ∈ [1,∞), Lp(Rd)
stands for the space of Lebesgue-measurable functions f : Rd → C
satisfying ‖f‖p := (

∫
Rd |f(x)|pdx)1/p <∞. L∞(Rd) denotes the space

of Lebesgue-measurable functions f : Rd → C such that ‖f‖∞ :=
inf{α > 0 | |f(x)| 6 α for a.e.1 x ∈ Rd} < ∞. For f, g ∈ L2(Rd) we
set 〈f, g〉 :=

∫
Rd f(x)g(x)dx. For a countable setQ, (L2(Rd))Q denotes

the space of sets s := {sq}q∈Q, sq ∈ L2(Rd), for all q ∈ Q, satisfying
|||s||| := (

∑
q∈Q ‖sq‖22)1/2 <∞. For a measurable set B ⊆ Rd, we let

vold(B) :=
∫
Rd 1B(x)dx =

∫
B

1dx.

1Throughout “a.e.” is w.r.t. Lebesgue measure.
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Linear operators

Id : Lp(Rd) → Lp(Rd) stands for the identity operator on Lp(Rd).
We denote the Fourier transform of f ∈ L1(Rd) by f̂(ω) :=∫
Rd f(x)e−2πi〈x,ω〉dx and extend it in the usual way to L2(Rd) (Rudin,

1991, Theorem 7.9). The convolution of f ∈ L2(Rd) and g ∈ L1(Rd)
is (f ∗ g)(y) :=

∫
Rd f(x)g(y − x)dx. We write (Ttf)(x) := f(x − t),

t ∈ Rd, for the translation operator, and (Mωf)(x) := e2πi〈x,ω〉f(x),
ω ∈ Rd, for the modulation operator. Involution is defined by
(If)(x) := f(−x). The operator norm of the bounded linear operator
A : Lp(Rd)→ Lq(Rd) is ‖A‖p,q := sup‖f‖p=1 ‖Af‖q.

Differentiable functions and vector fields

Hs(Rd), with s > 0, stands for the Sobolev space of functions f ∈
L2(Rd) satisfying ‖f‖Hs := (

∫
Rd |f̂(ω)|2(1 + |ω|2)sdω)1/2 < ∞, see

(Grafakos, 2009, Section 6.2.1). Here, the index s reflects the “degree”
of smoothness of f ∈ Hs(Rd), i.e., larger s entails smoother f . For
a multi-index α = (α1, . . . , αd) ∈ Nd0, Dα denotes the differential
operator Dα := (∂/∂x1)α1 . . . (∂/∂xd)αd , with order |α| :=

∑d
i=1 αi.

If |α| = 0, Dαf := f , for f : Rd → C. The space of functions f : Rd →
C whose derivatives Dαf of order at most N ∈ N0 are continuous is
designated by CN (Rd,C), and the space of infinitely differentiable
functions is C∞(Rd,C). S(Rd,C) stands for the Schwartz space, i.e.,
the space of functions f ∈ C∞(Rd,C) whose derivatives Dαf along
with the function itself are rapidly decaying (Rudin, 1991, Section
7.3) in the sense of sup|α|6N supx∈Rd(1 + |x|2)N |(Dαf)(x)| <∞, for
all N ∈ N0. We denote the gradient of a function f : Rd → C as
∇f . The space of continuous vector fields v : Rp → Rq is C(Rp,Rq),
and for k, p, q ∈ N, the space of k-times continuously differentiable
vector fields v : Rp → Rq is written as Ck(Rp,Rq). For a vector field
v : Rd → Rd, we let Dv be its Jacobian matrix, and D2v its Jacobian
tensor, with associated norms ‖v‖∞ := supx∈Rd |v(x)|, ‖Dv‖∞ :=
supx∈Rd |(Dv)(x)|∞, and ‖D2v‖∞ := supx∈Rd |(D2v)(x)|∞.
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Miscellaneous

For x ∈ R, we set (x)+ := max{0, x} and 〈x〉 := (1 + |x|2)1/2. The
tensor product of functions f, g : Rd → C is (f ⊗ g)(x, y) := f(x)g(y),
(x, y) ∈ Rd × Rd. For functions W : N → R and G : N → R, we say
that W (N) = O(G(N)) if there exist C > 0 and N0 ∈ N such that
W (N) 6 CG(N), for all N > N0.

2.2. CONVOLUTIONAL TRANSFORMS:
SEMI-DISCRETE FRAMES

This section gives a brief review of the theory of semi-discrete frames
which are instances of continuous frames (Ali et al., 1993; Kaiser,
1994), and appear in the mathematical signal processing literature,
e.g., in the context of translation-covariant signal decompositions
(Mallat and Zhong, 1992; Unser, 1995; Vandergheynst, 2002a), and
as an intermediate step in the construction of various fully-discrete
frames (Candès and Donoho, 2005; Grohs, 2012; Kutyniok and Labate,
2012a; Grohs et al., 2015). A list of structured example frames of
interest in the context of this thesis is provided in Section 2.2.1 for
the 1-D case, and in Section 2.2.2 for the 2-D case.
We first collect some basic results on semi-discrete frames.

Definition 1. Let {gλ}λ∈Λ ⊆ L1(Rd) ∩ L2(Rd) be a set of functions
indexed by a countable set Λ. The collection

ΨΛ := {TbIgλ}(λ,b)∈Λ×Rd

is a semi-discrete frame for L2(Rd) if there exist constants A,B > 0
such that

A‖f‖22 6
∑
λ∈Λ

∫
Rd
|〈f, TbIgλ〉|2db =

∑
λ∈Λ

‖f ∗ gλ‖22 6 B‖f‖22, (2.1 )

for all f ∈ L2(Rd). The functions {gλ}λ∈Λ are called the atoms of the
frame ΨΛ. When A = B the frame is said to be tight. A tight frame
with frame bound A = 1 is called a Parseval frame.
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The frame operator associated with the semi-discrete frame ΨΛ is
defined in the weak sense as SΛ : L2(Rd)→ L2(Rd),

SΛf :=
∑
λ∈Λ

∫
Rd
〈f, TbIgλ〉(TbIgλ) db =

(∑
λ∈Λ

gλ ∗ Igλ
)
∗ f, (2.2)

where 〈f, TbIgλ〉 = (f ∗ gλ)(b), (λ, b) ∈ Λ× Rd, are called the frame
coefficients. SΛ is a bounded, positive, and boundedly invertible
operator (Ali et al., 1993).
The reader might want to think of semi-discrete frames as shift-

invariant frames (Ron and Shen, 1995; Janssen, 1998) with a continu-
ous translation parameter b ∈ R, and of the countable index set Λ as
labeling a collection of scales, directions, or frequency-shifts, hence
the terminology semi-discrete.
The following result gives a so-called Littlewood-Paley condi-

tion (Frazier et al., 1991; Daubechies, 1992) for the collection
ΨΛ = {TbIgλ}(λ,b)∈Λ×Rd to form a semi-discrete frame.

Proposition 1. (Mallat, 2009, Theorem 5.11) Let Λ be a countable
set. The collection ΨΛ = {TbIgλ}(λ,b)∈Λ×Rd with atoms {gλ}λ∈Λ ⊆
L1(Rd) ∩ L2(Rd) is a semi-discrete frame for L2(Rd) with frame
bounds A,B > 0 if and only if

A 6
∑
λ∈Λ

|ĝλ(ω)|2 6 B, a.e. ω ∈ Rd. (2.3 )

Remark 1. What is behind Proposition 1 is a result on the uni-
tary equivalence between operators (Naylor and Sell, 1982, Definition
5.19.3). Specifically, Proposition 1 follows from the fact that the mul-
tiplier

∑
λ∈Λ |ĝλ|2 is unitarily equivalent to the frame operator SΛ in

(2.2) according to
FSΛF −1 =

∑
λ∈Λ

|ĝλ|2,

where F : L2(Rd)→ L2(Rd) denotes the Fourier transform. We refer
the interested reader to (Bölcskei et al., 1998), where the framework
of unitary equivalence was formalized in the context of shift-invariant
frames for `2(Z).
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The following proposition states normalization results for semi-
discrete frames that come in handy in satisfying, e.g., the admissibility
condition (3.14) as discussed in Section 3.2, or the condition (4.20) on
the product of the frame lower and frame upper bounds as discussed
in Section 4.3.

Proposition 2. Let ΨΛ = {TbIgλ}(λ,b)∈Λ×Rd be a semi-discrete
frame for L2(Rd) with frame bounds A,B.

i) For C > 0, the family of functions Ψ̃Λ :=
{
TbI g̃λ

}
(λ,b)∈Λ×Rd ,

g̃λ := C−1/2gλ, ∀λ ∈ Λ,

is a semi-discrete frame for L2(Rd) with frame bounds Ã := A
C and

B̃ := B
C .

ii) The family of functions Ψ\
Λ :=

{
TbIg

\
λ

}
(λ,b)∈Λ×Rd ,

g\λ := F−1
(
ĝλ

( ∑
λ′∈Λ

|ĝλ′ |2
)−1/2)

, ∀λ ∈ Λ,

is a semi-discrete Parseval frame for L2(Rd), i.e., the frame bounds
satisfy A\ = B\ = 1.

Proof. We start by proving statement i). As ΨΛ is a frame for L2(Rd),
we have

A‖f‖22 6
∑
λ∈Λ

‖f ∗ gλ‖22 6 B‖f‖22, ∀f ∈ L2(Rd). (2.4)

With gλ =
√
Cg̃λ, for all λ ∈ Λ, in (2.4) we get A‖f‖22 6∑

λ∈Λ ‖f ∗
√
Cg̃λ‖22 6 B‖f‖22, for all f ∈ L2(Rd), which is equi-

valent to A
C ‖f‖

2
2 6

∑
λ∈Λ ‖f ∗ g̃λ‖22 6 B

C ‖f‖
2
2, for all f ∈ L2(Rd), and

hence establishes i). To prove statement ii), we first note that Fg\λ =
ĝλ
(∑

λ′∈Λ |ĝλ′ |2
)−1/2, for all λ ∈ Λ, and thus

∑
λ∈Λ |(Fg

\
λ)(ω)|2 =∑

λ∈Λ |ĝλ(ω)|2
(∑

λ′∈Λ |ĝλ′(ω)|2
)−1

= 1, a.e. ω ∈ Rd. Application of
Proposition 1 then establishes that Ψ\

Λ is a semi-discrete Parseval
frame for L2(Rd), i.e., the frame bounds satisfy A\ = B\ = 1.
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2.2.1. Examples of semi-discrete frames in 1-D
General 1-D semi-discrete frames are given by collections

Ψ = {TbIgk}(k,b)∈Z×R (2.5)

with atoms gk ∈ L1(R) ∩ L2(R), indexed by the integers Λ = Z, and
satisfying the Littlewood-Paley condition

A 6
∑
k∈Z
|ĝk(ω)|2 6 B, a.e. ω ∈ R. (2.6)

The structural example frames we consider in this section are Weyl-
Heisenberg (Gabor) frames (where the gk are obtained through modu-
lation from a prototype function) and wavelet frames (where the gk
are obtained through scaling from a mother wavelet).

Semi-discrete Weyl-Heisenberg frames

Weyl-Heisenberg frames (Daubechies et al., 1986, 1995; Janssen, 1995;
Gröchenig, 2001) (a.k.a. Gabor frames) are well-suited to the ex-
traction of sinusoidal features (Gröchenig and Samarah, 2000), and
have been applied successfully in various practical feature extraction
tasks (Lee et al., 2009; Ellis et al., 2011). A semi-discrete Weyl-
Heisenberg frame for L2(R) is a collection of functions according to
(2.5), where gk(x) := e2πikxg(x), k ∈ Z, with the prototype function
g ∈ L1(R) ∩ L2(R). The atoms {gk}k∈Z satisfy the Littlewood-Paley
condition (2.6) according to

A 6
∑
k∈Z
|ĝ(ω − k)|2 6 B, a.e. ω ∈ R. (2.7)

A popular function g ∈ L1(R)∩L2(R) satisfying (2.7) is the Gaussian
function (Gröchenig, 2001).

Semi-discrete wavelet frames

Wavelets are well-suited to the extraction of signal features characte-
rized by singularities (Daubechies, 1992; Mallat and Zhong, 1992), and
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Fig. 2.1: The Haar wavelet ψ(x) in 1-D.

have been applied successfully in various practical feature extraction
tasks (Lin and Qu, 2000; Tzanetakis and Cook, 2002). A semi-discrete
wavelet frame for L2(R) is a collection of functions according to
(2.5), where gk(x) := 2kψ(2kx), k ∈ Z, with the mother wavelet
ψ ∈ L1(R) ∩ L2(R). The atoms {gk}k∈Z satisfy the Littlewood-Paley
condition (2.6) according to

A 6
∑
k∈Z
|ψ̂(2−kω)|2 6 B, a.e. ω ∈ R. (2.8)

A large class of functions ψ satisfying (2.8) can be obtained through a
multi-resolution analysis in L2(R) (Mallat, 2009, Definition 7.1) such
as, e.g., the Haar wavelet (see Fig. 2.1).

2.2.2. Examples of semi-discrete frames in 2-D
Semi-discrete wavelet frames

Two-dimensional wavelets are well-suited to the extraction of signal
features characterized by point singularities (such as, e.g., stars in
astronomical images (Kutyniok and Donoho, 2013)), and have been
applied successfully in various practical feature extraction tasks, e.g.,
in (Unser, 1995; Serre et al., 2005; Mutch and Lowe, 2006; Pinto
et al., 2008). Prominent families of two-dimensional wavelet frames
are tensor wavelet frames and directional wavelet frames.
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Tensor wavelets

A semi-discrete tensor wavelet frame for L2(R2) is a collection of
functions according to

ΨΛTW := {TbIg(e,j)}(e,j)∈ΛTW,b∈R2 , g(e,j)(x) := 22jψe(2jx),

where

ΛTW :=
{

((0, 0), 0)
}
∪
{

(e, j) | e ∈ E\{(0, 0)}, j > 0
}
,

and E := {0, 1}2. Here, the functions ψe ∈ L1(R2)∩L2(R2) are tensor
products of a coarse-scale function φ ∈ L1(R)∩L2(R) and a fine-scale
function ψ ∈ L1(R) ∩ L2(R) according to

ψ(0,0) := φ⊗φ, ψ(1,0) := ψ⊗φ, ψ(0,1) := φ⊗ψ, ψ(1,1) := ψ⊗ψ.

The corresponding Littlewood-Paley condition (2.3) reads

A 6
∣∣ψ̂(0,0)(ω)

∣∣2 +
∑
j>0

∑
e∈E\{(0,0)}

|ψ̂e(2−jω)|2 6 B, (2.9)

for a.e. ω ∈ R2. A large class of functions φ, ψ satisfying (2.9) can be
obtained through a multi-resolution analysis in L2(R) (Mallat, 2009,
Definition 7.1).

Directional wavelets

A semi-discrete directional wavelet frame for L2(R2) is a collection of
functions according to

ΨΛDW := {TbIg(j,k)}(j,k)∈ΛDW,b∈R2 ,

with

g(−J,0)(x) := 2−2Jφ(2−Jx), g(j,k)(x) := 22jψ(2jRθkx),

where ΛDW :=
{

(−J, 0)
}
∪
{

(j, k) | j ∈ Z with j > −J, k ∈
{0, . . . ,K − 1}

}
, Rθ is a 2× 2 rotation matrix defined as

Rθ :=
(

cos(θ) − sin(θ)
sin(θ) cos(θ)

)
, θ ∈ [0, 2π), (2.10)
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Fig. 2.2: Partitioning of the frequency plane R2 induced by (left) a semi-discrete
tensor wavelet frame, and (right) a semi-discrete directional wavelet
frame.

and θk := 2πk
K , with k = 0, . . . ,K − 1, for a fixed K ∈ N, are rotation

angles. The functions φ ∈ L1(R2) ∩ L2(R2) and ψ ∈ L1(R2) ∩ L2(R2)
are referred to in the literature as coarse-scale wavelet and fine-scale
wavelet, respectively. The integer J ∈ Z corresponds to the coarsest
scale resolved and the atoms {g(j,k)}(j,k)∈ΛDW satisfy the Littlewood-
Paley condition (2.3) according to

A 6 |φ̂(2Jω)|2 +
∑
j>−J

K−1∑
k=0
|ψ̂(2−jRθkω)|2 6 B, (2.11)

for a.e. ω ∈ R2. Prominent examples of functions φ, ψ satisfying (2.11)
are the Gaussian function for φ and a modulated Gaussian function
for ψ (Mallat, 2009).

Semi-discrete ridgelet frames

Ridgelets, introduced in (Candès, 1998; Candès and Donoho, 1999),
are well-suited to the extraction of signal features characterized by
straight-line singularities (such as, e.g., straight edges in images), and
have been applied successfully in various practical feature extraction
tasks (Chen et al., 2005; Arivazhagan et al., 2006; Dettori and Semler,
2007; Qiao et al., 2010).
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ω1

ω2

Fig. 2.3: Partitioning of the frequency plane R2 induced by a semi-discrete
ridgelet frame.

A semi-discrete ridgelet frame for L2(R2) is a collection of functions
according to

ΨΛR := {TbIg(j,l)}(j,l)∈ΛR,b∈R2 ,

with
g(0,0)(x) := φ(x), g(j,l)(x) := ψ(j,l)(x),

where ΛR :=
{

(0, 0)
}
∪
{

(j, l) | j > 1, l = 1, . . . , 2j−1
}
, and the atoms

{g(j,l)}(j,l)∈ΛR satisfy the Littlewood-Paley condition (2.3) according
to

A 6 |φ̂(ω)|2 +
∞∑
j=1

2j−1∑
l=1
|ψ̂(j,l)(ω)|2 6 B, a.e. ω ∈ R2. (2.12)

The functions ψ(j,l) ∈ L1(R2) ∩ L2(R2), (j, l) ∈ ΛR\{(0, 0)}, are
designed to be constant in the direction specified by the parameter l,
and to have a Fourier transform ψ̂(j,l) supported on a pair of opposite
wedges of size 2−j×2j in the dyadic corona {ω ∈ R2 | 2j 6 |ω| 6 2j+1},
see Fig. 2.3. We refer the reader to (Grohs, 2012, Proposition 6) for
constructions of functions φ, ψ(j,l) satisfying (2.12) with A = B = 1.

Semi-discrete curvelet frames

Curvelets, introduced in (Candès and Donoho, 2004, 2005), are well-
suited to the extraction of signal features characterized by curve-
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ω1

ω2

Fig. 2.4: Partitioning of the frequency plane R2 induced by a semi-discrete
curvelet frame.

like singularities (such as, e.g., curved edges in images), and have
been applied successfully in various practical feature extraction tasks
(Dettori and Semler, 2007; Ma and Plonka, 2010).

A semi-discrete curvelet frame for L2(R2) is a collection of functions
according to

ΨΛC := {TbIg(j,l)}(j,l)∈ΛC,b∈R2 ,

with
g(−1,0)(x) := φ(x), g(j,l)(x) := ψj(Rθj,lx),

where ΛC :=
{

(−1, 0)
}
∪
{

(j, l) | j > 0, l = 0, . . . , Lj−1
}
, Rθ ∈ R2×2

is the rotation matrix defined in (2.10), and θj,l := πl2−dj/2e−1, for
j > 0, and 0 6 l < Lj := 2dj/2e+2, are scale-dependent rotation
angles. The functions φ ∈ L1(R2)∩L2(R2) and ψj ∈ L1(R2)∩L2(R2)
satisfy the Littlewood-Paley condition (2.3) according to

A 6 |φ̂(ω)|2 +
∞∑
j=0

Lj−1∑
l=0
|ψ̂j(Rθj,lω)|2 6 B, a.e. ω ∈ R2. (2.13)

The functions ψj , j > 0, are designed to have their Fourier transform
ψ̂j supported on a pair of opposite wedges of size 2−j/2 × 2j in the
dyadic corona {ω ∈ R2 | 2j 6 |ω| 6 2j+1}, see Fig. 2.4. We refer the
reader to (Candès and Donoho, 2005, Theorem 4.1) for constructions
of functions φ, ψj satisfying (2.13) with A = B = 1.
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Remark 2. For further examples of interesting structured semi-
discrete frames, we refer to (Kutyniok and Labate, 2012b), which
discusses semi-discrete shearlet frames, and (Grohs et al., 2015),
which deals with semi-discrete α-curvelet frames.

2.3. NON-LINEARITIES

This section gives a brief overview of non-linearities M : L2(Rd)→
L2(Rd) that are widely used in the deep learning literature and that
fit into our theory. For each example, we establish that it satisfies the
following conditions:

i) Lipschitz continuity: There exists a constant L > 0 such that

‖Mf −Mh‖2 6 L‖f − h‖2, ∀f, h ∈ L2(Rd).

ii) Mf = 0 for f = 0.

All non-linearities considered here are pointwise (also referred to as
memoryless in the mathematical signal processing literature) operators
in the sense of

M : L2(Rd)→ L2(Rd), (Mf)(x) = ρ(f(x)), (2.14)

where ρ : C→ C. An immediate consequence of this property is that
the operator M commutes with the translation operator Tt:

(MTtf)(x) = ρ((Ttf)(x)) = ρ(f(x− t)) = Ttρ(f(x)) = (TtMf)(x),

for all f ∈ L2(Rd) and all t ∈ Rd.

Modulus function

The modulus function

| · | : L2(Rd)→ L2(Rd), |f |(x) := |f(x)|,
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x
−1 1

1

Fig. 2.5: The modulus non-linearity on R.

has been applied successfully in the deep learning literature, e.g., in
(Mutch and Lowe, 2006; Jarrett et al., 2009), and most prominently
in scattering networks (Mallat, 2012). Lipschitz continuity with L = 1
follows from

‖|f | − |h|‖22 =
∫
Rd
||f(x)| − |h(x)||2dx

6
∫
Rd
|f(x)− h(x)|2dx = ‖f − h‖22, ∀f, h ∈ L2(Rd),

by the reverse triangle inequality. Furthermore, obviously |f | = 0 for
f = 0, and finally | · | is pointwise as (2.14) is satisfied with ρ(x) := |x|.

Rectified linear unit

The rectified linear unit non-linearity (Nair and Hinton, 2010; Glorot
et al., 2011) (a.k.a. ReLU) is defined as R : L2(Rd)→ L2(Rd),

(Rf)(x) := max{0,Re(f(x))}+ imax{0, Im(f(x))}.

We start by establishing that R is Lipschitz-continuous with L = 2.
To this end, fix f, h ∈ L2(Rd). We have

|(Rf)(x)− (Rh)(x)| =
∣∣max{0,Re(f(x))}+ imax{0, Im(f(x))}

−
(

max{0,Re(h(x))}+ imax{0, Im(h(x))}
)∣∣

6
∣∣max{0,Re(f(x))} −max{0,Re(h(x))}

∣∣ (2.15)
+
∣∣max{0, Im(f(x))} −max{0, Im(h(x))}

∣∣
6
∣∣Re(f(x))− Re(h(x))

∣∣+
∣∣ Im(f(x))− Im(h(x))

∣∣ (2.16)
6
∣∣f(x)− h(x)

∣∣+
∣∣f(x)− h(x)

∣∣ = 2|f(x)− h(x)|, (2.17)
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x
1−1

1

Fig. 2.6: The rectified linear unit non-linearity on R.

where we used the triangle inequality in (2.15),

|max{0, a} −max{0, b}| 6 |a− b|, ∀a, b ∈ R,

in (2.16), and the Lipschitz continuity (with L = 1) of Re : C → R
and Im : C→ R in (2.17). We therefore get

‖Rf −Rh‖2 =
(∫

Rd
|(Rf)(x)− (Rh)(x)|2dx

)1/2

6 2
(∫

Rd
|f(x)− h(x)|2dx

)1/2
= 2 ‖f − h‖2,

which establishes Lipschitz continuity of R with Lipschitz constant
L = 2. Furthermore, obviously Rf = 0 for f = 0, and finally (2.14) is
satisfied with ρ(x) := max{0,Re(x)}+ imax{0, Im(x)}.

Hyperbolic tangent

The hyperbolic tangent non-linearity (see, e.g., (Huang and LeCun,
2006; Ranzato et al., 2007; Jarrett et al., 2009)) is defined as H :
L2(Rd)→ L2(Rd),

(Hf)(x) := tanh(Re(f(x))) + i tanh(Im(f(x))),

where tanh(x) := ex−e−x
ex+e−x . We start by proving that H is Lipschitz-

continuous with L = 2. To this end, fix f, h ∈ L2(Rd). We have

|(Hf)(x)− (Hh)(x)| =
∣∣ tanh(Re(f(x))) + i tanh(Im(f(x)))

−
(

tanh(Re(h(x))) + i tanh(Im(h(x)))
)∣∣
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Fig. 2.7: The hyperbolic tangent non-linearity on R.

6
∣∣ tanh(Re(f(x)))− tanh(Re(h(x)))

∣∣
+
∣∣ tanh(Im(f(x)))− tanh(Im(h(x)))

∣∣, (2.18)

where, again, we used the triangle inequality. In order to further
upper-bound (2.18), we show that tanh is Lipschitz-continuous. To
this end, we make use of the following result.

Lemma 1. (Searcóid, 2007, Theorem 9.5.1) Let h : R → R be a
continuously differentiable function satisfying sup

x∈R
|h′(x)| 6 L. Then,

h is Lipschitz-continuous with Lipschitz constant L.

Since tanh′(x) = 1 − tanh2(x), x ∈ R, we have sup
x∈R
| tanh′(x)| 6

1. By Lemma 1 we can therefore conclude that tanh is Lipschitz-
continuous with L = 1, which when used in (2.18), yields

|(Hf)(x)− (Hh)(x)|
6
∣∣Re(f(x))− Re(h(x))

∣∣+
∣∣ Im(f(x))− Im(h(x))

∣∣
6
∣∣f(x)− h(x)

∣∣+
∣∣f(x)− h(x)

∣∣ = 2|f(x)− h(x)|.

Here, again, we used the Lipschitz continuity (with L = 1) of Re :
C→ R and Im : C→ R. Putting things together, we obtain

‖Hf −Hh‖2 =
(∫

Rd
|(Hf)(x)− (Hh)(x)|2dx

)1/2

6 2
(∫

Rd
|f(x)− h(x)|2dx

)1/2
= 2 ‖f − h‖2,
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which proves that H is Lipschitz-continuous with L = 2. Since
tanh(0) = 0, we trivially have Hf = 0 for f = 0. Finally, (2.14)
is satisfied with ρ(x) := tanh(Re(x)) + i tanh(Im(x)).

Shifted logistic sigmoid

The shifted logistic sigmoid non-linearity2 (see, e.g., (Glorot and
Bengio, 2010; Mohamed et al., 2011)) is defined as P : L2(Rd) →
L2(Rd),

(Pf)(x) := sig(Re(f(x))) + i sig(Im(f(x))),

where sig(x) := 1
1+e−x −

1
2 . We first establish that P is Lipschitz-

continuous with L = 1
2 . To this end, fix f, h ∈ L2(Rd). We have

|(Pf)(x)− (Ph)(x)| =
∣∣ sig(Re(f(x))) + i sig(Im(f(x)))

−
(

sig(Re(h(x))) + i sig(Im(h(x)))
)∣∣

6
∣∣ sig(Re(f(x)))− sig(Re(h(x)))

∣∣
+
∣∣ sig(Im(f(x)))− sig(Im(h(x)))

∣∣, (2.19)

where, again, we employed the triangle inequality. As before, to
further upper-bound (2.19), we show that sig is Lipschitz-continuous.
Specifically, we apply Lemma 1 with sig′(x) = e−x

(1+e−x)2 , x ∈ R, and
hence sup

x∈R
| sig′(x)| 6 1

4 , to conclude that sig is Lipschitz-continuous

with L = 1
4 . When used in (2.19) this yields (together with the

Lipschitz continuity (with L = 1) of Re : C→ R and Im : C→ R)

|(Pf)(x)− (Ph)(x)|

6
1
4

∣∣∣Re(f(x))− Re(h(x))
∣∣∣+ 1

4

∣∣∣ Im(f(x))− Im(h(x))
∣∣∣

6
1
4

∣∣∣f(x)− h(x)
∣∣∣+ 1

4

∣∣∣f(x)− h(x)
∣∣∣

2Strictly speaking, it is actually the sigmoid function x 7→ 1
1+e−x rather than

the shifted sigmoid function x 7→ 1
1+e−x −

1
2 that is used, e.g., in (Glorot and

Bengio, 2010; Mohamed et al., 2011). We incorporated the offset 1
2 in order to

satisfy the requirement Pf = 0 for f = 0.
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Fig. 2.8: The shifted logistic sigmoid non-linearity on R.

= 1
2

∣∣∣f(x)− h(x)
∣∣∣. (2.20)

It now follows from (2.20) that

‖Pf − Ph‖2 =
(∫

Rd
|(Pf)(x)− (Ph)(x)|2dx

)1/2

6
1
2

(∫
Rd
|f(x)− h(x)|2dx

)1/2
= 1

2 ‖f − h‖2,

which establishes Lipschitz continuity of P with L = 1
2 . Since sig(0) =

0, we trivially have Pf = 0 for f = 0. Finally, (2.14) is satisfied with
ρ(x) := sig(Re(x)) + i sig(Im(x)).

2.4. POOLING OPERATORS

In the deep learning literature the term “pooling” broadly refers to
some form of combining “nearby” values of a signal (e.g., through ave-
raging) or picking one representative value (e.g, through sub-sampling
or maximization), see Fig. 2.9. As parts of this thesis (namely, Chap-
ters 3 and 4) deal with DCNNs in continuous time3, it is inevitable to
work with continuous-time emulations of discrete-time pooling opera-
tors. In this section, we derive these emulations for two discrete-time

3In the mathematical signal processing literature, the qualifiers discrete-time
and continuous-time allow to differentiate between signals that are i) (square-
summable) sequences fd ∈ `2(Z) := {fd : Z → C |

∑
k∈Z |fd[k]|2 < ∞} and ii)

functions f ∈ L2(Rd).
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n

fd[n]

n

fd[Sn]

n

(fd ∗ φd)[Sn]

Fig. 2.9: Impact of pooling operators on the discrete-time signal fd ∈ `2(Z)
(top row). Pooling by sub-sampling amounts to retaining every S-
th sample (middle row). Pooling by averaging (with a box function
φd) amounts to computing local averages of S consecutive samples
(bottom row).

pooling operators, namely for pooling by sub-sampling (Pinto et al.,
2008) and averaging (Huang and LeCun, 2006; Jarrett et al., 2009).

Pooling by sub-sampling

Consider a one-dimensional discrete-time signal fd ∈ `2(Z) := {fd :
Z→ C |

∑
k∈Z |fd[k]|2 <∞}. Sub-sampling by a factor of S ∈ N in

discrete time is defined by (Vaidyanathan, 1993, Section 4)

fd 7→ hd := fd[S·]
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and amounts to simply retaining every S-th sample of fd, see Fig.
2.9 (middle). The discrete-time Fourier transform of hd is given by
a summation over translated and dilated copies of f̂d according to
(Vaidyanathan, 1993, Section 4)

ĥd(θ) :=
∑
k∈Z

hd[k]e−2πikθ = 1
S

S−1∑
k=0

f̂d

(θ − k
S

)
. (2.21)

The translated copies of f̂d in (2.21) are a consequence of the 1-
periodicity of the discrete-time Fourier transform. We can therefore
emulate the discrete-time sub-sampling operator in continuous time
through the dilation operator

f 7→ h := Sd/2f(S·), f ∈ L2(Rd), (2.22)

which in the frequency domain amounts to dilation according to
ĥ = S−d/2f̂(S−1·). The scaling by Sd/2 in (2.22) ensures unitarity of
the continuous-time sub-sampling operator.

Pooling by averaging

In discrete time average pooling is defined by

fd 7→ hd := (fd ∗ φd)[S·] (2.23)

for the (typically compactly supported) “averaging kernel” φd ∈ `2(Z)
and the averaging factor S ∈ N. Taking φd to be a box function
of length S amounts to computing local averages of S consecutive
samples, see Fig. 2.9 (bottom). Weighted averages are obtained by
identifying the desired weights with the averaging kernel φd. The
operator (2.23) can be emulated in continuous time according to

f 7→ Sd/2
(
f ∗ φ

)
(S·), f ∈ L2(Rd), (2.24)

with the averaging window φ ∈ L1(Rd) ∩ L2(Rd).
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General pooling

The operators in (2.22) and (2.24) fit into a more general framework.
Specifically, we can consider a general pooling operator of the form

f 7→ Sd/2P (f)(S·), (2.25)

where S > 1 is the so-called pooling factor and P : L2(Rd)→ L2(Rd)
satisfies the Lipschitz property ‖Pf − Ph‖2 6 R‖f − h‖2, for all
f, h ∈ L2(Rd), with Pf = 0 for f = 0.
The operator in (2.22) can be recovered from (2.25) simply by

taking P to equal the identity mapping (which is, of course, Lipschitz-
continuous with Lipschitz constant R = 1 and satisfies Idf = 0
for f = 0). Moreover, (2.24) is recovered from (2.25) by taking
P (f) = f ∗ φ, f ∈ L2(Rd), and noting that convolution with φ

is Lipschitz-continuous with Lipschitz constant R = ‖φ‖1 (thanks to
Young’s inequality (Grafakos, 2008, Theorem 1.2.12)) and trivially
satisfies Pf = 0 for f = 0.
To make it clear that we consider emulations of discrete-time

pooling operators, we refer to the operator in (2.25) as Lipschitz-
pooling through dilation to indicate that (2.25) essentially amounts
to the application of a Lipschitz-continuous mapping followed by a
continuous-time dilation.
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CHAPTER 3

Deep convolutional feature extraction:

Architectures, invariances, and

deformation sensitivity

Deep convolutional neural networks have led to breakthrough
results in numerous practical machine learning tasks such as
classification of images in the ImageNet data set (Krizhevsky

et al., 2012; He et al., 2015), control-policy-learning to play Atari
games (Mnih et al., 2015) or the board game Go (Silver et al., 2016).
Many of these applications first perform feature extraction and then
feed the results thereof into a trainable classifier. The mathematical
analysis of DCNNs for feature extraction was initiated by (Mallat,
2012). Specifically, Mallat considered so-called scattering networks
based on a wavelet transform followed by the modulus non-linearity
in each network layer, and proved translation invariance (asympto-
tically in the wavelet scale parameter) and deformation stability of
the corresponding feature extractor. This chapter complements Mal-
lat’s results by developing a theory of DCNNs for feature extraction
encompassing general convolutional transforms, or in more technical
parlance, general semi-discrete frames (including Weyl-Heisenberg,
curvelet, shearlet, ridgelet, and wavelet frames), general Lipschitz-
continuous non-linearities (e.g., rectified linear units, shifted logistic
sigmoids, hyperbolic tangents, and modulus functions), and general
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Lipschitz-continuous pooling operators emulating sub-sampling and
averaging. In addition, all of these elements can be different in dif-
ferent network layers. For the resulting feature extractor we prove a
translation invariance result which is of vertical nature in the sense
of the network depth determining the amount of invariance, and we
establish deformation sensitivity bounds that apply to signal classes
with inherent deformation insensitivity such as, e.g., band-limited
functions, cartoon functions, and Lipschitz functions.

Outline

The remainder of this chapter is organized as follows. Section 3.1
reviews Mallat’s wavelet-based scattering networks. In Section 3.2, we
introduce generalized scattering network architectures encompassing
general convolutional transforms, general Lipschitz-continuous non-
linearities, and general Lipschitz-continuous pooling operators. Section
3.3 contains our first main result, Theorem 1, which shows that the
network-based feature extractor is vertical translation-invariant and
that pooling plays a crucial role in achieving it. Our second main
result, Theorem 2, which provides deformation sensitivity bounds
that apply to signal classes with inherent deformation insensitivity
(such as, e.g., band-limited functions, cartoon functions, and Lipschitz
functions), is presented in Section 3.4. Finally, in Section 3.5, we
put our results into perspective and compare them to the results
established in (Mallat, 2012).

3.1. MALLAT’S WAVELET-BASED
SCATTERING NETWORKS

We set the stage by reviewing scattering networks as introduced in
(Mallat, 2012), the basis of which is a multi-layer architecture that
involves a wavelet transform followed by the modulus non-linearity,
without subsequent pooling. Specifically, (Mallat, 2012, Definition
2.4) defines the feature vector ΦW (f) of the signal f ∈ L2(Rd) as the
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set1

ΦW (f) :=
∞⋃
n=0

ΦnW (f), (3.1)

where Φ0
W (f) := {f ∗ ψ(−J,0)}, and

ΦnW (f) :=
{(
U
[
λ

(j)
, . . . , λ

(p)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
n indices

]
f
)
∗ ψ(−J,0)

}
λ

(j)
,...,λ

(p)∈ΛW\{(−J,0)}
,

for all n ∈ N, with

U
[
λ

(j)
, . . . , λ

(p)]
f :=

∣∣ · · · ∣∣ |f ∗ ψ
λ

(j) | ∗ ψ
λ

(k)

∣∣ · · · ∗ ψ
λ

(p)

∣∣
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
n−fold convolution followed by modulus

.

Here, the index set ΛW :=
{

(−J, 0)
}
∪
{

(j, k) | j ∈ Z with j >

−J, k ∈ {0, . . . ,K − 1}
}
contains pairs of scales j and directions

k (in fact, k is the index of the direction described by the rotation
matrix rk), and

ψλ(x) := 2djψ(2jr−1
k x), λ = (j, k) ∈ ΛW\{(−J, 0)}, (3.2)

are directional wavelets (Lee, 1996; Antoine et al., 2008; Mallat, 2009)
with (complex-valued) mother wavelet ψ ∈ L1(Rd) ∩ L2(Rd). The rk,
k ∈ {0, . . . ,K − 1}, are elements of a finite rotation group G (if d
is even, G is a subgroup of SO(d); If d is odd, G is a subgroup of
O(d)). The index (−J, 0) ∈ ΛW is associated with the low-pass filter
ψ(−J,0) ∈ L1(Rd) ∩ L2(Rd), and J ∈ Z corresponds to the coarsest
scale resolved by the directional wavelets (3.2).

The family of functions {ψλ}λ∈ΛW is taken to form a semi-discrete
Parseval frame

ΨΛW := {TbIψλ}λ∈ΛW,b∈Rd

for L2(Rd) (Ali et al., 1993; Kaiser, 1994) and hence satisfies∑
λ∈ΛW

∫
Rd
|〈f, TbIψλ〉|2db =

∑
λ∈ΛW

‖f ∗ ψλ‖22 = ‖f‖22, ∀f ∈ L2(Rd),

1We emphasize that the feature vector ΦW (f) is a union of the sets of feature
vectors ΦnW (f).

35



3 DEEP CONVOLUTIONAL FEATURE EXTRACTION

ω1

ω2

Fig. 3.1: Partitioning of the frequency plane R2 induced by a semi-discrete
directional wavelet frame with K = 12 directions.

where 〈f, TbIψλ〉 = (f ∗ ψλ)(b), (λ, b) ∈ ΛW × Rd, are the underlying
frame coefficients. Note that for given λ ∈ ΛW, we actually have a
continuum of frame coefficients as the translation parameter b ∈ Rd
is left unsampled. We refer to Fig. 3.1 for an illustration of a semi-
discrete directional wavelet frame in the frequency domain. In Section
2.2, we give a brief review of the general theory of semi-discrete frames,
and in the Sections 2.2.1 and 2.2.2 we collect structured example
frames in 1-D and 2-D, respectively.
The architecture corresponding to the feature extractor ΦW in

(3.1), illustrated in Fig. 3.2, is known as scattering network (Mallat,
2012), and employs the frame ΨΛW and the modulus non-linearity
| · | in every network layer, but does not include pooling. For given
n ∈ N, the set Φn

W (f) corresponds to the features of the function f
generated in the n-th network layer, see Fig. 3.2.

Remark 3. The function |f ∗ψλ|, λ ∈ ΛW\{(−J, 0)}, can be thought
of as indicating the locations of singularities of f ∈ L2(Rd). Specifi-
cally, with the relation of |f ∗ ψλ| to the Canny edge detector (Canny,
1986) as described in (Mallat and Zhong, 1992), in dimension d = 2,
we can think of |f ∗ ψλ| = |f ∗ ψ(j,k)|, λ = (j, k) ∈ ΛW\{(−J, 0)},
as an image at scale j specifying the locations of edges of the im-
age f that are oriented in direction k. Furthermore, it was argued
in (Bruna and Mallat, 2013; Andén and Mallat, 2014; Oyallon and
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f

|f ∗ ψλ(j) |

|f ∗ ψλ(j) | ∗ ψ(−J,0)

||f ∗ ψλ(j) | ∗ ψλ(l) |

||f ∗ ψλ(j) | ∗ ψλ(l) | ∗ ψ(−J,0)

|||f ∗ ψλ(j) | ∗ ψλ(l) | ∗ ψλ(m) |

· · ·

|f ∗ ψλ(p) |

|f ∗ ψλ(p) | ∗ ψ(−J,0)

||f ∗ ψλ(p) | ∗ ψλ(r) |

||f ∗ ψλ(p) | ∗ ψλ(r) | ∗ ψ(−J,0)

|||f ∗ ψλ(p) | ∗ ψλ(r) | ∗ ψλ(s) |

· · ·

f ∗ ψ(−J,0)

Fig. 3.2: Scattering network architecture based on wavelet filters and the
modulus non-linearity. The elements of the feature vector ΦW (f) in
(3.1) are indicated at the tips of the arrows.

Mallat, 2015) that the feature vector Φ1
W (f) generated in the first

layer of the scattering network is very similar, in dimension d = 1,
to mel frequency cepstral coefficients (Davis and Mermelstein, 1980),
and in dimension d = 2 to SIFT-descriptors (Lowe, 2004; Tola et al.,
2010).

It is shown in (Mallat, 2012, Theorem 2.10) that the feature ex-
tractor ΦW is translation-invariant in the sense of

lim
J→∞

|||ΦW (Ttf)− ΦW (f)||| = 0, ∀f ∈ L2(Rd), ∀t ∈ Rd. (3.3)

Note that this invariance result is asymptotic in the scale parameter
J ∈ Z, and does not depend on the network depth, i.e., it guaran-
tees full translation invariance in every network layer. Furthermore,
(Mallat, 2012, Theorem 2.12) establishes that ΦW is stable w.r.t.
deformations of the form

(Fτf)(x) := f(x− τ(x)),

where τ : Rd → Rd. More formally, for the function space (HW , ‖·‖HW )
defined in (3.31) below, it is shown in (Mallat, 2012, Theorem 2.12)
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3 DEEP CONVOLUTIONAL FEATURE EXTRACTION

that there exists a constant C > 0 such that for all f ∈ HW , and all
τ ∈ C1(Rd,Rd) with2 ‖Dτ‖∞ 6 1

2d , the deformation error satisfies
the following deformation stability bound

|||ΦW (Fτf)− ΦW (f)|||
6 C

(
2−J‖τ‖∞ + J‖Dτ‖∞ + ‖D2τ‖∞

)
‖f‖HW . (3.4)

In practice signal classification based on Mallat’s wavelet-based scat-
tering networks is performed as follows. First, the function f and the
wavelet frame atoms {ψλ}λ∈ΛW are discretized to finite-dimensional
vectors. The resulting scattering network then computes the finite-
dimensional feature vector ΦW (f), whose dimension is typically re-
duced through an orthogonal least squares step (Chen et al., 1991),
and then feeds the result into a trainable classifier such as, e.g., a SVM.
State-of-the-art results for Mallat’s wavelet-based scattering networks
were reported for various classification tasks such as handwritten
digit recognition (Bruna and Mallat, 2013), texture discrimination
(Bruna and Mallat, 2013; Sifre, 2014), and musical genre classification
(Andén and Mallat, 2014).

3.2. GENERALIZED SCATTERING NETWORKS

As already mentioned, scattering networks follow the architecture
of DCNNs (Rumelhart et al., 1986; LeCun et al., 1990, 1998, 2010,
2015; Serre et al., 2005; Huang and LeCun, 2006; Mutch and Lowe,
2006; Ranzato et al., 2006, 2007; Pinto et al., 2008; Jarrett et al.,
2009; Krizhevsky et al., 2012; Bengio et al., 2013) in the sense of
cascading convolutions (with atoms {ψλ}λ∈ΛW of the wavelet frame
ΨΛW) and non-linearities, namely the modulus function, but without
pooling. General DCNNs as studied in the literature exhibit a number
of additional features:

2It is actually the assumption ‖Dτ‖∞ 6 1
2d , rather than ‖Dτ‖∞ 6 1

2 as stated
in (Mallat, 2012, Theorem 2.12), that is needed in (Mallat, 2012, page 1390) to
establish that | det(E − (Dτ)(x))| > 1− d‖Dτ‖∞ > 1/2.
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i) a wide variety of filters are employed, namely pre-specified unstruc-
tured filters such as random filters (Ranzato et al., 2007; Jarrett
et al., 2009), and filters that are learned in a supervised (Huang
and LeCun, 2006; Jarrett et al., 2009) or an unsupervised (Ranzato
et al., 2006, 2007; Jarrett et al., 2009) fashion.

ii) a wide variety of non-linearities are used such as, e.g., hyperbolic
tangents (Huang and LeCun, 2006; Ranzato et al., 2007; Jarrett
et al., 2009), rectified linear units (Nair and Hinton, 2010; Glo-
rot et al., 2011), and logistic sigmoids (Glorot and Bengio, 2010;
Mohamed et al., 2011).

iii) convolution and the application of a non-linearity is typically fol-
lowed by a pooling operator such as, e.g., sub-sampling (Pinto
et al., 2008), average-pooling (Huang and LeCun, 2006; Jarrett
et al., 2009), or max-pooling (Serre et al., 2005; Mutch and Lowe,
2006; Ranzato et al., 2007; Jarrett et al., 2009).

iv) the filters, non-linearities, and pooling operators are allowed to be
different in different network layers (LeCun et al., 2015; Goodfellow
et al., 2016).

The purpose of this chapter is to develop a mathematical theory of DC-
NNs for feature extraction that encompasses all of the aspects above
(apart from max-pooling) with the proviso that the pooling operators
we analyze are continuous-time emulations of pooling operators in
discrete time (see Section 2.4 for the derivation of these emulations).
Formally, compared to Mallat’s scattering networks, in the n-th net-
work layer, we replace the wavelet-modulus operation |f ∗ ψλ| by a
convolution with the atoms gλn ∈ L1(Rd) ∩ L2(Rd) of a general semi-
discrete frame Ψn := {TbIgλn}b∈Rd,λn∈Λn for L2(Rd) with countable
index set Λn (see Section 2.2 for a brief review of the theory of semi-
discrete frames), followed by a non-linearity Mn : L2(Rd)→ L2(Rd)
that satisfies the Lipschitz property ‖Mnf −Mnh‖2 6 Ln‖f − h‖2,
for all f, h ∈ L2(Rd), with Mnf = 0 for f = 0. The output of this
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3 DEEP CONVOLUTIONAL FEATURE EXTRACTION

non-linearity, Mn(f ∗ gλn), is then pooled according to

f 7→ Sd/2n Pn(f)(Sn·), (3.5)

where Sn > 1 is the pooling factor and Pn : L2(Rd) → L2(Rd)
satisfies the Lipschitz property ‖Pnf − Pnh‖2 6 Rn‖f − h‖2, for all
f, h ∈ L2(Rd), with Pnf = 0 for f = 0.
We next comment on the different elements in our network ar-

chitecture in more detail. The frame atoms gλn are arbitrary and
can, therefore, also be taken to be structured, e.g., Weyl-Heisenberg
functions, curvelets, shearlets, ridgelets, or wavelets as considered
in (Mallat, 2012) (where the atoms gλn are obtained from a mother
wavelet through scaling and rotation operations, see Section 3.1). The
corresponding semi-discrete signal transforms3, briefly reviewed in
Sections 2.2.1 and 2.2.2, have been employed successfully in various
feature extraction tasks (Unser, 1995; Lin and Qu, 2000; Tzanetakis
and Cook, 2002; Chen et al., 2005; Arivazhagan et al., 2006; Dettori
and Semler, 2007; Ma and Plonka, 2010; Qiao et al., 2010; Ellis et al.,
2011), but their use—apart from wavelets—in DCNNs appears to be
new. We refer the reader to Section 2.3 for a detailed discussion of
several relevant example non-linearities (e.g., rectified linear units,
shifted logistic sigmoids, hyperbolic tangents, and, of course, the
modulus function) that fit into our framework. Moreover, we refer
the reader to Section 2.4 where we explain how the continuous-time
pooling operator (3.5) emulates discrete-time pooling operators such
as pooling by sub-sampling (Pinto et al., 2008) and averaging (Huang

3In the frame literature (Ali et al., 1993; Kaiser, 1994; Candès and Donoho, 2005;
Grohs, 2012; Kutyniok and Labate, 2012a; Grohs et al., 2015), a semi-discrete
signal transform is a convolutional transform with filters that depend on discrete
indices. Specifically, let {gλ}λ∈Λ ⊆ L1(Rd)∩L2(Rd) be a set of functions indexed
by a countable set Λ. Then, the mapping

f 7→ {f ∗ gλ(b)}λ∈Λ,b∈Rd = {〈f, TbIgλ〉}λ∈Λ,b∈Rd , f ∈ L2(Rd), (3.6)

is called a semi-discrete signal transform, as it depends on discrete indices λ ∈ Λ
and continuous variables b ∈ Rd. We can think of the mapping (3.6) as the
analysis operator in frame theory (Daubechies, 1992), with the proviso that for
given λ ∈ Λ, we actually have a continuum of frame coefficients as the translation
parameter b ∈ Rd is left unsampled.
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and LeCun, 2006; Jarrett et al., 2009). As already mentioned in Sec-
tion 2.4, we refer to the operator in (3.5) as Lipschitz pooling through
dilation to indicate that (3.5) essentially amounts to the application
of a Lipschitz-continuous mapping followed by a continuous-time dila-
tion. We note, however, that the operator in (3.5) will not be unitary
in general.

We next state definitions and collect preliminary results needed for
the analysis of the general feature extraction network we consider.
The basic building blocks of this network are the triplets (Ψn,Mn, Pn)
associated with individual network layers and referred to as modules.

Definition 2. For n ∈ N, let Ψn = {TbIgλn}b∈Rd,λn∈Λn be a semi-
discrete frame for L2(Rd) and let Mn : L2(Rd) → L2(Rd) and Pn :
L2(Rd) → L2(Rd) be Lipschitz-continuous operators with Mnf = 0
and Pnf = 0 for f = 0, respectively. Then, the sequence of triplets

Ω :=
(
(Ψn,Mn, Pn)

)
n∈N

is referred to as a module-sequence.

The following definition introduces the concept of paths on index
sets, which will prove helpful in characterizing the feature extraction
network. The idea for this formalism is due to (Mallat, 2012).

Definition 3. Let Ω =
(
(Ψn,Mn, Pn)

)
n∈N be a module-sequence, let

{gλn}λn∈Λn be the atoms of the frame Ψn, and let Sn > 1 be the
pooling factor (according to (3.5)) associated with the n-th network
layer. Define the operator Un associated with the n-th layer of the
network as Un : Λn × L2(Rd)→ L2(Rd),

Un(λn, f) := Un[λn]f := Sd/2n Pn
(
Mn(f ∗ gλn)

)
(Sn·). (3.7 )

For 1 6 n <∞, define the set Λn := Λ1 × Λ2 × · · · × Λn. An ordered
sequence q = (λ1, λ2, . . . , λn) ∈ Λn is called a path. For the empty
path e := ∅ we set Λ0 := {e} and U0[e]f := f , for all f ∈ L2(Rd).

The operator Un is well-defined, i.e., Un[λn]f ∈ L2(Rd), for all
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(λn, f) ∈ Λn × L2(Rd), thanks to

‖Un[λn]f‖22 = Sdn

∫
Rd

∣∣∣Pn(Mn(f ∗ gλn)
)
(Snx)

∣∣∣2dx

=
∫
Rd

∣∣∣Pn(Mn(f ∗ gλn)
)
(y)
∣∣∣2dy

= ‖Pn
(
Mn(f ∗ gλn)

)
‖22 6 R2

n‖Mn(f ∗ gλn)‖22 (3.8)
6 L2

nR
2
n‖f ∗ gλn‖22 6 BnL

2
nR

2
n‖f‖22. (3.9)

For the inequality in (3.8) we used the Lipschitz continuity of Pn
according to ‖Pnf −Pnh‖22 6 R2

n‖f − h‖22, together with Pnh = 0 for
h = 0 to get ‖Pnf‖22 6 R2

n‖f‖22. Similar arguments lead to the first
inequality in (3.9). The last step in (3.9) is thanks to

‖f ∗ gλn‖22 6
∑

λ′n∈Λn

‖f ∗ gλ′n‖
2
2 6 Bn‖f‖22,

which follows from the frame condition (2.1) on Ψn. We will also need
the extension of the operator Un to paths q ∈ Λn according to

U [q]f = U [(λ1, λ2, . . . , λn)]f := Un[λn] · · ·U2[λ2]U1[λ1]f, (3.10)

with U [e]f := f . Note that the multi-stage operation (3.10) is again
well-defined thanks to

‖U [q]f‖22 6

(
n∏
k=1

BkL
2
kR

2
k

)
‖f‖22, ∀q ∈ Λn, ∀f ∈ L2(Rd), (3.11)

which follows by repeated application of (3.9). The signals U [q]f ,
q ∈ Λn, associated with the n-th network layer, are referred to as
feature maps in the deep learning literature.

In scattering networks one atom ψλ, λ ∈ ΛW, in the wavelet frame
ΨΛW , namely the low-pass filter ψ(−J,0), is singled out to generate
the extracted features, see Fig. 3.2. We follow this construction and
designate one of the atoms in each frame in the module-sequence
Ω =

(
(Ψn,Mn, Pn)

)
n∈N as the output-generating atom χn−1 := gλ∗n ,

λ∗n ∈ Λn, of the (n−1)-th layer. The atoms {gλn}λn∈Λn\{λ∗n}∪{χn−1}
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in Ψn are thus used across two consecutive layers in the sense of
χn−1 = gλ∗n generating the output in the (n − 1)-th layer, and the
{gλn}λn∈Λn\{λ∗n} propagating signals from the (n − 1)-th layer to
the n-th layer according to (3.7), see Fig. 3.3. Note, however, that
the results established in this chapter do not require the output-
generating atoms to be low-pass filters4. From now on, with slight
abuse of notation, we shall write Λn for Λn\{λ∗n} as well.

We are now ready to define the feature extractor ΦΩ based on the
module-sequence Ω.

Definition 4. Let Ω =
(
(Ψn,Mn, Pn)

)
n∈N be a module-sequence.

The feature extractor ΦΩ based on Ω maps f ∈ L2(Rd) to its feature
vector

ΦΩ(f) :=
∞⋃
n=0

ΦnΩ(f), (3.12 )

where ΦnΩ(f) := {(U [q]f) ∗ χn}q∈Λn , for all n > 0.

The set Φn
Ω(f) in (3.12) corresponds to the features of the func-

tion f generated in the n-th network layer, see Fig. 3.3, where
n = 0 corresponds to the root of the network. The feature extractor
ΦΩ : L2(Rd)→ (L2(Rd))Q, with Q :=

⋃∞
n=0 Λn, is well-defined, i.e.,

ΦΩ(f) ∈ (L2(Rd))Q, for all f ∈ L2(Rd), under a technical condition
on the module-sequence Ω formalized as follows.

Proposition 3. Let Ω =
(
(Ψn,Mn, Pn)

)
n∈N be a module-sequence.

Denote the frame upper bounds of Ψn by Bn > 0 and the Lipschitz
constants of the operators Mn and Pn by Ln > 0 and Rn > 0,
respectively. If

max{Bn, BnL2
nR

2
n} 6 1, ∀n ∈ N, (3.13 )

then the feature extractor ΦΩ : L2(Rd)→ (L2(Rd))Q is well-defined,
i.e., ΦΩ(f) ∈ (L2(Rd))Q, for all f ∈ L2(Rd).

Proof. The proof is given in Section 3.6.1.
4It is evident, though, that the actual choices of the output-generating atoms

will have an impact on practical performance.
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U [e]f = f
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U
[(
λ

(p)
1 , λ

(r)
2 , λ

(s)
3
)]
f
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Fig. 3.3: Network architecture underlying the general feature extractor. The
index λ

(k)
n corresponds to the k-th atom g

λ
(k)
n

of the frame Ψn

associated with the n-th network layer. The function χn is the output-
generating atom of the n-th layer.

As condition (3.13) is of central importance, we formalize it as
follows.

Definition 5. Let Ω =
(
(Ψn,Mn, Pn)

)
n∈N be a module-sequence with

frame upper bounds Bn > 0 and Lipschitz constants Ln, Rn > 0 of
the operators Mn and Pn, respectively. The condition

max{Bn, BnL2
nR

2
n} 6 1, ∀n ∈ N, (3.14 )

is referred to as admissibility condition. Module-sequences that satisfy
(3.14) are called admissible.

We emphasize that condition (3.14) is easily met in practice. To
see this, first note that Bn is determined through the frame Ψn (e.g.,
the directional wavelet frame introduced in Section 3.1 has B = 1),
Ln is set through the non-linearity Mn (e.g., the modulus function
M = | · | has L = 1, see Section 2.3), and Rn depends on the operator
Pn in (3.5) (e.g., pooling by sub-sampling amounts to P = Id and
has R = 1, see Section 2.4). Obviously, condition (3.14) is met if

Bn 6 min{1, L−2
n R−2

n }, ∀n ∈ N,
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which can be satisfied by simply normalizing the frame elements of Ψn

accordingly. We refer to Proposition 2 in Section 2.2 for corresponding
normalization techniques, which, as explained in the Sections 3.3,
3.4, and 4.3, do not affect our translation invariance result, our
deformation sensitivity bounds, as well as our energy decay and
conservation results.

3.3. VERTICAL TRANSLATION INVARIANCE

The following theorem states that under very mild decay conditions
on the Fourier transforms χ̂n of the output-generating atoms χn,
the feature extractor ΦΩ exhibits vertical translation invariance in
the sense of the features becoming more translation-invariant with
increasing network depth. This result is in line with observations made
in the deep learning literature, e.g., in (Serre et al., 2005; Huang and
LeCun, 2006; Mutch and Lowe, 2006; Ranzato et al., 2007; Jarrett
et al., 2009), where it is informally argued that the network outputs
generated at deeper layers tend to be more translation-invariant.

Theorem 1. Let Ω =
(
(Ψn,Mn, Pn)

)
n∈N be an admissible module-

sequence, let Sn > 1, n ∈ N, be the pooling factors in (3.7), and assume
that the operators Mn : L2(Rd)→ L2(Rd) and Pn : L2(Rd)→ L2(Rd)
commute with the translation operator Tt, i.e.,

MnTtf = TtMnf, PnTtf = TtPnf, (3.15 )

for all f ∈ L2(Rd), all t ∈ Rd, and all n ∈ N.

i) The features ΦnΩ(f) generated in the n-th network layer satisfy

ΦnΩ(Ttf) = Tt/(S1···Sn)ΦnΩ(f), (3.16 )

for all f ∈ L2(Rd), all t ∈ Rd, and all n ∈ N. Here, TtΦnΩ(f) refers
to element-wise application of Tt, i.e.,

TtΦnΩ(f) := {Tth |h ∈ ΦnΩ(f)}.
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ii) If, in addition, there exists a constant K > 0 (that does not depend
on n) such that the Fourier transforms χ̂n of the output-generating
atoms χn satisfy the decay condition

|χ̂n(ω)||ω| 6 K, a.e. ω ∈ Rd, ∀n ∈ N0, (3.17 )

then
|||ΦnΩ(Ttf)− ΦnΩ(f)||| 6 2π|t|K

S1 · · ·Sn
‖f‖2, (3.18 )

for all f ∈ L2(Rd), all t ∈ Rd, and all n ∈ N.

Proof. The proof is given in Section 3.6.2.

We start by noting that all pointwise non-linearitiesMn : L2(Rd)→
L2(Rd) satisfy the commutation relation in (3.15). A large class of
non-linearities widely used in the deep learning literature, such as
rectified linear units, hyperbolic tangents, shifted logistic sigmoids,
and the modulus function as employed in (Mallat, 2012), are, indeed,
pointwise and hence covered by Theorem 1. Moreover, P = Id as in
pooling by sub-sampling trivially satisfies (3.15). Pooling by averaging
Pf = f ∗φ, with φ ∈ L1(Rd)∩L2(Rd), satisfies (3.15) as a consequence
of the convolution operator commuting with the translation operator
Tt. Note that (3.17) can easily be met by taking the output-generating
atoms {χn}n∈N0 either to satisfy

sup
n∈N0

{‖χn‖1 + ‖∇χn‖1} <∞, (3.19)

see, e.g., (Rudin, 1991, Chapter 7), or to be uniformly band-limited
in the sense of supp(χ̂n) ⊆ Br(0), for all n ∈ N0, with an r that is
independent of n (see, e.g., (Mallat, 2009, Chapter 2.3)).

The bound in (3.18) shows that we can explicitly control the amount
of translation invariance via the pooling factors Sn. This result is in
line with observations made in the deep learning literature, e.g., in
(Serre et al., 2005; Huang and LeCun, 2006; Mutch and Lowe, 2006;
Ranzato et al., 2007; Jarrett et al., 2009), where it is informally argued
that pooling is crucial to get translation invariance of the extracted
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(a) (b) (c)

Fig. 3.4: Handwritten digits from the MNIST data set (LeCun and Cortes,
1998). For practical machine learning tasks (e.g., signal classification),
we often want the feature vector ΦΩ(f) to be invariant to the digits’
spatial location within the image f . Theorem 1 establishes that the
features Φn

Ω(f) become more translation-invariant with increasing
layer index n.

features. Furthermore, the condition lim
n→∞

S1 ·S2 · . . . ·Sn =∞ (easily
met by taking Sn > 1, for all n ∈ N) guarantees, thanks to (3.18),
asymptotically full translation invariance according to

lim
n→∞

|||ΦnΩ(Ttf)− ΦnΩ(f)||| = 0, ∀f ∈ L2(Rd), ∀t ∈ Rd. (3.20)

This means that the features Φn
Ω(Ttf) corresponding to the shifted

versions Ttf of the handwritten digit “3” in Figs. 3.4 (b) and (c)
with increasing network depth increasingly “look like” the features
ΦnΩ(f) corresponding to the unshifted handwritten digit in Fig. 3.4 (a).
Casually speaking, the shift operator Tt is increasingly absorbed by ΦnΩ
as n→∞, with the upper bound (3.18) quantifying this absorption
w.r.t. the layer index n, the constant K, and the pooling factors
{Sk}nk=1. In contrast, the translation invariance result (3.3) established
in (Mallat, 2012) is asymptotic in the wavelet scale parameter J ,
and does not depend on the network depth, i.e., it guarantees full
translation invariance in every network layer. We honor this difference
by referring to (3.3) as horizontal translation invariance and to (3.20)
as vertical translation invariance.
We emphasize that vertical translation invariance is a structural

property. Specifically, if Pn is unitary (such as, e.g., in the case
of pooling by sub-sampling where Pn simply equals the identity
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mapping), then so is the pooling operator in (3.5) owing to

‖Sd/2n Pn(f)(Sn·)‖22 = Sdn

∫
Rd
|Pn(f)(Snx)|2dx =

∫
Rd
|Pn(f)(x)|2dx

= ‖Pn(f)‖22 = ‖f‖22,

where we employed the change of variables y = Snx, dy
dx = Sdn.

Finally, we note that in practice in certain applications it is actually
translation covariance in the sense of Φn

Ω(Ttf) = TtΦn
Ω(f), for all

f ∈ L2(Rd) and all t ∈ Rd, that is desirable, for example, in facial
landmark detection where the goal is to estimate the absolute position
of facial landmarks in images. In such applications features in the
layers closer to the root of the network are more relevant as they are
less translation-invariant and more translation-covariant. The reader
is referred to Section 5.6 where corresponding numerical evidence
is provided. We proceed to the formal statement of our translation
covariance result.

Corollary 1. Let Ω =
(
(Ψn,Mn, Pn)

)
n∈N be an admissible module-

sequence, let Sn > 1, n ∈ N, be the pooling factors in (3.7), and assume
that the operators Mn : L2(Rd)→ L2(Rd) and Pn : L2(Rd)→ L2(Rd)
commute with the translation operator Tt in the sense of (3.15). If, in
addition, there exists a constant K > 0 (that does not depend on n)
such that the Fourier transforms χ̂n of the output-generating atoms
χn satisfy the decay condition (3.17), then

|||ΦnΩ(Ttf)− TtΦnΩ(f)||| 6 2π|t|K
∣∣1/(S1 . . . Sn)− 1

∣∣‖f‖2,
for all f ∈ L2(Rd), all t ∈ Rd, and all n ∈ N.

Proof. The proof is given in Section 3.6.3.

Corollary 1 shows that no pooling, i.e., taking Sn = 1, for all n ∈ N,
leads to full translation covariance in every network layer. Conversely,
this proves that pooling is necessary to get vertical translation in-
variance as otherwise the features remain fully translation-covariant
irrespective of the network depth.
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(a) (b) (c)

Fig. 3.5: Handwritten digits from the MNIST data set (LeCun and Cortes,
1998). If f denotes the image of the handwritten digit “5” in (a),
then—for appropriately chosen τ—the function Fτf = f(· − τ(·))
models images of “5” based on different handwriting styles as in (b)
and (c).

3.4. DEFORMATION SENSITIVITY BOUNDS

In this section we provide bounds on the sensitivity of the feature
extractor ΦΩ w.r.t. deformations of the form

(Fτf)(x) := f(x− τ(x)).

This class of deformations encompasses non-linear distortions f(x−
τ(x)) as illustrated in Fig. 3.5, inter alia.

3.4.1. Decoupling

The deformation sensitivity bounds we derive are signal-class specific
in the sense of applying to input signals taken from a particular class.
Specifically, the signal class needs to exhibit inherent deformation
insensitivity in the following sense.

Definition 6. A signal class C ⊆ L2(Rd) is called deformation-
insensitive if there exist α,C > 0 such that for all f ∈ C and all
(possibly non-linear) τ ∈ C1(Rd,Rd) with ‖τ‖∞ < 1

2 and ‖Dτ‖∞ 6
1
2d , it holds that

‖f − Fτf‖2 6 C‖τ‖α∞‖f‖2. (3.21 )

The constant C > 0 and the Lipschitz exponent α > 0 in (3.21)
depend on the particular signal class C. Moreover, α > 0 determines
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x

f1(x), (Fτf1)(x)

x

f2(x), (Fτf2)(x)

Fig. 3.6: Impact of the deformation Fτ , with τ(x) = 1
2 e
−x2

, on the functions
f1 ∈ C1 ⊆ L2(R) and f2 ∈ C2 ⊆ L2(R). The signal class C1 consists
of smooth, slowly varying functions (e.g., band-limited functions, see
Section 3.4.2), and C2 consists of compactly supported functions that
exhibit discontinuities (e.g., cartoon functions, see Section 3.4.3). We
observe that f1, unlike f2, is affected only mildly by Fτ . The amount
of deformation induced therefore depends drastically on the specific
f ∈ L2(R).

the decay rate of the deformation error ‖f − Fτf‖2 as ‖τ‖∞ → 0.
Clearly, larger α > 0 results in the deformation error decaying faster as
the deformation becomes smaller. Examples of deformation-insensitive
signal classes are

i) the class of band-limited functions with α = 1 (see Section 3.4.2),

ii) the class of cartoon functions with α = 1
2 (see Section 3.4.3),

iii) the class of Lipschitz functions with α = 1 (see Section 3.4.4).

While a deformation sensitivity bound that applies to all f ∈ L2(Rd)
would be desirable, the example in Fig. 3.6 illustrates the difficulty
underlying this desideratum. Specifically, we can see in Fig. 3.6 that
for given τ(x) the impact of the deformation induced by f(x− τ(x))
can depend drastically on the function f ∈ L2(Rd) itself. We note
that the deformation stability bound (3.4) for scattering networks
reported in (Mallat, 2012, Theorem 2.12) applies to a signal class as
well, see (3.31) in Section 3.5.

Remark 4. It is interesting to note that in order to obtain bounds
of the form ‖f −Fτf‖2 ≤ C‖τ‖α∞‖f‖2, for f ∈ C ⊆ L2(Rd), for some
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C > 0 and some α > 0, we need to impose non-trivial constraints
on the set C ⊆ L2(Rd). Indeed, consider d = 1 and τs(x) = s, for
some s < 1

2 ; the corresponding deformation Fτs amounts to a simple
translation by s with ‖τs‖∞ = s < 1

2 and ‖Dτs‖∞ = 0 6 1
2d . Let

fs ∈ L2(Rd) be a function that has its energy ‖fs‖22 = 1 concentrated
in a small interval according to supp(fs) ⊆ [−s/2, s/2]. Then, fs and
Fτsfs have disjoint support sets and hence ‖fs−Fτsfs‖2 =

√
2, which

does not decay with ‖τ‖α∞ = sα for any α > 0.

Our signal-class specific deformation sensitivity bound for the fea-
ture extractor ΦΩ is based on the following two ingredients. First,
we establish—in Proposition 7 in Section 3.6.8—that the feature ex-
tractor ΦΩ is Lipschitz-continuous with Lipschitz constant LΩ = 1,
i.e.,

|||ΦΩ(f)− ΦΩ(h)||| 6 ‖f − h‖2, ∀f, h ∈ L2(Rd). (3.22)

Second, we derive for the signal classes under consideration (namely,
for band-limited functions in Section 3.4.2, for cartoon functions
in Section 3.4.3, and for Lipschitz functions in Section 3.4.4) an
upper bound on the deformation error ‖f −Fτf‖2 according to (3.21).
The deformation sensitivity bound for the feature extractor is then
obtained by setting h = Fτf in (3.22) and using (3.21) (see Section
3.6.4 for the corresponding technical details). This “decoupling” into
Lipschitz continuity of ΦΩ and a deformation sensitivity bound for
the underlying signal class has important practical ramifications as it
shows that whenever we have a deformation sensitivity bound for a
signal class, we automatically get a deformation sensitivity bound for
the corresponding feature extractor thanks to its Lipschitz continuity.
We proceed to the formal statement of the deformation sensitivity
result.

Theorem 2. Let Ω =
(
(Ψn,Mn, Pn)

)
n∈N be an admissible module-

sequence and let C ⊆ L2(Rd) be a deformation-insensitive signal class.
There exist constants α,C > 0 (that do not depend on Ω) such that for
all f ∈ C and all τ ∈ C1(Rd,Rd) with ‖τ‖∞ < 1

2 and ‖Dτ‖∞ 6 1
2d ,
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the feature extractor ΦΩ satisfies

|||ΦΩ(Fτf)− ΦΩ(f)||| 6 C‖τ‖α∞‖f‖2. (3.23 )

Proof. The proof is given in Section 3.6.4.

First, we note that the bound in (3.23) holds for sufficiently “small”
τ , i.e., as long as ‖τ‖∞ < 1

2 and ‖Dτ‖∞ 6 1
2d . We can think of this

condition on τ and on the Jacobian matrix Dτ as follows: Let f
be an image of the handwritten digit “5” (see Fig. 3.5 (a)). Then,
{Fτf | ‖τ‖∞ < 1

2 and ‖Dτ‖∞ 6 1
2d} is a collection of images of the

handwritten digit “5”, where each Fτf models an image that may be
generated, e.g., based on a different handwriting style (see Figs. 3.5
(b) and (c)). The bounds ‖τ‖∞ < 1

2 and ‖Dτ‖∞ 6 1
2d now impose

a quantitative limit on the amount of deformation tolerated. The
deformation sensitivity bound (3.23) provides a limit on how much
the features corresponding to the images in the set {Fτf | ‖τ‖∞ <
1
2 and ‖Dτ‖∞ 6 1

2d} can differ. The strength of the deformation
sensitivity bound in Theorem 2 derives itself from the fact that
the only condition on the underlying module-sequence Ω needed is
admissibility according to (3.14), which as outlined in Section 3.2, can
easily be obtained by normalizing the frame elements of Ψn, for all
n ∈ N, appropriately. This normalization does not have an impact on
the constant C in (3.23). More specifically, C is shown in Section 3.6.4
to be completely independent of Ω. All this is thanks to the decoupling
technique used to prove Theorem 2 being completely independent
of the structures of the frames Ψn and of the specific form of the
Lipschitz-continuous operators Mn and Pn. Moreover, as the vertical
translation invariance result in Theorem 1 in Section 3.3 applies to all
f ∈ L2(Rd), the results established in this chapter show that vertical
translation invariance and limited sensitivity to deformations—for
signal classes with inherent deformation insensitivity—are guaranteed
by the network structure per se rather than the specific convolution
filters, non-linearities, and pooling operators.
Finally, we note that the bound (3.4) for scattering networks re-

ported in (Mallat, 2012, Theorem 2.12) depends upon first-order (Dτ)
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and second-order (D2τ) derivatives of τ . In contrast, our bound (3.23)
depends on (Dτ) implicitly only as we need to impose the condition
‖Dτ‖∞ 6 1

2d for the bound to hold5. We honor this difference by
referring to (3.4) as deformation stability bound and to our bound
(3.23) as deformation sensitivity bound.

Remark 5. It is interesting to note that the frame lower bounds
An > 0 of the semi-discrete frames Ψn affect neither the vertical
translation invariance result in Theorem 1 in Section 3.3 nor the
deformation sensitivity bound in Theorem 2. In fact, our entire theory
carries through as long as the collections Ψn = {TbIgλn}λn∈Λn,b∈Rd ,
for all n ∈ N, satisfy the Bessel property∑

λn∈Λn

∫
Rd
|〈f, TbIgλn〉|2db =

∑
λn∈Λn

‖f ∗ gλn‖22 6 Bn‖f‖22,

for all f ∈ L2(Rd), for some Bn > 0, which, by Proposition 1 in
Section 2.2, is equivalent to∑

λn∈Λn

|ĝλn(ω)|2 6 Bn, a.e. ω ∈ Rd. (3.24 )

Pre-specified unstructured filters (Ranzato et al., 2007; Jarrett et al.,
2009) and learned filters (Huang and LeCun, 2006; Ranzato et al.,
2006, 2007; Jarrett et al., 2009) are therefore covered by our theory as
long as (3.24) is satisfied. In classical frame theory An > 0 guarantees
completeness of the set Ψn = {TbIgλn}λn∈Λn,b∈Rd for the signal space
under consideration, here L2(Rd). The absence of a frame lower
bound An > 0 therefore translates into a lack of completeness of Ψn,
which may result in the frame coefficients 〈f, TbIgλn〉 = (f ∗ gλn)(b),
(λn, b) ∈ Λn×Rd, not containing all essential features of the signal f .
This will, in general, have a (possibly significant) impact on practical
feature extraction performance which is why ensuring the entire frame
property (2.1) is prudent. Interestingly, satisfying the frame property
(2.1) for all Ψn, n ∈ Z, does, however, not guarantee that the feature

5We note that ‖Dτ‖∞ 6 1
2d is needed for the bound (3.4) to hold as well.
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extractor ΦΩ has a trivial null-set, i.e., ΦΩ(f) = 0 if and only if
f = 0. We refer the reader to Section 4.6 for an example of a feature
extractor with non-trivial null-set.

3.4.2. Bounds for band-limited functions

The following proposition states that the signal class of L-band-limited
functions

L2
L(Rd) :=

{
f ∈ L2(Rd) | supp(f̂ ) ⊆ BL(0)

}
, L > 0,

exhibits inherent deformation insensitivity in the sense of Definition
6 in Section 3.4.1.

Proposition 4. There exists a constant C > 0 such that for all
f ∈ L2

R(Rd) and all τ ∈ C1(Rd,Rd) with ‖Dτ‖∞ 6 1
2d , it holds that

‖f − Fτf‖2 6 CL‖τ‖∞‖f‖2. (3.25 )

Proof. The proof is given in Section 3.6.5.

The dependence of the upper bound in (3.25) on the bandwidth L
reflects the intuition that the deformation sensitivity bound should
depend on the input signal class “description complexity”. Many sig-
nals of practical significance (e.g., natural images, see Fig. 3.7) are,
however, either not band-limited due to the presence of sharp (and
possibly curved) edges or exhibit large bandwidths. In the latter case,
the bound (3.25) effectively becomes void owing to its linear depen-
dence on L. We refer the reader to Section 3.4.3 where deformation
sensitivity bounds for non-smooth signals are established.

A similar bound to (3.25) was derived in (Mallat, 2012, Appendix
B) for wavelet-based scattering networks, namely

‖f ∗ ψ(−J,0) − Fτ (f ∗ ψ(−J,0))‖2 6 C2−J+d‖τ‖∞‖f‖2, (3.26)

for all f ∈ L2(Rd), where ψ(−J,0) is the low-pass filter of a semi-discrete
directional wavelet frame for L2(Rd). The techniques for proving (3.25)
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Fig. 3.7: Left: A natural image (image credit: (Kutyniok and Labate, 2012a))
is typically governed by areas of little variation, with the individual
areas separated by edges that can be modeled as curved singularities.
Right: An image of a handwritten digit.

and (3.26) are related in the sense of both employing Schur’s Lemma
(Grafakos, 2008, Appendix I.1) and a Taylor series expansion argument
(Rudin, 1983, page 411). The signal-class specificity of our bound
(3.25) comes with new technical elements detailed at the beginning of
the proof in Section 3.6.5.

3.4.3. Bounds for cartoon functions

As already mentioned, the bound in (3.25) applies to the space of
L-band-limited functions. Many signals of practical significance (e.g.,
natural images) are, however, not band-limited (due to the presence
of sharp and possibly curved edges, see Fig. 3.7) or exhibit large
bandwidths. In the latter case, the deformation sensitivity bound
(3.25) becomes void as it depends linearly on L. The goal of this
section is to take structural properties of natural images into account
by considering the class of cartoon functions introduced in (Donoho,
2001). These functions satisfy mild decay properties and are piecewise
continuously differentiable apart from curved discontinuities along
C2-hypersurfaces. Cartoon functions provide a good model for natural
images (see Fig. 3.7, left) such as those in the Caltech-256 (Griffin
et al., 2007) and CIFAR-100 (Krizhevsky, 2009) data sets, for images
of handwritten digits (LeCun and Cortes, 1998) (see Fig. 3.7, right),
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and for images of geometric objects of different shapes, sizes, and
colors as in the Baby AI School data set6.
We will work with the following—relative to the definition in

(Donoho, 2001)—slightly modified version of cartoon functions.

Definition 7. The function f : Rd → C is referred to as a
cartoon function if it can be written as f = f1 + 1Bf2, where
B ⊆ Rd is a compact domain whose boundary ∂B is a compact
topologically embedded C2-hypersurface of Rd without boundary7, and
fi ∈ H1/2(Rd) ∩ C1(Rd,C), i = 1, 2, satisfy the decay condition

|∇fi(x)| ≤ C〈x〉−d, i = 1, 2, (3.27 )

for some C > 0 (not depending on f1,f2). Furthermore, we denote by

CKCART := {f1 + 1Bf2 | fi ∈ H1/2(Rd) ∩ C1(Rd,C),
|∇fi(x)| ≤ K〈x〉−d, vold−1(∂B) 6 K, ‖f2‖∞ 6 K}

the class of cartoon functions of “size” K > 0.

We chose the term “size” to indicate the length vold−1(∂B) of the
hypersurface ∂B. Furthermore, CKCART ⊆ L2(Rd), for all K > 0. This
simply follows from the triangle inequality according to ‖f1+1Bf2‖2 6
‖f1‖2 +‖1Bf2‖2 6 ‖f1‖2 +‖f2‖2 <∞, where in the last step we used
f1, f2 ∈ H1/2(Rd) ⊆ L2(Rd). Finally, we note that our results can
easily be generalized to finite linear combinations of cartoon functions,
but this is not done here for simplicity of exposition.

We proceed to the formal statement of our deformation insensitivity
result.

Proposition 5. For every K > 0 there exists a constant CK > 0
such that for all f ∈ CKCART and all (possibly non-linear) τ : Rd → Rd
with ‖τ‖∞ < 1

2 , it holds that

‖f − Fτf‖2 ≤ CK‖τ‖1/2∞ . (3.28 )
6http://www.iro.umontreal.ca/%7Elisa/twiki/bin/view.cgi/Public/

BabyAISchool
7We refer the reader to (do Carmo, 2013, Chapter 0) for a review on differentiable

manifolds.
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Proof. The proof is given in Section 3.6.6.

The dependence of CK on K reflects the intuition that the deforma-
tion sensitivity bound should depend on the signal class description
complexity. For band-limited signals, this dependence is exhibited by
the right hand side (RHS) in (3.25) being linear in the bandwidth L.
The Lipschitz exponent α = 1

2 on the RHS of (3.28) determines the
decay rate of the deformation error ‖f −Fτf‖2 as ‖τ‖∞ → 0. Clearly,
larger α > 0 results in the deformation error decaying faster as the
deformation becomes smaller. The following simple example shows
that the Lipschitz exponent α = 1

2 in (3.28) is best possible, i.e., it
can not be larger. Consider, again, d = 1 and τs(x) = s, for a fixed
s satisfying 0 < s < 1

2 . Let f = 1[−1,1]. Then f ∈ CKCART for some
K > 0 and ‖f − Fτsf‖2 =

√
2s =

√
2‖τ‖1/2∞ .

3.4.4. Bounds for Lipschitz functions

The following proposition states that functions f that do not exhibit
discontinuities along C2-hypersurfaces (such as cartoon functions),
but otherwise satisfy the decay condition (3.27), are deformation-
insensitive. More formally, we establish (3.21) with α = 1 for the
signal class

VR :=
{
f ∈ L2(Rd) ∩ C1(Rd,C) | |∇f(x)| ≤ R〈x〉−d

}
, R > 0.

Proposition 6. For every R > 0 there exists a constant CR > 0
such that for all f ∈ VR and all (possibly non-linear) τ : Rd → Rd
with ‖τ‖∞ < 1

2 , it holds that

‖f − Fτf‖2 ≤ CR‖τ‖∞. (3.29 )

Proof. The proof is given in Section 3.6.7.

We note that the condition f ∈ C1(Rd,C) in Proposition 6 can
be relaxed to Lipschitz-continuous f . This follows simply by noting
that Lipschitz-continuous functions are differentiable a.e. (Federer,
1969, Theorem 3.1.6) and that, since we only bound L2-norms, sets
of Lebesgue measure zero can be ignored.
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3.5. RELATION TO MALLAT’S RESULTS

3.5.1. Architectures

To see how Mallat’s wavelet-modulus feature extractor ΦW defined in
(3.1) is covered by our generalized framework, simply note that ΦW
is a feature extractor ΦΩ based on the module-sequence

ΩW =
(
(ΨΛW , | · |, Id)

)
n∈N,

where each layer is associated with the same module (ΨΛW , |·|, Id) and
thus with the same semi-discrete directional wavelet frame ΨΛW =
{TbIψλ}λ∈ΛW ,b∈Rd and the modulus non-linearity | · |. Since ΦW does
not involve pooling, we have Pn = Id and Sn = 1, for all n ∈ N.
The output-generating atom for all layers is taken to be the low-pass
filter ψ(−J,0), i.e., χn = ψ(−J,0), for all n ∈ N0. Owing to (Mallat,
2012, Equation 2.7), the set {ψλ}λ∈ΛW satisfies the equivalent frame
condition (2.3) with A = B = 1, and ΨΛW therefore forms a semi-
discrete Parseval frame for L2(Rd), which implies An = Bn = 1, for
all n ∈ N. The modulus non-linearity Mn = | · | and the operator
Pn = Id are Lipschitz-continuous with Lipschitz constants Ln = 1
and Rn = 1, and satisfy Mnf = |f | = 0 and Pnf = f = 0 for f = 0,
respectively. Therefore, the weak admissibility condition (3.14) is met
according to

max{Bn, BnR−dn L2
n} = max{1, 1} = 1 6 1, ∀n ∈ N. (3.30)

Moreover, Mn = | · | and Pn = Id trivially commute with the transla-
tion operator Tt in the sense of (3.15), see Section 2.3 for the corres-
ponding formal arguments. Owing to |ψ(−J,0)(x)| 6 C1(1 + |x|)−d−2

and |∇ψ(−J,0)(x)| 6 C2(1+|x|)−d−2, for some C1, C2 > 0, see (Mallat,
2012, page 1336), it follows that ‖ψ(−J,0)‖1 <∞ and ‖∇ψ(−J,0)‖1 <
∞ (Grafakos, 2008, Chapter 2.2), and thus ‖ψ(−J,0)‖1+‖∇ψ(−J,0)‖1 <
∞. By (3.19) the output-generating atoms χn = ψ(−J,0), n ∈ N0, sat-
isfy the decay condition (3.17), so that all the conditions required by
Theorem 1 and Corollary 1 in Section 3.3, as well as by Theorem 2 in
Section 3.4.1 are satisfied.
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3.5.2. Horizontal vs. vertical translation invariance

Mallat’s horizontal translation invariance result (3.3),

lim
J→∞

|||ΦW (Ttf)− ΦW (f)|||

= lim
J→∞

( ∞∑
n=0
|||ΦnW (Ttf)− ΦnW (f)|||2

)1/2
= 0,

is asymptotic in the wavelet scale parameter J , and guarantees trans-
lation invariance in every network layer in the sense of

lim
J→∞

|||ΦnW (Ttf)− ΦnW (f)||| = 0, ∀f ∈ L2(Rd), ∀t ∈ Rd, ∀n ∈ N0.

In contrast, our vertical translation invariance result (3.20) is asymp-
totic in the network depth n and is in line with observations made in
the deep learning literature, e.g., in (Serre et al., 2005; Huang and
LeCun, 2006; Mutch and Lowe, 2006; Ranzato et al., 2007; Jarrett
et al., 2009), where it is found that the network’s output generated
at deeper layers tends to be more translation-invariant.
We can easily render Mallat’s feature extractor ΦW vertically

translation-invariant according to

lim
n→∞

|||ΦnW (Ttf)− ΦnW (f)||| = 0, ∀f ∈ L2(Rd), ∀t ∈ Rd,

by employing pooling by sub-sampling (i.e., Pn = Id, n ∈ N) and
choosing the pooling factors such that lim

n→∞
S1 · . . . · Sn = ∞, see

Theorem 1.

3.5.3. Deformation stability vs. sensitivity

The deformation stability bound (3.4) for scattering networks reported
in (Mallat, 2012, Theorem 2.12) applies to the space

HW :=
{
f ∈ L2(Rd)

∣∣∣ ‖f‖HW <∞
}
, (3.31)

where

‖f‖HW :=
∞∑
n=0

( ∑
q∈(ΛW )n

‖U [q]f‖22

)1/2

.
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Here, (ΛW )n denotes the set of paths q =
(
λ

(j)
, . . . , λ

(p)) of length
n with λ

(j)
, . . . , λ

(p) ∈ ΛW , see Section 3.1. While (Mallat, 2012,
page 1350) cites numerical evidence on the series

∑
q∈(ΛW )n ‖U [q]f‖22

being finite (for some n ∈ N) for a large class of signals f ∈ L2(Rd),
it seems difficult to establish this analytically, let alone to show
that ‖f‖HW < ∞. In contrast, our deformation sensitivity bound
(3.23) applies provably to signal classes with inherent deformation
insensitivity (such as, e.g. band-limited functions, cartoon functions,
and Lipschitz functions). Moreover, the spaceHW in (3.31) depends on
the wavelet frame atoms {ψλ}λ∈ΛW , and thereby on the underlying
signal transform, whereas L2

L(Rd), CKCART, and VR are, of course,
completely independent of the module-sequence Ω.

Finally, Mallat’s deformation stability bound (3.4) depends on the
scale parameter J . This is problematic as Mallat’s horizontal transla-
tion invariance result (3.3) requires J →∞, which, by J‖Dτ‖∞ →∞
for J →∞, renders the deformation stability upper bound (3.4) void
as it goes to ∞. In contrast, in our framework, the deformation sensi-
tivity bound and the conditions for vertical translation invariance are
completely decoupled.

3.5.4. Proof techniques

The techniques used in (Mallat, 2012) to prove the horizontal transla-
tion invariance result (3.3) and the deformation stability bound (3.4)
make heavy use of structural specifics of the wavelet transform, namely,
isotropic scaling (see, e.g., (Mallat, 2012, Appendix A)), a constant
number K ∈ N of directional wavelets across scales (see, e.g., (Mal-
lat, 2012, Equation E.1)), and several technical conditions such as
a vanishing moment condition on the mother wavelet ψ (see, e.g.,
(Mallat, 2012, page 1391)). In addition, Mallat imposes the scattering
admissibility condition (Mallat, 2012, Theorem 2.6). First of all, this
condition depends on the underlying signal transform, more precisely
on the mother wavelet ψ, whereas our weak admissibility condition
(3.14) is in terms of the frame upper bounds Bn and the Lipschitz con-
stants Ln and Rn. As the frame upper bounds Bn can be adjusted by
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simply normalizing the frame elements, and this normalization affects
neither vertical translation invariance nor deformation insensitivity,
we can argue that our weak admissibility condition is independent
of the signal transforms underlying the network. Second, Mallat’s
scattering admissibility condition plays a critical role in the proof of
the horizontal translation invariance result (3.3) (see, e.g., (Mallat,
2012, page 1347)), as well as in the proof of the deformation stability
bound (3.4) (see, e.g., (Mallat, 2012, Equation 2.51)). It is therefore
unclear how Mallat’s proof techniques could be generalized to arbi-
trary convolutional transforms. Third, to the best of our knowledge,
no mother wavelet ψ ∈ L1(Rd) ∩ L2(Rd), for d > 2, satisfying the
scattering admissibility condition (Mallat, 2012, Theorem 2.6) has
been reported in the literature. In contrast, our proof techniques are
completely detached from the algebraic structures of the frames Ψn

in the module-sequence Ω =
(
(Ψn,Mn, Pn)

)
n∈N. Rather, it suffices to

employ (i) a module-sequence Ω that satisfies the weak admissibility
condition (3.14), (ii) non-linearities Mn and operators Pn that com-
mute with the translation operator Tt, (iii) output-generating atoms
χn that satisfy the decay condition (3.17), and (iv) pooling factors
Sn such that lim

n→∞
S1 · S2 · . . . · Sn = ∞. All these conditions were

shown above to be easily satisfied in practice.

3.6. PROOFS

3.6.1. Proof of Proposition 3

We need to show that ΦΩ(f) ∈ (L2(Rd))Q, for all f ∈ L2(Rd). This
will be accomplished by proving an even stronger result, namely

|||ΦΩ(f)||| 6 ‖f‖2, ∀f ∈ L2(Rd), (3.32)

which, by ‖f‖2 <∞, establishes the claim. For ease of notation, we
let fq := U [q]f , for f ∈ L2(Rd), in the following. Thanks to (3.11)
and (3.14), we have ‖fq‖2 6 ‖f‖2 <∞, and thus fq ∈ L2(Rd). The
key idea of the proof is now—similarly to the proof of (Mallat, 2012,
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Proposition 2.5)—to judiciously employ a telescoping series argument.
We start by writing

|||ΦΩ(f)|||2 =
∞∑
n=0

∑
q∈Λn

||fq ∗ χn||22

= lim
N→∞

N∑
n=0

∑
q∈Λn

||fq ∗ χn||22

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
:=an

. (3.33)

The key step is then to establish that an can be upper-bounded
according to

an 6 bn − bn+1, ∀n ∈ N0, (3.34)

with bn :=
∑
q∈Λn ‖fq‖22, n ∈ N0, and to use this result in a telescoping

series argument according to
N∑
n=0

an 6
N∑
n=0

(bn − bn+1) = (b0 − b1) + · · ·+ (bN − bN+1)

= b0 − bN+1²
>0

6 b0 =
∑
q∈Λ0

‖fq‖22 = ‖U [e]f‖22 = ‖f‖22. (3.35)

By (3.33) this then implies (3.32). We start by noting that (3.34)
reads∑

q∈Λn
‖fq ∗ χn‖22 6

∑
q∈Λn

||fq‖22 −
∑

q∈Λn+1

‖fq‖22, ∀n ∈ N0, (3.36)

and proceed by examining the second term on the RHS of (3.36).
Every path

q̃ ∈ Λn+1 = Λ1 × · · · × Λn´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=Λn

×Λn+1

of length n+ 1 can be decomposed into a path q ∈ Λn of length n and
an index λn+1 ∈ Λn+1 according to q̃ = (q, λn+1). Thanks to (3.10)
we have U [q̃] = U [(q, λn+1)] = Un+1[λn+1]U [q], which yields∑

q̃∈Λn+1

‖fq̃‖22 =
∑
q∈Λn

∑
λn+1∈Λn+1

‖Un+1[λn+1]fq‖22. (3.37)
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Substituting the second term on the RHS of (3.36) by (3.37) now
yields∑

q∈Λn
‖fq ∗ χn‖22 6

∑
q∈Λn

(
||fq‖22 −

∑
λn+1∈Λn+1

‖Un+1[λn+1]fq‖22
)
,

for all n ∈ N0, which can be rewritten as∑
q∈Λn

(
‖fq ∗ χn‖22 +

∑
λn+1∈Λn+1

‖Un+1[λn+1]fq‖22
)

6
∑
q∈Λn

||fq‖22, ∀n ∈ N0. (3.38)

Next, note that the second term inside the sum on the left hand side
(LHS) of (3.38) can be written as∑
λn+1∈Λn+1

‖Un+1[λn+1]fq‖22 =
∑

λn+1∈Λn+1

∫
Rd
|(Un+1[λn+1]fq)(x)|2dx

=
∑

λn+1∈Λn+1

Sdn+1

∫
Rd

∣∣∣Pn+1
(
Mn+1(fq ∗ gλn+1)

)
(Sn+1x)

∣∣∣2dx

=
∑

λn+1∈Λn+1

∫
Rd

∣∣∣Pn+1
(
Mn+1(fq ∗ gλn+1)

)
(y)
∣∣∣2dy

=
∑

λn+1∈Λn+1

‖Pn+1
(
Mn+1(fq ∗ gλn+1)

)
‖22, ∀n ∈ N0. (3.39)

Noting that fq ∈ L2(Rd), as established above, and gλn+1 ∈ L1(Rd),
by assumption, it follows that (fq ∗gλn+1) ∈ L2(Rd) thanks to Young’s
inequality (Grafakos, 2008, Theorem 1.2.12). We use the Lipschitz
property of Mn+1 and Pn+1, i.e., ‖Mn+1(fq ∗ gλn+1) −Mn+1h‖2 6
Ln+1‖fq ∗ gλn+1 − h‖, and ‖Pn+1(fq ∗ gλn+1)−Pn+1h‖2 6 Rn+1‖fq ∗
gλn+1 − h‖, together with Mn+1h = 0 and Pn+1h = 0 for h = 0, to
upper-bound the term inside the sum in (3.39) according to

‖Pn+1
(
Mn+1(fq ∗ gλn+1)

)
‖22 6 R2

n+1‖Mn+1(fq ∗ gλn+1)‖22
6 L2

n+1R
2
n+1‖fq ∗ gλn+1‖22, (3.40)
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for all n ∈ N0. Substituting the second term inside the sum on the
LHS of (3.38) by the upper bound resulting from insertion of (3.40)
into (3.39) yields∑

q∈Λn

(
‖fq ∗ χn‖22 + L2

n+1R
2
n+1

∑
λn+1∈Λn+1

‖fq ∗ gλn+1‖22
)

6
∑
q∈Λn

max{1, L2
n+1R

2
n+1}

(
‖fq ∗ χn‖22

+
∑

λn+1∈Λn+1

‖fq ∗ gλn+1‖22
)
, ∀n ∈ N0. (3.41)

As the functions {gλn+1}λn+1∈Λn+1 ∪ {χn} are the atoms of the semi-
discrete frame Ψn+1 for L2(Rd) and fq ∈ L2(Rd), as established above,
we have

‖fq ∗ χn‖22 +
∑

λn+1∈Λn+1

‖fq ∗ gλn+1‖22 6 Bn+1‖fq‖22,

which, when used in (3.41) yields∑
q∈Λn

(
‖fq ∗ χn‖22 +

∑
λn+1∈Λn+1

‖Un+1[λn+1]fq‖22
)

6
∑
q∈Λn

max{1, L2
n+1R

2
n+1}Bn+1‖fq‖22

=
∑
q∈Λn

max{Bn+1, Bn+1L
2
n+1R

2
n+1}‖fq‖22, ∀n ∈ N0. (3.42)

Finally, invoking the assumption

max{Bn, BnL2
nR

2
n+1} 6 1, ∀n ∈ N,

in (3.42) yields (3.38) and thereby completes the proof.

3.6.2. Proof of Theorem 1

We start by proving i). The key step in establishing (3.16) is to show
that the operator Un, n ∈ N, defined in (3.7) satisfies the relation

Un[λn]Ttf = Tt/SnUn[λn]f, (3.43)
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for all f ∈ L2(Rd), all t ∈ Rd, and all λn ∈ Λn. With the definition of
U [q] in (3.10) this then yields

U [q]Ttf = Tt/(S1···Sn)U [q]f, (3.44)

for all f ∈ L2(Rd), all t ∈ Rd, and all λn ∈ Λn. The identity (3.16) is
then a direct consequence of (3.44) and the translation-covariance of
the convolution operator:

ΦnΩ(Ttf) =
{(
U [q]Ttf

)
∗ χn

}
q∈Λn =

{(
Tt/(S1···Sn)U [q]f

)
∗ χn

}
q∈Λn

=
{
Tt/(S1···Sn)

(
(U [q]f) ∗ χn

)}
q∈Λn

= Tt/(S1···Sn)
{

(U [q]f) ∗ χn
}
q∈Λn

= Tt/(S1···Sn)ΦnΩ(f), ∀f ∈ L2(Rd), ∀t ∈ Rd.

To establish (3.43), we first define the unitary operatorDn : L2(Rd)→
L2(Rd), Dnf := S

d/2
n f(Sn·), and note that

Un[λn]Ttf = Sd/2n Pn

(
Mn

(
(Ttf) ∗ gλn

))
(Sn·)

= DnPn

(
Mn

(
(Ttf) ∗ gλn

))
= DnPn

(
Mn

(
Tt(f ∗ gλn)

))
= DnPn

(
Tt
(
Mn(f ∗ gλn)

))
(3.45)

= DnTt

(
Pn

((
Mn(f ∗ gλn)

)))
, (3.46)

for all f ∈ L2(Rd) and all t ∈ Rd, where in (3.45) and (3.46) we
employed MnTt = TtMn and PnTt = TtPn, for all n ∈ N, and all
t ∈ Rd, respectively, both of which are by assumption. Next, using

DnTtf = Sd/2n f(Sn · −t) = Sd/2n f(Sn(· − t/Sn)) = Tt/SnDnf,

for all f ∈ L2(Rd) and all t ∈ Rd in (3.46) yields

Un[λn]Ttf = DnTt

(
Pn

((
Mn(f ∗ gλn)

)))
= Tt/Sn

(
DnPn

((
Mn(f ∗ gλn)

)))
= Tt/SnUn[λn]f,
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for all f ∈ L2(Rd) and all t ∈ Rd. This completes the proof of i).
Next, we prove ii). For ease of notation, again, we let fq := U [q]f ,

for f ∈ L2(Rd). Thanks to (3.11) and the admissibility condition
(3.14), we have ‖fq‖2 6 ‖f‖2 < ∞, and thus fq ∈ L2(Rd). We first
write

|||ΦnΩ(Ttf)− ΦnΩ(f)|||2 = |||Tt/(S1···Sn)ΦnΩ(f)− ΦnΩ(f)|||2 (3.47)

=
∑
q∈Λn

‖Tt/(S1···Sn)(fq ∗ χn)− fq ∗ χn‖22

=
∑
q∈Λn

‖M−t/(S1···Sn)(f̂q ∗ χn)− f̂q ∗ χn‖22, (3.48)

for all n ∈ N, where in (3.47) we used (3.16), and in (3.48) we
employed Parseval’s formula (Rudin, 1991, page 189)—noting that
(fq ∗ χn) ∈ L2(Rd) thanks to Young’s inequality (Grafakos, 2008,
Theorem 1.2.12)—together with the relation T̂tf = M−tf̂ , for all
f ∈ L2(Rd) and all t ∈ Rd. The key step is then to establish the upper
bound

‖M−t/(S1···Sn)(f̂q ∗ χn)− f̂q ∗ χn‖22 6
4π2|t|2K2

(S1 · · ·Sn)2 ‖fq‖
2
2, (3.49)

for all n ∈ N, where K > 0 corresponds to the constant in the decay
condition (3.17), and to note that∑

q∈Λn
‖fq‖22 6

∑
q∈Λn−1

‖fq‖22, ∀n ∈ N, (3.50)

which follows from (3.34) thanks to

0 6
∑

q∈Λn−1

||fq ∗ χn−1||22 = an−1

6 bn−1 − bn =
∑

q∈Λn−1

‖fq‖22 −
∑
q∈Λn

‖fq‖22, ∀n ∈ N.

Iterating on (3.50) yields∑
q∈Λn

‖fq‖22 6
∑

q∈Λn−1

‖fq‖22 6 . . . 6
∑
q∈Λ0

‖fq‖22

= ‖U [e]f‖22 = ‖f‖22, ∀n ∈ N. (3.51)
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The identity (3.48) together with the inequalities (3.49) and (3.51)
then directly imply

|||ΦnΩ(Ttf)− ΦnΩ(f)|||2 6
4π2|t|2K2

(S1 · · ·Sn)2 ‖f‖
2
2, ∀n ∈ N. (3.52)

It remains to prove (3.49). To this end, we first note that

‖M−t/(S1···Sn)(f̂q ∗ χn)− f̂q ∗ χn‖22

=
∫
Rd

∣∣e−2πi〈t,ω〉/(S1···Sn) − 1
∣∣2|χ̂n(ω)|2|f̂q(ω)|2dω. (3.53)

Since |e−2πix − 1| 6 2π|x|, for all x ∈ R, it follows that

|e−2πi〈t,ω〉/(S1···Sn) − 1|2 6
4π2|〈t, ω〉|2

(S1 · · ·Sn)2 6
4π2|t|2|ω|2

(S1 · · ·Sn)2 , (3.54)

where in the last step we employed the Cauchy-Schwartz inequality.
Substituting (3.54) into (3.53) yields

‖M−t/(S1···Sn)(f̂q ∗ χn)− f̂q ∗ χn‖22

6
4π2|t|2

(S1 · · ·Sn)2

∫
Rd
|ω|2|χ̂n(ω)|2|f̂q(ω)|2dω

6
4π2|t|2K2

(S1 · · ·Sn)2

∫
Rd
|f̂q(ω)|2dω (3.55)

= 4π2|t|2K2

(S1 · · ·Sn)2 ‖f̂q‖
2
2 = 4π2|t|2K2

(S1 · · ·Sn)2 ‖fq‖
2
2, ∀n ∈ N, (3.56)

where in (3.55) we employed the decay condition (3.17), and in the
last step, again, we used Parseval’s formula (Rudin, 1991, page 189).
This establishes (3.49) and thereby completes the proof of ii).

3.6.3. Proof of Corollary 1

The key idea of the proof is—similarly to the proof of ii) in Theorem
1 in Section 3.6.2—to upper-bound the deviation from perfect co-
variance in the frequency domain. For ease of notation, again, we let
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fq := U [q]f , for f ∈ L2(Rd). Thanks to (3.11) and the admissibility
condition (3.14), we have ‖fq‖2 6 ‖f‖2 <∞, and thus fq ∈ L2(Rd).
We first write

|||ΦnΩ(Ttf)−TtΦnΩ(f)|||2 = |||Tt/(S1···Sn)ΦnΩ(f)− TtΦnΩ(f)|||2 (3.57)

=
∑
q∈Λn1

‖(Tt/(S1···Sn) − Tt)(fq ∗ χn)‖22

=
∑
q∈Λn1

‖(M−t/(S1···Sn) −M−t)(f̂q ∗ χn)‖22, (3.58)

for all n ∈ N, where in (3.57) we used (3.16), and in (3.58) we
employed Parseval’s formula (Rudin, 1991, page 189)—noting that
(fq ∗ χn) ∈ L2(Rd) thanks to Young’s inequality (Grafakos, 2008,
Theorem 1.2.12)—together with the relation T̂tf = M−tf̂ , for all
f ∈ L2(Rd), and all t ∈ Rd. The key step is then to establish the
upper bound

‖(M−t/(S1···Sn) −M−t)(f̂q ∗ χn)‖22
6 4π2|t|2K2∣∣1/(S1 · · ·Sn)− 1

∣∣2‖fq‖22, (3.59)

where K > 0 corresponds to the constant in the decay condition
(3.17). Arguments similar to those leading to (3.52) then complete
the proof. It remains to prove (3.59):

‖(M−t/(S1···Sn) −M−t)(f̂q ∗ χn)‖22

=
∫
Rd

∣∣e−2πi〈t,ω〉/(S1···Sn) − e−2πi〈t,ω〉∣∣2|χ̂n(ω)|2|f̂q(ω)|2dω. (3.60)

Since |e−2πix − e−2πiy| 6 2π|x− y|, for all x, y ∈ R, it follows that∣∣e−2πi〈t,ω〉/(S1···Sn) − e−2πi〈t,ω〉∣∣2
6 4π2|t|2|ω|2

∣∣1/(S1 · · ·Sn)− 1
∣∣2, (3.61)

where, again, we employed the Cauchy-Schwartz inequality. Substi-
tuting (3.61) into (3.60), and employing arguments similar to those
leading to (3.56), establishes (3.59) and thereby completes the proof.
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3.6.4. Proof of Theorem 2

As already mentioned at the beginning of Section 3.4, the proof of the
deformation sensitivity bound (3.23) is based on two key ingredients.
The first one, stated in Proposition 7 in Section 3.6.8, establishes
that the feature extractor ΦΩ is Lipschitz-continuous with Lipschitz
constant LΩ = 1, i.e.,

|||ΦΩ(f)− ΦΩ(h)||| 6 ‖f − h‖2, ∀f, h ∈ L2(Rd), (3.62)

and needs the admissibility condition (3.14) only. The second ingredi-
ent is an upper bound on the deformation error ‖f −Fτf‖2 according
to (see Definition 6 in Section 3.4.1)

‖f − Fτf‖2 6 C‖τ‖α∞‖f‖2, (3.63)

and is established in Proposition 4 in Section 3.4.2 for band-limited
functions, in Proposition 5 in Section 3.4.3 for cartoon functions,
and in Proposition 6 in Section 3.4.4 for Lipschitz functions. We
now show how (3.62) and (3.63) can be combined to establish the
deformation sensitivity bound (3.23). To this end, we first apply (3.62)
with h := Fτf = f(· − τ(·)) to get

|||ΦΩ(f)− ΦΩ(Fτf)||| 6 ‖f − Fτf‖2, ∀f ∈ L2(Rd). (3.64)

Here, we used Fτf ∈ L2(Rd), which is thanks to

‖Fτf‖22 =
∫
Rd
|f(x− τ(x))|2dx 6 2‖f‖22,

obtained through the change of variables u = x− τ(x), together with

du
dx = |det(E− (Dτ)(x))| > 1−d‖Dτ‖∞ > 1/2, ∀x ∈ Rd. (3.65)

The first inequality in (3.65) follows from:

Lemma 2. (Brent et al., 2015, Corollary 1) Let M ∈ Rd×d be such
that |Mi,j | 6 α, for all i, j with 1 6 i, j 6 d. If dα 6 1, then

|det(E −M)| > 1− dα.
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The second inequality in (3.65) is a consequence of the assumption
‖Dτ‖∞ 6 1

2d . The proof is finalized by replacing the RHS of (3.64)
by the RHS of (3.63).

3.6.5. Proof of Proposition 4

We first determine an integral operator

(Kf)(x) =
∫
Rd
k(x, u)f(u)du (3.66)

satisfying the signal-class specific identity Kf = Fτf − f , for all
f ∈ L2

L(Rd), and then upper-bound the deformation error ‖f −Fτf‖2
according to

‖f − Fτf‖2 = ‖Fτf − f‖2 = ‖Kf‖2 6 ‖K‖2,2‖f‖2,

for all f ∈ L2
L(Rd). Application of Schur’s Lemma, stated below, then

yields
‖K‖2,2 6 CL‖τ‖∞,

for some C > 0, which completes the proof.

Schur’s Lemma. (Grafakos, 2008, Appendix I.1) Let k : Rd×Rd →
C be a locally integrable function satisfying

(i) sup
x∈Rd

∫
Rd
|k(x, u)|du 6 α, (ii) sup

u∈Rd

∫
Rd
|k(x, u)|dx 6 α, (3.67 )

where α > 0. Then, (Kf)(x) =
∫
Rd k(x, u)f(u)du is a bounded opera-

tor from L2(Rd) to L2(Rd) with operator norm ‖K‖2,2 6 α.

We start by determining the integral operator K in (3.66). To
this end, consider η ∈ S(Rd,C) such that η̂(ω) = 1, for all ω ∈
B1(0). Setting γ(x) := Ldη(Lx) yields γ ∈ S(Rd,C) and γ̂(ω) =
η̂(ω/L). Thus, γ̂(ω) = 1, for all ω ∈ BL(0), and hence f̂ = f̂ · γ̂,
so that f = f ∗ γ, for all f ∈ L2

L(Rd). Next, we define the operator
Aγ : L2(Rd) → L2(Rd), Aγf := f ∗ γ, and note that Aγ is well-
defined, i.e., Aγf ∈ L2(Rd), for all f ∈ L2(Rd), thanks to Young’s
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inequality (Grafakos, 2008, Theorem 1.2.12) (since f ∈ L2(Rd) and
γ ∈ S(Rd,C) ⊆ L1(Rd)). Moreover, Aγf = f , for all f ∈ L2

L(Rd).
Setting K := FτAγ −Aγ , we get Kf = FτAγf −Aγf = Fτf − f , for
all f ∈ L2

L(Rd), as desired. Furthermore, it follows from

(FτAγf)(x) =
∫
Rd
γ(x− τ(x)− u)f(u)du,

that the integral operator K = FτAγ − Aγ , i.e., (Kf)(x) =∫
Rd k(x, u)f(u)du, has the kernel

k(x, u) := γ(x− τ(x)− u)− γ(x− u). (3.68)

Before we can apply Schur’s Lemma to establish an upper bound on
‖K‖2,2, we need to verify that k in (3.68) is locally integrable, i.e.,
we need to show that for every compact set S ⊆ Rd × Rd we have∫
S
|k(x, u)|d(x, u) <∞. To this end, let S ⊆ Rd × Rd be a compact

set. Next, choose compact sets S1, S2 ⊆ Rd such that S ⊆ S1 × S2.
Thanks to γ ∈ S(Rd,C), τ ∈ C1(Rd,Rd), and ω ∈ C(Rd,R), all
by assumption, the function |k| : S1 × S2 → C is continuous as a
composition of continuous functions, and therefore also Lebesgue-
measurable. We further have∫

S1

∫
S2

|k(x, u)|dxdu 6
∫
S1

∫
Rd
|k(x, u)|dxdu

6
∫
S1

∫
Rd
|γ(x− τ(x)− u)|dxdu+

∫
S1

∫
Rd
|γ(x− u)|dxdu

6 2
∫
S1

∫
Rd
|γ(y)|dydu+

∫
S1

∫
Rd
|γ(y)|dy du (3.69)

= 3µL(S1)‖γ‖1 <∞, (3.70)

where the first term in (3.69) follows by the change of variables
y = x− τ(x)− u, together with

dy
dx = |det(E− (Dτ)(x))| > 1−d‖Dτ‖∞ > 1/2, ∀x ∈ Rd. (3.71)
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The arguments underlying (3.71) were already detailed at the end of
Section 3.6.4. It follows that k is locally integrable owing to∫

S

|k(x, u)|d(x, u) 6
∫
S1×S2

|k(x, u)|d(x, u) (3.72)

=
∫
S1

∫
S2

|k(x, u)|dxdu <∞, (3.73)

where (3.72) follows from S ⊆ S1×S2, (3.73) is thanks to the Fubini-
Tonelli Theorem (DiBenedetto, 2002, Theorem 14.2) noting that
|k| : S1 × S2 → C is Lebesgue-measurable (as established above) and
non-negative, and the last step is due to (3.70). Next, we need to
verify conditions (i) and (ii) in (3.67) and determine the corresponding
α > 0. In fact, we seek a specific constant α of the form

α = CL‖τ‖∞, (3.74)

for some C > 0. This will be accomplished as follows: For x, u ∈ Rd,
we parametrize the integral kernel in (3.68) according to hx,u(t) :=
γ(x− tτ(x)− u)− γ(x− u). A Taylor series expansion (Rudin, 1983,
page 411) of hx,u(t) w.r.t. the variable t now yields

hx,u(t) = hx,u(0)
´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶

=0

+
∫ t

0
h′x,u(λ)dλ =

∫ t

0
h′x,u(λ)dλ, (3.75)

for all t ∈ R, where h′x,u(t) = ( d
dthx,u)(t). Note that hx,u ∈ C1(R,C)

thanks to γ ∈ S(Rd,C). Setting t = 1 in (3.75) we get

|k(x, u)| = |hx,u(1)| 6
∫ 1

0
|h′x,u(λ)|dλ, (3.76)

where

h′x,u(λ) =− 〈∇γ(x− λτ(x)− u), τ(x)〉,

for λ ∈ [0, 1]. We further have

|h′x,u(λ)| 6
∣∣〈∇γ(x− λτ(x)− u), τ(x)

〉∣∣
6 |τ(x)||∇γ(x− λτ(x)− u)|. (3.77)
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Now, using |τ(x)| 6 sup
y∈Rd

|τ(y)| = ‖τ‖∞ in (3.77), together with

(3.76), we get the upper bound

|k(x, u)| 6 ‖τ‖∞
∫ 1

0
|∇γ(x− λτ(x)− u)|dλ. (3.78)

Next, we integrate (3.78) w.r.t. u to establish (i) in (3.67):∫
Rd
|k(x, u)|du 6 ‖τ‖∞

∫
Rd

∫ 1

0
|∇γ(x− λτ(x)− u)|dλdu

= ‖τ‖∞
∫ 1

0

∫
Rd
|∇γ(x− λτ(x)− u)|dudλ (3.79)

= ‖τ‖∞
∫ 1

0

∫
Rd
|∇γ(y)|dydλ

= ‖τ‖∞‖∇γ‖1, (3.80)

where (3.79) follows by application of the Fubini-Tonelli Theorem
(DiBenedetto, 2002, Theorem 14.2) noting that the functions (u, λ) 7→
|∇γ(x−λτ(x)−u)|, (u, λ) ∈ Rd×[0, 1], and (u, λ) 7→ |γ(x−λτ(x)−u)|,
(u, λ) ∈ Rd × [0, 1], are both non-negative and continuous (and thus
Lebesgue-measurable) as compositions of continuous functions. Finally,
using γ = Ldη(L·), and thus∇γ = Ld+1∇η(L·) and ‖∇γ‖1 = L‖∇η‖1
in (3.80) yields

sup
x∈Rd

∫
Rd
|k(x, u)|du 6 L‖∇η‖1‖τ‖∞, (3.81)

which establishes an upper bound of the form (i) in (3.67) that exhibits
the desired structure for α. Condition (ii) in (3.67) is established
similarly by integrating (3.78) w.r.t. x according to∫

Rd
|k(x, u)|dx 6 ‖τ‖∞

∫
Rd

∫ 1

0
|∇γ(x− λτ(x)− u)|dλdx

= ‖τ‖∞
∫ 1

0

∫
Rd
|∇γ(x− λτ(x)− u)|dxdλ (3.82)

6 2 ‖τ‖∞
∫ 1

0

∫
Rd
|∇γ(y)|dydλ (3.83)
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= 2 ‖τ‖∞‖∇γ‖1 = 2L ‖∇η‖1‖τ‖∞, (3.84)

which yields an upper bound of the form (ii) in (3.67) with the desired
structure for α. Here, again, (3.82) follows by application of the Fubini-
Tonelli Theorem (DiBenedetto, 2002, Theorem 14.2) noting that the
functions (x, λ) 7→ |∇γ(x − λτ(x) − u)|, (x, λ) ∈ Rd × [0, 1], and
(x, λ) 7→ |γ(x−λτ(x)−u)|, (x, λ) ∈ Rd× [0, 1], are both non-negative
and continuous (and thus Lebesgue-measurable) as a composition of
continuous functions. The inequality (3.83) follows from a change of
variables argument similar to the one in (3.69) and (3.71). Combining
(3.81) and (3.84), we finally get (3.74) with C := 2‖∇η‖1. This
completes the proof.

3.6.6. Proof of Proposition 5

The proof of (3.28) is based on judiciously combining deformation sen-
sitivity bounds for the components f1, f2 in (f1 +1Bf2) ∈ CKCART and
for the indicator function 1B . The first bound, stated in Proposition
6 in Section 3.4.4, reads

‖f − Fτf‖2 ≤ CK‖τ‖∞, (3.85)

and applies to functions f satisfying the decay condition

|∇f(x)| ≤ K〈x〉−d, (3.86)

with the constant CK > 0 not depending on f , τ (see (3.93)). The
bound in (3.85) needs the assumption ‖τ‖∞ < 1

2 . The second bound,
stated in Lemma 3 below, is

‖1B − Fτ1B‖2 ≤ C1/2
∂B ‖τ‖

1/2
∞ , (3.87)

where the constant C∂B > 0 is independent of τ . We now show
how (3.85) and (3.87) can be combined to establish (3.28). For f =
(f1 + 1Bf2) ∈ CKCART, we have

‖f − Fτf‖2 6 ‖f1 − Fτf1‖2
+ ‖1B(f2 − Fτf2)‖2 + ‖(1B − Fτ1B)(Fτf2)‖2 (3.88)
6‖f1 − Fτf1‖2 + ‖f2 − Fτf2‖2+ ‖1B − Fτ1B‖2‖Fτf2‖∞,
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where in (3.88) we used Fτ (1Bf2)(x) = (1Bf2)(x− τ(x)) = 1B(x−
τ(x))f2((x− τ(x))) = (Fτ1B)(x)(Fτf2)(x). With the upper bounds
(3.85) and (3.87), invoking properties of the class of cartoon func-
tions CKCART (namely, (i) f1,f2 satisfy (3.86) and thus (3.85), and (ii)
‖Fτf2‖∞ = supx∈Rd |f2(x− τ(x))| 6 supy∈Rd |f2(y)| = ‖f2‖∞ 6 K),
this yields

‖f − Fτf‖2 6 2CK ‖τ‖∞ +KC
1/2
∂B ‖τ‖

1/2
∞

6 2 max{2CK ,KC1/2
∂B }´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=:C′
K

‖τ‖1/2∞ ,

which completes the proof of (3.28).
We continue with the deformation sensitivity result (3.87) for indi-

cator functions 1B .

Lemma 3. Let B ⊆ Rd be a compact domain whose boundary ∂B
is a compact topologically embedded C2-hypersurface of Rd without
boundary. Then, there exists a constant C∂B > 0 (that does not depend
on τ) such that for all τ : Rd → Rd with ‖τ‖∞ 6 1, it holds that

‖1B − Fτ1B‖2 ≤ C1/2
∂B ‖τ‖

1/2
∞ .

Proof. In order to upper-bound

‖1B − Fτ1B‖22 =
∫
Rd
|1B(x)− 1B(x− τ(x))|2dx,

we first note that the integrand h(x) := |1B(x) − 1B(x − τ(x))|2
satisfies h(x) = 1, for x ∈ S, where

S : = {x ∈ Rd |x ∈ B and x− τ(x) /∈ B}
∪ {x ∈ Rd |x /∈ B and x− τ(x) ∈ B},

and h(x) = 0, for x ∈ Rd\S. Moreover, owing to S ⊆
(
∂B+B‖τ‖∞(0)

)
,

where (∂B+B‖τ‖∞(0)) is a tube of radius ‖τ‖∞ around the boundary
∂B of B, and Lemma 4, stated below, there exists a constant C∂B > 0
such that

vold(S) 6 vold(∂B +B‖τ‖∞(0)) 6 C∂B‖τ‖∞, (3.89)
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for all τ with ‖τ‖∞ 6 1. We therefore have

‖1B − Fτ1B‖22 =
∫
Rd
h(x)dx =

∫
S

1dx = vold(S) 6 C∂B‖τ‖∞,

which completes the proof.

It remains to establish the second inequality in (3.89).

Lemma 4. Let M ⊆ Rd be a compact topologically embedded C2-
hypersurface of Rd without boundary and let

T (M, r) :=
{
x ∈ Rd

∣∣ inf
y∈M
|x− y| 6 r

}
, r > 0,

be the tube of radius r around M . Then, there exists a constant
CM > 0 (that does not depend on r) such that for all r 6 1 it holds
that

vold(T (M, r)) 6 CM r. (3.90 )

Proof. The proof is based on Weyl’s tube formula (Weyl, 1939). Let

κ := max
i∈{1,...,d−1}

κi,

where κi is the i-th principal curvature of the hypersurface M (see
(Gray, 2004, Section 3.1) for a formal definition). It follows from
(Gray, 2004, Theorem 8.4 (i)) that

vold(T (M, r)) =
b d−1

2 c∑
i=0

2r2i+1k2i(M)∏i
j=0(1 + 2j)

,

for all r 6 κ−1, where k2i(M) =
∫
M
H2i(x)dx, i ∈ {0, . . . , bd−1

2 c},
with H2i denoting the so-called (2i)-th curvature of M , see (Gray,
2004, Section 4.1) for a formal definition. Now, thanks to M being
a C2-hypersurface, we have that H2i, i ∈ {0, . . . , bd−1

2 c}, is bounded
(see (Gray, 2004, Section 4.1)), which together with M compact
(and thus bounded) implies |k2i(M)| <∞, for all i ∈ {0, . . . , bd−1

2 c}.
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Moreover, by definition, k2i(M), i ∈ {0, . . . , bd−1
2 c}, is independent

of the tube radius r. Therefore, setting

CM :=
(⌊d− 1

2

⌋
+ 1
)

max
i

2|k2i(M)|∏i
j=0(1 + 2j)

establishes (3.90) for 0 < r 6 min{1, κ−1}. It remains to prove (3.90)
for min{1, κ−1} < r ≤ 1. Let

R∗ := inf{R > 0 | M ⊆ BR(0)}

and DR∗ := vold(BR∗+1(0)). Since

vold(T (M, r)) ≤ DR∗ , ∀ 0 < r ≤ 1,

it follows that

vold(T (M, r)) < DR∗ max{1, κ} r,

for all min{1, κ−1} < r ≤ 1, which establishes (3.90) for
min{1, κ−1} < r ≤ 1 and thereby concludes the proof.

3.6.7. Proof of Proposition 6

We first upper-bound the integrand in ‖f − Fτf‖22 =
∫
Rd |f(x) −

f(x− τ(x))|2dx. Owing to the mean value theorem (Comenetz, 2002,
Theorem 3.7.5), we have

|f(x)− f(x− τ(x))| ≤ ‖τ‖∞ sup
y∈B‖τ‖∞ (x)

|∇f(y)|

6 R‖τ‖∞ sup
y∈B‖τ‖∞ (x)

〈y〉−d

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=:h(x)

,

where the last inequality follows by assumption. The idea is now to
split the integral

∫
Rd |h(x)|2dx into integrals over the sets B1(0) and

Rd\B1(0). For x ∈ B1(0), the monotonicity of the function x 7→ 〈x〉−d
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implies h(x) 6 R‖τ‖∞〈0〉−d = R‖τ‖∞, and for x ∈ Rd\B1(0), we
have (1− ‖τ‖∞) 6 (1− ‖τ‖∞|x| ), which together with the monotonicity
of x 7→ 〈x〉−d yields h(x) 6 R‖τ‖∞〈(1 − ‖τ‖∞|x| )x〉−d 6 R‖τ‖∞〈(1 −
‖τ‖∞)x〉−d. Putting things together, we hence get

‖f − Fτf‖22 ≤ R2‖τ‖2∞
(
vold

(
B1(0)

)
+ 2d

∫
Rd
〈u〉−2ddu

)
(3.91)

≤ R2‖τ‖2∞
(
vold

(
B1(0)

)
+ 2d‖〈·〉−d‖22

)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=:D2

,

where in (3.91) we used the change of variables u = (1 − ‖τ‖∞)x,
together with

du
dx = (1− ‖τ‖∞)d > 2−d. (3.92)

The inequality in (3.92) follows from ‖τ‖∞ < 1
2 , which is by assump-

tion. Since ‖〈·〉−d‖2 <∞, for d ∈ N (see, e.g., (Grafakos, 2008, Section
1)), and, obviously, vold

(
B1(0)

)
< ∞, it follows that D2 < ∞. We

finally get (3.29) with
CR := RD, (3.93)

which completes the proof.

3.6.8. Proof of Proposition 7

Proposition 7. Let Ω =
(
(Ψn,Mn, Pn)

)
n∈N be an admissible module-

sequence. The corresponding feature extractor ΦΩ : L2(Rd) →
(L2(Rd))Q is Lipschitz-continuous with Lipschitz constant LΩ = 1,
i.e.,

|||ΦΩ(f)− ΦΩ(h)||| 6 ‖f − h‖2, ∀f, h ∈ L2(Rd). (3.94 )

Remark 6. Proposition 7 generalizes (Mallat, 2012, Proposition
2.5), which shows that the wavelet-modulus feature extractor ΦW

generated by scattering networks is Lipschitz-continuous with Lip-
schitz constant LW = 1. Specifically, our generalization allows for
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general semi-discrete frames (i.e., general convolution filters), gene-
ral Lipschitz-continuous non-linearities Mn, and general Lipschitz-
continuous operators Pn, all of which can be different in different
layers. Moreover, thanks to the admissibility condition (3.14), the
Lipschitz constant LΩ = 1 in (3.94) is completely independent of the
frame upper bounds Bn and the Lipschitz-constants Ln and Rn of
Mn and Pn, respectively.

Proof. The key idea of the proof is again—similarly to the proof of
Proposition 3 in Section 3.6.1—to judiciously employ a telescoping
series argument. For ease of notation, we let fq := U [q]f and hq :=
U [q]h, for f, h ∈ L2(Rd). Thanks to (3.11) and the admissibility
condition (3.14), we have ‖fq‖2 6 ‖f‖2 <∞ and ‖hq‖2 6 ‖h‖2 <∞
and thus fq, hq ∈ L2(Rd). We start by writing

|||ΦΩ(f)− ΦΩ(h)|||2 =
∞∑
n=0

∑
q∈Λn

||fq ∗ χn − hq ∗ χn||22

= lim
N→∞

N∑
n=0

∑
q∈Λn

||fq ∗ χn − hq ∗ χn||22

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=:an

.

As in the proof of Proposition 3 in Section 3.6.1, the key step is to
show that an can be upper-bounded according to

an 6 bn − bn+1, ∀n ∈ N0, (3.95)

where here bn :=
∑
q∈Λn ‖fq − hq‖22, for all n ∈ N0, and to note that,

similarly to (3.35),

N∑
n=0

an 6
N∑
n=0

(bn − bn+1) = (b0 − b1) + · · ·+ (bN − bN+1)

= b0 − bN+1²
>0

6 b0 =
∑
q∈Λ0

‖fq − hq‖22 = ‖U [e]f − U [e]h‖22

= ‖f − h‖22,
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which then yields (3.94) according to

|||ΦΩ(f)− ΦΩ(h)|||2 = lim
N→∞

N∑
n=0

an 6 lim
N→∞

‖f − h‖22 = ‖f − h‖22.

Writing out (3.95), it follows that we need to establish∑
q∈Λn

‖fq∗χn−hq∗χn‖22 6
∑
q∈Λn

||fq−hq‖22−
∑

q∈Λn+1

‖fq−hq‖22, (3.96)

for all n ∈ N0. We start by examining the second term on the RHS of
(3.96) and note that, thanks to the decomposition

q̃ ∈ Λn+1 = Λ1 × · · · × Λn´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=Λn

×Λn+1

and U [q̃] = U [(q, λn+1)] = Un+1[λn+1]U [q], by (3.10), we have∑
q̃∈Λn+1

‖fq̃ − hq̃‖22

=
∑
q∈Λn

∑
λn+1∈Λn+1

‖Un+1[λn+1]fq − Un+1[λn+1]hq‖22. (3.97)

Substituting (3.97) into (3.96) and rearranging terms, we obtain∑
q∈Λn

(
‖fq ∗ χn − hq ∗ χn‖22 +

∑
λn+1∈Λn+1

‖Un+1[λn+1]fq

− Un+1[λn+1]hq‖22
)
6
∑
q∈Λn

||fq − hq‖22, (3.98)

for all n ∈ N0. We next note that the second term inside the sum on
the LHS of (3.98) satisfies∑

λn+1∈Λn+1

‖Un+1[λn+1]fq − Un+1[λn+1]hq‖22

6
∑

λn+1∈Λn+1

‖Pn+1
(
Mn+1(fq ∗ gλn+1)

)
− Pn+1

(
Mn+1(hq ∗ gλn+1)

)
‖22, (3.99)
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where we employed arguments similar to those leading to (3.39).
Substituting the second term inside the sum on the LHS of (3.98) by
the upper bound (3.99), and using the Lipschitz property of Mn+1
and Pn+1 yields∑
q∈Λn

(
‖fq ∗ χn − hq ∗ χn‖22 +

∑
λn+1∈Λn+1

‖Un+1[λn+1]fq

− Un+1[λn+1]hq‖22
)
6
∑
q∈Λn

max{1, L2
n+1R

2
n+1}

(
‖(fq − hq) ∗ χn‖22

+
∑

λn+1∈Λn+1

‖(fq − hq) ∗ gλn+1‖22
)
, (3.100)

for all n ∈ N0. As the functions {gλn+1}λn+1∈Λn+1∪{χn} are the atoms
of the semi-discrete frame Ψn+1 for L2(Rd) and fq, hq ∈ L2(Rd), as
established above, we have

‖(fq −hq) ∗χn‖22 +
∑

λn+1∈Λn+1

‖(fq −hq) ∗ gλn+1‖22 6 Bn+1‖fq −hq‖22,

which, when used in (3.100) yields∑
q∈Λn

(
‖fq ∗ χn − hq ∗ χn‖22

+
∑

λn+1∈Λn+1

‖Un+1[λn+1]fq − Un+1[λn+1]hq‖22
)

6
∑
q∈Λn

max{Bn+1, Bn+1L
2
n+1R

2
n+1}‖fq − hq‖22, (3.101)

for all n ∈ N0. Finally, invoking the admissibility condition

max{Bn, BnL2
nR

2
n} 6 1, ∀n ∈ N,

in (3.101) we get (3.98) and hence (3.95). This completes the proof.
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CHAPTER 4

Energy propagation in

deep convolutional neural networks

Many practical machine learning tasks employ very deep
convolutional neural networks (He et al., 2015). Such large
depths pose formidable computational challenges in train-

ing and operating the network. It is therefore important to understand
how fast the energy contained in the propagated signals (a.k.a. feature
maps) decays across layers. In addition, it is desirable that the feature
extractor generated by the network be informative in the sense of the
only signal mapping to the all-zeros feature vector being the zero input
signal. This “trivial null-set” property can be accomplished by asking
for “energy conservation” in the sense of the energy in the feature
vector being proportional to that of the corresponding input signal.
In this chapter, we establish conditions for energy conservation (and
thus for a trivial null-set) for a wide class of DCNNs and characterize
corresponding feature map energy decay rates. Specifically, we con-
sider generalized scattering networks (introduced in Chapter 3) and
find that under mild analyticity and high-pass conditions on the filters
(which encompass, inter alia, various constructions of Weyl-Heisenberg
filters, wavelets, ridgelets, (α)-curvelets, and shearlets) the feature
map energy decays at least polynomially fast. For broad families of
wavelets and Weyl-Heisenberg filters, the guaranteed decay rate is
shown to be exponential. Moreover, we provide handy estimates of

83
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the number of layers needed to have at least ((1− ε) · 100)% of the
input signal energy be contained in the feature vector. Finally, we
show how networks of fixed (possibly small) depth can be designed
to capture most of the input signal’s energy.

Outline

The remainder of this chapter is organized as follows. Section 4.1
presents the modulus-based scattering network architecture considered
throughout this chapter. In Section 4.2, we formalize the notions of
feature map energy decay and feature vector energy conservation, and
present previous work on that topic. Section 4.3 contains our main
results of this chapter, Theorems 3 and 4, which establish polynomial
energy decay for general filters and exponential energy decay for
structured filters (namely, for broad families of wavelets and Weyl-
Heisenberg filters), respectively. Handy estimates of the number of
layers needed to have most of the input signal energy be contained
in the feature vector are provided in Section 4.4. Finally, in Section
4.5, we design scattering networks of fixed (possibly small) depth that
capture most of the input signal’s energy.

4.1. MODULUS-BASED NETWORKS

Throughout this chapter we consider (unless explicitly stated other-
wise) input signals f ∈ L2(Rd), and employ the module-sequence (see
Definition 2 in Section 3.2)

Ω :=
(
(Ψn, | · |, Id)

)
n∈N, (4.1)

i.e., each network layer is associated with (i) a collection of filters1

Ψn := {χn−1}∪ {gλn}λn∈Λn ⊆ L1(Rd)∩L2(Rd), where χn−1 and the
1We note that it is actually the notation Ψn = {TbIχn−1}b∈Rd ∪
{TbIgλn}b∈Rd,λn∈Λn , rather than Ψn = {χn−1} ∪ {gλn}λn∈Λn that was in-
troduced in Definition 2 in Section 3.2, but in this chapter we prefer to work with
Ψn = {χn−1} ∪ {gλn}λn∈Λn for the sake of expositional simplicity.
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Fig. 4.1: Network architecture underlying the module sequence (4.1). The
index λ(k)

n corresponds to the k-th filter g
λ

(k)
n

of the collection Ψn

associated with the n-th network layer. The function χn is the output-
generating filter of the n-th network layer. The root of the network
corresponds to n = 0.

gλn , indexed by a countable set Λn, satisfy the frame condition (2.1),
i.e.,

An‖f‖22 6 ‖f ∗ χn−1‖22 +
∑

λn∈Λn

‖f ∗ gλn‖2 6 Bn‖f‖22, (4.2)

for all f ∈ L2(Rd), for some An, Bn > 0, (ii) the modulus non-linearity
| · | : L2(Rd)→ L2(Rd), |f |(x) = |f(x)| (see Section 2.3), and (iii) no
pooling, which corresponds to pooling through the identity operator
with pooling factors Sn = 1, for all n ∈ N, see (3.5). Associated
with the module (Ψn, | · |, Id), the operator Un[λn] defined in (3.7)
particularizes to

Un[λn]f =
∣∣f ∗ gλn∣∣.

The feature maps U [q]f , q ∈ Λn, defined in (3.10), can therefore be
written as

U [q]f = Un[λn] · · ·U2[λ2]U1[λ1]f
=
∣∣ · · · ∣∣ |f ∗ gλ1 | ∗ gλ2

∣∣ · · · ∗ gλn∣∣. (4.3)
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4 ENERGY PROPAGATION IN DEEP CONVOLUTIONAL NEURAL NETWORKS

The architecture corresponding to the module sequence Ω in (4.1)
is illustrated in Fig. 4.1

4.2. PROBLEM STATEMENT

The first central goal of this chapter is to understand how quickly the
energy contained in the feature maps decays across layers. Specifically,
we shall study the decay of

WN (f) :=
∑
q ∈ΛN

‖U [q]f‖22, f ∈ L2(Rd), (4.4)

as a function of network depth N . Moreover, it is desirable that the
infinite-depth feature vector ΦΩ(f) be informative in the sense of the
only signal mapping to the all-zeros feature vector being the zero
input signal, i.e., ΦΩ has a trivial null-set

N (ΦΩ) := {f ∈ L2(Rd) | ΦΩ(f) = 0} != {0}. (4.5)

Fig. 4.2 illustrates the practical ramifications of a non-trivial null-set
in a binary classification task. N (ΦΩ) = {0} can be guaranteed by
asking for “energy conservation” in the sense of

AΩ‖f‖22 6 |||ΦΩ(f)|||2 6 BΩ‖f‖22, ∀f ∈ L2(Rd), (4.6)

for some constants AΩ, BΩ > 0 (possibly depending on the module-
sequence Ω) and with the feature space norm |||ΦΩ(f)||| :=(∑∞

n=0 |||Φn
Ω(f)|||2

)1/2, where |||Φn
Ω(f)||| :=

(∑
q∈Λn ‖(U [q]f) ∗

χn‖22
)1/2. Indeed, (4.5) follows from (4.6) as the upper bound in

(4.6) yields {0} ⊆ N (ΦΩ), and the lower bound implies {0} ⊇ N (ΦΩ).
We emphasize that, as ΦΩ is a non-linear operator (owing to the
modulus non-linearities), characterizing its null-set is non-trivial in
general. The upper bound in (4.6) was established in Section 3.6.1.
While the existence of this upper bound is implied by the filters Ψn,
n ∈ N, satisfying the frame property (4.2), perhaps surprisingly, this
is not enough to guarantee AΩ > 0 (see Section 4.6 for an illustrative
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4.2 PROBLEM STATEMENT

w

ΦΩ(f∗)

Fig. 4.2: Impact of a non-trivial null-set N (ΦΩ) in a binary classification task.
The feature vector ΦΩ(f) is fed into a linear classifier Bishop (2009),
which determines set membership based on the sign of the inner
product 〈w,ΦΩ(f)〉. The (learned) weight vector w is perpendicular
to the separating hyperplane (dashed line). If the null-set of the
feature extractor ΦΩ is non-trivial, there exist input signals f∗ 6= 0
that are mapped to the origin in feature space, i.e., ΦΩ(f∗) = 0 (gray
circle), and therefore lie—independently of the weight vector w—on
the separating hyperplane. These input signals f∗ 6= 0 are therefore
unclassifiable.

example). We refer the reader to Section 4.4 for results on the null-set
of the finite-depth feature extractor

⋃N
n=0 ΦnΩ. Finally, we emphasize

that throughout the thesis energy decay results pertain to the feature
maps U [q]f , whereas energy conservation according to (4.6) applies
to the feature vector ΦΩ(f).

Previous work on the decay rate of WN (f) in (Waldspurger, 2015,
Section 5) shows that for wavelet-based networks (i.e., in every network
layer, the filters Ψ = {χ} ∪ {gλ}λ∈Λ in (4.1) are taken to be (specific)
1-D wavelets that constitute a Parseval frame, with χ a low-pass filter)
there exist ε > 0 and a > 1 (both constants unspecified) such that

WN (f) 6
∫
R
|f̂(ω)|2

(
1−

∣∣∣rg∧( ω

εaN−1

)∣∣∣2)dω, (4.7)

for real-valued 1-D signals f ∈ L2(R) and N > 2, where rg
∧

(ω) := e−ω
2.

To see that this result indicates energy decay, Fig. 4.3 illustrates the
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Fig. 4.3: Illustration of the impact of network depth N on the upper bound on
WN (f) in (4.7), for ε = 1. The function hN (ω) := (1− r̂g( ω

εaN−1 )),
where r̂g(ω) = e−ω

2
, is of increasing high-pass nature as N increases,

which results in cutting out increasing amounts of low-frequency
energy of f and thereby making the upper bound in (4.7) decay as a
function of N .

influence of network depth N on the upper bound in (4.7). Specifically,
we can see that increasing the network depth results in cutting out
increasing amounts of low-frequency energy of f and thereby making
the upper bound in (4.7) decay as a function of N . Moreover, it is in-
teresting to note that the upper bound onWN (f) =

∑
q∈ΛN ‖U [q]f‖22
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4.2 PROBLEM STATEMENT

is independent of the wavelets generating the feature maps U [q]f ,
q ∈ ΛN . For scattering networks that employ, in every network layer,
uniform covering filters Ψ = {χ} ∪ {gλ}λ∈Λ ⊆ L1(Rd) ∩ L2(Rd) form-
ing a Parseval frame (where χ, again, is a low-pass filter), exponential
energy decay according to

WN (f) = O(a−N ), ∀f ∈ L2(Rd), (4.8)

for an unspecified a > 1, was established in (Czaja and Li, 2017,
Proposition 3.3). Moreover, (Waldspurger, 2015, Section 5) and (Czaja
and Li, 2017, Theorem 3.6 (a)) state—for the respective module-
sequences—that (4.6) holds with AΩ = BΩ = 1 and hence

|||ΦΩ(f)|||2 = ‖f‖22. (4.9)

The first main goal of this chapter is to establish i) for d-dimensional
complex-valued input signals that (4.4) decays polynomially according
to

WN (f) 6 BNΩ

∫
Rd

∣∣f̂(ω)
∣∣2(1−

∣∣∣r̂l( ω

Nα

)∣∣∣2)dω, (4.10)

for all f ∈ L2(Rd) and all N > 1, where

α =
{

1, d = 1,
log2(

√
d/(d− 1/2)), d > 2,

BNΩ =
∏N
k=1 max{1, Bk}, and r̂l : Rd → R, r̂l(ω) = (1 − |ω|)l+,

with l > bd/2c + 1, for networks based on general filters {χn−1} ∪
{gλn}λn∈Λn that satisfy mild analyticity and high-pass conditions
and are allowed to be different in different network layers (with the
proviso that χn−1, n ∈ N, is of low-pass nature in a sense to be made
precise), and ii) for 1-D complex-valued input signals that (4.4) decays
exponentially according to

WN (f) 6
∫
R

∣∣f̂(ω)
∣∣2(1−

∣∣∣r̂l( ω

aN−1

)∣∣∣2)dω, (4.11)

for all f ∈ L2(Rd) and all N > 1, for networks that are based, in every
network layer, on a broad family of wavelets or on a broad family
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4 ENERGY PROPAGATION IN DEEP CONVOLUTIONAL NEURAL NETWORKS

of Weyl-Heisenberg filters. Here, we emphasize that an arbitrary
decay factor a > 1 can be realized through suitable choice of the
mother wavelet bandwidth or the Weyl-Heisenberg prototype function
bandwidth. Thanks to the RHS of (4.10) and (4.11) not depending on
the specific filters {χn−1}∪{gλn}λn∈Λn , we will be able to establish—
under smoothness assumptions on the input signal f—universal energy
decay results. Specifically, particularizing the RHS in (4.10) and (4.11)
to Sobolev-class input signals f ∈ Hs(Rd), s > 0, where

Hs(Rd) =
{
f ∈ L2(Rd)

∣∣∣ ∫
Rd

(1 + |ω|2)s|f̂(ω)|2dω <∞
}
,

we show that (4.10) yields polynomial energy decay according to

WN (f) = O
(
N−γα

)
, ∀f ∈ Hs(Rd), (4.12)

and (4.11) exponential energy decay according to

O
(
a−γN

)
, ∀f ∈ Hs(R), (4.13)

where γ := min{1, 2s} in both cases. Sobolev spaces Hs(Rd) contain
a wide range of practically relevant signal classes such as, e.g.,

i) the space L2
L(Rd) = {f ∈ L2(Rd) | supp(f̂ ) ⊆ BL(0)}, L > 0,

of L-band-limited signals according to L2
L(Rd) ⊆ Hs(Rd), for all

L > 0 and all s > 0, which follows from∫
Rd

(1 + |ω|2)s|f̂(ω)|2dω =
∫
BL(0)

(1 + |ω|2)s|f̂(ω)|2dω

6 (1 + |L|2)s‖f‖22 <∞,

for f ∈ L2
L(Rd), L > 0, and s > 0, where we used Parseval’s

formula and the fact that ω 7→ (1+ |ω|2)s, ω ∈ Rd, is monotonically
increasing in |ω|, for all s > 0,

ii) the space CKCART of cartoon functions of size K, introduced in
(Donoho, 2001), and widely used in the mathematical signal process-
ing literature (Kutyniok and Labate, 2012a; Grohs and Kutyniok,

90



4.3 ENERGY DECAY AND CONSERVATION

2014; Grohs et al., 2015) as a model for natural images such as,
e.g., images of handwritten digits (LeCun and Cortes, 1998) (see
Fig. 3.7). For a formal definition of CKCART, we refer the reader to
Section 3.4.3. In Section 4.7.1 we show that CKCART ⊆ Hs(Rd), for
all K > 0 and all s ∈ (0, 1/2).

Moreover, Sobolev functions are contained in the space of k-
times continuously differentiable functions Ck(Rd,C) according to
Hs(Rd) ⊆ Ck(Rd,C), for all s > k + d

2 (Adams, 1975, Section 4).
Our second central goal in this chapter is to establish energy

conservation according to (4.6) (which, as explained above, implies
N (ΦΩ) = {0}) for the network configurations corresponding to the
energy decay results (4.10) and (4.11). Finally, we provide handy esti-
mates of the number of layers needed to have at least ((1− ε) · 100)%
of the input signal energy be contained in the feature vector.

4.3. ENERGY DECAY AND CONSERVATION

Throughout Chapter 4, we make the following assumptions on the
filters {gλn}λn∈Λn .

Assumption 1. The {gλn}λn∈Λn , n ∈ N, are analytic in the follow-
ing sense: For every layer index n ∈ N, for every λn ∈ Λn, there
exists an orthant HAλn

⊆ Rd, with Aλn ∈ O(d), such that

supp(ĝλn) ⊆ HAλn
. (4.14 )

Moreover, there exists δ > 0 such that∑
λn∈Λn

|ĝλn(ω)|2 = 0, a.e. ω ∈ Bδ(0). (4.15 )

In the 1-D case, i.e., for d = 1, Assumption 1 simply amounts to
every filter gλn satisfying

either supp(ĝλn) ⊆ (−∞,−δ] or supp(ĝλn) ⊆ [δ,∞),
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4 ENERGY PROPAGATION IN DEEP CONVOLUTIONAL NEURAL NETWORKS

which constitutes an “analyticity” and “high-pass” condition. For
dimensions d > 2, Assumption 1 requires that every filter gλn be
of high-pass nature and have a Fourier transform supported in a
(not necessarily canonical) orthant. Since the frame condition (4.2) is
equivalent to the Littlewood-Paley condition (2.3) (see Proposition
1), i.e.,

An 6 |χ̂n−1(ω)|2 +
∑

λn∈Λn

|ĝλn(ω)|2 6 Bn, a.e. ω ∈ Rd, (4.16)

(4.15) implies low-pass characteristics for χn−1 to fill the spectral gap
Bδ(0) left by the filters {gλn}λn∈Λn .
The conditions (4.14) and (4.15) we impose on the Ψn, n ∈ N,

are not overly restrictive as they encompass, inter alia, various con-
structions of Weyl-Heisenberg filters (e.g., with a prototype function
whose Fourier transform is a 1-D B-spline (Gröchenig et al., 2003,
Section 1)), wavelets (e.g., analytic Meyer wavelets (Daubechies, 1992,
Section 3.3.5) in 1-D, and Cauchy wavelets (Vandergheynst, 2002b)
in 2-D), and specific constructions of ridgelets (Grohs, 2012, Section
2.2), curvelets (Candès and Donoho, 2005, Section 4.1), α-curvelets
(Grohs et al., 2015, Section 3), and shearlets (e.g., cone-adapted shear-
lets (Kutyniok and Labate, 2012a, Section 4.3)). We refer the reader
to Sections 2.2.1 and 2.2.2 for a brief review of some of these filter
structures.

4.3.1. Polynomial energy decay

We are now ready to state our first main result on energy decay and
energy conservation.
Theorem 3. Let Ω be the module-sequence (4.1) with filters
{gλn}λn∈Λn satisfying the conditions in Assumption 1, and let δ > 0
be the radius of the spectral gap Bδ(0) left by the filters {gλn}λn∈Λn
according to (4.15). Furthermore, let ANΩ :=

∏N
k=1 min{1, Ak}, BNΩ :=∏N

k=1 max{1, Bk}, and

α :=
{

1, d = 1,
log2(

√
d/(d− 1/2)), d > 2.

(4.17 )
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i) We have

WN (f) 6 BNΩ

∫
Rd

∣∣f̂(ω)
∣∣2(1−

∣∣∣r̂l( ω

Nαδ

)∣∣∣2)dω, (4.18 )

for all f ∈ L2(Rd) and all N > 1, where r̂l : Rd → R, r̂l(ω) :=
(1− |ω|)l+, with l > bd/2c+ 1.

ii) For every Sobolev function f ∈ Hs(Rd), s > 0, we have

WN (f) = O
(
BNΩ N

−γα), (4.19 )

where γ := min{1, 2s}.

iii) If, in addition to Assumption 1,

0 < AΩ := lim
N→∞

ANΩ 6 BΩ := lim
N→∞

BNΩ <∞, (4.20 )

then we have energy conservation according to

AΩ‖f‖22 6 |||ΦΩ(f)|||2 6 BΩ‖f‖22, ∀ f ∈ L2(Rd). (4.21 )

Proof. For the proofs of i) and ii), we refer to the Sections 4.7.2 and
4.7.3, respectively. The proof of statement iii) is based on two key in-
gredients. First, we establish—in Proposition 8 in Section 4.7.4—that
the feature extractor ΦΩ satisfes the energy decomposition identity

ANΩ ‖f‖22 6
N−1∑
n=0
|||ΦnΩ(f)|||2 +WN (f) 6 BNΩ ‖f‖22, (4.22)

for all f ∈ L2(Rd) and all N > 1. Second, we show—in Proposition
9 in Section 4.7.5—that the integral on the RHS of (4.18) goes to
zero as N →∞ which, thanks to lim

N→∞
BNΩ = BΩ <∞, implies that

WN (f)→ 0 as N →∞. We note that while the decomposition (4.22)
holds for general filters {gλn}λn∈Λn satisfying the frame property (4.2),
it is the upper bound (4.18) that makes use of the analyticity and
high-pass conditions in Assumption 1. The final energy conservation
result (4.21) is obtained by letting N →∞ in (4.22).
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The strength of the results in Theorem 3 derives itself from the fact
that the only condition we need to impose on the filters {gλn}λn∈Λn
is Assumption 1, which as already mentioned, is met by a wide array
of filters. Moreover, condition (4.20) is easily satisfied by normalizing
the filters Ψn, n ∈ N, appropriately (see, e.g., Proposition 2 in Section
2.2). We note that this normalization, when applied to filters that
satisfy Assumption 1, yields filters that still meet Assumption 1.

The identity (4.19) establishes, upon normalization (see, e.g., Propo-
sition 2 in Section 2.2) of the Ψn to get Bn 6 1, n ∈ N, that the
energy decay rate, i.e., the decay rate ofWN (f), is at least polynomial
in N . We hasten to add that (4.19) does not preclude the energy from
decaying faster in practice.
Underlying the energy conservation result (4.21) is the following

demodulation effect induced by the modulus non-linearity in com-
bination with the analyticity and high-pass properties of the filters
{gλn}λn∈Λn . In every network layer, the spectral content of each indi-
vidual feature map is moved to base-band (i.e., to low frequencies),
where it is extracted by the low-pass output-generating atom χn, see
Fig. 4.4. The components not collected by χn (see Fig. 4.4, bottom
row) are captured by the analytic high-pass filters {gλn+1}λn+1∈Λn+1

in the next layer and, thanks to the modulus non-linearity, again
moved to low frequencies and extracted by χn+1. Iterating this process
ensures that the null-set of the feature vector (be it for the infinite-
depth network or, as established in Section 4.4, for finite network
depths) is trivial. It is interesting to observe that the sigmoid, the
rectified linear unit, and the hyperbolic tangent non-linearities—all
widely used in the deep learning literature—exhibit very different
behavior in this regard, namely, they do not demodulate in the way
the modulus non-linearity does (Wiatowski et al., 2017, Figure 6). It is
therefore unclear whether the proof machinery for energy conservation
developed in this thesis extends to these non-linearities or, for that
matter, whether one gets energy decay and conservation at all.
The feature map energy decay result (4.19) relates to the feature

vector energy conservation result (4.21) via the energy decomposition
identity (4.22). Specifically, particularizing (4.22) for Parseval frames,
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ĝλn(ω) χ̂n(ω)

f̂(ω)

1

ω

δ−δ
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∧

(ω)
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Fig. 4.4: Illustration of the demodulation effect of the modulus non-linearity.
The {gλn}λn∈Λn are taken as perfect band-pass filters (e.g., band-
limited analytic Weyl-Heisenberg filters) and hence trivially satisfy the
conditions in Assumption 1. The modulus operation in combination
with the analyticity and the high-pass nature of the filters {gλn}λn∈Λn
ensures that—in every network layer—the spectral content of each
individual feature map is moved to base-band (i.e., to low frequencies),
where it is extracted by the (low-pass) output-generating filter χn.

i.e., An = Bn = 1, for all n ∈ N, we get
N−1∑
n=0
|||ΦnΩ(f)|||2 +WN (f) = ‖f‖22. (4.23)

This shows that the input signal energy contained in the network
layers n > N is precisely given by WN (f). Thanks to WN (f)→ 0 as
N →∞ (established in Proposition 9 in Section 4.7.5) this residual
energy will eventually be collected in the infinite-depth feature vector
ΦΩ(f) so that no input signal energy is “lost” in the network. In
Section 4.4, we shall answer the question of how many layers are
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ω
L1

r
1 r r2 r3

1
ĝ1 ĝ2 ĝ3

ψ̂

Fig. 4.5: Illustration of the Fourier transforms of the wavelet filters gj on the
frequency band [0, L]. The Fourier transform ψ̂ of the mother wavelet
ψ is supported on the interval [r−1, r].

needed to absorb ((1− ε) · 100)% of the input signal energy.

4.3.2. Exponential energy decay

The next result shows that, under additional structural assumptions
on the filters {gλn}λn∈Λ, the guaranteed energy decay rate can be
improved from polynomial to exponential. Specifically, we construct
1-D wavelets and 1-D Weyl-Heisenberg filters that realize exponential
energy decay according to Wn(f) = O(a−n), with arbitrary a > 1.
Moreover, we want to tune the decay factor a by adjusting a single
parameter, which will be seen to determine the mother wavelet or
the Weyl-Heisenberg prototype function bandwidth. This will be
accomplished through the following constructions:

i) Wavelets: For fixed r > 1, let the mother and father wavelets
ψ, φ ∈ L1(R) ∩ L2(R) satisfy the Littlewood-Paley condition

|φ̂(ω)|2 +
∞∑
j=1
|ψ̂(r−jω)|2 = 1, a.e. ω > 0, (4.24)

with supp(ψ̂) = [r−1, r] and ψ̂ real-valued. Moreover, let gj(x) :=
rjψ(rjx), j > 1, gj(x) := r|j|ψ(−r|j|x), j 6 −1, and let the output-
generating filter be χ(x) := φ(|x|), x ∈ R. The Fourier transforms
of the wavelets gj and the mother wavelet ψ are illustrated in Fig.
4.5.
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ω
δ−R R R+ δ 2R+ δ 3R+ δ L

1 ĝ1 ĝ2 ĝ3 ĝ4
ĝ

Fig. 4.6: Illustration of the Fourier transforms of the Weyl-Heisenberg filters gk
on the frequency band [0, L]. The Fourier transform ĝ of the prototype
function g is supported on the interval [−R,R].

ii) Weyl-Heisenberg filters: For fixed R > 0, δ > R
2 , let the functions

g, φ ∈ L1(R) ∩ L2(R) satisfy the Littlewood-Paley condition

|φ̂(ω)|2 +
∞∑
k=1
|ĝ(ω − (Rk + δ))|2 = 1, a.e. ω > 0, (4.25)

with supp(ĝ) = [−R,R], ĝ(−ω) = ĝ(ω), and ĝ real-valued.
Moreover, let gk(x) := e2πi(Rk+δ)xg(x), k > 1, gk(x) :=
e−2πi(R|k|+δ)xg(x), k 6 −1, and set χ(x) := φ(|x|), x ∈ R. The
Fourier transforms ĝk and ĝ are illustrated in Fig. 4.6.

The conditions we impose can be satisfied by constructing ψ, φ in
i) from, e.g., an analytic Meyer wavelet (Daubechies, 1992, Section
3.3.5), and g, φ in ii) from a function whose Fourier transform is a 1-D
B-spline (Gröchenig et al., 2003, Section 1). We emphasize that both
the wavelet and Weyl-Heisenberg filters satisfy—by construction—the
analyticity and highpass condition in Assumption 1.
We next state our main result on exponential feature map energy

decay. For simplicity of exposition, we employ filters that are identical
across network layers.

Theorem 4. Let r̂l : R→ R, r̂l(ω) := (1− |ω|)l+, with l > 1.

i) Wavelets: Let r > 1, set

a := r2 + 1
r2 − 1 , (4.26 )
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and let Ω be the module-sequence (4.1) with filters Ψ = {χ} ∪
{gj}j∈Z\{0} in every network layer. Then,

WN (f) 6
∫
R

∣∣f̂(ω)
∣∣2(1−

∣∣∣r̂l( ω

aN−1

)∣∣∣2)dω, (4.27 )

for all f ∈ L2(R) and all N > 1. Moreover, for every Sobolev
function f ∈ Hs(R), s > 0, we have

WN (f) = O
(
a−γN

)
, (4.28 )

where γ := min{1, 2s}.

ii) Weyl-Heisenberg filters: Let R > 0, δ > R
2 , set

a := 1
2 + δ

R
, (4.29 )

and let Ω be the module-sequence (4.1) with filters Ψ = {χ} ∪
{gk}k∈Z\{0} in every network layer. Then,

WN (f) 6
∫
R

∣∣f̂(ω)
∣∣2(1−

∣∣∣r̂l( ω

aN−1δ

)∣∣∣2)dω, (4.30 )

for all f ∈ L2(R) and all N > 1. Moreover, for every Sobolev
function f ∈ Hs(R), s > 0, we have

WN (f) = O
(
a−γN

)
, (4.31 )

where γ := min{1, 2s}.

Proof. The proof is given in Section 4.7.6.

The identities (4.26) and (4.29) show that the filter constructions
we propose, indeed, allow to tune the decay factor a through a single
parameter, namely r in the wavelet case and R in the Weyl-Heisenberg
case. Reducing r,R results in faster energy decay (see also Fig. 4.7). In
addition, we note that in the presence of pooling by sub-sampling, say
with pooling factors Sn := S ∈ [1, a), for all n ∈ N, the effective decay
factor in (4.28) and (4.31) becomes a

S . Hence, exponential energy
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r
1

1

a1

R
δ 2δ

1

a2

Fig. 4.7: Illustration of the functions a1(r) := r2+1
r2−1 , for r > 1, (left plot) and

a2(R) := 1
2 + δ

R
, for R 6 2δ, (right plot).

decay is compatible with vertical translation invariance according to
Theorem 1 in Section 3.3, albeit at the cost of slower (exponential)
decay. The proof of this statement is structurally very similar to
that of Theorem 4 and will therefore not be presented here. We next
put the results in Theorems 3 and 4 into perspective w.r.t. to the
literature.

4.3.3. Relation to the literature

Relation to (Waldspurger, 2015, Section 5)

The basic philosophy of our proof technique for (4.18), (4.21), (4.27),
and (4.30) is inspired by the proof in (Waldspurger, 2015, Section
5), which establishes (4.7) and (4.9) for scattering networks based
on certain wavelet filters and with 1-D real-valued input signals f ∈
L2(R). Specifically, in (Waldspurger, 2015, Section 5), in every network
layer, the filters ΨW = {χ} ∪ {gj}j∈Z (where gj(ω) := 2jψ(2jω),
j ∈ Z, for some mother wavelet ψ ∈ L1(R)∩L2(R)) are 1-D functions
satisfying the frame property (4.2) with An = Bn = 1, n ∈ N, a
mild analyticity condition (Waldspurger, 2015, Equation 5.5) in the
sense of |ĝj(ω)|, j ∈ Z, being larger for positive frequencies ω than for
the corresponding negative ones, and a vanishing moments condition
(Waldspurger, 2015, Equation 5.6) which controls the behavior of
ψ̂(ω) around the origin according to |ψ̂(ω)| 6 C|ω|1+ε, ω ∈ R, for
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some C, ε > 0. Similarly to the proof of (4.9) in (Waldspurger, 2015,
Section 5), we base our proof of (4.21) on the energy decomposition
identity (4.22) and on an upper bound on WN (f) (see (4.7) for
the corresponding upper bound established in (Waldspurger, 2015,
Section 5)) shown to go to zero as N → ∞. The explicit energy
decay results (4.19), (4.28), and (4.31) for f ∈ Hs(Rd) are entirely
new. The major differences between (Waldspurger, 2015, Section 5)
and our results are (i) that (4.7) (reported in (Waldspurger, 2015,
Section 5)) depends on an unspecified a > 1, whereas our results
in (4.18), (4.19), (4.27), (4.28), (4.30), and (4.31) make the decay
factor a and the decay exponent α explicit, (ii) the technical elements
employed to arrive at the upper bounds on WN (f), specifically, while
the proof in (Waldspurger, 2015, Section 5) makes explicit use of the
algebraic structure of the filters, namely, the multi-scale structure of
wavelets, our proof of (4.18) is oblivious to the algebraic structure of
the filters, which is why it applies to general (possibly unstructured)
filters that, in addition, can be different in different network layers,
(iii) the assumptions imposed on the filters, namely the analyticity
and vanishing moments conditions in (Waldspurger, 2015, Equations
5.5–5.6), in contrast to our Assumption 1, and (iv) the class of input
signals f the results apply to, namely 1-D real-valued signals in
(Waldspurger, 2015, Section 5), and d-dimensional complex-valued
signals in our Theorem 3 in Section 4.3.1.

Relation to (Czaja and Li, 2017)

For scattering networks that are based on so-called uniform covering
filters (Czaja and Li, 2017), (4.8) and (4.9) are established in (Czaja
and Li, 2017) for d-dimensional complex-valued input signals f ∈
L2(Rd). Specifically, in (Czaja and Li, 2017), in every network layer,
the d-dimensional filters {χ} ∪ {gλ}λ∈Λ are taken to satisfy i) the
frame property (4.2) with A = B = 1 and hence An = Bn = 1,
n ∈ N, see (Czaja and Li, 2017, Definition 2.1 (c)), ii) a vanishing
moments condition (Czaja and Li, 2017, Definition 2.1 (a)) according
to ĝλ(0) = 0, for all λ ∈ Λ, and iii) a uniform covering condition
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(Czaja and Li, 2017, Definition 2.1 (b)) which says that the filters’
Fourier transform support sets can be covered by a union of finitely
many balls. The major differences between (Czaja and Li, 2017) and
our results are as follows: (i) the results in (Czaja and Li, 2017)
apply exclusively to filters satisfying the uniform covering condition
such as, e.g., Weyl-Heisenberg filters with a band-limited prototype
function (Czaja and Li, 2017, Proposition 2.3), but do not apply
to multi-scale filters such as wavelets, (α)-curvelets, shearlets, and
ridgelets (see (Czaja and Li, 2017, Remark 2.2 (b))), (ii) (4.8) as
established in (Czaja and Li, 2017) leaves the decay factor a > 1
unspecified, whereas our results in (4.28) and (4.31) make the decay
factor a explicit (namely, a = r2+1

r2−1 , r > 1, in the wavelet case and
a = 1

2 + δ
R , R 6 2δ, in the Weyl-Heisenberg case), (iii) the exponential

energy decay result in (4.8) as established in (Czaja and Li, 2017)
applies to all f ∈ L2(Rd) and thus, in particular, to Sobolev input
signals (owing to Hs(Rd) ⊆ L2(Rd), for all s > 0), whereas our decay
results in (4.19), (4.28), and (4.31) pertain to Sobolev input signals
f ∈ Hs(Rd), s > 0, only, (iv) the technical elements employed to
arrive at the upper bounds on WN (f), specifically, while the proof
in (Czaja and Li, 2017) makes explicit use of the uniform covering
property of the filters, our proof of (4.18) is completely oblivious to
the (algebraic) structure of the filters, (v) the assumptions imposed on
the filters, i.e., the vanishing moments and uniform covering condition
in (Czaja and Li, 2017, Definition 2.1 (a)-(b)), in contrast to our
Assumption 1, which is less restrictive, and thereby makes our results
in Theorem 3 in Section 4.3.1 apply to general (possibly unstructured)
filters that, in addition, can be different in different network layers.

4.4. NUMBER OF LAYERS NEEDED

DCNNs used in practice employ potentially hundreds of layers (He
et al., 2015). Such network depths entail formidable computational
challenges both in training and in operating the network. It is therefore
important to understand how many layers are needed to have most of
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the input signal energy be contained in the feature vector. This will
be done by considering Parseval frames in all layers, i.e., frames with
frame bounds An = Bn = 1, n ∈ N. The energy conservation result
(4.21) then implies that the infinite-depth feature vector ΦΩ(f) =⋃∞
n=0 ΦnΩ(f) contains the entire input signal energy according to

|||ΦΩ(f)|||2 =
∞∑
n=0
|||ΦnΩ(f)|||2 = ‖f‖22.

Now, the decomposition (4.23) reveals that thanks to lim
N→∞

WN (f)→
0, increasing the network depth N implies that the feature vector⋃N
n=0 ΦnΩ(f) progressively contains a larger fraction of the input signal

energy. We formalize the question on the number of layers needed by
asking for bounds of the form

(1− ε) 6
∑N
n=0 |||ΦnΩ(f)|||2

‖f‖22
6 1, (4.32)

i.e., by determining the network depth N guaranteeing that at least
((1 − ε) · 100)% of the input signal energy are captured by the cor-
responding depth-N feature vector

⋃N
n=0 Φn

Ω(f). Moreover, (4.32)
ensures that the depth-N feature extractor

⋃N
n=0 ΦnΩ exhibits a trivial

null-set.

4.4.1. Estimates for band-limited functions

The following results establish handy estimates of the number of layers
needed to guarantee (4.32). For pedagogical reasons, we start with
the case of band-limited input signals and then proceed in Section
4.4.2 to a more general statement that pertains to Sobolev functions
Hs(Rd).

Corollary 2.

i) Let Ω be the module-sequence (4.1) with filters {gλn}λn∈Λn satis-
fying the conditions in Assumption 1, and let the corresponding
frame bounds be An = Bn = 1, n ∈ N. Let δ > 0 be the radius of
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(1− ε)
0.25 0.5 0.75 0.9 0.95 0.99

wavelets 2 3 4 6 8 11
Weyl-Heisenberg filters 2 4 5 8 10 14
general filters 2 3 7 19 39 199

Table 4.1: Number N of layers needed to ensure that ((1− ε) · 100)% of the
input signal energy is contained in the features generated in the
first N network layers.

the spectral gap Bδ(0) left by the filters {gλn}λn∈Λn according to
(4.15). Furthermore, let l > bd/2c+ 1, ε ∈ (0, 1), α as defined in
(4.17), and f ∈ L2(Rd) L-band-limited. If

N >

⌈(
L

(1− (1− ε) 1
2l )δ

)1/α

− 1
⌉
, (4.33 )

then (4.32) holds.

ii) Assume that the conditions in Theorem 4 i) and ii) hold. For the
wavelet case, let a > 1 as defined in (4.26) and δ = 1

(
where δ

corresponds to the radius of the spectral gap left by the wavelets
{gj}j∈Z\{0}

)
. For the Weyl-Heisenberg case, let a > 1 as defined in

(4.29) and δ > R
2
(
here, δ corresponds to the radius of the spectral

gap left by the Weyl-Heisenberg filters {gk}k∈Z\{0}
)
. Moreover, let

l > 1, ε ∈ (0, 1), and f ∈ L2(R) L-band-limited. If

N >

⌈
loga

(
L

(1− (1− ε) 1
2l )δ

)⌉
, (4.34 )

then (4.32) holds in both cases.

Proof. The proof is given in Section 4.7.7.

Corollary 2 nicely shows how the description complexity of the
signal class under consideration, namely the bandwidth L and the
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dimension d through the decay exponent α defined in (4.17), determine
the number N of layers needed to guarantee (4.32). Specifically, (4.33)
and (4.34) show that larger bandwidths L and large dimension d

render the input signal f more “complex”, which requires deeper
networks to capture most of the energy of f . The dependence of the
lower bounds in (4.33) and (4.34) on the network properties (i.e., the
module-sequence Ω) is through the radius δ of the spectral gap left
by the filters {gλn}λn∈Λn and the decay factor a.

The following numerical example provides quantitative insights on
the influence of the parameter ε on (4.33) and (4.34). Specifically, we
set L = 1, d = 1 (which implies α = 1, see (4.17)), r = 2 (which
implies a = 5

3 in the wavelet case, see (4.26)), R = δ = 1 (which
implies a = 3

2 in the Weyl-Heisenberg case, see (4.29)), l = 1.0001, and
show in Table 4.1 the number N of layers needed according to (4.33)
and (4.34) for different values of ε. The results show that 95% of the
input signal energy are contained in the first 8 layers in the wavelet
case and the first 10 layers in the Weyl-Heisenberg case. We can
therefore conclude that in practice a relatively small number of layers
is needed to have most of the input signal energy be contained in the
feature vector. In contrast, for general filters, where we can guarantee
polynomial energy decay only, at least N = 39 layers are needed to
absorb 95% of the input signal energy. We hasten to add, however,
that (4.18) simply guarantees polynomial energy decay and therefore
does not preclude the energy from decaying faster in practice.

4.4.2. Estimates for Sobolev functions

We proceed with the estimates on the number of layers for Sobolev-
class input signals.

Corollary 3.

i) Let Ω be the module-sequence (4.1) with filters {gλn}λn∈Λn satis-
fying the conditions in Assumption 1, and let the corresponding
frame bounds be An = Bn = 1, n ∈ N. Let δ > 0 be the radius of
the spectral gap Bδ(0) left by the filters {gλn}λn∈Λn according to
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(4.15). Furthermore, let l > bd/2c+ 1, ε ∈ (0, 1), α as defined in
(4.17), and f ∈ Hs(Rd)\{0}, for s > 0. If

N >

⌈(
2l ‖f‖2/γHs

ε1/γ δ‖f‖2/γ2

)1/α

− 1
⌉
, (4.35 )

where γ := min{1, 2s}, then (4.32) holds.

ii) Assume that the conditions in Theorem 4 i) and ii) hold. For the
wavelet case, let a > 1 as defined in (4.26) and δ = 1

(
where δ

corresponds to the radius of the spectral gap left by the wavelets
{gj}j∈Z\{0}

)
. For the Weyl-Heisenberg case, let a > 1 as defined in

(4.29) and δ > R
2
(
here, δ corresponds to the radius of the spectral

gap left by the Weyl-Heisenberg filters {gk}k∈Z\{0}
)
. Furthermore,

let l > 1, ε ∈ (0, 1), and f ∈ Hs(R)\{0}, for s > 0. If

N >

⌈
loga

(
2l ‖f‖2/γHs

ε1/γ δ‖f‖2/γ2

)⌉
, (4.36 )

where γ := min{1, 2s}, then (4.32) holds in both cases.

Proof. The proof is given in Section 4.7.8.

As already mentioned in Section 4.2, Sobolev spacesHs(Rd) contain
a wide range of practically relevant signal classes. The results in
Corollary 3 therefore provide—for a wide variety of input signals—a
picture of how many layers are needed to have most of the input
signal energy be contained in the feature vector.
The width of the networks considered throughout this thesis is,

in principle, infinite as the sets Λn need to be countably infinite in
order to guarantee that the frame property (4.2) is satisfied. For input
signals that are essentially band-limited, the number of “operationally
significant nodes” will, however, be finite in practice. For a treatment
of this aspect as well as results on depth-width tradeoffs, the interested
reader is referred to (Wiatowski et al., 2017).
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4.5. DEPTH-CONSTRAINED NETWORKS

We now turn to the design of scattering networks of fixed (possibly
small) depth N that capture most of the input signal’s energy. This
will be formalized by seeking wavelet and Weyl-Heisenberg filters that,
for given ε > 0 and given depth N ∈ N, result in feature extractors
satisfying

(1− ε)‖f‖22 6
N∑
n=0
|||ΦnΩ(f)|||2 6 ‖f‖22, ∀f ∈ L2(R). (4.37)

The next result explains how to choose r in the wavelet and R in
the Weyl-Heisenberg case so as to satisfy (4.37). In particular, we
shall see that for every (possibly small) ε > 0 and every N ∈ N, say
ε = 0.01 and N = 1, there exist r > 1 and R > 0 such that (4.37)
holds.
Corollary 4. Assume that the conditions in Theorem 4 i) and ii)
hold. For the wavelet case, let r > 1 and δ = 1

(
where δ corresponds

to the radius of the spectral gap left by the wavelets {gj}j∈Z\{0}
)
. For

the Weyl-Heisenberg case, let R > 0, δ > R
2
(
here, δ corresponds

to the radius of the spectral gap left by the Weyl-Heisenberg filters
{gk}k∈Z\{0}

)
. Moreover, take f ∈ Hs(R)\{0}, s > 0, fix ε ∈ (0, 1)

and N ∈ N, let l > 1
2 ε

1/γ δ, where γ := min{1, 2s}, and define

κ :=
(

2l ‖f‖2/γHs

ε1/γδ‖f‖2/γ2

)1/N

.

If, in the wavelet case,

1 < r 6

√
κ+ 1
κ− 1 , (4.38 )

or, in the Weyl-Heisenberg case,

0 < R 6
δ

κ− 1
2
, (4.39 )

then (4.37) holds.
Proof. The proof is given in Section 4.7.9.
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4.6. A FEATURE EXTRACTOR WITH A
NON-TRIVIAL NULL-SET

In this section, we show, by way of example, that employing filters
Ψn which satisfy the frame property (4.2) alone does not guarantee
that the feature extractor ΦΩ defined in (3.12) satisfies

AΩ‖f‖22 6 |||ΦΩ(f)|||2, ∀f ∈ L2(Rd),

for some AΩ > 0. The existence of such a lower bound AΩ > 0 would
imply a trivial null-set for the feature extractor ΦΩ and thereby ensure
that the only signal f that maps to the all-zeros feature vector is
f = 0.
Our example employs, in every network layer, filters Ψ = {χ} ∪
{gk}k∈Z that satisfy the Littlewood-Paley condition (4.16) with An =
Bn = 1, n ∈ N, and where g0 is such that ĝ0(ω) = 1, for ω ∈ B1(0).
We emphasize that no further restrictions are imposed on the filters
{χ} ∪ {gk}k∈Z, specifically χ need not be of low-pass nature and the
filters {gk}k∈Z may be structured (such as wavelets, see Sections 2.2.1
and 2.2.2) or unstructured (such as random filters (Ranzato et al.,
2007; Jarrett et al., 2009)), as long as they satisfy the Littlewood-
Paley condition (4.16). Now, consider the input signal f ∈ L2(Rd)
according to

f̂(ω) := (1− |ω|)l+, ω ∈ Rd,

with l > bd/2c+ 1. Then f ∗ g0 = f, owing to supp(f̂ ) = B1(0) and
ĝ0(ω) = 1, for ω ∈ B1(0). Moreover, f̂ is a positive definite radial basis
function (Wendland, 2004, Theorem 6.20) and hence by (Wendland,
2004, Theorem 6.18) f(x) > 0, x ∈ Rd, which, in turn, implies |f | = f .
This yields

U [qN0 ]f =
∣∣ · · · ∣∣|f ∗ g0| ∗ g0

∣∣ · · · ∗ g0
∣∣ = f,

for qN0 := (0, 0, . . . , 0) ∈ ZN and N ∈ N. Owing to the energy
decomposition identity (4.22), together with ANΩ = BNΩ = 1, N ∈ N,
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which, in turn, is by An = Bn = 1, n ∈ N, we have

‖f‖22 =
N−1∑
n=0
|||ΦnΩ(f)|||2 +WN (f)

=
N−1∑
n=0
|||ΦnΩ(f)|||2 + ‖U [qN0 ]f‖22´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

= ‖f‖22

+
∑

q∈ZN\{qN0 }

||U [q]f ||22,

for N ∈ N. This implies

N−1∑
n=0
|||ΦnΩ(f)|||2 +

∑
q∈ZN\{qN0 }

||U [q]f ||22 = 0. (4.40)

As both terms in (4.40) are positive, we can conclude that∑N−1
n=0 |||ΦnΩ(f)|||2 = 0, N ∈ N, and thus

|||ΦΩ(f)|||2 =
∞∑
n=0
|||ΦnΩ(f)|||2 = 0.

Since |||ΦΩ(f)|||2 = 0 implies ΦΩ(f) = 0, we have constructed a
non-zero f , namely

f(x) =
∫
Rd

(1− |ω|)l+e 2πi〈x, ω〉dω,

that maps to the all-zeros feature vector, i.e., f ∈ N (ΦΩ).
The point of this example is the following. Owing to the nature of

ĝ0(ω) (namely, ĝ0(ω) = 1, for ω ∈ B1(0)) and the Littlewood-Paley
condition

|χ̂(ω)|2 +
∑
k∈Z
|ĝk(ω)|2 = 1, a.e. ω ∈ Rd,

it follows that neither the output-generating filter χ nor any of the
other filters gk, k ∈ Z\{0}, can have spectral support in B1(0).
Consequently, the only non-zero contribution to the feature vector
can come from

U [qN0 ]f = f,
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which, however, thanks to supp(f̂ ) = B1(0), is spectrally disjoint from
the output-generating filter χ. Therefore, ΦΩ(f) will be identically
equal to 0. Assumption 1 disallows this situation as it forces the filters
gk, k ∈ Z, to be of high-pass nature which, in turn, implies that χ
must have low-pass characteristics. The punch-line of our general
results on energy conservation, be it for finite N or for N → ∞, is
that Assumption 1 in combination with the frame property and the
modulus non-linearity prohibit a non-trivial null-set in general.

4.7. PROOFS

4.7.1. Proof of Lemma 5

Cartoon functions, introduced in (Donoho, 2001), satisfy mild decay
properties and are piecewise continuously differentiable apart from
curved discontinuities along C2-hypersurfaces (for a formal definition
we refer to Definition 7 in Section 3.4.3). Even though cartoon func-
tions are in general discontinuous, they still admit Sobolev regularity.
The following result formalizes this statement.

Lemma 5. Let K > 0. Then CKCART ⊆ Hs(Rd), for all s ∈ (0, 1/2).

Proof. Let (f1 + 1Bf2) ∈ CKCART. We first establish ∈ Hs(Rd), for all
s ∈ (0, 1/2). To this end, we define the Sobolev-Slobodeckij semi-norm
(Runst and Sickel, 1996, Section 2.1.2)

|f |Hs :=
(∫

Rd

∫
Rd

|f(x)− f(y)|2

|x− y|2s+d
dxdy

)1/s
,

and note that, thanks to (Runst and Sickel, 1996, Section 2.1.2),
1B ∈ Hs(Rd) if |1B |Hs <∞. We have

|1B |sHs =
∫
Rd

∫
Rd

|1B(x)− 1B(y)|2

|x− y|2s+d
dxdy

=
∫
Rd

1
|t|2s+d

∫
Rd
|1B(x)− 1B(x− t)|2dx dt,
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(B + t)

B

∂B

t

Fig. 4.8: Illustration in dimension d = 2. The set (B + t) (grey) is obtained
by translating the set B (white) by t ∈ R2. The symmetric difference
B∆(B + t) is contained in (∂B + B|t|(0)), the tube of radius |t|
around the boundary ∂B of B.

where we employed the change of variables t = x− y. Next, we note
that, for fixed t ∈ Rd, the function

ht(x) := |1B(x)− 1B(x− t)|2

satisfies ht(x) = 1, for x ∈ St, where

St := {x ∈ Rd |x ∈ B and x− t /∈ B}
∪ {x ∈ Rd |x /∈ B and x− t ∈ B} = B∆(B + t), (4.41)

and ht(x) = 0, for x ∈ Rd\St. It follows from (4.41) that

vold(St) 6 2 vold(B), ∀ t ∈ Rd. (4.42)

Moreover, owing to St ⊆
(
∂B + B|t|(0)

)
, where (∂B + B|t|(0)) is a

tube of radius |t| around the boundary ∂B of B (see Fig. 4.8), and
Lemma 4 in Section 3.6.6, there exists a constant C∂B > 0 such that

vold(St) 6 vold(∂B +B|t|(0)) 6 C∂B |t|, (4.43)

for all t ∈ Rd with |t| 6 1. Next, fix R such that 0 < R < 1. Then,

|1B |sHs =
∫
Rd

1
|t|2s+d

∫
Rd
|1B(x)− 1B(x− t)|2dxdt
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=
∫
Rd

1
|t|2s+d

∫
Rd
ht(x)dxdt

=
∫
Rd

1
|t|2s+d

∫
St

1dx dt =
∫
Rd

vold(St)
|t|2s+d

dt

6
∫
Rd\BR(0)

2 vold(B)
|t|2s+d

dt+
∫
BR(0)

C∂B
|t|2s+d−1 dt (4.44)

= 2 vold(B) vold−1(∂B1(0))
∫ ∞
R

r−(2s+1)dr
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=:I1

+ C∂B vold−1(∂B1(0))
∫ R

0
r−2sdr

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=:I2

, (4.45)

where in (4.44) we employed (4.42) and (4.43), and in the last step
we introduced polar coordinates. The integral I1 is finite for all s > 0,
while I2 is finite for all s < 1/2. Moreover, vold(B) =

∫
B

1dx is finite
owing to B being compact. We can therefore conclude that (4.45) is
finite for s ∈ (0, 1/2), and hence 1B ∈ Hs(Rd), for s ∈ (0, 1/2). To
see that (f1 + 1Bf2) ∈ Hs(Rd), for s ∈ (0, 1/2), we first note that

|f1 + 1Bf2|Hs 6 |f1|Hs + |1Bf2|Hs , (4.46)

which is thanks to the sub-additivity of the semi-norm | · |Hs . Now,
the first term on the RHS of (4.46) is finite owing to f1 ∈ H1/2(Rd) ⊆
Hs(Rd), for all s ∈ (0, 1/2). For the second term on the RHS, we
start by noting that

|1Bf2|sHs =
∫
Rd

∫
Rd

|(1Bf2)(x)− (1Bf2)(y)|2

|x− y|2s+d
dxdy (4.47)

and

|(1Bf2)(x)− (1Bf2)(y)|2

= |(1B(x)− 1B(y))f2(x) + (f2(x)− f2(y))1B(y)|2

6 2|(1B(x)− 1B(y))|2|f2(x)|2 (4.48)
+ 2|(f2(x)− f2(y))|2|1B(y)|2, (4.49)
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where (4.48) and (4.49) are thanks to |a + b|2 6 2|a|2 + 2|b|2, for
a, b ∈ C. Substituting (4.48) and (4.49) into (4.47) and noting that
|f2(x)|2 6 ‖f2‖2∞ 6 K2, x ∈ Rd, which is by assumption, and 1B(y) 6
1, y ∈ Rd, implies

|1Bf2|sHs 6 2K2|1B |sHs + 2|f2|sHs <∞, (4.50)

where in the last step we used 1B ∈ Hs(Rd), established above, and
f2 ∈ H1/2(Rd) ⊆ Hs(Rd), both for all s ∈ (0, 1/2). This completes
the proof.

4.7.2. Proof of statement i) in Theorem 3

We start by establishing (4.18) with α = log2(
√
d/(d− 1/2)), for

all d > 1. Then, we sharpen our result in the 1-D case by proving
that (4.18) holds for d = 1 with α = 1. This leads to a signifi-
cant improvement, in the 1-D case, of the decay exponent from
log2(

√
d/(d− 1/2)) = 1

2 to 1.
The idea for the proof of (4.18) for α = log2(

√
d/(d− 1/2)), for

all d > 1, is to establish that2∑
q ∈Λn×Λn+1×···×Λn+N−1

‖U [q]f‖22

6 Cn+N−1
n

∫
Rd

∣∣f̂(ω)
∣∣2(1−

∣∣∣r̂l( ω

Nαδ

)∣∣∣2)dω, ∀N ∈ N, (4.51)

where

Cn+N−1
n :=

n+N−1∏
k=n

max{1, Bk}.

Setting n = 1 in (4.51) and noting that CN1 = BNΩ yields the desired
result (4.18). We proceed by induction over the path length `(q) := N ,

2We prove the more general result (4.51) for technical reasons, concretely in
order to be able to argue by induction over path lengths with flexible starting
index n.
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for q = (λn, λn+1,..., λn+N−1) ∈ Λn×Λn+1× · · ·×Λn+N−1. Starting
with the base case N = 1, we have∑
q ∈Λn

‖U [q]f‖22 =
∑

λn∈Λn

‖f ∗ gλn‖22

=
∫
Rd

∑
λn∈Λn

|ĝλn(ω)|2|f̂(ω)|2dω (4.52)

6 Bn

∫
Rd\Bδ(0)

|f̂(ω)|2dω (4.53)

6 max{1, Bn}´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=Cnn

∫
Rd

∣∣f̂(ω)
∣∣2(1−

∣∣∣r̂l(ω
δ

)∣∣∣2)dω, (4.54)

for all n ∈ N, where (4.52) is by Parseval’s formula, (4.53) is thanks
to (4.15) and (4.16), and (4.54) is due to supp(r̂l) ⊆ B1(0) and
0 6 r̂l(ω) 6 1, for ω ∈ Rd. The inductive step is established as follows.
Let N > 1 and suppose that (4.51) holds for all paths q of length
`(q) = N − 1, i.e.,∑

q∈Λn×Λn+1×···×Λn+N−2

‖U [q]f‖22

6 Cn+N−2
n

∫
Rd

∣∣f̂(ω)
∣∣2(1−

∣∣∣r̂l( ω

(N − 1)αδ

)∣∣∣2)dω, (4.55)

for all n ∈ N. We start by noting that every path q̃ ∈ Λn × Λn+1 ×
... × Λn+N−1 of length `(q̃) = N , with arbitrary starting index n,
can be decomposed into a path q ∈ Λn+1 × ... × Λn+N−1 of length
`(q) = N − 1 and an index λn ∈ Λn according to q̃ = (λn, q). Thanks
to (4.3) we have U [q̃] = U [(λn, q)] = U [q]Un[λn], which yields∑

q ∈Λn×Λn+1×···×Λn+N−1

‖U [q]f‖22

=
∑

λn∈Λn

∑
q∈Λn+1×···×Λn+N−1

‖U [q]
(
Un[λn]f

)
‖22, (4.56)

for all n ∈ N. We proceed by examining the inner sum on the RHS of
(4.56). Invoking the induction hypothesis (4.55) with n replaced by
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(n+ 1) and employing Parseval’s formula, we get∑
q∈Λn+1×···×Λn+N−1

‖U [q]
(
Un[λn]f

)
‖22

6 Cn+N−1
n+1

∫
Rd

∣∣Un[λn]f
∧

(ω)
∣∣2(1−

∣∣∣r̂l( ω

(N − 1)αδ

)∣∣∣2)dω

= Cn+N−1
n+1

(
‖Un[λn]f‖22 − ‖(Un[λn]f) ∗ rl,N−1,α,δ‖22

)
= Cn+N−1

n+1
(
‖f ∗ gλn‖22 − ‖|f ∗ gλn | ∗ rl,N−1,α,δ‖22

)
, (4.57)

for n ∈ N, where rl,N−1,α,δ is the inverse Fourier transform of
r̂l
(

ω
(N−1)αδ

)
. Next, we note that r̂l

(
ω

(N−1)αδ
)
is a positive definite

radial basis function (Wendland, 2004, Theorem 6.20) and hence
by (Wendland, 2004, Theorem 6.18) rl,N−1,α,δ(x) > 0, for x ∈ Rd.
Furthermore, it follows from Lemma 6, stated below, that for all
{νλn}λn∈Λn ⊆ Rd, we have

‖|f ∗ gλn | ∗ rl,N−1,α,δ‖22 > ‖f ∗ gλn ∗ (Mνλn
rl,N−1,α,δ)‖22. (4.58)

Here, we note that choosing the modulation factors {νλn}λn∈Λn ⊆
Rd appropriately (see (4.62) below) will be key to establishing the
inductive step.

Lemma 6. (Mallat, 2012, Lemma 2.7) Let f, g ∈ L2(Rd) with g(x) >
0, for x ∈ Rd. Then,

‖|f | ∗ g‖22 > ‖f ∗ (Mωg)‖22, ∀ω ∈ Rd.

Inserting (4.57) and (4.58) into the inner sum on the RHS of (4.56)
yields ∑

q∈Λn×Λn+1×···×Λn+N−1

‖U [q]f‖22

6 Cn+N−1
n+1

∑
λn∈Λn

(
‖f ∗ gλn‖22 − ‖f ∗ gλn ∗ (Mνλn

rl,N−1,α,δ)‖22
)

= Cn+N−1
n+1

∫
Rd
|f̂(ω)|2hn,N,α,δ(ω)dω, ∀N ∈ N, (4.59)
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where we applied Parseval’s formula together with M̂ωf = Tω f̂ , for
f ∈ L2(Rd), and ω ∈ Rd and set

hn,N,α,δ(ω) :=
∑

λn∈Λn

|ĝλn(ω)|2
(

1−
∣∣∣r̂l( ω − νλn

(N − 1)αδ

)∣∣∣2). (4.60)

The key step is now to establish—by appropriately choosing
{νλn}λn∈Λn ⊆ Rd—the upper bound

hn,N,α,δ(ω) 6 max{1, Bn}
(

1−
∣∣∣r̂l( ω

Nαδ

)∣∣∣2), ∀ω ∈ Rd, (4.61)

which upon noting that Cn+N−1
n = max{1, Bn}Cn+N−1

n+1 yields (4.51)
and thereby completes the proof. We start by defining HAλn

, for
λn ∈ Λn, to be the orthant supporting ĝλn , i.e., supp(ĝλn) ⊆ HAλn

,
where Aλn ∈ O(d) (see Assumption 1). Furthermore, for λn ∈ Λn, we
choose the modulation factors according to

νλn := Aλnν ∈ Rd, (4.62)

where the components of ν ∈ Rd are given by νk := (1 + 2−1/2) δd , for
k ∈ {1, . . . , d}. Invoking (4.14) and (4.15), we get

hn,N,α,δ(ω) =
∑

λn∈Λn

|ĝλn(ω)|2
(

1−
∣∣∣r̂l( ω − νλn

(N − 1)αδ

)∣∣∣2)
=

∑
λn∈Λn

|ĝλn(ω)|21Sλn,δ(ω)
(

1−
∣∣∣r̂l( ω − νλn

(N − 1)αδ

)∣∣∣2), (4.63)

for all ω ∈ Rd, where Sλn,δ := HAλn
\Bδ(0). For the first canonical

orthant H = {x ∈ Rd | xk > 0, k = 1,..., d} we show in Lemma 7
below that ∣∣∣r̂l( ω − ν

(N − 1)αδ

)∣∣∣ > ∣∣∣r̂l( ω

Nαδ

)∣∣∣, (4.64)

for all ω ∈ H\Bδ(0) and all N > 2. This will allow us to deduce∣∣∣r̂l( ω − νλn
(N − 1)αδ

)∣∣∣ > ∣∣∣r̂l( ω

Nαδ

)∣∣∣, (4.65)
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for all ω ∈ Sλn,δ, all λn ∈ Λn, and all N > 2, where Sλn,δ =
HAλn

\Bδ(0), simply by noting that∣∣∣r̂l( ω − νλn
(N − 1)αδ

)∣∣∣ =
(

1−
∣∣∣∣Aλn(ω′ − ν)

(N − 1)αδ

∣∣∣∣)l
+

=
(

1−
∣∣∣ ω′ − ν
(N − 1)αδ

∣∣∣)l
+

=
∣∣∣r̂l( ω′ − ν

(N − 1)αδ

)∣∣∣ (4.66)

>
∣∣∣r̂l( ω′

Nαδ

)∣∣∣ =
(

1−
∣∣∣ ω′
Nαδ

∣∣∣)l
+

(4.67)

=
(

1−
∣∣∣∣Aλnω′Nαδ

∣∣∣∣)l
+

=
∣∣∣r̂l( ω

Nαδ

)∣∣∣, (4.68)

for ω = Aλnω
′ ∈ HAλn

\Bδ(0), where ω′ ∈ H\Bδ(0). Here, (4.66) and
(4.68) are thanks to |ω| = |Aλnω|, which is by Aλn ∈ O(d), and the
inequality in (4.67) is due to (4.64). Insertion of (4.65) into (4.63)
then yields

hn,N,α,δ(ω) 6
∑

λn∈Λn

|ĝλn(ω)|21Sλn,δ(ω)
(

1−
∣∣∣r̂l( ω

Nαδ

)∣∣∣2)
=

∑
λn∈Λn

|ĝλn(ω)|2
(

1−
∣∣∣r̂l( ω

Nαδ

)∣∣∣2) (4.69)

6 max{1, Bn}
(

1−
∣∣∣r̂l( ω

Nαδ

)∣∣∣2), ∀ω ∈ Rd, (4.70)

where in (4.69) we employed Assumption 1, and (4.70) is thanks to
(4.16). This establishes (4.61) and completes the proof of (4.18) for
α = log2(

√
d/(d− 1/2)), for all d > 1.

It remains to show (4.64), which is accomplished through the
following lemma.

Lemma 7. Let α := log2
(√

d/(d− 1/2)
)
, r̂l : Rd → R, r̂l(ω) :=

(1− |ω|)l+, with l > bd/2c+ 1, and define ν ∈ Rd to have components
νk = (1 + 2−1/2) δd , for k ∈ {1, . . . , d}. Then,∣∣∣r̂l( ω − ν

(N − 1)αδ

)∣∣∣ > ∣∣∣r̂l( ω

Nαδ

)∣∣∣, (4.71 )

for all ω ∈ H\Bδ(0) and all N > 2.
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ω1

ω2

τν1

ν2

δ Nαδ

Ξτ

ν

w∗

Fig. 4.9: Illustration in dimension d = 2. The mapping ω 7→ |ω − ν|2, ω ∈
Ξτ = {ω = (ω1, ω2) ∈ R2 | |ω| = τ, ω1 > 0, ω2 > 0}, computes the
squared Euclidean distance between an element ω of the spherical
segment Ξτ and the vector ν = (ν1, ν2) with components νk =
(1 + 2−1/2) δ2 , k ∈ {1, 2}. The mapping attains its maxima along the
coordinate axes, e.g., for ω∗ = (τ, 0) ∈ Ξτ .

Proof. The key idea of the proof is to employ a monotonicity argument.
Specifically, thanks to r̂l monotonically decreasing in |ω|, i.e., r̂l(ω1) >
r̂l(ω2), for ω1, ω2 ∈ Rd with |ω2| > |ω1|, (4.71) can be established
simply by showing that

κN (ω) := |ω|2
∣∣∣∣N − 1

N

∣∣∣∣2α − ∣∣ω − ν|2 > 0, (4.72)

for all ω ∈ H\Bδ(0) and all N > 2. We first note that for ω ∈ H\Bδ(0)
with |ω| > Nαδ, (4.71) is trivially satisfied as the RHS of (4.71) equals
zero (owing to

∣∣ ω
Nαδ

∣∣ > 1 together with supp(r̂l) ⊆ B1(0)). It hence
suffices to prove (4.72) for ω ∈ H with δ 6 |ω| 6 Nαδ. To this end, fix
τ ∈ [δ,Nαδ], and define the spherical segment Ξτ := {ω ∈ H | |ω| =
τ}. We then have

κN (ω) = τ2
∣∣∣∣N − 1

N

∣∣∣∣2α− ∣∣ω− ν|2 > τ2
∣∣∣∣N − 1

N

∣∣∣∣2α− ∣∣ω∗− ν|2, (4.73)
for ω ∈ Ξτ and N > 2, where ω∗ = (τ, 0, . . . , 0) ∈ Ξτ . The inequality
in (4.73) holds thanks to the mapping ω 7→ |ω−ν|2, ω ∈ Ξτ , attaining
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τ

pN (τ)

δ Nαδ

Fig. 4.10: The function pN (τ) is quadratic in τ , with the coefficient of
the highest-degree term negative. Establishing pN (δ) > 0 and
pN (Nαδ) > 0 therefore implies pN (τ) > 0, τ ∈ [δ,Nαδ].

its maxima along the coordinate axes (see Fig. 4.9). Inserting

|ω∗ − ν|2 =
(
τ − δ(1 + 2−1/2)

d

)2
+ (d− 1)δ2(1 + 2−1/2)2

d2

= τ2 − τδ(2 + 21/2)
d

+ δ2(1 + 2−1/2)2

d

into (4.73) and rearranging terms yields

κN (ω) > τ2
(∣∣∣∣N − 1

N

∣∣∣∣2α − 1
)

+ τδ(2 + 21/2)
d

− δ2(1 + 2−1/2)2

d
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=:pN (τ)

,

for all ω ∈ Ξτ and all N > 2. This inequality shows that κN (ω) is
lower-bounded—for ω ∈ Ξτ—by the 1-D function pN (τ). Now, pN (τ)
is quadratic in τ , with the highest-degree coefficient (

∣∣N−1
N

∣∣2α −
1
)
negative (owing to α = log2

(√
d/(d− 1/2)

)
> 0, for d > 1).

Therefore, thanks to pN , N > 2, being concave, establishing pN (δ) > 0
and pN (Nαδ) > 0, for N > 2, implies pN (τ) > 0, for τ ∈ [δ,Nαδ] and
N > 2 (see Fig. 4.10), and thus (4.72), which completes the proof. It
remains to show that pN (δ) > 0 and pN (Nαδ) > 0, both for N > 2.
We have

pN (δ) = δ2
(∣∣∣∣N − 1

N

∣∣∣∣2α − 1 + 2 + 21/2

d
− (1 + 2−1/2)2

d

)
> δ2

(
2−2α − d− 1/2

d

)
= 0, (4.74)
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where the inequality in (4.74) is by N 7→
∣∣N−1
N

∣∣2α, for N > 2,
monotonically increasing in N , and the equality is thanks to α =
log2

(√
d/(d− 1/2)

)
, which is by assumption. Next, we have

pN (Nαδ)
δ2 =

∣∣N − 1
∣∣2α −N2α + Nα(2 + 21/2)

d
− (1 + 2−1/2)2

d

> 1− 22α + 2α(2 + 21/2)
d

− (1 + 2−1/2)2

d
(4.75)

= 1− d

d− 1/2 +
√
d(2 + 21/2)
d
√
d− 1/2

− (1 + 2−1/2)2

d
> 0, (4.76)

for all d > 1 and all N > 2, where (4.75) is by N 7→ (N − 1)2α −
N2α + d−1Nα(2 + 21/2), for N > 2, monotonically increasing in N
(owing to α = log2

(√
d/(d− 1/2)

)
> 0, for d > 1), and the equality

in (4.76) is thanks to α = log2
(√

d/(d− 1/2)
)
. The inequality in

(4.76) is established in Lemma 8 below. This completes the proof.

It remains to show (4.76), which is accomplished through the
following lemma.

Lemma 8. For every d > 1 it holds that

1− d

d− 1/2 +
√
d(2 + 21/2)
d
√
d− 1/2

− (1 + 2−1/2)2

d
> 0.

Proof. We start by multiplying the inequality by d(d− 1/2), which
(after rearranging terms) yields√

d(d− 1/2)α > (d− 1/2)β + d/2, d > 1, (4.77)

where α := (2 + 21/2) and β := (1 + 2−1/2)2. Squaring (4.77) yields
(again, after rearranging terms)

d2 (α2 − β2 − β − 1
4)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
= 0

+d (−α
2

2 + β2 + β

2 )
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

> 4

− β2

4°
6 3

> 0, d > 1,

which completes the proof.
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We proceed to sharpen the exponent α = log2(
√
d/(d− 1/2)) to

α = 1 for d = 1. The structure of the corresponding proof is similar to
that of the proof for d > 1 with α = log2

(√
d/(d− 1/2)

)
. Specifically,

we start by employing the arguments leading to (4.59) with Nα

replaced by N . With this replacement hn,N,α,δ in (4.60) becomes
hn,N,α,δ(ω) :=

∑
λn∈Λn |ĝλn(ω)|2

(
1 −

∣∣r̂l( ω−νλn(N−1)δ
)∣∣2), where, again,

appropriate choice of the modulation factors {νλn}λn∈Λn ⊆ R will be
key to establishing the inductive step. We start by defining Λ+

n to
be the set of indices λn ∈ Λn such that supp(ĝλn) ⊆ [δ,∞), and take
Λ−n to be the set of indices λn ∈ Λn such that supp(ĝλn) ⊆ (−∞,−δ]
(see Assumption 1). Clearly, Λn = Λ+

n ∪ Λ−n . Moreover, we define
the modulation factors according to νλn := δ, for all λn ∈ Λ+

n , and
νλn := −δ, for all λn ∈ Λ−n . We then get

hn,N,α,δ(ω) =
∑

λn∈Λn

|ĝλn(ω)|2
(

1−
∣∣∣r̂l( ω − νλn(N − 1)δ

)∣∣∣2)
=

∑
λn∈Λ+

n

|ĝλn(ω)|2 1[δ,∞)(ω)
(

1−
∣∣∣r̂l( ω − δ

(N − 1)δ

)∣∣∣2) (4.78)

+
∑

λn∈Λ−n

|ĝλn(ω)|2 1(−∞,−δ ](ω)
(

1−
∣∣∣r̂l( ω + δ

(N − 1)δ

)∣∣∣2) (4.79)

6 max{1, Bn}1[δ,∞)(ω)
(

1−
∣∣∣r̂l( ω − δ

(N − 1)δ

)∣∣∣2) (4.80)

+ max{1, Bn}1(−∞,−δ ](ω)
(

1−
∣∣∣r̂l( ω + δ

(N − 1)δ

)∣∣∣2), (4.81)

where (4.78) and (4.79) are thanks to Assumption 1, and for the last
step we employed (4.16). For the set [δ,∞), we show in Lemma 9
below that∣∣∣r̂l( ω − δ

(N − 1)δ

)∣∣∣ > ∣∣∣r̂l( ω

Nδ

)∣∣∣, ∀ω ∈ [δ,∞), ∀N > 2. (4.82)

This will allow us to deduce∣∣∣r̂l( ω + δ

(N − 1)δ

)∣∣∣ > ∣∣∣r̂l( ω

Nδ

)∣∣∣, ∀ω ∈ (−∞,−δ], ∀N > 2, (4.83)
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simply by noting that∣∣∣r̂l( ω + δ

(N − 1)δ

)∣∣∣ =
(

1−
∣∣∣∣ ω + δ

(N − 1)δ

∣∣∣∣)l
+

=
(

1−
∣∣∣−(−ω − δ)

(N − 1)δ

∣∣∣)l
+

=
∣∣∣r̂l( −ω − δ(N − 1)δ

)∣∣∣ > ∣∣∣r̂l(−ω
Nδ

)∣∣∣ (4.84)

=
(

1−
∣∣∣−ω
Nδ

∣∣∣)l
+

=
∣∣∣r̂l( ω

Nδ

)∣∣∣,
for ω ∈ (−∞,−δ]. Here, the inequality in (4.84) is due to (4.82).
Insertion of (4.82) into (4.80) and of (4.83) into (4.81) then yields

hn,N,α,δ(ω) 6 max{1, Bn}1(−∞,−δ ]∪ [δ,∞)(ω)
(

1−
∣∣∣r̂l( ω

Nδ

)∣∣∣2)
6 max{1, Bn}

(
1−

∣∣∣r̂l( ω

Nδ

)∣∣∣2),
for ω ∈ R, where the last inequality is thanks to 0 6 r̂l(ω) 6 1,
for ω ∈ R. This establishes (4.18)—in the 1-D case—for α = 1 and
completes the proof of statement i) in Theorem 3.
It remains to prove (4.82), which is done through the following

lemma.

Lemma 9. Let r̂l : R→ R, r̂l(ω) := (1− |ω|)l+, with l > 1. Then,∣∣∣r̂l( ω − δ
(N − 1)δ

)∣∣∣ > ∣∣∣r̂l( ω

Nδ

)∣∣∣, ∀ω ∈ [δ,∞), ∀N > 2. (4.85 )

Proof. We first note that for ω > Nδ, (4.85) is trivially satisfied as the
RHS of (4.85) equals zero (owing to

∣∣ ω
Nδ

∣∣ > 1 together with supp(r̂l) ⊆
B1(0)). It hence suffices to prove (4.85) for δ 6 ω 6 Nδ. The key
idea of the proof is to employ a monotonicity argument. Specifically,
thanks to r̂l monotonically decreasing in |ω|, i.e., r̂l(ω1) > r̂l(ω2),
for ω1, ω2 ∈ R with |ω2| > |ω1|, (4.85) can be established simply by
showing that∣∣∣ ω − δ

(N − 1)δ

∣∣∣ 6 ∣∣∣ ω
Nδ

∣∣∣, ∀ω ∈ [δ,Nδ ], ∀N > 2,
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which, by ω ∈ [δ,Nδ], is equivalent to
ω − δ

(N − 1)δ 6
ω

Nδ
, ∀ω ∈ [δ,Nδ ], ∀N > 2. (4.86)

Rearranging terms in (4.86), we get

ω 6 Nδ, ∀ω ∈ [δ,Nδ ], ∀N > 2,

which completes the proof.

Remark 7. What makes the improved exponent α possible in the
1-D case is the absence of rotated orthants. Specifically, for d =
1, the filters {gλn}λn∈Λn satisfy either supp(ĝλn) ⊆ (−∞,−δ] or
supp(ĝλn) ⊆ [δ,∞), i.e., the support sets supp(ĝλn) are located in one
of the two half-spaces.

4.7.3. Proof of statement ii) in Theorem 3

We need to show that there exist constants C1,s, C2,s > 0 (that are
independent of N) such that

WN (f) 6 C1,sB
N
Ω N

−2sα, ∀s ∈ (0, 1/2), ∀N > 1, (4.87)

and

WN (f) 6 C2,sB
N
Ω N

−α, ∀s ∈ [1/2,∞), ∀N > 1. (4.88)

Let us start by noting that

max{0, 1− 2l|ω|} 6 (1− |ω|)2l
+ , ω ∈ Rd, (4.89)

where l > bd/2c+ 1, see Fig. 4.11. This implies

1−
∣∣∣r̂l( ω

Nαδ

)∣∣∣2 = 1−
(

1−
∣∣∣ ω

Nαδ

∣∣∣)2l

+

6 1−max
{

0, 1− 2l |ω|
Nαδ

}
= 1 + min

{
0, 2l |ω|
Nαδ

− 1
}

= min
{

1, 2l |ω|
Nαδ

}
, ∀ω ∈ Rd. (4.90)

122



4.7 PROOFS

ω
g1

g2

Fig. 4.11: Illustration of (4.89) in dimension d = 1. The functions g1(ω) :=
max{0, 1− 2l|ω|} (dashed line) and g2(ω) := (1− |ω|)2l

+ (solid line)
satisfy g1(ω) 6 g2(ω), for ω ∈ R. Note that l > bd/2c+ 1.

The key idea of the proof of (4.87) is to upper-bound the integral on
the RHS of (4.18) according to∫

Rd
|f̂(ω)|2

(
1−

∣∣∣r̂l( ω

Nαδ

)∣∣∣2)dω

6
∫
Rd
|f̂(ω)|2 min

{
1, 2l |ω|
Nαδ

}
dω (4.91)

=
∫
Bτ (0)
|f̂(ω)|2 2l |ω|

Nαδ
dω +

∫
Rd\Bτ (0)

|f̂(ω)|2dω, (4.92)

where τ := Nαδ
2l . Here, the inequality in (4.91) follows from (4.90),

and (4.92) is owing to

min
{

1, 2l |ω|
Nαδ

}
=
{

2l |ω|
Nαδ , |ω| 6 τ,

1, |ω| > τ.

Now, the first integral in (4.92) satisfies∫
Bτ (0)
|f̂(ω)|2 2l |ω|

Nαδ
dω = 2l

Nαδ

∫
Bτ (0)
|f̂(ω)|2|ω|1−2s|ω|2sdω

6
2l τ1−2s

Nαδ

∫
Bτ (0)
|f̂(ω)|2|ω|2sdω (4.93)

6
2l τ1−2s

Nαδ

∫
Bτ (0)
|f̂(ω)|2(1 + |ω|2)sdω
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6
( 2l
Nαδ

)2s ∫
Bτ (0)

|f̂(ω)|2(1 + |ω|2)s dω, (4.94)

where (4.93) is owing to |ω| 7→ |ω|1−2s monotonically increasing in
|ω| for s ∈ (0, 1/2). For the second integral in (4.92), we have∫

Rd\Bτ (0)
|f̂(ω)|2dω =

∫
Rd\Bτ (0)

|f̂(ω)|2|ω|−2s|ω|2sdω

6 τ−2s
∫
Rd\Bτ (0)

|f̂(ω)|2 |ω|2s
±

6(1+|ω|2)s

dω (4.95)

6 τ−2s
∫
Rd\Bτ (0)

|f̂(ω)|2(1 + |ω|2)sdω

6
( 2l
Nαδ

)2s ∫
Rd\Bτ (0)

|f̂(ω)|2(1 + |ω|2)s dω, (4.96)

where (4.95) is thanks to

|ω| 7→ |ω|−2s, ω ∈ Rd,

monotonically decreasing in |ω| for s ∈ (0, 1/2). Inserting (4.94) and
(4.96) into (4.92) establishes (4.87) with

C1,s := (2l)2sδ−2s‖f‖2Hs .

Next, we show (4.88) by noting that∫
Rd
|f̂(ω)|2

(
1−

∣∣∣r̂l( ω

Nαδ

)∣∣∣2)dω

6
∫
Rd
|f̂(ω)|2 min

{
1, 2l |ω|
Nαδ

}
dω (4.97)

6
2l
Nαδ

∫
Rd
|f̂(ω)|2|ω|dω

6
2l
Nαδ

∫
Rd
|f̂(ω)|2(1 + |ω|2)s dω = 2l

Nαδ
‖f‖2Hs ,

where (4.97) is by (4.90), and the last inequality follows from |ω| 6
(1 + |ω|2)s, for ω ∈ Rd and s ∈ [1/2,∞). This establishes (4.88) with

C2,s := (2l) δ−1‖f‖2Hs
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and thereby completes the proof.

4.7.4. Proof of Proposition 8

Proposition 8. Let Ω be the module-sequence (4.1). Then,

ANΩ ‖f‖22 6
N−1∑
n=0
|||ΦnΩ(f)|||2 +WN (f) 6 BNΩ ‖f‖22, (4.98 )

for all f ∈ L2(Rd) and all N > 1, where

ANΩ =
N∏
k=1

min{1, Ak}, BNΩ =
N∏
k=1

max{1, Bk}.

Proof. We proceed by induction over N and start with the base case
N = 1 which follows directly from the frame property (4.2) according
to

A1
Ω‖f‖22 = min{1, A1}‖f‖22 6 A1‖f‖22 6 ‖f ∗ χ0‖22 +

∑
λ1∈Λ1

‖f ∗ gλ1‖22

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
= |||Φ0

Ω(f)|||2+W1(f)

6 B1‖f‖22 6 max{1, B1}‖f‖22 = B1
Ω‖f‖22, ∀ f ∈ L2(Rd).

The inductive step is obtained as follows. Let N > 1 and suppose
that (4.98) holds for N − 1, i.e.,

AN−1
Ω ‖f‖22 6

N−2∑
n=0
|||ΦnΩ(f)|||2 +WN−1(f) 6 BN−1

Ω ‖f‖22, (4.99)

for all f ∈ L2(Rd). We start by noting that

N−1∑
n=0
|||ΦnΩ(f)|||2 +WN (f) =

N−2∑
n=0
|||ΦnΩ(f)|||2

+
∑

q∈ΛN−1

‖(U [q]f) ∗ χN−1‖22 +
∑
q∈ΛN

‖U [q]f‖22, (4.100)
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and proceed by examining the third term on the RHS of (4.100).
Every path

q̃ ∈ ΛN = Λ1 × ... × ΛN−1´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=ΛN−1

×ΛN

of length N can be decomposed into a path q ∈ ΛN−1 of length N − 1
and an index λN ∈ ΛN according to q̃ = (q, λN ). Thanks to (4.3) we
have U [q̃] = U [(q, λN )] = UN [λN ]U [q], which yields∑

q∈ΛN
‖U [q]f‖22 =

∑
q∈ΛN−1

∑
λN∈ΛN

‖(U [q]f) ∗ gλN ‖22. (4.101)

Substituting the third term on the RHS of (4.100) by (4.101) and
rearranging terms, we obtain

N−1∑
n=0
|||ΦnΩ(f)|||2 +WN (f) =

N−2∑
n=0
|||ΦnΩ(f)|||2

+
∑

q∈ΛN−1

(
‖(U [q]f) ∗ χN−1‖22 +

∑
λN∈ΛN

‖(U [q]f) ∗ gλN ‖22

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=:ρN (U [q]f)

)
.

Thanks to the frame property (4.2) and U [q]f ∈ L2(Rd), which is by
(3.11), we have

AN‖U [q]f‖22 6 ρN (U [q]f) 6 BN‖U [q]f‖22,

and thus

min{1, AN}
(N−2∑
n=0
|||ΦnΩ(f)|||2 +WN−1(f)

)
(4.102)

6
N−1∑
n=0
|||ΦnΩ(f)|||2 +WN (f)

6 max{1, BN}
(N−2∑
n=0
|||ΦnΩ(f)|||2 +WN−1(f)

)
, (4.103)
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where we employed the identity
∑
q∈ΛN−1 ‖U [q]f‖22 = WN−1(f).

Invoking the induction hypothesis (4.99) in (4.102) and (4.103) and
noting that

ANΩ = min{1, AN}AN−1
Ω , BNΩ = max{1, BN}BN−1

Ω ,

completes the proof.

4.7.5. Proof of Proposition 9

Proposition 9. Let r̂l : Rd → R, r̂l(ω) := (1 − |ω|)l+, with l >

bd/2c+ 1, and α as defined in (4.17). Then, we have

lim
N→∞

∫
Rd

∣∣f̂(ω)
∣∣2(1−

∣∣∣r̂l( ω

Nαδ

)∣∣∣2)dω = 0, (4.104)

for all f ∈ L2(Rd).

Proof. We start by setting

dN,α,δ(ω) :=
(

1−
∣∣∣r̂l( ω

Nαδ

)∣∣∣2), ω ∈ Rd, N ∈ N.

Let f ∈ L2(Rd). For every ε > 0 there exists R > 0 such that∫
Rd\BR(0)

|f̂(ω)|2dω 6 ε/2,

where BR(0) denotes the closed ball of radius R centered at the origin.
Next, we employ Dini’s Theorem (DiBenedetto, 2002, Theorem 7.3)
to show that (dN,α,δ)N∈N converges to the zero function z0(ω) := 0,
ω ∈ Rd, uniformly on BR(0). To this end, we note that (i) dN,α,δ is
continuous as a composition of continuous functions, (ii) z0(ω) = 0,
for ω ∈ Rd, is, clearly, continuous, (iii) dN,α,δ(ω) > dN+1,α,δ(ω), for
ω ∈ Rd and N ∈ N, and (iv) dN,α,δ converges to z0 pointwise on
BR(0), i.e., lim

N→∞
dN,α,δ(ω) = z0(ω) = 0, for ω ∈ Rd. This allows us
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to conclude that there exists N0 ∈ N (that depends on ε) such that
dN,α,δ(ω) 6 ε

2‖f‖22
, for ω ∈ BR(0) and N > N0, and we therefore get∫

Rd

∣∣f̂(ω)
∣∣2dN,α,δ(ω)dω =

∫
Rd\BR(0)

∣∣f̂(ω)
∣∣2 dN,α,δ(ω)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

61

dω

+
∫
BR(0)

∣∣f̂(ω)
∣∣2 dN,α,δ(ω)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
6 ε

2‖f‖22

dω 6
ε

2 + ε

2‖f‖22
‖f̂‖22 = ε,

where in the last step we employed Parseval’s formula. Since ε > 0
was arbitrary, we have (4.104), which completes the proof.

4.7.6. Proof of Theorem 4

Wavelet case

We start by establishing (4.27) in statement i). The structure of the
proof is similar to that of the proof of statement i) in Theorem 3
in Section 4.7.2, specifically we perform induction over N . Starting
with the base case N = 1, we first note that supp(ψ̂ ) ⊆ [r−1, r],
ĝj(ω) = ψ̂(r−jω), for j > 1, and ĝj(ω) = ψ̂(−r−|j|ω), for j 6 −1, all
by assumption, imply

supp(ĝj) = supp(ψ̂(r−j ·)) ⊆ [rj−1, rj+1], (4.105)

for j > 1, and

supp(ĝj) = supp(ψ̂(−r−|j|·)) ⊆ [−r|j|+1,−r|j|−1], (4.106)

for j 6 −1. We then get

W1(f) =
∑

j∈Z\{0}

‖f ∗ gj‖22 =
∫
R

∑
j∈Z\{0}

|ĝj(ω)|2|f̂(ω)|2dω (4.107)

=
∫
R

∑
j>1
|ψ̂(r−jω)|2|f̂(ω)|2dω +

∫
R

∑
j6−1

|ψ̂(−r−|j|ω)|2|f̂(ω)|2dω
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=
∫ ∞

1

∑
j>1
|ψ̂(r−jω)|2|f̂(ω)|2dω

+
∫ −1

−∞

∑
j6−1

|ψ̂(−r−|j|ω)|2|f̂(ω)|2dω (4.108)

6
∫
R\[−1,1]

|f̂(ω)|2dω 6
∫
R

∣∣f̂(ω)
∣∣2(1− |r̂l(ω)|2)dω, (4.109)

where (4.107) is by Parseval’s formula, and (4.108) is thanks to (4.105)
and (4.106). The first inequality in (4.109) is owing to (4.24), and
the second inequality is due to supp(r̂l) ⊆ [−1, 1] and 0 6 r̂l(ω) 6 1,
for ω ∈ R. The inductive step is obtained as follows. Let N > 1 and
suppose that (4.27) holds for N − 1, i.e.,

WN−1(f) 6
∫
R

∣∣f̂(ω)
∣∣2(1−

∣∣∣r̂l( ω

aN−2

)∣∣∣2)dω, (4.110)

for all f ∈ L2(R). We start by noting that every path q̃ ∈ (Z\{0})N of
length N can be decomposed into a path q ∈ (Z\{0})N−1 of length
N − 1 and an index j ∈ Z\{0} according to q̃ = (j, q). Thanks to
(4.3) we have U [q̃] = U [(j, q)] = U [q]U1[j], which yields

WN (f) =
∑

j∈Z\{0}

∑
q ∈ (Z\{0})N−1

||U [q](U1[j]f)||22

=
∑

j∈Z\{0}

WN−1(U1[j]f). (4.111)

We proceed by examining the term WN−1(U1[j]f) inside the sum
in (4.111). Invoking the induction hypothesis (4.110) and employing
Parseval’s formula, we get

WN−1(U1[j]f) 6
∫
R

∣∣Û1[j]f(ω)
∣∣2(1−

∣∣∣r̂l( ω

aN−2

)∣∣∣2)dω

=
(
‖U1[j]f‖22 − ‖(U1[j]f) ∗ rl,N−2‖22

)
=
(
‖f ∗ gj‖22 − ‖|f ∗ gj | ∗ rl,N−2‖22

)
, (4.112)

where rl,N−2 is the inverse Fourier transform of r̂l
(

ω
aN−2

)
. Next, we

note that r̂l
(

ω
aN−2

)
is a positive definite radial basis function (Wend-

land, 2004, Theorem 6.20) and hence by (Wendland, 2004, Theorem
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6.18) rl,N−2(x) > 0, for x ∈ R. Furthermore, it follows from Lemma
6 in Section 4.7.2 that

‖|f ∗ gj | ∗ rl,N−2‖22 > ‖f ∗ gj ∗ (Mνjrl,N−2)‖22, (4.113)

for all {νj}j∈Z\{0} ⊆ R. Choosing the modulation factors
{νj}j∈Z\{0} ⊆ R appropriately (see (4.117) below) will be key to
establishing the inductive step. Using (4.112) and (4.113) to upper-
bound the term WN−1(U1[j]f) inside the sum in (4.111) yields

WN (f) 6
∑

j∈Z\{0}

(
‖f ∗ gj‖22 − ‖f ∗ gj ∗ (Mνjrl,N−2)‖22

)
=
∫
R
|f̂(ω)|2hl,N−2(ω)dω, (4.114)

where

hl,N−2(ω) :=
∑

j∈Z\{0}

|ĝj(ω)|2
(

1−
∣∣∣r̂l(ω − νj

aN−2

)∣∣∣2). (4.115)

In (4.114) we employed Parseval’s formula together with M̂ωf = Tω f̂ ,
for f ∈ L2(R) and ω ∈ R. The key step is now to establish—for
appropriately chosen {νj}j∈Z\{0} ⊆ R—the upper bound

hl,N−2(ω) 6
(

1−
∣∣∣r̂l( ω

aN−1

)∣∣∣2), ∀ω ∈ R, (4.116)

which then yields (4.27) and thereby completes the proof. To this end,
we set η := 2r

r2+1 ,

νj := rjη, j > 1, νj := −r|j|η, j 6 −1, (4.117)

and note that it suffices to prove (4.116) for ω > 0, as

hl,N−2(−ω) =
∑

j∈Z\{0}

|ĝj(−ω)|2
(

1−
∣∣∣r̂l(−ω − νj

aN−2

)∣∣∣2)
=
∑
j6−1

|ĝj(−ω)|2
(

1−
∣∣∣r̂l(ω + νj

aN−2

)∣∣∣2) (4.118)
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=
∑
j>1
|ĝ−j(−ω)|2

(
1−

∣∣∣r̂l(ω + ν−j
aN−2

)∣∣∣2)
=
∑
j>1
|ĝj(ω)|2

(
1−

∣∣∣r̂l(ω − νj
aN−2

)∣∣∣2) (4.119)

= hl,N−2(ω), ∀ω > 0. (4.120)

Here, (4.118) is thanks to ĝj(−ω) = 0, for j > 1 and ω > 0, which is
by (4.105), and (4.120) is owing to ĝj(ω) = 0, for j 6 −1 and ω > 0,
which is by (4.106). Moreover, in (4.118) we used that r̂l satisfies
r̂l(−ω) = r̂l(ω), for ω ∈ R, and (4.119) is thanks to

ĝ−j(−ω) = ψ̂(r−|−j|ω) = ψ̂(r−jω) = ĝj(ω), ∀ω ∈ R, ∀ j > 1,

as well as ν−j = −rjη = −νj , for j > 1. Now, let ω ∈ [0, 1], and note
that

hl,N−2(ω) =
∑

j∈Z\{0}

|ĝj(ω)|2
(

1−
∣∣∣r̂l(ω − νj

aN−2

)∣∣∣2) = 0 (4.121)

6 1−
∣∣∣r̂l( ω

aN−1

)∣∣∣2, ∀N > 2, (4.122)

where the second equality in (4.121) is simply a consequence of ĝj(ω) =
0, for j ∈ Z\{0} and ω ∈ [0, 1], which, in turn, is by (4.105) and
(4.106). The inequality in (4.122) is thanks to 0 6 r̂l(ω) 6 1, for
ω ∈ R. Next, let ω ∈ [1, r]. Then, we have

hl,N−2(ω) = |ĝ1(ω)|2
(

1−
∣∣∣r̂l(ω − rη

aN−2

)∣∣∣2) (4.123)

6 |ĝ1(ω)|2
(

1−
∣∣∣r̂l(ω − rη

aN−2

)∣∣∣2)
+
(
1− |ĝ1(ω)|2

)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

>0

(
1−

∣∣∣r̂l(ω − η
aN−2

)∣∣∣2)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

>0

(4.124)

= 1−
∣∣∣r̂l(ω − η

aN−2

)∣∣∣2
+ |ĝ1(ω)|2

(∣∣∣r̂l(ω − η
aN−2

)∣∣∣2 − ∣∣∣r̂l(ω − rη
aN−2

)∣∣∣2), (4.125)
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where (4.123) is thanks to ĝj(ω) = 0, for j ∈ Z\{0, 1} and ω ∈ [1, r],
which, in turn, is by (4.105) and (4.106). Moreover, (4.124) is owing
to |ĝ1(ω)|2 ∈ [0, 1], which, in turn, is by (4.24) and 0 6 r̂l(ω) 6 1, for
ω ∈ R. Next, fix j > 2 and let ω ∈ [rj−1, rj ]. Then, we have

hl,N−2(ω) = |ĝj(ω)|2
(

1−
∣∣∣r̂l(ω − rjη

aN−2

)∣∣∣2)
+ |ĝj−1(ω)|2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=(1−|ĝj(ω)|2−|φ̂(ω)|2)

(
1−

∣∣∣r̂l(ω − rj−1η

aN−2

)∣∣∣2)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

>0

(4.126)

6 1−
∣∣∣r̂l(ω − rj−1η

aN−2

)∣∣∣2
+ |ĝj(ω)|2

(∣∣∣r̂l(ω − rj−1η

aN−2

)∣∣∣2 − ∣∣∣r̂l(ω − rjη
aN−2

)∣∣∣2), (4.127)

where (4.126) is thanks to i) ĝj′(ω) = 0, for j′ ∈ Z\{0, j, j − 1} and
ω ∈ [rj−1, rj ], which, in turn, is by (4.105) and (4.106), and ii)

|φ̂(ω)|2 + |ĝj−1(ω)|2 + |ĝj(ω)|2 = 1, ∀ω ∈ [rj−1, rj ], (4.128)

which is a consequence of the Littlewood-Paley condition (4.24) and
of (4.105) and (4.106). It follows from (4.125) and (4.127) that for
every j > 1, we have

hl,N−2(ω) 6 1−
∣∣∣r̂l(ω − rj−1η

aN−2

)∣∣∣2
+ |ĝj(ω)|2

(∣∣∣r̂l(ω − rj−1η

aN−2

)∣∣∣2 − ∣∣∣r̂l(ω − rjη
aN−2

)∣∣∣2)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=:s(ω)

,

for ω ∈ [rj−1, rj ]. Next, we divide the interval [rj−1, rj ] into two
intervals, namely IL := [rj−1, r+1

r2+1r
j ] and IR := [ r+1

r2+1r
j , rj ], and

note that s(ω) > 0, for ω ∈ IL, and s(ω) 6 0, for ω ∈ IR, as r̂l
is monotonically decreasing in |ω| and |ω − rjη| > |ω − rj−1η|, for
ω ∈ IL, and |ω− rjη| 6 |ω− rj−1η|, for ω ∈ IR, respectively (see Fig.
4.12). For ω ∈ IL, we therefore have
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ω
rj−1 r+1

r2+1r
j rj

h3

h2

h1

Fig. 4.12: The functions h1(ω) := |ω− rjη| (solid line), h2(ω) := |ω− rj−1η|
(dashed line), and h3(ω) := ω

a
(dotted line) satisfy h2 6 h1 6 h3

on IL = [rj−1, r+1
r2+1r

j ] and h1 6 h2 6 h3 on IR = [ r+1
r2+1r

j , rj ].

hl,N−2(ω) 6 1−
∣∣∣r̂l(ω − rj−1η

aN−2

)∣∣∣2 + |ĝj(ω)|2
´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶
∈ [0,1]

s(ω)
±
>0

6 1−
∣∣∣r̂l(ω − rj−1η

aN−2

)∣∣∣2 + s(ω)

= 1−
∣∣∣r̂l(ω − rjη

aN−2

)∣∣∣2 6 1−
∣∣∣r̂l( ω

aN−1

)∣∣∣2,
where |ĝj(ω)|2 ∈ [0, 1] follows from (4.128), and the last inequality is
a consequence of |ω − rjη| 6 ω

a , for ω ∈ IL, see Fig. 4.12. For ω ∈ IR,
we have

hl,N−2(ω) 6 1−
∣∣∣r̂l(ω − rj−1η

aN−2

)∣∣∣2 + |ĝj(ω)|2
´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶
∈ [0,1]

s(ω)
±
60

6 1−
∣∣∣r̂l(ω − rj−1η

aN−2

)∣∣∣2 6 1−
∣∣∣r̂l( ω

aN−1

)∣∣∣2,
where the last inequality now follows from |ω−rj−1η| 6 ω

a , for ω ∈ IR,
see Fig. 4.12. This completes the proof of (4.27).
Next, we establish (4.28). The proof is very similar to that of

statement ii) in Theorem 3 in Section 4.7.3. We start by noting that
(4.28) amounts to the existence of constants C1,s, C2,s > 0 (that are
independent of N) such that

WN (f) 6 C1,sa
−2sN , ∀s ∈ (0, 1/2), ∀N > 1, (4.129)
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and

WN (f) 6 C2,sa
−N , ∀s ∈ [1/2,∞), ∀N > 1, (4.130)

where a = r2+1
r2−1 , r > 1. The key idea of the proof of (4.129) is to

upper-bound the integral on the RHS of (4.27) according to∫
R
|f̂(ω)|2

(
1−

∣∣∣r̂l( ω

aN−1

)∣∣∣2)dω

6
∫
R
|f̂(ω)|2 min

{
1, 2l |ω|
aN−1

}
dω (4.131)

=
∫
Bτ (0)
|f̂(ω)|2 2l |ω|

aN−1 dω +
∫
R\Bτ (0)
|f̂(ω)|2dω, (4.132)

where τ := aN−1

2l . Here, the inequality in (4.131) follows from (4.90),
and (4.132) is owing to

min
{

1, 2l |ω|
aN−1

}
=
{

2l |ω|
aN−1 , |ω| 6 τ,

1, |ω| > τ.

Now, the first integral in (4.132) satisfies∫
Bτ (0)
|f̂(ω)|2 2l |ω|

aN−1 dω = 2l
aN−1

∫
Bτ (0)
|f̂(ω)|2|ω|1−2s|ω|2sdω

6
2l τ1−2s

aN−1

∫
Bτ (0)
|f̂(ω)|2 |ω|2s

±
6(1+|ω|2)s

dω (4.133)

6
( 2l
aN−1

)2s ∫
Bτ (0)

|f̂(ω)|2(1 + |ω|2)s dω, (4.134)

where (4.133) is owing to |ω| 7→ |ω|1−2s monotonically increasing in
|ω| for s ∈ (0, 1/2). For the second integral in (4.132), we have∫

R\Bτ (0)
|f̂(ω)|2dω =

∫
R\Bτ (0)

|f̂(ω)|2|ω|−2s|ω|2sdω

6 τ−2s
∫
R\Bτ (0)

|f̂(ω)|2 |ω|2s
±

6(1+|ω|2)s

dω (4.135)
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6
( 2l
aN−1

)2s ∫
R\Bτ (0)

|f̂(ω)|2(1 + |ω|2)s dω, (4.136)

where (4.135) is thanks to |ω| 7→ |ω|−2s monotonically decreasing
in |ω| for s ∈ (0, 1/2). Inserting (4.134) and (4.136) into (4.132)
establishes (4.129) with

C1,s := (2l)2sa2s‖f‖2Hs .

Next, we show (4.130) by noting that∫
R
|f̂(ω)|2

(
1−

∣∣∣r̂l( ω

aN−1

)∣∣∣2)dω

6
∫
R
|f̂(ω)|2 min

{
1, 2l |ω|
aN−1

}
dω (4.137)

6
2l

aN−1

∫
R
|f̂(ω)|2|ω|dω

6
2l

aN−1

∫
R
|f̂(ω)|2(1 + |ω|2)s dω = 2l

aN−1 ‖f‖
2
Hs ,

where (4.137) is by (4.90), and the last inequality follows from

|ω| 6 (1 + |ω|2)s, ∀ω ∈ R, ∀ s ∈ [1/2,∞).

This establishes (4.130) with

C2,s := 2la‖f‖2Hs

and thereby completes the proof of statement i).

Weyl-Heisenberg case

We proceed to the proof of statement ii), again, effected by induction
over N. Specifically, we first establish (4.30) by employing the same
arguments as those leading to (4.114) with aN−2 (where a is defined
in (4.26)) replaced by aN−2δ (where a is defined in (4.29)). With this
replacement hl,N−2 in (4.115) becomes

hl,N−2(ω) :=
∑

k∈Z\{0}

|ĝk(ω)|2
(

1−
∣∣∣r̂l(ω − νk

aN−2δ

)∣∣∣2), (4.138)
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where, again, appropriate choice of the modulation factors
{νk}k∈Z\{0} ⊆ R (see (4.142) below) will be key in establishing the
inductive step. Here, we note that the functions ĝk in (4.138) satisfy
ĝk(ω) = ĝ(ω − (Rk + δ)), for k > 1, ĝk(ω) = ĝ(ω + (R|k| + δ)), for
k 6 −1, by assumption, as well as

supp(ĝk) = supp(ĝ(· − (Rk + δ)))
⊆ [δ +R(k − 1), δ +R(k + 1)], k > 1, (4.139)

and

supp(ĝk) = supp(ĝ(·+ (R|k|+ δ)))
⊆ [−(δ +R(|k|+ 1)),−(δ +R(|k| − 1))], (4.140)

for k 6 −1, where (4.139) and (4.140) follow from supp(ĝ) ⊆ [−R,R],
which is by assumption. It remains to establish the equivalent of
(4.116), namely

hl,N−2(ω) 6 1−
∣∣∣r̂l( ω

aN−1δ

)∣∣∣2, ∀ω ∈ R. (4.141)

To this end, we set η := R2

R+2δ ,

νk := δ +Rk − η, ∀k > 1, νk := −ν|k|, ∀k 6 −1, (4.142)

and note that it suffices to establish (4.141) for ω > 0, thanks to

hl,N−2(−ω) =
∑

k∈Z\{0}

|ĝk(−ω)|2
(

1−
∣∣∣r̂l(−ω − νk

aN−2δ

)∣∣∣2)
=
∑
k6−1

|ĝk(−ω)|2
(

1−
∣∣∣r̂l(ω + νk

aN−2δ

)∣∣∣2) (4.143)

=
∑
k>1
|ĝ−k(−ω)|2

(
1−

∣∣∣r̂l(ω + ν−k
aN−2δ

)∣∣∣2)
=
∑
k>1
|ĝk(ω)|2

(
1−

∣∣∣r̂l(ω − νk
aN−2δ

)∣∣∣2) (4.144)

= hl,N−2(ω), ∀ω > 0. (4.145)
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Here, (4.143) follows from ĝk(−ω) = 0, for k > 1 and ω > 0, which,
in turn, is by (4.139), and (4.145) is owing to ĝk(ω) = 0, for k 6 −1
and ω > 0, which is by (4.140). Moreover, in (4.143) we used that
r̂l satisfies r̂l(−ω) = r̂l(ω), for ω ∈ R, and (4.144) is thanks to
ν−k = −νk, for k > 1, and

ĝ−k(−ω) = ĝ(−ω + (R|−k|+ δ)) = ĝ(−(ω − (Rk + δ)))
= ĝ(ω − (Rk + δ)) = ĝk(ω), ∀ω ∈ R,∀ k > 1,

where we used ĝ(−ω) = ĝ(ω), for ω ∈ R, which is by assumption.
Now, let ω ∈ [0, δ], and note that

hl,N−2(ω) = 0 6 1−
∣∣∣r̂l( ω

aN−1δ

)∣∣∣2, ∀N > 2, (4.146)

where the equality in (4.146) is a consequence of (4.139) and (4.140),
and the inequality is thanks to 0 6 r̂l(ω) 6 1, for ω ∈ R. Next, let
ω ∈ [δ, δ +R]. Then, we have

hl,N−2(ω) = |ĝ1(ω)|2
(

1−
∣∣∣r̂l(ω − ν1

aN−2δ

)∣∣∣2) (4.147)

6 |ĝ1(ω)|2
(

1−
∣∣∣r̂l(ω − ν1

aN−2δ

)∣∣∣2)
+ (1− |ĝ1(ω)|2)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

>0

(
1−

∣∣∣r̂l(ω − (δ − ν)
aN−2δ

)∣∣∣2)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

>0

(4.148)

= 1−
∣∣∣r̂l(ω − (δ − ν)

aN−2δ

)∣∣∣2
+ |ĝ1(ω)|2

(∣∣∣r̂l(ω − (δ − ν)
aN−2δ

)∣∣∣2 − ∣∣∣r̂l(ω − ν1

aN−2δ

)∣∣∣2), (4.149)

where (4.147) is thanks to ĝk(ω) = 0, for k ∈ Z\{0, 1} and ω ∈
[δ, δ+R], which, in turn, is by (4.139) and (4.140). Moreover, (4.148)
is owing to |ĝ1(ω)|2 ∈ [0, 1], which, in turn, is by (4.25), and 0 6
r̂l(ω) 6 1, for ω ∈ R. Next, fix k > 2, and let ω ∈ [δ+R(k−1), δ+Rk].
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Then, we have

hl,N−2(ω) = |ĝk(ω)|2
(

1−
∣∣∣r̂l(ω − νk

aN−2δ

)∣∣∣2)
+ |ĝk−1(ω)|2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=(1−|ĝk(ω)|2−|φ̂(ω)|2)

(
1−

∣∣∣r̂l(ω − νk−1

aN−2δ

)∣∣∣2)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

>0

(4.150)

6 1−
∣∣∣r̂l(ω − νk−1

aN−2δ

)∣∣∣2
+ |ĝk(ω)|2

(∣∣∣r̂l(ω − νk−1

aN−2δ

)∣∣∣2 − ∣∣∣r̂l(ω − νk
aN−2δ

)∣∣∣2), (4.151)

where (4.150) is thanks to i) ĝk′(ω) = 0, for k′ ∈ Z\{0, k, k − 1} and
ω ∈ [δ +R(k − 1), δ +Rk], which, in turn, is by (4.139) and (4.140),
and ii)

|χ̂(ω)|2 + |ĝk−1(ω)|2 + |ĝk(ω)|2 = 1, (4.152)

for all ω ∈ [δ + R(k − 1), δ + Rk], which is a consequence of the
Littlewood-Paley condition (4.25) and of (4.139) and (4.140). It fol-
lows from (4.149) and (4.151) that for k > 1, we have

hl,N−2(ω) 6 1−
∣∣∣r̂l(ω − νk−1

aN−2δ

)∣∣∣2
+ |ĝk(ω)|2

(∣∣∣r̂l(ω − νk−1

aN−2δ

)∣∣∣2 − ∣∣∣r̂l(ω − νk
aN−2δ

)∣∣∣2)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=:s(ω)

,

for ω ∈ [δ +R(k − 1), δ +Rk], where ν0 := (δ − ν). Next, we divide
the interval [δ + R(k − 1), δ + Rk] into two intervals, namely IL :=
[δ +R(k − 1), τ ] and IR := [τ, δ +Rk], where τ := δ +Rk −R/2− η,
and note that s(ω) > 0, for ω ∈ IL, and s(ω) 6 0, for ω ∈ IR, as r̂l is
monotonically decreasing in |ω| and |ω− νk| > |ω− νk−1|, for ω ∈ IL,
and |ω− νk| 6 |ω− νk−1|, for ω ∈ IR, respectively (see Fig. 4.13). For
ω ∈ IL, we therefore have

hl,N−2(ω) 6 1−
∣∣∣r̂l(ω − νk−1

aN−2δ

)∣∣∣2 + |ĝk(ω)|2
´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¶
∈ [0,1]

s(ω)
±
>0
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ω
δ +R(k − 1) τ δ +Rk

h3

h2

h1

Fig. 4.13: The functions h1(ω) := |ω − νk| (solid line), h2(ω) := |ω − νk−1|
(dashed line), and h3(ω) = ω

a
(dotted line) satisfy h2 6 h1 6 h3

on IL = [δ +R(k − 1), τ ] and h1 6 h2 6 h3 on IR = [τ, δ +Rk].

6 1−
∣∣∣r̂l(ω − νk−1

aN−2δ

)∣∣∣2 + s(ω)

= 1−
∣∣∣r̂l(ω − νk

aN−2δ

)∣∣∣2 6 1−
∣∣∣r̂l( ω

aN−1δ

)∣∣∣2,
where |ĝk(ω)|2 ∈ [0, 1] follows from (4.152), and the last inequality is
by |ω − νk| 6 ω

a , for ω ∈ IL (see Fig. 4.13). For the interval ω ∈ IR,
we have

hl,N−2(ω) 6 1−
∣∣∣r̂l(ω − νk−1

aN−2δ

)∣∣∣2 + |ĝk(ω)|2
´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¶
∈ [0,1]

s(ω)
±
60

6 1−
∣∣∣r̂l(ω − νk−1

aN−2δ

)∣∣∣2 6 1−
∣∣∣r̂l( ω

aN−1δ

)∣∣∣2,
where the last inequality is by |ω − νk−1| 6 ω

a , for ω ∈ IR (see Fig.
4.13). This completes the proof of (4.30).

Next, we establish (4.31). The proof is very similar to that of
statement ii) in Theorem 3 in Section 4.7.3. We start by noting that
(4.31) amounts to the existence of constants C1,s, C2,s > 0 (that are
independent of N) such that

WN (f) 6 C1,sa
−2sN , ∀s ∈ (0, 1/2), ∀N > 1, (4.153)

and

WN (f) 6 C2,sa
−N , ∀s ∈ [1/2,∞), ∀N > 1, (4.154)
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where a = 1
2 + δ

R , δ >
R
2 . The key idea of the proof of (4.153) is to

upper-bound the integral on the RHS of (4.30) according to∫
R
|f̂(ω)|2

(
1−

∣∣∣r̂l( ω

aN−1R

)∣∣∣2)dω

6
∫
R
|f̂(ω)|2 min

{
1, 2l |ω|
aN−1R

}
dω (4.155)

=
∫
Bτ (0)
|f̂(ω)|2 2l |ω|

aN−1R
dω +

∫
R\Bτ (0)
|f̂(ω)|2dω, (4.156)

where
τ := aN−1R

2l .

Here, the inequality in (4.155) follows from (4.90), and (4.156) is
owing to

min
{

1, 2l |ω|
aN−1R

}
=
{

2l |ω|
aN−1R

, |ω| 6 τ,

1, |ω| > τ.

Now, the first integral in (4.156) satisfies∫
Bτ (0)
|f̂(ω)|2 2l |ω|

aN−1R
dω = 2l

aN−1R

∫
Bτ (0)
|f̂(ω)|2|ω|1−2s|ω|2sdω

6
2l τ1−2s

aN−1R

∫
Bτ (0)
|f̂(ω)|2 |ω|2s

±
6(1+|ω|2)s

dω (4.157)

6
( 2l
aN−1R

)2s ∫
Bτ (0)

|f̂(ω)|2(1 + |ω|2)s dω, (4.158)

where (4.157) is owing to |ω| 7→ |ω|1−2s monotonically increasing in
|ω| for s ∈ (0, 1/2). For the second integral in (4.156), we have∫

R\Bτ (0)
|f̂(ω)|2dω =

∫
R\Bτ (0)

|f̂(ω)|2|ω|−2s|ω|2sdω

6 τ−2s
∫
R\Bτ (0)

|f̂(ω)|2 |ω|2s
±

6(1+|ω|2)s

dω (4.159)

6
( 2l
aN−1R

)2s ∫
R\Bτ (0)

|f̂(ω)|2(1 + |ω|2)s dω, (4.160)
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where (4.159) is thanks to

|ω| 7→ |ω|−2s, ω ∈ R,

monotonically decreasing in |ω| for s ∈ (0, 1/2). Inserting (4.158) and
(4.160) into (4.156) establishes (4.153) with

C1,s := (2l)2sa2sR−2s‖f‖2Hs .

Next, we show (4.154) by noting that∫
R
|f̂(ω)|2

(
1−

∣∣∣r̂l( ω

aN−1R

)∣∣∣2)dω

6
∫
R
|f̂(ω)|2 min

{
1, 2l |ω|
aN−1R

}
dω (4.161)

6
2l

aN−1R

∫
R
|f̂(ω)|2|ω|dω

6
2l

aN−1R

∫
R
|f̂(ω)|2(1 + |ω|2)s dω

= 2l
aN−1R

‖f‖2Hs ,

where (4.161) is by (4.90), and the last inequality follows from |ω| 6
(1 + |ω|2)s, for ω ∈ R and s ∈ [1/2,∞). This establishes (4.154) with

C2,s := 2laR−1‖f‖2Hs

and thereby completes the proof of statement ii).

4.7.7. Proof of Corollary 2

We start with statement i) and note that ANΩ = BNΩ = 1, N ∈ N,
by assumption. Let f ∈ L2(Rd) with supp(f̂) ⊆ BL(0). Then, by
Proposition 8 in Section 4.7.4 together with lim

N→∞
WN (f) = 0, for

f ∈ L2(Rd), which follows from Proposition 9 in Section 4.7.5, we
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have

‖f‖22 = |||ΦΩ(f)|||2 =
∞∑
n=0
|||ΦnΩ(f)|||2

>
N∑
n=0
|||ΦnΩ(f)|||2 = ‖f‖22 −WN+1(f) (4.162)

>
∫
Rd
|f̂(ω)|2

∣∣∣r̂l( ω

(N + 1)αδ

)∣∣∣2dω (4.163)

=
∫
BL(0)

|f̂(ω)|2
∣∣∣r̂l( ω

(N + 1)αδ

)∣∣∣2dω, (4.164)

where (4.162) is by the lower bound in (4.98), (4.163) is thanks to
Parseval’s formula and (4.18), and (4.164) follows from f being L-
band-limited. Next, thanks to r̂l monotonically decreasing in |ω|, we
get∣∣∣r̂l( ω

(N + 1)αδ

)∣∣∣2 >
∣∣∣r̂l( L

(N + 1)αδ

)∣∣∣2, ∀ω ∈ BL(0). (4.165)

Employing (4.165) in (4.164), we obtain

‖f‖22 >
∣∣∣r̂l( L

(N + 1)αδ

)∣∣∣2‖f‖22 =
(

1− L

(N + 1)αδ

)2l

+
‖f‖22 (4.166)

=
(

1− L

(N + 1)αδ

)2l
‖f‖22 > (1− ε)‖f‖22, (4.167)

where in (4.166) we used Parseval’s formula, the equality in (4.167) is
due to L 6 (N + 1)αδ, which, in turn, is by (4.33), and the inequality
in (4.167) is also by (4.33) (upon rearranging terms). This establishes
(4.32) and thereby completes the proof.

The proof of statement ii) is very similar to that of statement i).
Again, we start by noting that ANΩ = BNΩ = 1, N ∈ N, by assumption.
Let f ∈ L2(R) with supp(f̂) ⊆ BL(0). Then, by Proposition 8 in
Section 4.7.4 together with lim

N→∞
WN (f) = 0, for f ∈ L2(R), we have

‖f‖22 = |||ΦΩ(f)|||2 =
∞∑
n=0
|||ΦnΩ(f)|||2
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>
N∑
n=0
|||ΦnΩ(f)|||2 = ‖f‖22 −WN+1(f) (4.168)

>
∫
R
|f̂(ω)|2

∣∣∣r̂l( ω

aNδ

)∣∣∣2dω (4.169)

=
∫
BL(0)

|f̂(ω)|2
∣∣∣r̂l( ω

aNδ

)∣∣∣2dω, (4.170)

where (4.168) is by the lower bound in (4.98), (4.169) is thanks to Par-
seval’s formula and (4.27) as well as (4.30), and (4.170) follows from
f being L-band-limited. Next, thanks to r̂l monotonically decreasing
in |ω|, we get∣∣∣r̂l( ω

aNδ

)∣∣∣2 >
∣∣∣r̂l( L

aNδ

)∣∣∣2, ∀ω ∈ BL(0). (4.171)

Employing (4.171) in (4.170) yields

‖f‖22 >
∣∣∣r̂l( L

aNδ

)∣∣∣2‖f‖22 =
(

1− L

aNδ

)2l

+
‖f‖22 (4.172)

=
(

1− L

aNδ

)2l
‖f‖22 > (1− ε)‖f‖22, (4.173)

where in (4.172) we used Parseval’s formula, the equality in (4.173) is
by L 6 aNδ, which, in turn, is by (4.34), and the inequality in (4.173)
is also due to (4.34) (upon rearranging terms). This establishes (4.32)
and thereby completes the proof of ii).

4.7.8. Proof of Corollary 3

The proof is very similar to that of Corollary 2 in Section 4.7.7. We
start with statement i). Let f ∈ Hs(Rd)\{0} and ε ∈ (0, 1) and note
that, by (4.87) and (4.88) together with BNΩ = 1, N ∈ N, which is by
assumption, we have

WN (f) 6 (2l)γ‖f‖2Hs
δγNγα

, ∀s > 0, (4.174)

where γ = min{1, 2s}. By Proposition 8 in Section 4.7.4 with ANΩ =
BNΩ = 1, N ∈ N, and lim

N→∞
WN (f) = 0, f ∈ L2(Rd), which follows

from Proposition 9 in Section 4.7.5, we have
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‖f‖22 = |||ΦΩ(f)|||2 =
∞∑
n=0
|||ΦnΩ(f)|||2

>
N∑
n=0
|||ΦnΩ(f)|||2 = ‖f‖22 −WN+1(f) (4.175)

> ‖f‖22 −
(2l)γ‖f‖2Hs
δγ(N + 1)γα (4.176)

> ‖f‖22 − ε‖f‖22 = (1− ε)‖f‖22, (4.177)

where (4.175) is by the lower bound in (4.98), (4.176) is thanks to
(4.174), and (4.177) follows from (4.35). This establishes (4.32) and
thereby completes the proof of i).
The proof of statement ii) is very similar to that of statement i).

Let f ∈ Hs(R)\{0} and ε ∈ (0, 1) and note that, by (4.129), (4.130),
(4.153), and (4.154), we have

WN (f) 6 (2l)γ‖f‖2Hs
δγaγ(N−1) , ∀s > 0, (4.178)

where γ = min{1, 2s}. By Proposition 8 in Section 4.7.4 with ANΩ =
BNΩ = 1, N ∈ N, and lim

N→∞
WN (f) = 0, f ∈ L2(R), which follows

from Proposition 9 in Section 4.7.5, we have

‖f‖22 = |||ΦΩ(f)|||2 =
∞∑
n=0
|||ΦnΩ(f)|||2

>
N∑
n=0
|||ΦnΩ(f)|||2 = ‖f‖22 −WN+1(f) (4.179)

> ‖f‖22 −
(2l)γ‖f‖2Hs
δγaγN

(4.180)

> ‖f‖22 − ε‖f‖22 = (1− ε)‖f‖22, (4.181)

where (4.179) is by the lower bound in (4.98), (4.180) is thanks to
(4.178), and (4.181) follows from (4.36). This establishes (4.32) and
thereby completes the proof of ii).
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4.7.9. Proof of Corollary 4

Let a be the decay factor in (4.26) or (4.29). Then, it follows from
(4.36) that

a >

(
2l ‖f‖2/γHs

ε1/γδ‖f‖2/γ2

)1/N

= κ (4.182)

is sufficient for (4.37) to hold. In the wavelet case, we have a = r2+1
r2−1 ,

r > 1, which, when combined with (4.182), yields

r2 + 1
r2 − 1 > κ. (4.183)

Rearranging terms in (4.183) establishes (4.38). Next, in the Weyl-
Heisenberg case, we have a = 1

2 + δ
R , δ >

R
2 , which, when combined

with (4.182), leads to
1
2 + δ

R
> κ. (4.184)

Rearranging terms in (4.184) establishes (4.39) and thereby completes
the proof.
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CHAPTER 5

From theory to practice:

Discrete-time deep convolutional

neural networks

The first four chapters of this thesis focused on a mathematical
theory of DCNNs for feature extraction in continuous time.
This chapter considers the practically relevant discrete-time

case, introduces new convolutional neural network architectures, and
proposes a mathematical framework for their analysis. Specifically, we
establish deformation and translation sensitivity results of local and
global nature, and we investigate how certain structural properties of
the input signal are reflected in the corresponding feature vectors. Our
theory applies to general filters and general Lipschitz-continuous non-
linearities and pooling operators. For simplicity of exposition, we focus
on the 1-D case throughout this chapter, noting that the extension to
the higher-dimensional case does not pose any significant difficulties.
Experiments on handwritten digit classification and facial landmark
detection—including a feature importance evaluation—complement
the theoretical findings.
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Outline

The remainder of this chapter is organized as follows. Section 5.1
presents the notation and preparatory material of interest in the
context of this chapter. In Section 5.2, we introduce the basic building
blocks of the discrete-time DCNNs analyzed in this chapter, and in
Section 5.3, we present the network topology. In Section 5.4, we define
sampled cartoon functions which allow us to understand how certain
structural properties of the input signal, such as the presence of sharp
edges, are reflected in the feature vector. Section 5.5 contains our
main results of this chapter, Theorems 5 and 6, which provide global
and local feature vector properties, respectively. Finally, experiments
on handwritten digit classification and facial landmark detection are
presented in Section 5.6.

5.1. NOTATION AND PREPARATORY MATERIAL

We let HN := {f : Z → C | f [n] = f [n + N ], ∀n ∈ Z} be the set
of N -periodic discrete-time signals1, and set IN := {0, 1, . . . , N − 1}.
The delta function δ ∈ HN is δ[n] := 1, for n = kN , k ∈ Z, and
δ[n] := 0, else. For f, g ∈ HN , we set 〈f, g〉 :=

∑
k∈IN f [k]g[k],

‖f‖1 :=
∑
n∈IN |f [n]|, ‖f‖2 := (

∑
n∈IN |f [n]|2)1/2, and ‖f‖∞ :=

supn∈IN |f [n]|. We denote the discrete Fourier transform (DFT) of
f ∈ HN by f̂ [k] :=

∑
n∈IN f [n]e−2πikn/N . The circular convolution

of f ∈ HN and g ∈ HN is (f ∗ g)[n] :=
∑
k∈IN f [k]g[n− k]. We write

(Tmf)[n] := f [n − m], m ∈ Z, for the cyclic translation operator.
The supremum norm of a continuous-time function c : R → C is
‖c‖∞ := supx∈R |c(x)|.

1We note that HN is isometrically isomorphic to CN , but we prefer to work
with HN for the sake of expositional simplicity.
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5.2. THE BASIC BUILDING BLOCK

The basic building block of the discrete-time DCNNs we analyze
in this chapter consists of a convolutional transform followed by a
non-linearity and a pooling operator.

5.2.1. Convolutional transform

A convolutional transform is made up of a set of filters ΨΛ = {gλ}λ∈Λ.
The finite index set Λ can be thought of as labeling a collection of
scales, directions, or frequency-shifts. The filters gλ—referred to as
atoms—may be learned (in a supervised or unsupervised fashion), pre-
specified and unstructured such as random filters, or pre-specified and
structured such as wavelets, curvelets, shearlets, or Weyl-Heisenberg
functions.

Definition 8. Let Λ be a finite index set. The collection ΨΛ =
{gλ}λ∈Λ ⊆ HN is called a convolutional set with Bessel bound B > 0
if ∑

λ∈Λ

‖f ∗ gλ‖22 6 B‖f‖22, ∀f ∈ HN . (5.1 )

Condition (5.1) is equivalent to∑
λ∈Λ

|ĝλ[k]|2 6 B, ∀k ∈ IN , (5.2)

and hence, every finite set {gλ}λ∈Λ is a convolutional set with Bessel
bound B∗ := maxk∈IN

∑
λ∈Λ |ĝλ[k]|2. As (f ∗ gλ)[n] =

〈
f, gλ[n− ·]

〉
,

n ∈ IN , λ ∈ Λ, the outputs of the filters gλ may be interpreted as
inner products of the input signal f with translates of the atoms gλ.
Frame theory (Daubechies, 1992) therefore tells us that the existence
of a lower bound A > 0 in (5.2) according to

A 6
∑
λ∈Λ

|ĝλ[k]|2 6 B, ∀k ∈ IN , (5.3)

implies that every element in HN can be written as a linear combina-
tion of elements in the set

{
gλ[n− ·]

}
n∈IN ,λ∈Λ (or in more technical
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parlance, the set
{
gλ[n− ·]

}
n∈IN ,λ∈Λ is complete for HN ). The ab-

sence of a lower bound A > 0 may therefore result in ΨΛ failing to
extract essential features of the signal f . We note, however, that even
learned filters are likely to satisfy (5.3) as all that is needed is, for
each k ∈ IN , to have ĝλ[k] 6= 0 for at least one λ ∈ Λ. As we shall see
below, the existence of a lower bound A > 0 in (5.3) is, however, not
needed for our theory to apply.

Examples of structured convolutional sets with A = B = 1 include,
in the 1-D case, wavelets (Daubechies, 1992) and Weyl-Heisenberg
functions (Bölcskei and Hlawatsch, 1997), and in the 2-D case, ten-
sorized wavelets (Mallat, 2009), curvelets (Candès et al., 2006), and
shearlets (Kutyniok and Labate, 2012b).

5.2.2. Non-linearities

The non-linearities ρ : C → C we consider are all point-wise and
satisfy the Lipschitz property |ρ(x)− ρ(y)| 6 L|x− y|, ∀x, y ∈ C, for
some L > 0.

Example non-linearities

i) The hyperbolic tangent non-linearity, defined as

ρ(x) = tanh(Re(x)) + i tanh(Im(x)),

where tanh(x) = ex−e−x
ex+e−x , has Lipschitz constant L = 2.

ii) The rectified linear unit non-linearity is given by

ρ(x) = max{0,Re(x)}+ imax{0, Im(x)},

and has Lipschitz constant L = 2.

iii) The modulus non-linearity is ρ(x) = |x|, and has Lipschitz constant
L = 1.

iv) The logistic sigmoid non-linearity is defined as

ρ(x) = sig(Re(x)) + i sig(Im(x)),
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where sig(x) = 1
1+e−x , and has Lipschitz constant L = 1/2.

We refer the reader to Section 2.3 for proofs of the Lipschitz properties
of these example non-linearities.

5.2.3. Pooling operators

The essence of pooling is to reduce signal dimensionality in the
individual network layers and to ensure robustness of the feature
vector w.r.t. deformations and translations.

The theory developed in this chapter applies to general pooling
operators P : HN → HN/S , where N,S ∈ N with N/S ∈ N, that
satisfy the Lipschitz property ‖Pf − Pg‖2 6 R‖f − g‖, ∀f, g ∈ HN ,
for some R > 0. The integer S will be referred to as pooling factor,
and determines the “size” of the neighborhood values are combined
in, see Fig. 5.1 for an illustrative example.

Example pooling operators

i) Sub-sampling, defined as P : HN → HN/S ,

(Pf)[n] = f [Sn], n ∈ IN/S ,

has Lipschitz constant R = 1. For S = 1, P is the identity operator
which amounts to “no pooling”.

ii) Averaging, defined as P : HN → HN/S ,

(Pf)[n] =
Sn+S−1∑
k=Sn

αk−Snf [k], n ∈ IN/S ,

has Lipschitz constant R = S1/2 maxk∈{0,...,S−1} |αk|. The weights
{αk}S−1

k=0 can be learned (LeCun et al., 1998) or pre-specified (Pinto
et al., 2008) (e.g., uniform pooling corresponds to αk = 1

S , for
k ∈ {0, . . . , S − 1}).
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n

f [n]

n

(Psubf)[n]

n

(Pavgf)[n]

n

(Pmaxf)[n]

Fig. 5.1: Impact of pooling operators (with S = 2) on the signal f ∈ H20 (top
row). Pooling by sub-sampling amounts to retaining every second
sample. Pooling by averaging amounts to computing local averages
of two consecutive samples. Pooling by maximization amounts to
picking the maximal value of two consecutive samples. Here, we used
the notation sub.: sub-sampling, avg.: average-pooling, and max.:
max-pooling.

iii) Maximization, defined as P : HN → HN/S ,

(Pf)[n] = max
k∈{Sn,...,Sn+S−1}

|f [k]|, n ∈ IN/S ,

152



5.3 THE NETWORK ARCHITECTURE

has Lipschitz constant R = 1.

We refer to Section 5.7.1 for proofs of the Lipschitz property of these
three example pooling operators along with the derivations of the
corresponding Lipschitz constants.

5.3. THE NETWORK ARCHITECTURE

The architecture we consider is flexible in the following sense. In each
layer, we can feed into the feature vector either the signals propagated
down to that layer (i.e., the feature maps), filtered versions thereof, or
we can decide not to have that layer contribute to the feature vector.

The basic building blocks of our network are the triplets (Ψd, ρd, Pd)
of filters, non-linearities, and pooling operators associated with the
d-th network layer and referred to as modules. We emphasize that
these triplets are allowed to be different across layers.

Definition 9. For network layers d, 1 6 d 6 D, let Ψd =
{gλd}λd∈Λd ⊆ HNd be a convolutional set, ρd : C → C a point-
wise Lipschitz-continuous non-linearity, and Pd : HNd → HNd+1 a
Lipschitz-continuous pooling operator with Nd+1 = Nd

Sd
, where Sd ∈ N

denotes the pooling factor in the d-th layer. Then, the sequence of
triplets

Ω :=
((

Ψd, ρd, Pd
))

16d6D

is called a module-sequence.

Note that the dimensions of the spaces HNd satisfy N1 > N2 >
. . . > ND. Associated with the module (Ψd, ρd, Pd), we define the
operator

(Ud[λd]f) := Pd(ρd(f ∗ gλd)) (5.4)

and extend it to paths on index sets

q = (λ1, λ2, . . . , λd) ∈ Λ1 × Λ2 × · · · × Λd := Λd,
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U [e]f = f
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Fig. 5.2: Network architecture underlying the feature extractor (5.6). The index
λ

(k)
d corresponds to the k-th atom g

λ
(k)
d

of the convolutional set Ψd

associated with the d-th network layer. The function χd is the output-
generating atom of the d-th layer. The root of the network corresponds
to d = 0.

for 1 6 d 6 D, according to

U [q]f =U [(λ1, λ2, . . . , λd)]f := Ud[λd] · · ·U2[λ2]U1[λ1]f. (5.5)

For the empty path e := ∅ we set Λ0 := {e} and let U [e]f := f , for
all f ∈ HN1 .
The network output in the d-th layer is given by (U [q]f) ∗ χd,

q ∈ Λd, where χd ∈ HNd+1 is referred to as output-generating atom.
Specifically, we let χd be (i) the delta function δ[n], n ∈ INd+1 , if
we want the output to equal the unfiltered features U [q]f , q ∈ Λd,
propagated down to layer d, or (ii) any other signal of length Nd+1, or
(iii) χd = 0 if we do not want layer d to contribute to the feature vector.
From now on we formally add χd to the set Ψd+1 = {gλd+1}λd+1∈Λd+1 ,
noting that {gλd+1}λd+1∈Λd+1 ∪ {χd} forms a convolutional set Ψ′d+1
with Bessel bound B′d+1 6 Bd+1 +maxk∈INd+1

|χ̂d[k]|2. We emphasize
that the atoms of the augmented set {gλd+1}λd+1∈Λd+1 ∪ {χd} are
employed across two consecutive layers in the sense of χd generating
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the output in the d-th layer according to (U [q]f) ∗ χd, q ∈ Λd, and
the remaining atoms {gλd+1}λd+1∈Λd+1 propagating the signals U [q]f ,
q ∈ Λd, from the d-th layer down to the (d+ 1)-st layer according to
(5.4), see Fig. 5.2. With slight abuse of notation, we shall henceforth
write Ψd for Ψ′d and Bd for B′d as well.

We are now ready to define the feature extractor ΦΩ based on the
module-sequence Ω.

Definition 10. Let Ω =
(
(Ψd, ρd, Pd)

)
16d6D be a module-sequence.

The feature extractor ΦΩ based on Ω maps f ∈ HN1 to its features

ΦΩ(f) :=
D−1⋃
d=0

ΦdΩ(f), (5.6 )

where ΦdΩ(f) := {(U [q]f) ∗ χd}q∈Λd is the collection of features gene-
rated in the d-th network layer (see Fig. 5.2).

The dimension of the feature vector ΦΩ(f) is given by

ε0N1 +
D−1∑
d=1

εdNd+1
( d∏
k=1

card(Λk)
)
,

where εd = 1, if an output is generated (either filtered or unfiltered) in
the d-th network layer, and εd = 0, else. AsNd+1 = Nd

Sd
= · · · = N1

S1···Sd ,
for d > 1, the dimension of the overall feature vector is determined
by the pooling factors Sk and, of course, the layers that contribute to
the feature vector.

Remark 8. It was argued in (Bruna and Mallat, 2013; Andén and
Mallat, 2014; Oyallon and Mallat, 2015) that the features Φ1

Ω(f) when
generated by wavelet filters, modulus non-linearities, without intra-
layer pooling, and by employing output-generating atoms with low-pass
characteristics, describe mel frequency cepstral coefficients (Davis and
Mermelstein, 1980) in 1-D, and SIFT-descriptors (Lowe, 2004; Tola
et al., 2010) in 2-D.
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5.4. SAMPLED CARTOON FUNCTIONS

While our main results hold for general signals f , we can provide
a refined analysis for the class of sampled cartoon functions. This
allows to understand how certain structural properties of the input
signal, such as the presence of sharp edges, are reflected in the feature
vector. As already mentioned in Section 3.4.3, cartoon functions—
as introduced in continuous time in (Donoho, 2001)—are piecewise
“smooth” apart from curved discontinuities along C2-hypersurfaces.
They hence provide a good model for natural images (see Fig. 3.7,
left) such as those in the Caltech-256 (Griffin et al., 2007) and the
CIFAR-100 (Krizhevsky, 2009) data sets, for images of handwritten
digits (LeCun and Cortes, 1998) (see Fig. 3.7, right), and for images
of geometric objects of different shapes, sizes, and colors as in the
Baby AI School data set2.
We refer the reader to Section 3.4.3 for bounds on deformation

sensitivity for cartoon functions in continuous time DCNNs. Here, we
analyze deformation sensitivity for sampled cartoon functions passed
through discrete-time DCNNs.

Definition 11. The function c : R → C is referred to as a cartoon
function if it can be written as c = c1 + 1[a,b]c2, where [a, b] ⊆ [0, 1]
is a closed interval, and ci : R → C, i = 1, 2, satisfies the Lipschitz
property3

|ci(x)− ci(y)| 6 C|x− y|, ∀x, y ∈ R, (5.8 )

2http://www.iro.umontreal.ca/%7Elisa/twiki/bin/view.cgi/Public/
BabyAISchool

3We note that it is actually the condition

|∇ci(x)| ≤ C〈x〉−1, i = 1, 2, (5.7)

for some C > 0, rather than (5.8) that was introduced in Definition 7 in Section
3.4.3. In this chapter, however, we prefer to work with condition (5.8), which is
less restrictive than (5.7) due to the fact that every continuously differentiable
function with bounded derivative is Lipschitz-continuous, see, e.g., (Searcóid, 2007,
Theorem 9.5.1).
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5.4 SAMPLED CARTOON FUNCTIONS

Fig. 5.3: Left: Image of a handwritten digit. Right: Pixel values corresponding
to the dashed row in the left image.

for some C > 0. Furthermore, we denote by

CKCART := {c1 + 1[a,b]c2 | |ci(x)− ci(y)| 6 K|x− y|,
∀x, y ∈ R, i = 1, 2, ‖c2‖∞ 6 K}

the class of cartoon functions of variation K > 0, and by

CN,KCART :=
{
f [n] = c(n/N), n ∈ {0, 1, . . . , N − 1}

∣∣∣
c = (c1 + 1[a,b]c2) ∈ CKCART with a, b /∈

{
0, 1
N
, . . . ,

N − 1
N

}}
the class of sampled cartoon functions of length N and variation
K > 0.

We note that excluding the boundary points a, b of the interval
[a, b] from being sampling points n/N in the definition of CN,KCART is of
conceptual importance (see Remark 11 in the Section 5.7.3). Moreover,
our results can easily be generalized to classes CN,KCART consisting of
functions f [n] = c(n/N) with c containing multiple “1-D edges” (i.e.,
multiple discontinuity points) according to c = c1 +

∑L
l=1 1[al,bl]c2

with ∩Ll=1[al, bl] = ∅. We also note that CN,KCART reduces to the class of
sampled Lipschitz-continuous functions upon setting c2 = 0.

A sampled cartoon function in 2-D models, e.g., an image acquired
by a digital camera (see Fig. 5.3, left); in 1-D, f ∈ CN,KCART can be
thought of as the pixels in a row or column of this image (see Fig. 5.3
right, which shows a cartoon function with 6 discontinuity points).
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5.5. ANALYTICAL RESULTS

We analyze global and local feature vector properties with globality
pertaining to characteristics brought out by the union of features
across all network layers, and locality identifying attributes made
explicit in individual layers.

5.5.1. Global properties

Theorem 5. Let Ω =
(
(Ψd, ρd, Pd)

)
16d6D be a module-sequence.

Assume that the Bessel bounds Bd > 0, the Lipschitz constants Ld > 0
of the non-linearities ρd, and the Lipschitz constants Rd > 0 of the
pooling operators Pd satisfy

max
16d6D

max{Bd, BdR2
dL

2
d} 6 1. (5.9 )

i) The feature extractor ΦΩ is Lipschitz-continuous with Lipschitz
constant LΩ = 1, i.e.,

|||ΦΩ(f)− ΦΩ(h)||| 6 ‖f − h‖2, (5.10 )

for all f, h ∈ HN1 , where the feature space norm is defined as

|||ΦΩ(f)|||2 :=
D−1∑
d=0

∑
q∈Λd

||(U [q]f) ∗ χd||22. (5.11 )

ii) If, in addition to (5.9), for all d ∈ {1, . . . , D−1} the non-linearities
ρd and the pooling operators Pd satisfy ρd(0) = 0 and Pd(0) = 0
(as all non-linearities and pooling operators in the Sections 5.2.2
and 5.2.3, apart from the logistic sigmoid non-linearity, do), then

|||ΦΩ(f)||| 6 ‖f‖2, ∀f ∈ HN1 . (5.12 )

iii) For every variation K > 0 and deformation Fτ of the form

(Fτf)[n] : = c(n/N1 − τ(n/N1)), n ∈ IN1 , (5.13 )
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where τ : R → [−1, 1], the deformation sensitivity is bounded
according to

|||ΦΩ(Fτf)− ΦΩ(f)||| 6 4KN1/2
1 ‖τ‖1/2∞ , (5.14 )

for all f ∈ CN1,K
CART.

Proof. The proof is given in Section 5.7.2.

The Lipschitz continuity (5.10) guarantees that pairwise distances
of input signals do not increase through feature extraction. As an
immediate implication of the Lipschitz continuity we get robustness
of the feature extractor w.r.t. additive bounded noise η ∈ HN1 in the
sense of

|||ΦΩ(f + η)− ΦΩ(f)||| 6 ‖η‖2,

for all f ∈ HN1 .

Remark 9. As detailed in the proof of Theorem 5, the Lipschitz
continuity (5.10) combined with the deformation sensitivity bound (see
Proposition 10 in the Section 5.7.3) for the signal class under conside-
ration, namely sampled cartoon functions, establishes the deformation
sensitivity bound (5.14) for the feature extractor. This insight has
important practical ramifications as it shows that whenever we have
deformation sensitivity bounds for a signal class, we automatically
get deformation sensitivity guarantees for the corresponding feature
extractor.

From (5.14) we can deduce a statement on the sensitivity of ΦΩ w.r.t.
translations on R. To this end, we first note that setting τt(x) = t,
x ∈ R, for t ∈ [−1, 1], (5.13) becomes

(Fτtf)[n] = c(n/N1 − t), n ∈ IN1 .

Particularizing (5.14) accordingly, we obtain

|||ΦΩ(Fτtf)− ΦΩ(f)||| 6 4KN1/2
1 |t|1/2, (5.15)

which shows that small translations |t| of the underlying analog signal
c(x), x ∈ R, lead to small changes in the feature vector obtained by
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passing the resulting sampled signal through a discrete-time DCNN.
We shall say that (5.15) is a translation sensitivity bound. Analyzing
the impact of deformations and translations over R on the discrete
feature vector generated by the sampled analog signal closely models
real-world phenomena (e.g., the jittered acquisition of an analog
signal with a digital camera, where different values of N1 in (5.13)
correspond to different camera resolutions).

We note that, while iii) in Theorem 5 is specific to cartoon functions,
i) and ii) apply to all signals in HN1 .

The strength of the results in Theorem 5 derives itself from the fact
that condition (5.9) on the underlying module-sequence Ω is easily
met in practice. To see this, we first note that Bd is determined by
the convolutional set Ψd, Ld by the non-linearity ρd, and Rd by the
pooling operator Pd. Condition (5.9) is met if

Bd 6 min{1, R−2
d L−2

d }, ∀ d ∈ {1, 2, . . . , D}, (5.16)

which, if not satisfied by default, can be enforced simply by normalizing
the elements in Ψd. Specifically, for Cd := max{Bd, R2

dL
2
d} the set

Ψ̃d := {C−1/2
d gλd}λd∈Λd has Bessel bound B̃d = Bd

Cd
and hence satisfies

(5.16). While this normalization does not have an impact on the
results in Theorem 5, there exists, however, a tradeoff between energy
preservation and deformation (respectively translation) sensitivity in
ΦdΩ as detailed in Section 5.5.2.

5.5.2. Local properties

Theorem 6. Let Ω =
(
(Ψd, ρd, Pd)

)
16d6D be a module-sequence with

corresponding Bessel bounds Bd > 0, Lipschitz constants Ld > 0 of the
non-linearities ρd, Lipschitz constants Rd > 0 of the pooling operators
Pd, and output-generating atoms χd. Let further L0

Ω := ‖χ0‖1 and 4

LdΩ := ‖χd‖1
( d∏
k=1

BkL
2
kR

2
k

)1/2
, d > 1. (5.17 )

4We note that ‖χd‖1 in (5.17) can be upper-bounded (and hence substituted)
by
√
Bd+1, see Remark 13 in Section 5.7.4.
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i) The features generated in the d-th network layer are Lipschitz-
continuous with Lipschitz constant LdΩ, i.e.,

|||ΦdΩ(f)− ΦdΩ(h)||| 6 LdΩ‖f − h‖2, (5.18 )

for all f, h ∈ HN1 , where |||ΦdΩ(f)|||2 :=
∑
q∈Λd ||(U [q]f) ∗ χd||22.

ii) If the non-linearities ρk and the pooling operators Pk satisfy ρk(0) =
0 and Pk(0) = 0, respectively, for all k ∈ {1, . . . , d}, then

|||ΦdΩ(f)||| 6 LdΩ‖f‖2, ∀f ∈ HN1 . (5.19 )

iii) For all K > 0 and all τ : R→ [−1, 1], the features generated in the
d-th network layer satisfy

|||ΦdΩ(Fτf)− ΦdΩ(f)||| 6 4LdΩKN1/2‖τ‖1/2∞ , (5.20 )

for all f ∈ CN1,K
CART, where Fτf is defined in (5.13).

iv) If the module-sequence employs sub-sampling, average pooling, or
max-pooling with corresponding pooling factors Sd ∈ N, then

ΦdΩ(Tmf) = T m
S1...Sd

ΦdΩ(f), (5.21 )

for all f ∈ HN1 and all m ∈ Z with m
S1...Sd

∈ Z. Here, TmΦd
Ω(f)

refers to element-wise application of Tm, i.e.,

TmΦdΩ(f) := {Tmh | h ∈ ΦdΩ(f)}.

Proof. The proof is given in Section 5.7.4.

One may be tempted to infer the global results (5.10), (5.12), and
(5.14) in Theorem 5 in Section 5.5.1 from the corresponding local
results in Theorem 6, e.g., the energy bound in (5.12) from (5.19)
according to

|||ΦΩ(f)||| =
(D−1∑
d=0
|||ΦdΩ(f)|||2

)1/2
6
√
D‖f‖2,
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where we employed LdΩ 6 1 owing to (5.9). This would, however, lead
to the “global” Lipschitz constant LΩ = 1 in (5.10), (5.12), and (5.14)
to be replaced by LΩ =

√
D and thereby render the corresponding

results much weaker.
Again, we emphasize that, while iii) in Theorem 6 is specific to

cartoon functions, i), ii), and iv) apply to all signals in HN1 .
For a fixed network layer d, the “local” Lipschitz constant LdΩ

determines the noise sensitivity of the features ΦdΩ(f) according to

|||ΦdΩ(f + η)− ΦdΩ(f)||| 6 LdΩ‖η‖2, (5.22)

where (5.22) follows from (5.18). Moreover, LdΩ via (5.20) also quanti-
fies the impact of deformations (or translations when τt(x) = t, x ∈ R,
for t ∈ [−1, 1]) on the feature vector. In practice, it may be desirable
to have the features Φd

Ω become more robust to additive noise and
less deformation-sensitive (respectively, translation-sensitive) as we
progress deeper into the network. Formally, this vertical sensitivity
reduction can be induced by ensuring that Ld+1

Ω < LdΩ. Thanks to

LdΩ =
‖χd‖1B1/2

d LdRd
‖χd−1‖1

Ld−1
Ω ,

this can be accomplished by choosing the module-sequence such that
‖χd‖1B1/2

d LdRd < ‖χd−1‖1. Note, however, that owing to (5.19)
this will also reduce the signal energy contained in the features
ΦdΩ(f). We therefore have a tradeoff between deformation (respectively
translation) sensitivity and energy preservation. Having control over
this tradeoff through the choice of the module-sequence Ω may come
in handy in practice.

For average pooling with uniform weights αdk = 1
Sd

, k = 0, . . . , Sd−1
(noting that the corresponding Lipschitz constant is Rd = S

−1/2
d , see

Section 5.2.3), we get

LdΩ = ‖χd‖1
( d∏
k=1

BkL
2
k

Sk

)1/2
,
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which illustrates that pooling can have an impact on the sensitivity
and energy properties of ΦdΩ.
We finally turn to interpreting the translation covariance result

(5.21). Owing to the condition m
S1...Sd

∈ Z, we get translation covari-
ance only on the rough grid induced by the product of the pooling
factors. In the absence of pooling, i.e., Sk = 1, for k ∈ {1, . . . , d},
we obtain translation covariance w.r.t. the fine grid the input signal
f ∈ HN1 lives on.

Remark 10. We note that ScatNets (Bruna and Mallat, 2013) are
translation-covariant on the rough grid induced by the factor 2J cor-
responding to the coarsest wavelet scale. Our result in (5.21) is hence
in the spirit of (Bruna and Mallat, 2013) with the difference that the
grid in our case is induced by the pooling factors Sk.

5.6. EXPERIMENTS

5We consider the problem of handwritten digit classification and
evaluate the performance of the feature extractor ΦΩ in combination
with a SVM. The results we obtain are competitive with the state-of-
the-art in the literature. The second line of experiments we perform
assesses the importance of the features extracted by ΦΩ in facial
landmark detection and in handwritten digit classification, using
random forests (RF) for regression and classification, respectively.
Our results are based on a DCNN with different non-linearities and
pooling operators, and with tensorized (i.e., separable) wavelets as
filters, sensitive to 3 directions (horizontal, vertical, and diagonal).
Furthermore, we generate outputs in all layers through low-pass
filtering. Circular convolutions with the 1-D filters underlying the
tensorized wavelets are efficiently implemented using the algorithme
à trous (Holschneider et al., 1989).

To reduce the dimension of the feature vector, we compute features
along frequency decreasing paths only (Bruna and Mallat, 2013), i.e.,

5Code available at http://www.nari.ee.ethz.ch/commth/research/
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for every node U [q]f , q ∈ Λd−1
1 , we retain only those child nodes

Ud[λd]U [q]f = Pd
(
ρd((U [q]f) ∗ gλd)

)
that correspond to wavelets gλd

with scales larger than the maximum scale of the wavelets used to
get U [q]f . We refer to (Bruna and Mallat, 2013; Waldspurger, 2017)
for a detailed justification of this approach for scattering networks.

5.6.1. Handwritten digit classification

We use the MNIST data set of handwritten digits (LeCun and Cortes,
1998) which comprises 60,000 training and 10,000 test images of size
28× 28. We set D = 3, and compare different network configurations,
each defined by a single module (i.e., we use the same filters, non-
linearity, and pooling operator in all layers). Specifically, we consider
Haar wavelets and reverse biorthogonal 2.2 (RBIO2.2) wavelets (Mal-
lat, 2009), both with J = 3 scales, the non-linearities described in
Section 5.2.2, and the pooling operators described in Section 5.2.3
(with S1 = 1 and S2 = 2). We use a SVM with radial basis function
(RBF) kernel for classification. To reduce the dimension of the feature
vectors from 18,424 (or 50,176, for the configurations without pooling)
down to 1000, we employ the supervised orthogonal least squares
feature selection procedure described in (Oyallon and Mallat, 2015).
The penalty parameter of the SVM and the localization parameter
of the RBF kernel are selected via 10-fold cross-validation for each
combination of wavelet filter, non-linearity, and pooling operator.
Table 5.1 shows the resulting classification errors on the test set.

Configurations employing RBIO2.2 wavelets tend to yield a marginally
lower classification error than those using Haar wavelets. For the tanh
and LogSig non-linearities, max-pooling leads to a considerably lower
classification error than other pooling operators. The configurations
involving the modulus and ReLU non-linearities achieve classification
accuracy competitive with the state-of-the-art (Bruna and Mallat,
2013) (class. err.: 0.43%), which is based on directional non-separable
wavelets with 6 directions without intra-layer pooling. This is interest-
ing as the separable wavelet filters employed here can be implemented
more efficiently.
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Haar RBIO2.2
abs ReLU tanh LogSig abs ReLU tanh LogSig

n.p. 0.55 0.57 1.41 1.49 0.50 0.54 1.01 1.18
sub. 0.60 0.58 1.25 1.45 0.59 0.62 1.04 1.13
max. 0.61 0.60 0.68 0.76 0.55 0.56 0.71 0.75
avg. 0.57 0.58 1.26 1.44 0.51 0.60 1.04 1.18

Table 5.1: Classification error in percent for handwritten digit classification
using different configurations of wavelet filters, non-linearities, and
pooling operators (sub.: sub-sampling; max.: max-pooling; avg.:
average-pooling; n.p.: no pooling).

5.6.2. Feature importance evaluation

In this experiment, we investigate the “importance” of the features
generated by ΦΩ corresponding to different layers, wavelet scales, and
directions in two different learning tasks, namely, facial landmark
detection and handwritten digit classification. The primary goal of
this experiment is to illustrate the practical relevance of the notion
of local properties of ΦΩ as established in Section 5.5.2. For facial
landmark detection we employ a RF regressor and for handwritten
digit classification a RF classifier (Breiman, 2001). In both cases, we
fix the number of trees to 30 and select the tree depth using out-of-bag
error estimates (noting that increasing the number of trees does not
significantly increase the accuracy). The impurity measure used for
learning the node tests is the mean square error for facial landmark
detection and the Gini impurity for handwritten digit classification. In
both cases, feature importance is assessed using the Gini importance
(Breiman et al., 1984), averaged over all trees. The Gini importance
I(θ, T ) of feature θ in the (trained) tree T is defined as

I(θ, T ) =
∑

`∈T : ϕ(`)=θ

n`
ntot

(
ı̂` −

n`L
n`

ı̂`L −
n`R
n`

ı̂`R

)
,

where ϕ(`) denotes the feature determined in the training phase for
the test at node `, n` is the number of training samples passed through
node `, ntot =

∑
`∈T n`, ı̂` is the impurity at node `, and `L and
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Fig. 5.4: Images from the Caltech 10,000 Web Faces data base (Angelova et al.,
2005) with corresponding annotations for eyes, nose, and mouth.

`R denote the left and right child node, respectively, of node `. For
the feature extractor ΦΩ we set D = 4, employ Haar wavelets with
J = 3 scales and the modulus non-linearity in every network layer, no
pooling in the first layer and average pooling with uniform weights
1/S2

d , Sd = 2, in layers d = 2, 3.

Facial landmark detection

We use the Caltech 10,000 Web Faces data base (Angelova et al.,
2005). Each of the 7092 images in the data base depicts one or more
faces in different contexts (e.g., portrait images, groups of people), see
Fig. 5.4. The data base contains annotations of the positions of eyes,
nose, and mouth for at least one face per image. The learning task is
to estimate the positions of these facial landmarks. The annotations
serve as ground truth for training and testing. We preprocess the data
set as follows. The patches containing the faces are extracted from the
images using the Viola-Jones face detector (Viola and Jones, 2004).
After discarding false positives, the patches are converted to grayscale
and resampled to size 120× 120 (using linear interpolation), before
feeding them to the feature extractor ΦΩ. This procedure yields a
data set containing a total of 8776 face images. We select 80% of
the images uniformly at random to form a training set and use the
remaining images for testing. We train a separate RF for each facial
landmark. Following (Dantone et al., 2012) we report the localization
error, i.e., the `2-distance between the estimated and the ground
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left eye right eye nose mouth digits disp. digits

Layer 0 0.020 0.023 0.016 0.014 0.046 0.004
Layer 1 0.629 0.646 0.576 0.490 0.426 0.094
Layer 2 0.261 0.236 0.298 0.388 0.337 0.280
Layer 3 0.090 0.095 0.110 0.108 0.192 0.622

Table 5.2: Cumulative feature importance per layer. Columns 1–4: facial land-
mark detection. Columns 5 and 6: handwritten digit classification.

truth landmark positions, on the test set as a fraction of the (true)
inter-ocular distance. The errors obtained are: left eye: 0.062; right
eye: 0.064; nose; 0.080, mouth: 0.095. As an aside, we note that these
values are comparable with the ones reported in (Dantone et al., 2012)
for a conditional RF using patch comparison features (evaluated on a
different data set and a larger set of facial landmarks).

Handwritten digit classification

For this experiment, we again rely on the MNIST data set. The
training set is obtained by sampling uniformly at random 1,000
images per digit from the MNIST training data set and we use the
complete MNIST test set. We train two RFs, one based on unmodified
images, and the other one based on images subject to a random
uniform displacement of at most 4 pixels in (positive and negative) x
and y direction to study the impact of offsets on feature importance.
The resulting RFs achieve a classification error of 4.2% and 9.6%,
respectively.

Discussion

Fig. 5.5 shows the cumulative feature importance (per triplet of
layer index, wavelet scale, and direction, averaged over all trees in
the respective RF) in handwritten digit classification and in facial
landmark detection. Table 5.2 shows the corresponding cumulative
feature importance for each layer.
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Fig. 5.5: Average cumulative feature importance and standard error for facial
landmark detection and handwritten digit classification. The labels
on the horizontal axis indicate the layer index d ∈ {0, 1, 2, 3} and the
wavelet direction (H: horizontal, V: vertical, D: diagonal).
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For facial landmark detection, the features in layer 1 clearly have
the highest importance, and the feature importance decreases with
increasing layer index d. For handwritten digit classification using the
unshifted MNIST images, the cumulative importance of the features in
the second/third layer relative to those in the first layer is considerably
higher than in facial landmark detection (see Table 5.2). For the
translated MNIST images, the importance of the features in the
second/third layer is significantly higher than those in the 0-th and in
the first layer. An explanation for this observation could be as follows:
In a classification task small sensitivity to translations is beneficial.
Now, according to our theory (see Section 5.5.2) translation sensitivity,
indeed, decreases with increasing layer index for average pooling as
used here. For localization of landmarks, on the other hand, the RF
needs features that are covariant on the fine grid of the input image
thus favoring features in the layers closer to the root.

5.7. PROOFS

5.7.1. Proof of Lipschitz continuity of poolings

We verify the Lipschitz property ‖P (f) − P (h)‖2 6 R‖f − h‖2, for
all f, h ∈ HN , for the pooling operators in Section 5.2.3.

Sub-sampling

Pooling by sub-sampling is defined as

P : HN → HN/S , P (f)[n] = f [Sn], n ∈ IN/S ,

where N/S ∈ N. Lipschitz continuity with R = 1 follows from

‖P (f)− P (h)‖22 =
∑

n∈IN/S

|f [Sn]− h[Sn]|2

6
∑
n∈IN

|f [n]− h[n]|2 = ‖f − h‖22, ∀f, h ∈ HN .
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Averaging

Pooling by averaging is defined as

P : HN → HN/S , P (f)[n] =
Sn+S−1∑
k=Sn

αk−Snf [k],

for n ∈ IN/S , where N/S ∈ N. We start by setting α′ :=
maxk∈{0,...,S−1} |αk|. Then,

‖P (f)− P (h)‖22 =
∑

n∈IN/S

∣∣∣ Sn+S−1∑
k=Sn

αk−Sn(f [k]− h[k])
∣∣∣2

6
∑

n∈IN/S

∣∣∣ Sn+S−1∑
k=Sn

α′|f [k]− h[k]|
∣∣∣2

6 α′2S
∑

n∈IN/S

Sn+S−1∑
k=Sn

∣∣∣f [k]− h[k]
∣∣∣2 (5.23)

= α′2S
∑
n∈IN

∣∣∣f [k]− h[k]
∣∣∣2 = α′2S‖f − h‖22,

where we used
∑
k∈IS |f [k]− h[k]| 6 S1/2‖f − h‖2, f, h ∈ HS , to get

(5.23), see, e.g., (Golub and Van Loan, 2013, Equation 2.2.5).

Maximization

Pooling by maximization is defined as

P : HN → HN/S , P (f)[n] = max
k∈{Sn,...,Sn+S−1}

|f [k]|,

for n ∈ IN/S , where N/S ∈ N. We have

‖P (f)− P (h)‖22 =
∑

n∈IN/S

∣∣ max
k∈{Sn,...,Sn+S−1}

|f [k]|

− max
k∈{Sn,...,Sn+S−1}

|h[k]|
∣∣2
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6
∑

n∈IN/S

max
k∈{Sn,...,Sn+S−1}

∣∣f [k]− h[k]
∣∣2 (5.24)

6
∑

n∈IN/S

S−1∑
k=0
|f [Sn+ k]− h[Sn+ k]|2 (5.25)

= ‖f − h‖22,

where we employed the reverse triangle inequality∣∣‖f‖∞ − ‖h‖∞∣∣ 6 ‖f − h‖∞, f, h ∈ HS ,

to get (5.24), and in (5.25) we used ‖f‖∞ 6 ‖f‖2, f ∈ HS , see, e.g.,
(Golub and Van Loan, 2013, Equation 2.2.6).

5.7.2. Proof of Theorem 5

We start by proving i). The key idea of the proof is—similarly to the
proof of Proposition 7 in Section 3.6.8—to employ telescoping series
arguments. For ease of notation, we let fq := U [q]f and hq := U [q]h,
for f, h ∈ HN1 , q ∈ Λd. With (5.11) we have

|||ΦΩ(f)− ΦΩ(h)|||2 =
D−1∑
d=0

∑
q∈Λd

||(fq − hq) ∗ χd||22

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=:ad

.

The key step is then to show that ad can be upper-bounded according
to

ad 6 bd − bd+1, d = 0, . . . , D − 1, (5.26)

with bd :=
∑
q∈Λd ‖fq − hq‖22, for d = 0, . . . , D, and to note that

D−1∑
d=0

ad 6
D−1∑
d=0

(bd − bd+1) = b0 − bD
>̄0

6 b0

=
∑
q∈Λ0

‖fq − hq‖22 = ‖f − h‖22,
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which then yields (5.10). Writing out (5.26), it follows that we need
to establish ∑

q∈Λd
‖(fq − hq) ∗ χd‖22 6

∑
q∈Λd

||fq − hq‖22

−
∑

q∈Λd+1

‖fq − hq‖22, d = 0, . . . , D − 1. (5.27)

We start by examining the second sum on the RHS in (5.27). Every
path

q̃ ∈ Λd+1 = Λ1 × · · · × Λd´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=Λd

×Λd+1

of length d+ 1 can be decomposed into a path q ∈ Λd of length d and
an index λd+1 ∈ Λd+1 according to q̃ = (q, λd+1). Thanks to (5.5) we
have U [q̃] = U [(q, λd+1)] = Ud+1[λd+1]U [q], which yields∑

q̃∈Λd+1

‖fq̃ − hq̃‖22

=
∑
q∈Λd

∑
λd+1∈Λd+1

‖Ud+1[λd+1]fq − Ud+1[λd+1]hq‖22. (5.28)

Substituting (5.28) into (5.27) and rearranging terms, we obtain∑
q∈Λd

(
‖(fq − hq) ∗ χd‖22 (5.29)

+
∑

λd+1∈Λd+1

‖Ud+1[λd+1]fq − Ud+1[λd+1]hq‖22
)

(5.30)

6
∑
q∈Λd

||fq − hq‖22, d = 0, . . . , D − 1. (5.31)

We next note that the sum over the index set Λd+1 inside the brackets
in (5.29)-(5.30) satisfies∑
λd+1∈Λd+1

‖Ud+1[λd+1]fq − Ud+1[λd+1]hq‖22
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=
∑

λd+1∈Λd+1

‖Pd+1
(
ρd+1(fq ∗ gλd+1)

)
− Pd+1

(
ρd+1(hq ∗ gλd+1)

)
‖22

6 R2
d+1

∑
λd+1∈Λd+1

‖ρd+1(fq ∗ gλd+1)− ρd+1(hq ∗ gλd+1)‖22 (5.32)

6 R2
d+1L

2
d+1

∑
λd+1∈Λd+1

‖(fq − hq) ∗ gλd+1‖22, (5.33)

where we employed the Lipschitz continuity of Pd+1 in (5.32) and
the Lipschitz continuity of ρd+1 in (5.33). Substituting the sum over
the index set Λd+1 inside the brackets in (5.29)-(5.30) by the upper
bound (5.33) yields∑

q∈Λd

(
‖(fq − hq) ∗ χd‖22

+
∑

λd+1∈Λd+1

‖Ud+1[λd+1]fq − Ud+1[λd+1]hq‖22
)

6
∑
q∈Λd

max{1, R2
d+1L

2
d+1}

(
‖(fq − hq) ∗ χd‖22 (5.34)

+
∑

λd+1∈Λd+1

‖(fq − hq) ∗ gλd+1‖22
)
, (5.35)

for d = 0, . . . , D − 1. As {gλd+1}λd+1∈Λd+1 ∪ {χd} are atoms of the
convolutional set Ψd+1, and fq, hq ∈ HNd+1 , we have

‖(fq − hq) ∗ χd‖22 +
∑

λd+1∈Λd+1

‖(fq − hq) ∗ gλd+1‖22

6 Bd+1‖fq − hq‖22,

which, when used in (5.34)-(5.35) yields∑
q∈Λd

(
‖(fq − hq) ∗ χd‖22

+
∑

λd+1∈Λd+1

‖Ud+1[λd+1]fq − Ud+1[λd+1]hq‖22
)

6
∑
q∈Λd

max{Bd+1, Bd+1R
2
d+1L

2
d+1}‖fq − hq‖22, (5.36)
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for d = 0, . . . , D − 1. Finally, invoking (5.9) in (5.36) we get (5.29)-
(5.31) and hence (5.26). This completes the proof of i).

We continue with ii). The key step in establishing (5.12) is to show
that for ρd(0) = 0 and Pd(0) = 0, for d ∈ {1, . . . , D − 1}, the feature
extractor ΦΩ satisfies ΦΩ(0) = 0, and to employ (5.10) with h = 0
which yields |||Φ(f)||| 6 ‖f‖, for f ∈ HN1 . It remains to prove that
ΦΩ(h) = 0 for h = 0. For h = 0, the operator Ud, d ∈ {1, 2, . . . , D},
defined in (5.4) satisfies

(Ud[λd]h) = Pd
(
ρd(h ∗ gλd´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶

=0

)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=0

)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=0

,

for λd ∈ Λd, by assumption. With the definition of U [q] in (5.5) this
then yields (U [q]h) = 0 for h = 0 and all q ∈ Λd. ΦΩ(0) = 0 finally
follows from

ΦΩ(h) =
D−1⋃
d=0

{ (
U [q]h

)
∗ χd

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=0

}
q∈Λd = 0. (5.37)

We proceed to iii). The proof of the deformation sensitivity bound
(5.14) is based on two key ingredients. The first one is the Lipschitz
continuity result stated in (5.10). The second ingredient, stated in
Proposition 10 in Section 5.7.3, is an upper bound on the deformation
error ‖f − Fτf‖2 given by

‖f − Fτf‖2 6 4KN1/2
1 ‖τ‖1/2∞ , (5.38)

where f ∈ CN1,K
CART. We now show how (5.10) and (5.38) can be com-

bined to establish (5.14). To this end, we first apply (5.10) with
h := (Fτf) to get

|||ΦΩ(f)− ΦΩ(Fτf)||| 6 ‖f − Fτf‖2, (5.39)

for f ∈ CN1,K
CART ⊆ HN1 , N1 ∈ N, and K > 0, and then replace the

RHS of (5.39) by the RHS of (5.38). This completes the proof of iii).
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5.7.3. Proof of Proposition 10

Proposition 10. For every N ∈ N, every K > 0, and every τ : R→
[−1, 1], we have

‖f − Fτf‖2 ≤ 4KN1/2‖τ‖1/2∞ , (5.40 )

for all f ∈ CN,KCART.

Remark 11. As already mentioned at the end of Section 5.4, ex-
cluding the interval boundary points a, b in the definition of sampled
cartoon functions CN,KCART (see Definition 11 in Section 5.4) is necessary
for technical reasons. Specifically, without imposing this exclusion, we
can not expect to get deformation sensitivity results of the form (5.40).
This can be seen as follows. Let us assume that we seek a bound of the
form ‖f − Fτf‖2 6 CN,K‖τ‖α∞, for some CN,K > 0 and some α > 0,
that applies to all f [n] = c(n/N), n ∈ IN , with c ∈ CKCART. Take
τ(x) = 1/N , in which case the deformation (Fτf)[n] = c(n/N − 1/N)
amounts to a simple translation by 1/N and ‖τ‖∞ = 1/N 6 1. Let
c(x) = 1[0,2/N ](x). Then c ∈ CKCART for K = 1 and ‖f −Fτf‖2 =

√
2,

which obviously does not decay with ‖τ‖α∞ = N−α for some α > 0.
We note that this phenomenon occurs only in the discrete case.

Proof. The proof of (5.40) is based on judiciously combining deforma-
tion sensitivity bounds for the sampled components c1(n/N), c2(n/N),
n ∈ IN , in (c1 + 1[a,b]c2) ∈ CKCART, and the sampled indicator func-
tion 1[a,b](n/N), n ∈ IN . The first bound, stated in Lemma 10 below,
reads

‖f − Fτf‖2 ≤ CN1/2‖τ‖∞, (5.41)

and applies to discrete-time signals f [n] = f(n/N), n ∈ IN , with
f : R→ C satisfying the Lipschitz property with Lipschitz constant
C. The second bound we need, stated in Lemma 11 below, is given by

‖1N[a,b] − Fτ1
N
[a,b]‖2 6 2N1/2‖τ‖1/2∞ , (5.42)

and applies to sampled indicator functions 1N[a,b][n] := 1[a,b](n/N),
n ∈ IN , with a, b /∈ {0, 1

N , . . . ,
N−1
N }. We now show how (5.41) and
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(5.42) can be combined to establish (5.40). For a sampled cartoon
function f ∈ CN,KCART, i.e.,

f [n] = c1(n/N) + 1[a,b](n/N)c2(n/N) =: f1[n] + 1N[a,b][n]f2[n],

where n ∈ IN , we have

‖f − Fτf‖2 6 ‖f1 − Fτf1‖2 + ‖1N[a,b](f2 − Fτf2)‖2
+ ‖(1N[a,b] − Fτ1N[a,b])(Fτf2)‖2 (5.43)

6 ‖f1 − Fτf1‖2 + ‖f2 − Fτf2‖2 + ‖1N[a,b] − Fτ1N[a,b]‖2‖Fτf2‖∞,

where in (5.43) we used(
Fτ (1N[a,b]f2)

)
[n] = (1[a,b]c2)(n/N − τ(n/N))

= 1[a,b](n/N − τ(n/N))c2((n/N − τ(n/N)))
= (Fτ1N[a,b])[n](Fτf2)[n].

With the upper bounds (5.41) and (5.42), invoking properties of
CN,KCART (namely, (i) c1, c2 satisfy the Lipschitz property with Lipschitz
constant C = K and hence f1[n] = c1(n/N), f2[n] = c2(n/N), n ∈ IN ,
satisfy (5.41) with C = K, and (ii) ‖Fτf2‖∞ = supn∈IN |(Fτf2)[n]| =
supn∈IN |c2(n/N − τ(n/N))| 6 supx∈R |c2(x)| = ‖c2‖∞ 6 K), this
yields

‖f − Fτf‖2 6 2KN1/2 ‖τ‖∞ + 2KN1/2‖τ‖1/2∞
6 4KN1/2‖τ‖1/2∞ ,

where in the last step we used ‖τ‖∞ 6 ‖τ‖1/2∞ , which is thanks to the
assumption ‖τ‖∞ 6 1. This completes the proof of (5.40).

It remains to establish (5.41) and (5.42).

Lemma 10. Let c : R → C be Lipschitz-continuous with Lipschitz
constant C. Let further f [n] := c(n/N), n ∈ IN . Then,

‖f − Fτf‖2 ≤ CN1/2‖τ‖∞.
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Proof. Invoking the Lipschitz property of c according to

‖f − Fτf‖22 =
∑
n∈IN

|f [n]− (Fτf)[n]|2

=
∑
n∈IN

|c(n/N)− c(n/N − τ(n/N))|2

6 C2
∑
n∈IN

|τ(n/N)|2 6 C2N‖τ‖2∞

completes the proof.

We continue with a deformation sensitivity result for sampled
indicator functions 1[a,b](x).

Lemma 11. Let [a, b] ⊆ [0, 1] and set 1N[a,b][n] := 1[a,b](n/N), n ∈ IN ,
with a, b /∈ {0, 1

N , . . . ,
N−1
N }. Then, we have

‖1N[a,b] − Fτ1
N
[a,b]‖2 ≤ 2N1/2‖τ‖1/2∞ .

Proof. In order to upper-bound

‖1N[a,b] − Fτ1
N
[a,b]‖

2
2 =

∑
n∈IN

|1N[a,b][n]− (Fτ1N[a,b])[n]|2

=
∑
n∈IN

|1[a,b](n/N)− 1[a,b](n/N − τ(n/N))|2,

we first note that the summand h(n) := |1[a,b](n/N)− 1[a,b](n/N −
τ(n/N))|2 satisfies h(n) = 1, for n ∈ S, where

S :=
{
n ∈ IN

∣∣∣ n
N
∈ [a, b] and n

N
− τ
( n
N

)
/∈ [a, b]

}
∪
{
n ∈ IN

∣∣∣ n
N

/∈ [a, b] and n

N
− τ
( n
N

)
∈ [a, b]

}
,

and h(n) = 0, for n ∈ IN\S. Thanks to a, b /∈ {0, 1
N , . . . ,

N−1
N }, we

have S ⊆ Σ, where

Σ :=
{
n ∈ Z

∣∣∣ ∣∣∣ n
N
− a
∣∣∣ < ‖τ‖∞} ∪ {n ∈ Z

∣∣∣ ∣∣∣ n
N
− b
∣∣∣ < ‖τ‖∞}.
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The cardinality of the set Σ can be upper-bounded by 2 2‖τ‖∞
1/N , which

then yields

‖1N[a,b] − Fτ1
N
[a,b]‖

2
2 =

∑
n∈IN

|h(n)|2 =
∑
n∈S

1

6
∑
n∈Σ

1 6 4N‖τ‖∞. (5.44)

This completes the proof.

Remark 12. For general a, b ∈ [0, 1], i.e., when we drop the assump-
tion a, b /∈ {0, 1

N , . . . ,
N−1
N }, it follows that S ⊆ Σ′, where

Σ′ :=
{
n ∈ Z

∣∣∣ ∣∣∣ n
N
− a
∣∣∣ 6 ‖τ‖∞} ∪ {n ∈ Z

∣∣∣ ∣∣∣ n
N
− b
∣∣∣ 6 ‖τ‖∞}.

Noting that the cardinality of Σ′ can be upper-bounded by 2
( 2‖τ‖∞

1/N +
1
)

= 4N‖τ‖∞ + 2, this then yields (similarly to (5.44))

‖1N[a,b] − Fτ1
N
[a,b]‖

2
2 6

∑
n∈Σ

1 6 4N‖τ‖∞ + 2,

which shows that the deformation error—for general a, b ∈ [0, 1]—does
not decay with ‖τ‖α∞ for some α > 0 (see also the example in Remark
11).

5.7.4. Proof of Theorem 6

We start by establishing i). For ease of notation, again, we let fq :=
U [q]f and hq := U [q]h, for f, h ∈ HN1 , q ∈ Λd. We have

|||ΦdΩ(f)− ΦdΩ(h)|||2 =
∑
q∈Λd

||(fq − hq) ∗ χd||22 (5.45)

6 ‖χd‖21
∑
q∈Λd

||(fq − hq)||22

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=:ad

, (5.46)

where (5.46) follows by Young’s inequality (Folland, 2015, Proposition
2.3.9).
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Remark 13. We emphasize that (5.45) can also be upper-bounded
by Bd+1

∑
q∈Λd ||(fq − hq)||22, which follows from the fact that

{gλd+1}λd+1∈Λd+1 ∪ {χd} are atoms of the convolutional set Ψd+1
with Bessel bound Bd+1. Hence, one can substitute ‖χd‖1 in (5.17)
by
√
Bd+1.

The key step is then to show that ad can be upper-bounded accor-
ding to

ak 6 (BkL2
kR

2
k)ak−1, k = 1, . . . , d, (5.47)

and to note that

ad 6 (BdL2
dR

2
d)ad−1 6 . . . 6

( d∏
k=1

BkL
2
kR

2
k

)
a0

=
( d∏
k=1

BkL
2
kR

2
k

) ∑
q∈Λ0

1

‖fq − hq‖22

=
( d∏
k=1

BkL
2
kR

2
k

)
‖f − h‖22,

which yields (5.18). We now establish (5.47). Every path

q̃ ∈ Λk1 = Λ1 × · · · × Λk−1´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=Λk−1

×Λk

of length k can be decomposed into a path q ∈ Λk−1 of length k − 1
and an index λk ∈ Λk according to q̃ = (q, λk). Thanks to (5.5) we
have U [q̃] = U [(q, λk)] = Uk[λk]U [q], which yields∑

q̃∈Λk
‖fq̃ − hq̃‖22 =

∑
q∈Λk−1

∑
λk∈Λk

‖Uk[λk]fq − Uk[λk]hq‖22. (5.48)

We next note that the term inside the sums on the RHS in (5.48)
satisfies

‖Uk[λk]fq − Uk[λk]hq‖22 = ‖Pk
(
ρk(fq ∗ gλk)

)
− Pk

(
ρk(hq ∗ gλk)

)
‖22

6 L2
kR

2
k‖(fq − hq) ∗ gλk‖22, (5.49)
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where we used the Lipschitz continuity of Pk and ρk with Lipschitz
constants Rk > 0 and Lk > 0, respectively. As {gλk}λk∈Λk ∪ {χk−1}
are the atoms of the convolutional set Ψk, and fq, hq ∈ HNk by (5.5),
we have ∑

λk∈Λk

‖(fq − hq) ∗ gλk‖22 6 Bk‖fq − hq‖22,

which, when used in (5.48) together with (5.49), yields∑
q̃∈Λk

‖fq̃ − hq̃‖22 6 BkL
2
kR

2
k

∑
q∈Λk−1

‖fq − hq‖22,

and hence establishes (5.47), thereby completing the proof of i).
We now turn to ii). The proof of (5.19) follows—as in the proof of

ii) in Theorem 5 in Section 5.7.2—from (5.18) together with ΦdΩ(h) =
{(U [q]h) ∗ χd}q∈Λd = 0 for h = 0, see (5.37).
We continue with iii). The proof of the deformation sensitivity

bound (5.20) is based on two key ingredients. The first one is the
Lipschitz continuity result in (5.18). The second ingredient is, again,
the deformation sensitivity bound (5.40) stated in Proposition 10 in
Section 5.7.3. Combining (5.18) and (5.40)—as in the proof of iii) in
Theorem 5 in Section 5.7.2—then establishes (5.20) and completes
the proof of iii).
We proceed to iv). For ease of notation, again, we let fq := U [q]f ,

for f ∈ HN1 , q ∈ Λd. Thanks to (5.5), we have fq ∈ HNd+1 , for q ∈ Λd.
The key step in establishing (5.21) is to show that the operator Uk,
k ∈ {1, 2, . . . , d}, defined in (5.4) satisfies the relation

(Uk[λk]Tmf) = Tm/Sk(Uk[λk]f), (5.50)

for f ∈ HNk , m ∈ Z with m
Sk
∈ Z, and λk ∈ Λk. With the definition

of U [q] in (5.5) this then yields

(U [q]Tmf) = Tm/(S1···Sd)(U [q]f), (5.51)

for f ∈ HN1 , m ∈ Z with m
S1...Sd

∈ Z, and q ∈ Λd. The identity (5.21)
is then a direct consequence of (5.51) and the translation-covariance of
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the circular convolution operator (which holds thanks to m
S1...Sd

∈ Z):

ΦdΩ(Tmf) =
{(
U [q]Tmf

)
∗ χd

}
q∈Λd =

{(
Tm/(S1···Sd)U [q]f

)
∗ χd

}
q∈Λd

=
{
Tm/(S1···Sd)

(
(U [q]f) ∗ χd

)}
q∈Λd = Tm/(S1···Sd)ΦdΩ(f),

for f ∈ HN1 and m ∈ Z with m
S1...Sd

∈ Z. It remains to establish
(5.50):

(Uk[λk]Tmf) =
(
Pk
(
ρk((Tmf) ∗ gλk)

))
=
(
Pk
(
ρk(Tm(f ∗ gλk))

))
(5.52)

=
(
Pk
(
Tm(ρk(f ∗ gλk))

))
, (5.53)

where in (5.52) we used the translation covariance of the circular
convolution operator (which holds thanks to m ∈ Z), and in (5.53)
we used the fact that point-wise non-linearities commute with the
translation operator thanks to

(ρkTmf)[n] = ρk((Tmf)[n]) = ρk(f [n−m]) = (Tmρkf)[n],

for f ∈ HNk , n ∈ INk , and m ∈ Z. Next, we note that the pooling
operators Pk in Section 5.2.3 (namely, sub-sampling, average pooling,
and max-pooling) can all be written as (Pkf)[n] = (P ′kf)[Skn], for
some P ′k that commutes with the translation operator, namely, for (i)
sub-sampling (P ′kf)[n] = f [n], with (P ′kTmf)[n] = (Tmf)[n] = f [n−
m] = (TmP ′kf)[n], (ii) average pooling (P ′kf)[n] =

∑n+Sk−1
l=n αl−nf [l]

with

(P ′kTmf)[n] =
n+Sk−1∑
l=n

αl−nf [l −m] =
(n−m)+Sk−1∑
l′=(n−m)

αl−(n−m)f [l′]

= (TmP ′kf)[n],

and for (iii) max-pooling (P ′kf)[n] = maxl∈{n,...,n+Sk−1} |f [l]| with

(P ′kTmf)[n] = max
l∈{n,...,n+Sk−1}

|f [l −m]|
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= max
(l−m)∈{n−m,...,(n−m)+Sk−1}

|f [l −m]|

= max
l′∈{(n−m),...,(n−m)+Sk−1}

|f [l′]|

= (TmP ′kf)[n],

in all three cases for f ∈ HNk , n ∈ INk , and m ∈ Z. This then yields

(PkTmf)[n] = (P ′kTmf)[Skn] = (TmP ′kf)[Skn]
= P ′k(f)[Skn−m] = P ′k(f)[Sk(n− S−1

k m)]
= Pk(f)[n− S−1

k m] = (Tm/SkPkf)[n], (5.54)

for f ∈ HNk and n ∈ INk+1 . Here, we used m/Sk ∈ Z, which is by
assumption. Substituting (5.54) into (5.53) finally yields

(Uk[λk]Tmf) = Tm/SkUk[λk]f,

for f ∈ HNk , m ∈ Z with m
Sk
∈ Z, and λk ∈ Λk. This completes the

proof of (5.50) and hence establishes (5.21).
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