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Abstract

A central task in machine learning, computer vision, and signal pro-
cessing is to extract characteristic features of signals. Feature extrac-
tors based on deep convolutional neural networks (DCNNs) have been
applied with significant success in a wide range of practical machine
learning tasks such as classification of images in the ImageNet data set
(Krizhevsky et all 2012), image captioning (Vinyals et al., [2015), or
control-policy-learning to play Atari games (Mnih et al. 2015) or the
board game Go (Silver et al.l |2016]). Since DCNN architectures lead to
remarkable results across a broad range of applications, it is essential
to understand their underlying mechanisms. In this thesis, we develop
a mathematical theory of DCNNS for feature extraction using concepts
from applied harmonic analysis. We investigate the impact of DCNN
topology and building blocks—convolution filters, non-linearities, and
pooling operators—on the network’s feature extraction capabilities.

The mathematical analysis of feature extractors generated by DC-
NNs was initiated by Mallat in (Mallatl |2012]). Specifically, (Mallat],
2012)) analyzed so-called scattering networks, where signals are pro-
pagated through layers that employ directional wavelet filters and
modulus non-linearities but no intra-layer pooling. The resulting
wavelet-modulus feature extractor is horizontally (i.e., in every net-
work layer) translation-invariant (where the wavelet scale parameter
determines the amount of invariance) and stable with respect to
(w.r.t.) certain non-linear deformations, both properties of signifi-
cance in practical feature extraction applications.

In the first part of this thesis, we complement Mallat’s results by



developing a theory of DCNNSs for feature extraction encompassing
general convolutional transforms, or in more technical parlance, ge-
neral semi-discrete frames (including Weyl-Heisenberg, curvelet, shear-
let, ridgelet, and wavelet frames), general Lipschitz-continuous non-
linearities (e.g., rectified linear units, shifted logistic sigmoids, hy-
perbolic tangents, and modulus functions), and general Lipschitz-
continuous pooling operators emulating sub-sampling and averaging.
In addition, all of these elements can be different in different network
layers. For the resulting network (called generalized scattering net-
work) we prove a translation invariance result which is of vertical
nature in the sense of the network depth determining the amount
of invariance, and we establish deformation sensitivity bounds that
apply to signal classes with inherent deformation insensitivity such as,
e.g., band-limited functions, cartoon functions (Donohol 2001)) (which
provide a good model for natural images), and Lipschitz functions.
The essence of our results is that vertical (i.e., asymptotically in
the network depth) translation invariance and limited sensitivity to
non-linear deformations are guaranteed by the network structure per
se rather than the specific convolution filters, non-linearities, and
pooling operators.

In the second part of this thesis, we study the DCNN topology,
specifically the depth and width. Many practical machine learning
tasks employ very deep convolutional neural networks (He et al.
2015)). Such large depths pose formidable computational challenges
in training and operating the network. It is therefore important to
understand how fast the energy contained in the propagated signals
(a.k.a. feature maps) decays across layers. In addition, it is desirable
that the feature extractor generated by the network be informative
in the sense of the only signal mapping to the all-zeros feature vector
being the zero input signal. This “trivial null-set” property can be
accomplished by asking for “energy conservation” in the sense of
the energy in the feature vector being proportional to that of the
corresponding input signal. We address these questions for the class
of scattering networks that employ the modulus non-linearity, no
pooling, and general filters that are allowed to be different in different
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network layers. We establish conditions for energy conservation (and
thus for a trivial null-set) and characterize corresponding feature map
energy decay rates. Specifically, we find that under mild analyticity
and high-pass conditions on the filters (which encompass, inter alia,
various constructions of Weyl-Heisenberg filters, wavelets, ridgelets,
(a)-curvelets, and shearlets) the feature map energy decays at least
polynomially fast. For broad families of wavelets and Weyl-Heisenberg
filters, the guaranteed decay rate is shown to be exponential. Moreover,
we provide handy estimates of the number of layers needed to have
at least ((1 —¢) - 100)% of the input signal energy be contained in
the feature vector.

In the third and final part of this thesis, we focus on the practically
relevant discrete-time case, introduce new DCNN architectures, and
propose a mathematical framework for their analysis. We establish
deformation and translation sensitivity results of local and global
nature, and we investigate how certain structural properties of the
input signal are reflected in the corresponding feature vectors. Our
theory applies to general filters and general Lipschitz-continuous
non-linearities and pooling operators. Experiments on handwritten
digit classification and facial landmark detection—including a feature
importance evaluation—complement the theoretical findings.
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Kurzfassung

Das Extrahieren von charakteristischen Merkmalen aus Signalen ist
ein wichtiges Problem im maschinellen Lernen und Sehen sowie in
der Signalverarbeitung. Feature extractor&ﬂ die auf tiefen neuronalen
Faltungsnetzwerken (TNFNs) basieren, werden mit grossem Erfolg
in vielen Bereichen des maschinellen Lernens angewandt. Beispiele
dafiir sind die Klassifizierung von Bildern des ImageNet Datensatzes
(Krizhevsky et al., 2012), das Generieren von Bildbeschreibungen
(Vinyals et al., |2015) oder das Lernen von Strategien, die es er-
moglichen, Computerspiele (Munih et al., |2015) oder das Brettspiel
,Go“ (Silver et al., |2016)) zu spielen. Aufgrund des breiten Anwen-
dungsspektrums und der bemerkenswerten Erfolge ist es von zen-
traler Bedeutung, diejenigen Mechanismen zu verstehen, die der Netz-
werkarchitektur zugrunde liegen. In dieser Dissertation entwickeln
wir eine mathematische Theorie fiir das Extrahieren von features
mittels TNFNs, die auf Konzepten der angewandten harmonischen
Analyse basiert. Wir untersuchen dabei, wie die TNFN-Topologie und
-Bausteine—Filter, Nichtlinearitdten und poolinﬂ Operatoren—die
Fahigkeit der Netzwerke, charakteristische features aus Signalen zu
extrahieren, beeinflussen.

Die mathematische Analyse von feature extractors, die auf TNFNs
basieren, wurde in (Mallat} 2012) initiiert. Mallat analysierte soge-
nannte scattering networksﬂ in denen Signale durch Netzwerkschich-

L Auf Deutsch: Merkmalsextraktoren.
2 Auf Deutsch: Biindelung.
3 Auf Deutsch: Streunetzwerke.
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ten, die wavelet Filter und modulus Nichtlinearitdten verwenden,
jedoch auf pooling Operatoren verzichten, propagiert werden. Der
korrespondierende wavelet-modulus feature extractor ist horizontal
(d.h. in jeder Netzwerkschicht) translationsinvariant (wobei der Grad
der Invarianz durch den wavelet Skalierungsparameter bestimmt wird)
und stabil gegeniiber gewissen nichtlinearen Deformationen.

Im ersten Teil dieser Dissertation erginzen wir die Ergebnisse von
Mallat, indem wir eine Theorie fiir das Extrahieren von features mit-
tels TNFNs entwickeln, die es ermoglicht, i) allgemeine semi-diskrete
frames (z.B. Weyl-Heisenberg, curvelet, shearlet, ridgelet und wavelet
frames), ii) allgemeine Lipschitz-stetige Nichtlinearitaten (z.B. rec-
tified linear units, logistic sigmoids, hyperbolic tangents und den
modulus) und iii) allgemeine Lipschitz-stetige pooling Operatoren
(z.B. sub-sampling oder averaging) zu verwenden. Ferner ist es moglich,
unterschiedliche Filter, Nichtlinearitdten und pooling Operatoren in
unterschiedlichen Netzwerkschichten zu benutzen. Fiir diese Architek-
turen, die wir generalized scattering networks nennen, beweisen wir
ein Translationsinvarianz-Resultat, das von vertikaler Natur ist (d.h.
die Netzwerktiefe bestimmt den Grad der Invarianz), und wir leiten
Deformationssensibilitdts-Garantien her, die fiir Signalklassen gelten,
die inhérent insensibel gegeniiber Deformationen sind. Beispiele fiir
solche Signalklassen sind bandbegrenzte Funktionen, Lipschitz-stetige
Funktionen sowie cartoon functions (Donoho|, 2001)), welche sich gut
dazu eignen, Bilder zu modellieren. Die Essenz unserer Ergebnisse ist,
dass vertikale (d.h. in der Netzwerktiefe asymptotische) Translations-
invarianz und Insensibilitdt gegeniiber nichtlinearen Deformationen
durch die Netzwerkstruktur an sich gewéhrleistet sind, und nicht
durch die spezifische Wahl der Filter, Nichtlinearitdten und pooling
Operatoren.

Im zweiten Teil dieser Dissertation untersuchen wir die TNFN-
Topologie, insbesondere die Tiefe und Breite der Netzwerke. In vielen
Anwendungsbereichen des maschinellen Lernens werden sehr tiefe neu-
ronale Faltungsnetzwerke vewendet (He et al.l |2015). Solche grossen
Netzwerktiefen bereiten sowohl im Training als auch in der Anwen-
dung der Netzwerke rechentechnische Probleme. Es ist daher von



zentraler Bedeutung zu verstehen, wie schnell die Energie, die in
den feature mapsﬂ enthalten ist, mit zunehmender Netzwerktiefe
abféllt. Ferner ist es wiinschenswert, dass das einzige Signal, das
durch den feature extractor auf den Null-Vektor abgebildet wird,
das Null-Eingangssignal ist. Diese ,triviale Nullmengen“ Eigenschaft
gilt, wenn die Energie des feature vectors proportional zu der Ener-
gie des Eingangssignals ist. Konkret untersuchen wir das Abfallen
der feature map Energie und die Erhaltung der feature vector Ener-
gie flir scattering networks, welche allgemeine Filter, die modulus
Nichtlinearitdt und keine pooling Operatoren verwenden. Wir leiten
Bedingungen fiir Energieerhaltung (und damit fiir eine triviale Null-
menge) her und charakterisieren die Energieabklingraten der feature
maps. Wir zeigen, dass unter Analytizitdts- und Hochpassbedingung-
en an die Filter (die z.B. von gewissen Weyl-Heisenberg Filtern,
wavelets, ridgelets, (a)-curvelets und shearlets erfiillt werden) die
Energie mindestens polynomiell in der Netzwerktiefe abféllt. Fir
einige Familien von wavelet und Weyl-Heisenberg Filtern beweisen
wir, dass die Abklingrate sogar exponentiell in der Netzwerktiefe
ist. Unsere Energieabkling-Resultate ermoéglichen es uns, diejenige
Netzwerktiefe zu spezifizieren, die bendtigt wird, damit mindestens
((1 —¢)-100)% der Eingangssignalenergie im feature vector enthalten
ist.

Im dritten und letzten Teil dieser Dissertation betrachten wir den
praktisch relevanten zeitdiskreten Fall, prasentieren neue TINFN-
Architekturen und stellen die mathematischen Grundlagen vor, die fiir
deren Analyse notwendig sind. Wir beweisen Resultate zur Deforma-
tions- und Translationssensibilitat des feature extractors, die von
lokaler und globaler Natur sind, und wir untersuchen, wie sich be-
stimmte strukturelle Eigenschaften des Eingangssignals im feature vec-
tor widerspiegeln. Die von uns entwickelte Theorie kann auf Netzwerke
angewandt werden, die allgemeine Filter, allgemeine Lipschitz-stetige
Nichtlinearitdten und allgemeine Lipschitz-stetige pooling Operatoren
verwenden. Experimente zur Klassifizierung von handgeschriebenen

4 Auf Deutsch: Propagierte Signale.
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Ziffern und zur Erkennung von Gesichtspartien ergéinzen die theore-
tischen Ergebnisse.
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CHAPTER 1

Introduction

breakthrough results in numerous practical machine learning

tasks (Rumelhart et al., [1986; LeCun et al., {1990} 1998, {2010
[2015} [Krizhevsky et al. 2012; [Bengio et all,[2013} [He et al., 2015} [Mnih]
et al 2015} \Goodfellow et al.,2016; Silver et al.,|2016). While DCNNs
can be used to perform classification (or other machine learning tasks
such as, e.g., control-policy-learning to play Atari games (Mnih et al.
or the board game Go (Silver et al., [2016))) directly, typically
based on the output of the last network layer, they can also act as
stand-alone feature extractors (Serre et al. [2005; [Huang and LeCunl
[2006}; [Mutch and Lowe), 2006} [Ranzato et al. 2006}, 2007} [Pinto et all,
|2008} [Jarrett et al.,2009) with the resulting features fed into a classifier
such as a support vector machine (SVM) (Cortes and Vapnik] [1995).
The present thesis pertains to the latter philosophy and develops a
mathematical theory of DCNNs for feature extraction.

D EEP convolutional neural networks (DCNNs) have led to




1 INTRODUCTION

1.1. DEEP CONVOLUTIONAL FEATURE EXTRACTION:
ARCHITECTURES, INVARIANCES, AND
DEFORMATION SENSITIVITY (CHAPTER

A central task in machine learning is feature extraction (Duda et al.)
2001} Bishop, 2009; |Bengio et al., [2013)) as, e.g., in the context of hand-
written digit classification (LeCun and Cortes|, [1998). The features to
be extracted in this case correspond, for example, to the edges of the
digits. The idea behind feature extraction is that feeding characteris-
tic features of the signals—rather than the signals themselves—to a
classifier (such as, e.g., a SVM) improves classification performance.
Specifically, non-linear feature extractors can map input signal space
dichotomies that are not linearly separable into linearly separable
feature space dichotomies (Bishopj, [2009). Sticking to the example of
handwritten digit classification, we would, moreover, want the feature
extractor to be invariant to the digits’ spatial location within the
image, which leads to the requirement of translation invariance. In
addition, it is desirable that the feature extractor be robust with
respect to (w.r.t.) handwriting styles. This can be accomplished by
demanding limited sensitivity of the features to certain non-linear
deformations of the signals to be classified.

Feature extractors based on DCNNs have been applied with tremen-
dous success in a wide range of practical machine learning tasks
(Rumelhart et al., 1986} LeCun et al.l 1990} 1998, [2015} [Krizhevsky|
et al.} |2012; [Bengio et al., 2013 He et al., 2015; Mnih et al. [2015;
Goodfellow et al., 2016; |Silver et al., |2016)). These networks are
composed of multiple layers, each of which computes convolutional
transforms, followed by the application of non-linearities and pooling
operators.

The mathematical analysis of feature extractors generated by DC-
NNs was pioneered by Mallat in (Mallat, 2012)). Mallat’s theory
applies to so-called scattering networks, where signals are propagated
through layers that compute a semi-discrete wavelet transform (i.e.,
convolutions with filters that are obtained from a mother wavelet



1.1 DEEP CONVOLUTIONAL FEATURE EXTRACTION

through scaling and rotation operations), followed by the modulus
non-linearity, without subsequent pooling. The resulting feature ex-
tractor is shown to be translation-invariant (asymptotically in the
scale parameter of the underlying wavelet transform) and stable w.r.t.
certain non-linear deformations. Moreover, Mallat’s scattering net-
works lead to state-of-the-art results in various classification tasks
(Bruna and Mallat, 2013; |/Andén and Mallat), 2014} Sifre| [2014]).
DCNN-based feature extractors that were found to work well in
practice employ a wide range of i) filters, namely pre-specified struc-
tured filters such as wavelets (Serre et al., 2005; Mutch and Lowe,
12006; Pinto et al., 2008} |Jarrett et al., 2009)), pre-specified unstruc-
tured filters such as random filters (Ranzato et all 2007; [Jarrett|

2009)), and filters that are learned in a supervised (Huang and
ILeCun, 2006; [Jarrett et al. [2009) or an unsupervised (Ranzato et al.

[2006], [2007} |Jarrett et all 2009) fashion, ii) non-linearities, beyond
the modulus function (Mutch and Lowel 2006; |Jarrett et al., 2009}
2012)), namely hyperbolic tangents (Huang and LeCunl [2006;
[Ranzato et al.l [2007; [Jarrett et al.l [2009), rectified linear units
land Hintonl, |2010; |Glorot et all, |2011)), and logistic sigmoids
land Bengiol, [2010; Mohamed et al., [2011)), and iii) pooling operators,
namely sub-sampling (Pinto et al, [2008)), average pooling
land LeCunl [2006} Jarrett et all [2009), and max-pooling
[2005}; [Mutch and Lowe, 2006} [Ranzato et all, 2007} [Jarrett et all
2009). In addition, the filters, non-linearities, and pooling operators
can be different in different network layers. This motivates to develop
generalized scattering networks that encompass all these elements in
full generality, which is the first main contribution of Chapter [3]
Convolutional transforms as applied in DCNNs can be interpreted
as semi-discrete signal transforms (Mallat and Zhong|, |1992; Unser,
[1995} [Vandergheynst], 2002a); [Candés and Donoho), 2005} [Mallat, [2009;
\Grohs|, 2012; Kutyniok and Labate, 2012b; |Grohs et al., 2015)) (i.e.,
convolutional transforms with filters that are countably parametrized).

Corresponding prominent representatives are curvelet (Candes and
\Donoho, 2004} |2005; |Grohs et al., [2015) and shearlet (Guo et al., 2006

Kutyniok and Labate, [2012b)) transforms, both of which are known to




1 INTRODUCTION

be highly effective in extracting features characterized by curved edges
in images. The theory developed in Chapter [3]allows for general semi-
discrete signal transforms, general Lipschitz-continuous non-linearities
(e.g., rectified linear units, shifted logistic sigmoids, hyperbolic tan-
gents, and modulus functions), and incorporates continuous-time
Lipschitz pooling operators that emulate discrete-time sub-sampling
and averaging. Finally, different network layers may be equipped
with different convolutional transforms, different Lipschitz-continuous
non-linearities, and different Lipschitz-continuous pooling operators.

Regarding translation invariance, it was argued, e.g., in
let al.l 2005 [Huang and LeCunl, 2006}, [Mutch and Lowe, [2006} [Ranzato|
et al., 2007 Jarrett et al) 2009), that in practice invariance of the
extracted features is crucially governed by the network depth and
by the presence of pooling operators (such as, e.g., sub-sampling
(Pinto et al., |2008)), average-pooling (Huang and LeCun, 2006; |Jarrett|
2009), or max-pooling (Serre et all 2005} [Mutch and Lowe,
[2006} [Ranzato et al) 2007; [Jarrett et all [2009)). We show that
the generalized scattering networks considered in this thesis, indeed,
exhibit such a vertical translation invariance and that pooling plays
a crucial role in achieving it. Specifically, we prove that the depth of
the network determines the extent to which the extracted features are
translation-invariant. We also show that pooling is necessary to obtain
vertical translation invariance as otherwise the features remain fully
translation-covariant irrespective of network depth. We furthermore
establish a deformation sensitivity bound valid for signal classes such
as, e.g., band-limited functions, cartoon functions
(which provide a good model for natural images such as those in the
Caltech-256 (Griffin et all, [2007), CIFAR-100 (Krizhevskyl [2009), and
MNIST (LeCun and Cortes| [1998) data sets), and Lipschitz functions.
This bound shows that small non-linear deformations of the input
signal lead to small changes in the corresponding feature vector.

In terms of mathematical techniques, we draw heavily from con-
tinuous frame theory (Ali et all |1993; Kaiser, [1994). We develop a
proof machinery that is completely detached from the structures of
the semi-discrete transforms and the specific form of the Lipschitz




1.2 ENERGY PROPAGATION IN DEEP CONVOLUTIONAL NETWORKS

non-linearities and Lipschitz pooling operators. The proof of our de-
formation sensitivity bound is based on two key elements, namely a
Lipschitz continuity property for the feature extractor and a deforma-
tion sensitivity bound for the signal class under consideration (e.g.,
band-limited functions, cartoon functions, and Lipschitz functions).
This “decoupling” approach has important practical ramifications as
it shows that whenever we have deformation sensitivity bounds for
a signal class, we automatically get deformation sensitivity bounds
for the DCNN feature extractor operating on that signal class. Our
results hence establish that vertical translation invariance and limited
sensitivity to deformations—for signal classes with inherent defor-
mation insensitivity—are guaranteed by the network structure per
se rather than the specific convolution kernels, non-linearities, and
pooling operators.

1.2. ENERGY PROPAGATION IN
DEEP CONVOLUTIONAL NEURAL NETWORKS
(CHAPTER

Many practical machine learning tasks, such as, e.g., the classification
of images in the ImageNet data set, employ very deep networks with
potentially hundreds of layers (He et al.| [2015). Such network depths
entail formidable computational challenges in the training phase due
to the large number of parameters to be learned (e.g., in (Simonyan
and Zisserman) 2014), the DCNN has 144 million parameters), and in
operating the network due to the large number of convolutions that
need to be carried out (e.g., the DCNN in (He et al.| [2015) entails
11.3 billion FLOPS to pass a single image through the network). It is
therefore paramount to understand how fast the energy contained in
the signals generated in the individual network layers (a.k.a. feature
maps) decays across layers. In addition, it is important that the
feature vector—obtained by aggregating filtered versions of the feature
maps—be informative in the sense of the only signal mapping to the
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all-zeros feature vector being the zero input signal. This “trivial null-
set” property for the feature extractor can be obtained by asking for
the energy in the feature vector being proportional to that of the
corresponding input signal, a property we shall refer to as “energy
conservation”.

First steps towards addressing these questions were made—for
scattering network-based feature extractors—in (Waldspurger) 2015,
Section 5) and (Czaja and Li, 2017). Specifically, it was shown that
the energy in the feature maps generated by scattering networks
employing, in every network layer, the same set of certain Parseval

wavelets (Waldspurger} 2015, Section 5) or “uniform covering”
2017)) filters (both satisfying analyticity and vanishing mo-

ments conditions), the modulus non-linearity, and no pooling, decays

at least exponentially fast and “strict” energy conservation (which, in
turn, implies a trivial null-set) for the infinite-depth feature vector
holds. Specifically, the feature map energy decay was shown to be at
least of order O(a~"), for some unspecified a > 1, where N denotes
the network depth. We note that d-dimensional uniform covering
filters as introduced in (Czaja and Lil [2017) are a family of functions
whose Fourier transforms’ support sets can be covered by a union

of finitely many balls. This covering condition is satisfied by, e.g.,
Weyl-Heisenberg filters with a band-limited proto-
type function, but fails to hold for multi-scale filters such as wavelets
(Daubechies| [1992; Mallat] [2009), («)-curvelets (Candés and Donoho,
[2004], [2005} |Grohs et all [2015]), shearlets (Guo et al. 2006} [Kutyniok]
land Labate| 2012b)), or ridgelets (Candes| [1998} [Candés and Donohol,
[1999; |Grohs), [2012)), see (Czaja and Li, 2017, Remark 2.2 (b)).

The first main contribution of Chapter [4]is a characterization of the
feature map energy decay rate in scattering networks employing the

modulus non-linearity, no pooling, and general filters that constitute
a frame (Daubechies, |1992; Ali et al., [1993; Kaiser} |1994; (Christensen),
, but not necessarily a Parseval frame, and are allowed to be
different in different network layers. We find that, under mild analy-
ticity and high-pass conditions on the filters, the energy decay rate is
at least polynomial in the network depth, i.e., the decay is at least of
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order O(N~%), and we explicitly specify the decay exponent o > 0.
This result encompasses, inter alia, various constructions of Weyl-
Heisenberg filters, wavelets, ridgelets, («)-curvelets, shearlets, and
learned filters (of course as long as the learning algorithm imposes the
analyticity and high-pass conditions we require). For broad families
of wavelets and Weyl-Heisenberg filters, the guaranteed energy decay
rate is shown to be exponential in the network depth, i.e., the decay
is at least of order O(a=") where an arbitrary decay factor a > 1 can
be realized through suitable choice of the mother wavelet bandwidth
or the Weyl-Heisenberg prototype function bandwidth.

Our second main contribution in Chapter [4 shows that the energy
decay results above are compatible with a trivial null-set for finite-
and infinite-depth networks. Specifically, this is accomplished by
establishing energy proportionality between the feature vector and
the underlying input signal with the proportionality constant lower-
and upper-bounded by the frame bounds of the filters employed in
the different layers. We show that this energy conservation result is a
consequence of a demodulation effect induced by the modulus non-
linearity in combination with the analyticity and high-pass properties
of the filters. Specifically, in every network layer, the modulus non-
linearity moves the spectral content of each individual feature map to
base-band (i.e., to low frequencies), where it is subsequently extracted
(i.e., fed into the feature vector) by a low-pass output-generating
filter.

For input signals that belong to the class of Sobolev functionsEI7
our energy decay and conservation results are shown to yield handy
estimates of the number of layers needed to have at least ((1—¢)-100)%
of the input signal energy be contained in the feature vector. Finally,
we show how networks of fixed (possibly small) depth N, say N = 2,
can be designed that capture most of the input signal’s energy.

We emphasize that throughout energy decay results pertain to the

LA wide range of practically relevant signal classes are Sobolev functions, for
example, band-limited functions and—as established in the present thesis—cartoon
functions (Donoho, [2001) which are a good model for natural images such as, e.g.,
images of handwritten digits (LeCun and Cortes|, |1998).
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feature maps, whereas energy conservation statements apply to the
feature vector, obtained by aggregating filtered versions of the feature
maps.

1.3. FROM THEORY TO PRACTICE:
DISCRETE-TIME DEEP CONVOLUTIONAL
NEURAL NETWORKS (CHAPTER

The purpose of Chapter [5| is to build the bridge between theory
and practice. Specifically, we introduce new discrete-time DCNN
architectures and propose a mathematical framework for their analysis.
The architectures we present incorporate general filters, Lipschitz
non-linearities, and Lipschitz pooling operators, and build the feature
vector from subsets of the layers. This leads us to the notions of
local and global feature vector properties with globality pertaining to
characteristics brought out by the union of features across all network
layers, and locality identifying attributes made explicit in individual
layers.

Besides providing analytical performance results of general validity,
we also investigate how certain structural properties of the input
signal are reflected in the corresponding feature vectors. Specifically,
we analyze the (local and global) deformation and translation sensi-
tivity properties of feature vectors corresponding to sampled cartoon
functions (Donoho, [2001)).

Our theoretical results are complemented by extensive numerical
studies on facial landmark detection and handwritten digit classi-
fication. Specifically, we elucidate the role of local feature vector
properties through a feature relevance study.

1.4. PUBLICATIONS

The majority of the results in this thesis have been published during
the course of the PhD studies. Specifically, the results in Chapter [3]
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appear in (Wiatowski and Bolcsked, [2015] |2018; |Grohs et al., 2016]).
Moreover, the results presented in Chapter [] have been published in
(Grohs et al., |2017; Wiatowski et al.l |2017, |2018), and the results in
Chapter [5| were presented in (Wiatowski et al.l [2016)).







CHAPTER 2

Mathematical Prerequisites

transform followed by a non-linearity and a pooling opera-
tion. In this chapter, we review the theory of convolutional
transforms (specifically, of semi-discrete frames) and give a list of
structured example transforms of interest in the context of this thesis.
Moreover, we give a brief overview of non-linearities and pooling
operators that are widely used in the deep learning literature, and
establish that these non-linearities and pooling operators all satisfy
the Lipschitz property.
We start this chapter by introducing the notation employed in this

T HE basic building block of a DCNN consists of a convolutional

thesis.

2.1. NOTATION

Throughout the thesis, we employ the following notation.

Scalars, vectors, matrices, and tensors

The complex conjugate of z € C is denoted by zZ. We write Re(z) for
the real, and Im(z) for the imaginary part of z € C. The Euclidean
inner product of z,y € C% is (z,y) := Zle ;7J;, with associated
norm |z| := /(z,x). We denote the identity matrix by E € RZ*4,
For the matrix M € R4, M; ; designates the entry in its i-th row

11
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and j-th column, and for a tensor T' € RX4*d T, .\ refers to its
(i, 4, k)-th component. The supremum norm of the matrix M € R4*4
is defined as [M|s := sup; ; |[M; ;|, and the supremum norm of the
tensor T € R4 is |T|o := sup; ;1 |15 5.kl

Sets and groups

We write B,.(z) € R? for the open ball of radius 7 > 0 centered at
x € R%. The Minkowski sum of sets A, B C R?is (A+B) := {a+b|a €
A, b € B}, and AAB := (A\B) U (B\A) denotes their symmetric
difference. The cardinality of the set A is denoted by card(A4). The
indicator function of a set B C R? is defined as 1p(x) =1, for x € B,
and 1g(x) = 0, for x € R B. The support supp(f) of a function
f : R? — Cis the closure of the set {z € R? | f(z) # 0} in the topology
induced by the Euclidean norm |- |. O(d) stands for the orthogonal
group of dimension d € N, and SO(d) for the special orthogonal group.
The first canonical orthant is H := {z € R? | 2, > 0, k = 1,...,d},
and we define the rotated orthant H := {Az |z € H}, for A € O(d).

Lebesgue-measurable functions

For a Lebesgue-measurable function f : R? — C, we write Jga f(z)dz
for the integral of f w.r.t. Lebesgue measure pz,. For p € [1,00), LP(R?)
stands for the space of Lebesgue-measurable functions f : R* — C
satisfying || f|l, == (Jga |f(2 )|Pdz) /P < oo. L®°(R?) denotes the space
of Lebesgue-measurable functions f : R? — C such that ||f]/e :=
inf{a >0 | |f(x )| a for ae[]z € R?} < 0. For f,g € L*(R?) we

set (f,g) == [ga f(x)g(z)dz. For a countable set Q, (L?(R%))< denotes
the space of sets s 1= {sq}qeg, sq € L2(RY), for all ¢ € Q, satisfying
sl == (Xqeo 54l13)*/? < oo. For a measurable set B C R, we let

vol'(B) := [o. 15(z)dz = [, 1dz.

IThroughout “a.e” is w.r.t. Lebesgue measure.

12
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Linear operators

Id : LP(R?) — LP(R?) stands for the identity operator on LP(R?).
We denote the Fourier transform of f € L'(RY) by f(w) :=
Jwa f(@)e 27 @) dz and extend it in the usual way to L?(R¢) (Rudin)
1991, Theorem 7.9). The convolution of f € L?(R?) and g € L!(R?)
s (f*9) (W) = Jpa [(2)g(y — 2)dz. We write (T;f)(x) := f(x —1),
t € RY, for the translation operator, and (M, f)(x) := ™= f(z),
w € RY for the modulation operator. Involution is defined by
(If)(z) := f(—x). The operator norm of the bounded linear operator
A LP(RY) — LIYRY) is [|Allp,q := sup| s, =1 1Afllq-

Differentiable functions and vector fields

H*(R%), with s > 0, stands for the Sobolev space of functions f €
LA(RY) satisfying || f|lae = (fpa |F@)P(1 + |w]?)*dw)!/? < oo, see
(Grafakos, 2009} Section 6.2.1). Here, the index s reflects the “degree”
of smoothness of f € H*(R?), i.e., larger s entails smoother f. For
a multi-index a = (ay,...,aq) € N¢, D* denotes the differential
operator D% := (9/0xz1)** ...(0/0x4)**, with order || := Zle ;.
If |a| = 0, D*f := f, for f : RY — C. The space of functions f : R —
C whose derivatives D f of order at most N € Ny are continuous is
designated by CV (R, C), and the space of infinitely differentiable
functions is C*(R%,C). S(R?, C) stands for the Schwartz space, i.e.,
the space of functions f € C>°(R%, C) whose derivatives D* f along
with the function itself are rapidly decaying (Rudinl 1991, Section
7.3) in the sense of sup|,|<y sup,cga (1 + [z[*) V(D f)(z)| < oo, for
all N € Ng. We denote the gradient of a function f : R? — C as
V f. The space of continuous vector fields v : RP — R? is C'(RP,RY),
and for k,p,q € N, the space of k-times continuously differentiable
vector fields v : RP — RY is written as C*(RP,R?). For a vector field
v:R? — R? we let Dv be its Jacobian matrix, and D?v its Jacobian
tensor, with associated norms |[v|lec := supgepa |v(2)], [[DV] o =
Dzt |(D0)(@) ooy and [[D20]]oe i= sup, g |(D20)(@) .

13
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Miscellaneous

For z € R, we set (z)y := max{0,z} and (z) := (1 + |=|>)'/2. The
tensor product of functions f,g: R? — Cis (f ® g)(z,y) := f(x)g(y),
(z,y) € RY x R For functions W : N — R and G : N — R, we say
that W(N) = O(G(N)) if there exist C' > 0 and Ny € N such that
W(N) < CG(N), for all N > Ny.

2.2. CONVOLUTIONAL TRANSFORMS:
SEMI-DISCRETE FRAMES

This section gives a brief review of the theory of semi-discrete frames

which are instances of continuous frames (Ali et al., 1993} Kaiser,
, and appear in the mathematical signal processing literature,
e.g., in the context of translation-covariant signal decompositions
(Mallat and Zhong|, |1992; [Unser} |1995; Vandergheynst, 2002a), and
as an intermediate step in the construction of various fully-discrete
frames (Candes and Donohol, 2005} |Grohs, [2012; [Kutyniok and Labate,
[2012a; (Grohs et all [2015). A list of structured example frames of
interest in the context of this thesis is provided in Section for
the 1-D case, and in Section for the 2-D case.
We first collect some basic results on semi-discrete frames.

Definition 1. Let {gx}rea € LY (R?Y) N L2(R?) be a set of functions
indexed by a countable set A. The collection

Up = {ToIgr}(xp)enxre

is a semi-discrete frame for L?(R®) if there exist constants A, B > 0
such that

AV <Y [ U8 TTg) Pdb = 3 If «alB < BB (21)
xen /R? XeA

for all f € L*>(R?). The functions {gx}rea are called the atoms of the
frame Wp. When A = B the frame is said to be tight. A tight frame
with frame bound A =1 is called a Parseval frame.

14
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The frame operator associated with the semi-discrete frame W, is
defined in the weak sense as Sy : L2(R?) — L?(R?),

Sufi= 30 [ (ST Tg)db= (Y onelon) « £ (22

AEA AEA

where (f, ToIg\) = (f * gx)(b), (\,b) € A x R?, are called the frame
coefficients. Sj is a bounded, positive, and boundedly invertible
operator .

The reader might want to think of semi-discrete frames as shift-
invariant frames (Ron and Shenl [1995; [Janssen| [1998) with a continu-
ous translation parameter b € R, and of the countable index set A as
labeling a collection of scales, directions, or frequency-shifts, hence

the terminology semi-discrete.

The following result gives a so-called Littlewood-Paley condi-
tion (Frazier et all) [1991; Daubechies| 1992) for the collection
Wp = {TpIgx}(ap)caxra to form a semi-discrete frame.

Proposition 1. Theorem 5.11) Let A be a countable

set. The collection WA = {TpIgr}(xpyeaxre with atoms {gx}ren C
LY(R%) N L2(RY) is a semi-discrete frame for L*(RY) with frame
bounds A, B > 0 if and only if

ALY WP <B, ae weR" (2.3)

AEA
Remark 1. What is behind Proposition |1] is a result on the uni-
tary equivalence between operators (Naylor and Sell, 1982, Definition
5.19.3). Specifically, Propositionfollows from the fact that the mul-
tiplier Y-\ ca [9N]? s unitarily equivalent to the frame operator Sy in

(2.2) according to

FS\F =" [al
AEA
where F : L*(R?) — L?(R?) denotes the Fourier transform. We refer
the interested reader to (Bolcskei et all [1998), where the framework

of unitary equivalence was formalized in the context of shift-invariant
frames for (*(Z).

15
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The following proposition states normalization results for semi-
discrete frames that come in handy in satisfying, e.g., the admissibility

condition (3.14) as discussed in Section or the condition (4.20) on

the product of the frame lower and frame upper bounds as discussed
in Section 3]

Proposition 2. Let V5 = {TpIgr}xpeaxre be a semi-discrete
frame for L?(R®) with frame bounds A, B.

i) For C > 0, the family of functions Uy = {Tblﬁ}(x,b)e/\xw’

O = C"2g,, VA€ A,

is a semi-discrete frame for L*(R®) with frame bounds A= % and
B:=2Z.
c

ii) The family of functions ‘I/E\ = {Tblgi}(A,b)eAx]Rd’

Ge=F @ awl) ). wen

ANeEA
is a semi-discrete Parseval frame for L2(R?), i.e., the frame bounds

satisfy A" = Bf = 1.

Proof. We start by proving statement i). As W, is a frame for L%(R%),
we have

AIFI3 <D Nf +aall3 < BIIFIB,  Vf € LP(RY). (2.4)
AEA

With gy = VCgy, for all A\ € A, in we get Alf]Z <
ZAGA If = mﬁ”% < B||fH%7 for all f € Lz(Rd)v which is equi-
valent to A1 £3 < Cyen I1f *grl3 < Z]£13, for all £ € L2(RY), and
hence establishes i). To prove statement ii), we first note that F gi =

_ o\ —1/2
B (Swvenlgnl?) ™2, for all A € A, and thus 32, [(Fo) @) =
Y oaeA |§§(w)|2<z)\,e/\ \ﬁ(w)|2> =1, a.e. w € R Application of

Proposition [1| then establishes that \IJE\ is a semi-discrete Parseval
frame for L?(R%), i.e., the frame bounds satisfy A" = B = 1. O

16



2.2 CONVOLUTIONAL TRANSFORMS: SEMI-DISCRETE FRAMES

2.2.1. Examples of semi-discrete frames in 1-D

General 1-D semi-discrete frames are given by collections

U = {TpIgr}(kp)czxr (2.5)

with atoms g, € L'(R) N L?(R), indexed by the integers A = Z, and
satisfying the Littlewood-Paley condition

A< Z |Gx(W)|> < B, ae weR. (2.6)
kEZ

The structural example frames we consider in this section are Weyl-
Heisenberg (Gabor) frames (where the gj are obtained through modu-
lation from a prototype function) and wavelet frames (where the g
are obtained through scaling from a mother wavelet).

Semi-discrete Weyl-Heisenberg frames

Weyl-Heisenberg frames (Daubechies et al.l [1986] 1995} |Janssenl, [1995;
|Grochenig), 2001) (a.k.a. Gabor frames) are well-suited to the ex-
traction of sinusoidal features (Grochenig and Samarahl [2000), and
have been applied successfully in various practical feature extraction
tasks (Lee et all 2009; [Ellis et al., 2011)). A semi-discrete Weyl-
Heisenberg frame for L?(R) is a collection of functions according to
[2.5), where gp(x) := e*™**g(x), k € Z, with the prototype function
g € LY(R) N L*(R). The atoms {gx }xecz satisfy the Littlewood-Paley
condition according to

ALY Jgw—k)[’<B, aeweR (2.7)
kez
A popular function g € L*(R)N L2(R) satisfying (2.7) is the Gaussian
function (Grochenig), 2001)).

Semi-discrete wavelet frames

Wavelets are well-suited to the extraction of signal features characte-
rized by singularities (Daubechies| [1992; Mallat and Zhong},|1992), and

17
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N

Fig. 2.1: The Haar wavelet ¥(z) in 1-D.

have been applied successfully in various practical feature extraction
tasks (Lin and Qul 2000} Tzanetakis and Cookl 2002). A semi-discrete
wavelet frame for L?(R) is a collection of functions according to
([2.5), where gy(z) := 2*y(2*z), k € Z, with the mother wavelet
Y € LY(R) N L?(R). The atoms {gx }rez satisfy the Littlewood-Paley
condition according to

A< Z |QZ(2_]€W)|2 <B, ae w€eR. (2.8)
kez

A large class of functions 1 satisfying (2.8) can be obtained through a

multi-resolution analysis in L?(R) (Mallat} [2009, Definition 7.1) such
as, e.g., the Haar wavelet (see Fig. [2.1)).

2.2.2. Examples of semi-discrete frames in 2-D

Semi-discrete wavelet frames

Two-dimensional wavelets are well-suited to the extraction of signal
features characterized by point singularities (such as, e.g., stars in
astronomical images (Kutyniok and Donohol 2013)), and have been
applied successfully in various practical feature extraction tasks, e.g.,
in (Unser}, |1995; |Serre et al., 2005; [Mutch and Lowe, 2006; Pinto|
. Prominent families of two-dimensional wavelet frames
are tensor wavelet frames and directional wavelet frames.

18
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Tensor wavelets

A semi-discrete tensor wavelet frame for L?(R?) is a collection of
functions according to

Unrw = {T6Ig(e) He)errwber?s  Gie) (@) = 279°(20 ),
where
Arw = {((0,0),0)} U{(e,j) | e € E\{(0,0)}, j = 0},

and E := {0, 1}2. Here, the functions ¢ € L*(R?)NL?*(R?) are tensor
products of a coarse-scale function ¢ € L'(R)N L?(R) and a fine-scale
function ¢ € LY(R) N L?(R) according to

P09 = ¢eg, 1V =yey, POV =¢ey, POV :=yey.
The corresponding Littlewood-Paley condition (2.3 reads
A<OIW +Y > REeWP<B,  (29)
J20ecEN{(0,0)}

for a.e. w € R2. A large class of functions ¢, 1 satisfying (2.9) can be
obtained through a multi-resolution analysis in L?(R) (Mallat, 2009}
Definition 7.1).

Directional wavelets

A semi-discrete directional wavelet frame for L?(R?) is a collection of
functions according to

Yapw = {ToI 9 k) } (k) eApwy beR? S
with

9—s0)(x) =272 2), g (x) :=2¢(2 Ry, 1),

where Apw = {(-=J,0)} U{(j,k) | j € Zwithj > —J, k €
{0,...,K — 1}}, Ry is a 2 x 2 rotation matrix defined as
_ (cos(§) —sin(0)
fo= (Sin(e) cos(o) )0 0 €10:2m), (2.10)
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Fig. 2.2: Partitioning of the frequency plane R? induced by (left) a semi-discrete
tensor wavelet frame, and (right) a semi-discrete directional wavelet
frame.

and 0 := 27”“ , with £k =0,. — 1, for a fixed K € N, are rotation
angles. The functlons ¢ e Ll(RQ) N L?(R?) and ¢ € L'(R?*) N L?(R?)
are referred to in the literature as coarse-scale wavelet and fine-scale
wavelet, respectively. The integer J € Z corresponds to the coarsest
scale resolved and the atoms {g(;,)}(j.k)eApy Satisfy the Littlewood-
Paley condition according to

2w+ > Z| (279 Ry, w)|* < B, (2.11)
j>—J k=0

for a.e. w € R?. Prominent examples of functions ¢, ¢ satisfying (2.11))
are the Gaussian function for ¢ and a modulated Gaussian function

for ¢ (Mallat], [2009).

Semi-discrete ridgelet frames

Ridgelets, introduced in (Candes| [1998; |(Candes and Donoho, [1999)),
are well-suited to the extraction of signal features characterized by
straight-line singularities (such as, e.g., straight edges in images), and
have been applied successfully in various practical feature extraction
tasks (Chen et al.| 2005} Arivazhagan et al., 2006} Dettori and Semler,
2007} |Qiao et all, [2010).
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Fig. 2.3: Partitioning of the frequency plane R? induced by a semi-discrete
ridgelet frame.

A semi-discrete ridgelet frame for L?(IR?) is a collection of functions

according to
Uan = {ToLg(j1) }(j1)eAn ber?;
with
90,0)(@) = (), gy (T) =P (2),

where A := {(0,0)}U{(j,l) li=1,1=1,... ,2j—1}, and the atoms
{960} G.yeny satisfy the Littlewood-Paley condition (2.3]) according
to

oo 27-1
AP+ S Won )P < B, aeweR:. (212)
j=1 1=1
The functions ¢ € L'(R?) N L*(R?), (j,1) € Ar\{(0,0)}, are
designed to be constant in the direction specified by the parameter [,
and to have a Fourier transform 1/1/(]\1) supported on a pair of opposite
wedges of size 277 x 27 in the dyadic corona {w € R? | 2/ < |w| < 27H1},
see Fig. We refer the reader to (Grohs), 2012} Proposition 6) for
constructions of functions ¢, ;) satisfying with A= B =1.

Semi-discrete curvelet frames

Curvelets, introduced in (Candes and Donohol, 2004, [2005)), are well-
suited to the extraction of signal features characterized by curve-
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w2

~

Fig. 2.4: Partitioning of the frequency plane R? induced by a semi-discrete
curvelet frame.

> W1

s
A

like singularities (such as, e.g., curved edges in images), and have
been applied successfully in various practical feature extraction tasks
(Dettori and Semler}, 2007; Ma and Plonka, 2010).

A semi-discrete curvelet frame for L?(IR?) is a collection of functions

according to
e = {Tolg(j1)}j1yehc ber?,

with

9(7170)(!@) = ¢($), g(jyl)(x) = djj(RGj,lx)a
where Ac := {(=1,0)}U{(j,1) | j =20, 1=0,...,L; — 1}, Ry € R?*?
is the rotation matrix defined in (2.10)), and ;,; := 712~ [9/21=1 for
j=0,and 0 < I < L; := 2[9/21%2 are scale-dependent rotation
angles. The functions ¢ € L'(R?) N L*(R?) and ¢; € L'(R?) N L*(R?)
satisfy the Littlewood-Paley condition (2.3) according to

0o Lj—1
A< +D Y [Wj(Ro, ,w)? < B, ae weR? (213)
=0

=0

The functions 1, j > 0, are designed to have their Fourier transform
l/}/\j supported on a pair of opposite wedges of size 277/2 x 27 in the
dyadic corona {w € R? | 27 < |w| < 27F1}, see Fig. We refer the
reader to (Candes and Donoho, 2005, Theorem 4.1) for constructions
of functions ¢, v; satisfying (]2__]—3|) with A =B =1.
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Remark 2. For further examples of interesting structured semi-
discrete frames, we refer to (Kutyniok and Labate, |20120b|), which
discusses semi-discrete shearlet frames, and (Grohs et all |2015),
which deals with semi-discrete a-curvelet frames.

2.3. NON-LINEARITIES

This section gives a brief overview of non-linearities M : L?(R?) —
L?(R9) that are widely used in the deep learning literature and that
fit into our theory. For each example, we establish that it satisfies the
following conditions:

i) Lipschitz continuity: There exists a constant L > 0 such that
IMf —Mhlls < LIIf = hll2,  ¥f.he LXRY).

ii) Mf=0for f=0.

All non-linearities considered here are pointwise (also referred to as
memoryless in the mathematical signal processing literature) operators
in the sense of

M: 2R — L2RT),  (Mf)(x) = p(f(2)), (2.14)

where p : C — C. An immediate consequence of this property is that
the operator M commutes with the translation operator T;:

(MT,f)(x) = p(Tef)(2)) = p(f (& — 1)) = Tip(f () = (LM f)(x),

for all f € L2(R?) and all t € R4,

Modulus function

The modulus function

|1 L2RY) = LXRY),  |fl(2) = |f(2)],
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-1 1

Fig. 2.5: The modulus non-linearity on R.
has been applied successfully in the deep learning literature, e.g., in
(Mutch and Lowe, 2006} [Jarrett et al., |2009), and most prominently

in scattering networks (Mallat, 2012)). Lipschitz continuity with L = 1
follows from

A1 = 181 = [ 17@)] = Ih(o)] Pz
< [ V@) =n@Pds = |F = HlE Vrhe IPRY,
by the reverse triangle inequality. Furthermore, obviously |f| = 0 for
f =0, and finally |-| is pointwise as is satisfied with p(x) := |x|.
Rectified linear unit

The rectified linear unit non-linearity (Nair and Hinton, [2010; |Glorot
et al} 2011)) (a.k.a. ReLU) is defined as R : L?(R%) — L2(RY),

(Rf)(x) := max{0, Re(f(z))} + i max{0, Im(f (x))}.

We start by establishing that R is Lipschitz-continuous with L = 2.
To this end, fix f, h € L2(R?). We have

(Rf)(x) = (Rh)(x)| = | max{0, Re(f(2))} + i max{0, Im(f (x))}

— (max{0,Re(h(z))} + i max{0,Im(h(z))})|

< | max{0,Re(f())} — max{0, Re(h(x))}| (2.15)
+ |max{0 Im(f(z))} — max{0,Im(h(z))}|
< |Re(f(2)) — Re(h(z))| + | Im(f(z)) — Im(h(z))| (2.16)
<|f(z) - x}+|fx)—h(x)\:2|fm—h(x)|, 2.17)
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-1 1

Fig. 2.6: The rectified linear unit non-linearity on R.

where we used the triangle inequality in (2.15)),
| max{0,a} — max{0,b}| < la—b|, Va,beR,
in (2.16]), and the Lipschitz continuity (with L = 1) of Re: C - R
and Im : C — R in (2.17)). We therefore get
5. \1/2
I1Rf = Rills = [ 1(R)(e) ~ (Bh) (@) )
5. \1/2
<2( [ 1@ = n@)Pda) " = 207 = bl

which establishes Lipschitz continuity of R with Lipschitz constant
L = 2. Furthermore, obviously Rf = 0 for f =0, and finally (2.14)) is
satisfied with p(x) := max{0, Re(x)} + ¢ max{0, Im(x)}.

Hyperbolic tangent

The hyperbolic tangent non-linearity (see, e.g., (Huang and LeCun),
2006; Ranzato et al., |2007; Jarrett et al., |2009)) is defined as H :
L*(R?) — L*(RY),

(H f)(z) := tanh(Re(f(x))) 4 i tanh(Im(f (x))),

eT e~

where tanh(z) := S5 . We start by proving that H is Lipschitz-
continuous with L = 2. To this end, fix f, h € L?(R?). We have

|(Hf)(x) = (Hh)(x)| = | tanh(Re(f (z))) + i tanh(Im(f (z)))
— (tanh(Re(h(z))) + i tanh(Im(h(z))))|
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2 MATHEMATICAL PREREQUISITES

Fig. 2.7: The hyperbolic tangent non-linearity on R.

< | tanh(Re(f(z))) — tanh(Re(h(z)))]
+ ’tanh(lm(f(m))) — tanh(Im(h(z)))

, (2.18)

where, again, we used the triangle inequality. In order to further
upper-bound ([2.18)), we show that tanh is Lipschitz-continuous. To
this end, we make use of the following result.

Lemma 1. (Searcoid, |2007, Theorem 9.5.1) Let h : R — R be a

continuously differentiable function satisfying sup |h/(x)| < L. Then,
rz€R
h is Lipschitz-continuous with Lipschitz constant L.

Since tanh’(z) = 1 — tanh?(z), 2 € R, we have sup | tanh’(z)| <
z€R
1. By Lemma [I| we can therefore conclude that tanh is Lipschitz-

continuous with L = 1, which when used in (2.18)), yields

|(Hf)(z) -
| Re(f(x)) — Re(h(x))| + | Im(f(z)) — Im(h(x))|
|f(@) = h(@)| + | f(z) = h(z)] = 2| f(x) = h(z)|.

—~

Hh)(z)|

Here, again, we used the Lipschitz continuity (with L = 1) of Re :
C — R and Im : C — R. Putting things together, we obtain

\E£f — Hb]l —( [ 6@ - mypas)

<2( [ 1@ - hwPda) " = 21f - e
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2.3 NON-LINEARITIES

which proves that H is Lipschitz-continuous with L = 2. Since
tanh(0) = 0, we trivially have Hf = 0 for f = 0. Finally, (2.14)
is satisfied with p(z) := tanh(Re(z)) + ¢ tanh(Im(z)).

Shifted logistic sigmoid

The shifted logistic sigmoid non-linearityf| (see, e.g., (Glorot and
Bengio, [2010; [Mohamed et al) 2011)) is defined as P : L?(R%) —
L*(RY),

(Pf)(z) := sig(Re(f(z))) + isig(Im(f(2))),

where sig(x) = H% — 1. We first establish that P is Lipschitz-
continuous with L = 3. To this end, fix f,h € L?(R%). We have
(Pf)(z) — (Ph)(x)| = |sig(Re(f(2))) + isig(Im(f (z)))
— (sig(Re(h(x))) + isig(Im(h(x))))|
< |sig(Re(f(2))) — sig(Re(h(2)))|
+ |sig(Im(f(2))) — sig(Im(h(x)))[,  (2.19)

where, again, we employed the triangle inequality. As before, to
further upper-bound (2.19)), we show that sig is Llpschltz continuous.
Specifically, we apply Lemma 1| with sig/(z) = m, x € R, and

hence sup | sig’(z)| < &, to conclude that sig is Lipschitz-continuous
rzeR

with L = 1. When used in (2.19) this yields (together with the
Lipschitz continuity (with L =1) of Re: C — R and Im : C — R)

[(Pf)(z) — (Ph)()|
< 7| Re(#@) ~ Re(iian)| + [ (@) ~ Tm(h(a))

< 1 7@ — @) + [ 7@ - hw)

2Strictly speaking, it is actually the sigmoid function = — H% rather than

the shifted sigmoid function z +— 1_‘_% — % that is used, e.g., in (Glorot and
|Bengiol |201()t |Mohamed et al.l |2()11[). We incorporated the offset % in order to
satisfy the requirement Pf =0 for f = 0.
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(SIS

Fig. 2.8: The shifted logistic sigmoid non-linearity on R.

- % ‘f(x) - h(x)‘. (2.20)

It now follows from ([2.20) that
) 1/2
1Pf = Phlla = ( [ I(P1)(a) - (P)@)d)
Rd

1 NV

<35 ([ 1f@ —h@Paz) " =S 1f = Al
Rd

which establishes Lipschitz continuity of P with L = % Since sig(0) =

0, we trivially have Pf = 0 for f = 0. Finally, (2.14) is satisfied with

p(x) := sig(Re(x)) + isig(Im(x)).

2.4. POOLING OPERATORS

In the deep learning literature the term “pooling” broadly refers to
some form of combining “nearby” values of a signal (e.g., through ave-
raging) or picking one representative value (e.g, through sub-sampling
or maximization), see Fig. As parts of this thesis (namely, Chap-
ters|3[and [4f) deal with DCNNs in continuous timeL it is inevitable to
work with continuous-time emulations of discrete-time pooling opera-
tors. In this section, we derive these emulations for two discrete-time

3In the mathematical signal processing literature, the qualifiers discrete-time
and continuous-time allow to differentiate between signals that are i) (square-
summable) sequences fq € £2(Z) := {fq:Z — C | ZkeZ | fa[k]|? < oo} and ii)
functions f € L2(R%).
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faln]

f
Lot

Fig. 2.9: Impact of pooling operators on the discrete-time signal fyq € £*(Z)
(top row). Pooling by sub-sampling amounts to retaining every S-
th sample (middle row). Pooling by averaging (with a box function
¢4) amounts to computing local averages of S consecutive samples
(bottom row).

pooling operators, namely for pooling by sub-sampling (Pinto et al.,
2008)) and averaging (Huang and LeCunl [2006; |Jarrett et al., 2009).
Pooling by sub-sampling

Consider a one-dimensional discrete-time signal fq € (?(Z) := {fq :
Z — C | Y ez | falk]|? < oo}. Sub-sampling by a factor of S € N in
discrete time is defined by (Vaidyanathan) [1993| Section 4)

fd — hd = fd[S]
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2 MATHEMATICAL PREREQUISITES

and amounts to simply retaining every S-th sample of fq, see Fig.
(middle). The discrete-time Fourier transform of hq is given by
a summation over translated and dilated copies of fAd according to
(Vaidyanathan) [1993| Section 4)

S—1
Fa(0) = S halkle 2740 = % Zfd(ogk). (2.21)
k=0

keZ

The translated copies of fd in are a consequence of the 1-
periodicity of the discrete-time Fourier transform. We can therefore
emulate the discrete-time sub-sampling operator in continuous time
through the dilation operator

[ h=8Y2f(S), feL*RY), (2.22)

which in the frequency domain amounts to dilation according to
h = S-%2f(S~1.). The scaling by S%? in (2.22)) ensures unitarity of
the continuous-time sub-sampling operator.

Pooling by averaging
In discrete time average pooling is defined by

Ja = ha = (fa* ¢a)[S] (2.23)

for the (typically compactly supported) “averaging kernel” ¢q € ¢?(Z)
and the averaging factor S € N. Taking ¢4 to be a box function
of length S amounts to computing local averages of S consecutive
samples, see Fig. (bottom). Weighted averages are obtained by
identifying the desired weights with the averaging kernel ¢4. The
operator can be emulated in continuous time according to

[ SY2(fx9)(S), feL*RY, (2.24)

with the averaging window ¢ € L'(R%) N L2(R9).
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2.4 POOLING OPERATORS

General pooling

The operators in (2.22) and (2.24) fit into a more general framework.
Specifically, we can consider a general pooling operator of the form

f = SY2P(f)(S), (2.25)

where S > 1 is the so-called pooling factor and P : L?(R%) — L?(R%)
satisfies the Lipschitz property |Pf — Phlla < R|f — h||2, for all
f,h € L2(R?), with Pf =0 for f = 0.

The operator in can be recovered from simply by
taking P to equal the identity mapping (which is, of course, Lipschitz-
continuous with Lipschitz constant R = 1 and satisfies Idf = 0
for f = 0). Moreover, is recovered from by taking
P(f) = f*¢, f € L?*(RY), and noting that convolution with ¢
is Lipschitz-continuous with Lipschitz constant R = ||¢||; (thanks to
Young’s inequality (Grafakos| 2008, Theorem 1.2.12)) and trivially
satisfies Pf =0 for f = 0.

To make it clear that we consider emulations of discrete-time
pooling operators, we refer to the operator in as Lipschitz-
pooling through dilation to indicate that essentially amounts
to the application of a Lipschitz-continuous mapping followed by a
continuous-time dilation.
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CHAPTER 3

Deep convolutional feature extraction:
Architectures, invariances, and

deformation sensitivity

EEP convolutional neural networks have led to breakthrough
D results in numerous practical machine learning tasks such as

classification of images in the ImageNet data set (Krizhevsky|
et al.l [2012; [He et al.l |2015)), control-policy-learning to play Atari
games (Mnih et al., |2015]) or the board game Go (Silver et al.| 2016).
Many of these applications first perform feature extraction and then
feed the results thereof into a trainable classifier. The mathematical
analysis of DCNNs for feature extraction was initiated by (Mallat),
2012). Specifically, Mallat considered so-called scattering networks
based on a wavelet transform followed by the modulus non-linearity
in each network layer, and proved translation invariance (asympto-
tically in the wavelet scale parameter) and deformation stability of
the corresponding feature extractor. This chapter complements Mal-
lat’s results by developing a theory of DCNNs for feature extraction
encompassing general convolutional transforms, or in more technical
parlance, general semi-discrete frames (including Weyl-Heisenberg,
curvelet, shearlet, ridgelet, and wavelet frames), general Lipschitz-
continuous non-linearities (e.g., rectified linear units, shifted logistic
sigmoids, hyperbolic tangents, and modulus functions), and general
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3 DEEP CONVOLUTIONAL FEATURE EXTRACTION

Lipschitz-continuous pooling operators emulating sub-sampling and
averaging. In addition, all of these elements can be different in dif-
ferent network layers. For the resulting feature extractor we prove a
translation invariance result which is of vertical nature in the sense
of the network depth determining the amount of invariance, and we
establish deformation sensitivity bounds that apply to signal classes
with inherent deformation insensitivity such as, e.g., band-limited
functions, cartoon functions, and Lipschitz functions.

Outline

The remainder of this chapter is organized as follows. Section
reviews Mallat’s wavelet-based scattering networks. In Section [3:2] we
introduce generalized scattering network architectures encompassing
general convolutional transforms, general Lipschitz-continuous non-
linearities, and general Lipschitz-continuous pooling operators. Section
[3-3] contains our first main result, Theorem [I} which shows that the
network-based feature extractor is vertical translation-invariant and
that pooling plays a crucial role in achieving it. Our second main
result, Theorem 2] which provides deformation sensitivity bounds
that apply to signal classes with inherent deformation insensitivity
(such as, e.g., band-limited functions, cartoon functions, and Lipschitz
functions), is presented in Section Finally, in Section we
put our results into perspective and compare them to the results
established in (Mallat), [2012)).

3.1. MALLAT'S WAVELET-BASED
SCATTERING NETWORKS

We set the stage by reviewing scattering networks as introduced in
(Mallat, [2012), the basis of which is a multi-layer architecture that
involves a wavelet transform followed by the modulus non-linearity,
without subsequent pooling. Specifically, (Mallat, 2012, Definition
2.4) defines the feature vector @y (f) of the signal f € L?(R) as the
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3.1 MALLAT'S WAVELET-BASED SCATTERING NETWORKS

se1E| o
ow(f) = | oW (), (3.1)
n=0

where Y, (f) := {f x Y0}, and

n o) (»
oy (f) 5:{(U[)\J7~-~,)\p]f)*¢(J,o)} A
_.é._/ )\(]),...,)\(p)EAw\{(fJ,O)}

)

for all n € N, with

U[)\(j)7...,>\(p>]f2:""’ |f*¢/\(j>|*z/}/\<k>|... *1/1/\<p>|.

n—fold convolution followed by modulus

Here, the index set Aw = {(=J,0)} U{(j,k) | j € Z with j >
—J, k € {0,...,K — 1}} contains pairs of scales j and directions
k (in fact, k is the index of the direction described by the rotation
matrix ry), and

Ua(x) =2V e), A= (j,k) € AwWN{(=J,0)},  (32)

are directional wavelets (Lee, [1996; |Antoine et al., |2008; Mallat), 2009)
with (complex-valued) mother wavelet ¢ € L*(R?) N L2(R?). The 74,
k € {0,..., K — 1}, are elements of a finite rotation group G (if d
is even, G is a subgroup of SO(d); If d is odd, G is a subgroup of
O(d)). The index (—J,0) € Ay is associated with the low-pass filter
Y—s0) € L'(RY) NL*(RY), and J € Z corresponds to the coarsest
scale resolved by the directional wavelets .
The family of functions {1} rcay is taken to form a semi-discrete
Parseval frame
Uaw = {ToIVr}rerw bera

for L2(R?) (Ali et al., 1993; Kaiser, 1994) and hence satisfies

> [ NETIePa = 3 1wl = 1718 VS € PR,

AEAW AEAW

'We emphasize that the feature vector ®yy (f) is a union of the sets of feature
vectors @7, (f).
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3 DEEP CONVOLUTIONAL FEATURE EXTRACTION

Fig. 3.1: Partitioning of the frequency plane R? induced by a semi-discrete
directional wavelet frame with K = 12 directions.

where (f, TpyIt0)) = (f * 1) (b), (\,b) € Aw x RY, are the underlying
frame coefficients. Note that for given A € Aw, we actually have a
continuum of frame coefficients as the translation parameter b € R?
is left unsampled. We refer to Fig. for an illustration of a semi-
discrete directional wavelet frame in the frequency domain. In Section
we give a brief review of the general theory of semi-discrete frames,
and in the Sections and we collect structured example
frames in 1-D and 2-D, respectively.

The architecture corresponding to the feature extractor ®y in
, illustrated in Fig. is known as scattering network
, and employs the frame W,,, and the modulus non-linearity
| - | in every network layer, but does not include pooling. For given
n € N, the set @}, (f) corresponds to the features of the function f
generated in the n-th network layer, see Fig. [3.2]

Remark 3. The function |f x|, A € Aw\{(—=J,0)}, can be thought
of as indicating the locations of singularities of f € L*(RY). Specifi-
cally, with the relation of |f x x| to the Canny edge detector
as described in (Mallat and Zhong, |1992), in dimension d = 2,
we can think of |f *éal = | * Vil A = (k) € Aw\{(—,0)},
as an image at scale j specifying the locations of edges of the im-
age f that are oriented in direction k. Furthermore, it was argued
in (Bruna and Mallat, |2013; |Andén and Mallat, 2014; |Oyallon and

136
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[[1f %ml *Pr@ | * x| (115 % aon |+ Yy * eaco|
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Fig. 3.2: Scattering network architecture based on wavelet filters and the
modulus non-linearity. The elements of the feature vector @y (f) in
(3.1) are indicated at the tips of the arrows.

that the feature vector ®i(f) generated in the first

layer of the scattering network is very similar, in dimension d = 1,
to mel frequency cepstral coefficients (Davis and Mermelstein, |1980),
and in dimension d = 2 to SIFT-descriptors (Lowe, 2004} |Tola et al.,

'

Tt is shown in (Mallat| 2012, Theorem 2.10) that the feature ex-
tractor @y is translation-invariant in the sense of

Jim ([ @w(Tof) — Dw (DIl =0, Vfe AR, VieR: (33)

Note that this invariance result is asymptotic in the scale parameter
J € Z, and does not depend on the network depth, i.e., it guaran-
tees full translation invariance in every network layer. Furthermore,

(Mallat], 2012, Theorem 2.12) establishes that ®yy is stable w.r.t.
deformations of the form

(F-f)(x) = [z = 7(2)),

where 7 : R? — RZ. More formally, for the function space (Hyw, ||-|| )

defined in (3.31)) below, it is shown in (Mallat} |2012, Theorem 2.12)
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3 DEEP CONVOLUTIONAL FEATURE EXTRACTION

that there exists a constant C' > 0 such that for all f € Hy, and all
€ CY(R?,R?) Wltkl | | D7||oc < 55, the deformation error satisfies
the following deformation stability bound

[1@w (Frf) — Pw (N
C277lloo + JND7lloo + 1D*7lloo) 1 Il 1 - (3-4)

In practice signal classification based on Mallat’s wavelet-based scat-
tering networks is performed as follows. First, the function f and the
wavelet frame atoms {1x }rea,, are discretized to finite-dimensional
vectors. The resulting scattering network then computes the finite-
dimensional feature vector @y (f), whose dimension is typically re-
duced through an orthogonal least squares step (Chen et al., |1991),
and then feeds the result into a trainable classifier such as, e.g., a SVM.
State-of-the-art results for Mallat’s wavelet-based scattering networks
were reported for various classification tasks such as handwritten
digit recognition (Bruna and Mallat], 2013)), texture discrimination
(Bruna and Mallat|, [2013; |Sifre, [2014)), and musical genre classification
(Andén and Mallat), 2014)).

3.2. GENERALIZED SCATTERING NETWORKS

As already mentioned, scattering networks follow the architecture
of DCNNs (Rumelhart et al., 1986} LeCun et al., 1990} 1998, [2010,
[2015} [Serre et all, 2005}, [Huang and LeCunl, 2006} [Mutch and Lowe),
2006; [Ranzato et all 2006, [2007; [Pinto et al) [2008; |Jarrett et al]
12009; [Krizhevsky et al.| 2012; Bengio et all} 2013) in the sense of
cascading convolutions (with atoms {¥x}xea,, of the wavelet frame

U, ) and non-linearities, namely the modulus function, but without
pooling. General DCNNSs as studied in the literature exhibit a number
of additional features:

21t is actually the assumption || D7|loo < 2d’ rather than [|D7|lcc < l as stated

in (Mallat] 2012} Theorem 2.12), that is needed in (Mallat| [2012] page 1390) to

establish that |det(E — (D7)(z))| 2 1 — d||D7l||oc = 1/2.
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i) a wide variety of filters are employed, namely pre-specified unstruc-
tured filters such as random filters (Ranzato et al.l [2007} |Jarrett|
, and filters that are learned in a supervised
and LeCun), 2006} Jarrett et al.,[2009) or an unsupervised
et al.l 2006} [2007; [Jarrett et al., |2009) fashion.

ii) a wide variety of non-linearities are used such as, e.g., hyperbolic
tangents (Huang and LeCunl |2006; Ranzato et al., 2007; |Jarrett|

2009)), rectified linear units (Nair and Hinton} [2010; |Glo{

2011)), and logistic sigmoids (Glorot and Bengiol 2010}
Mohamed et al.| [2011)).

iii) convolution and the application of a non-linearity is typically fol-
lowed by a pooling operator such as, e.g., sub-sampling
2008), average-pooling (Huang and LeCunl [2006} [Jarrett|

2009), or max-pooling (Serre et al 2005; Mutch and Lowel
[2006} [Ranzato et all 2007} [Jarrett et all, [2009).

iv) the filters, non-linearities, and pooling operators are allowed to be
different in different network layers (LeCun et al.l |2015; |Goodfellow|

Gt al, 2016).

The purpose of this chapter is to develop a mathematical theory of DC-
NN for feature extraction that encompasses all of the aspects above
(apart from max-pooling) with the proviso that the pooling operators

we analyze are continuous-time emulations of pooling operators in
discrete time (see Section [2.4] for the derivation of these emulations).
Formally, compared to Mallat’s scattering networks, in the n-th net-
work layer, we replace the wavelet-modulus operation |f x 1| by a
convolution with the atoms gy, € L'(R?) N L?(RY) of a general semi-
discrete frame W,, := {T,Igx, }perd r, en, for L?(R?) with countable
index set A, (see Section for a brief review of the theory of semi-
discrete frames), followed by a non-linearity M, : L?(R?) — L?(R%)
that satisfies the Lipschitz property || M, f — Myh|l2 < L,||f — k|2,
for all f,h € L?(R%), with M, f = 0 for f = 0. The output of this
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3 DEEP CONVOLUTIONAL FEATURE EXTRACTION

non-linearity, M, (f * g, ), is then pooled according to
f =+ S Pa(f)(Sws), (3.5)

where S, > 1 is the pooling factor and P, : L?*(R%) — L?(R%)
satisfies the Lipschitz property || P, f — Pph|l2 < Ryl f — k|2, for all
f,h € L2(R?), with P, f =0 for f = 0.

We next comment on the different elements in our network ar-
chitecture in more detail. The frame atoms g, are arbitrary and
can, therefore, also be taken to be structured, e.g., Weyl-Heisenberg
functions, curvelets, shearlets, ridgelets, or wavelets as considered
in (where the atoms gy, are obtained from a mother
wavelet through scaling and rotation operations, see Section. The
corresponding semi-discrete signal transformsﬂ briefly reviewed in
Sections [2.2.1] and [2:2.2] have been employed successfully in various
feature extraction tasks (Unser}, [1995; [Lin and Qul, 2000} [Tzanetakis|

and Cook|, 2002} [Chen et al.l [2005}; [Arivazhagan et all 2006} [Dettori

[and Semler], 2007, Ma and Plonkal, 2010} [Qiao et all 2010; [Ellis et all,
2011)), but their use—apart from wavelets—in DCNNs appears to be

new. We refer the reader to Section for a detailed discussion of
several relevant example non-linearities (e.g., rectified linear units,
shifted logistic sigmoids, hyperbolic tangents, and, of course, the
modulus function) that fit into our framework. Moreover, we refer
the reader to Section [2.4) where we explain how the continuous-time
pooling operator emulates discrete-time pooling operators such

as pooling by sub-sampling (Pinto et al.,|2008) and averaging (Huang

3In the frame literature (Al et al. [1993; |Kaiser| [1994; |Candés and Donoho}, 12005
Grohs| |2012; [Kutyniok and Labate, |2012a; |Grohs et al., |2015)), a semi-discrete
signal transform is a convolutional transform with filters that depend on discrete
indices. Specifically, let {gx}xea C L' (R) N L?(R?) be a set of functions indexed
by a countable set A. Then, the mapping

\f = {f % 9x(0)}renpert = {0 ToIo0) brenperd, [ € L*(RY), (3.6)

is called a semi-discrete signal transform, as it depends on discrete indices A € Al
and continuous variables b € RY. We can think of the mapping as the
analysis operator in frame theory (Daubechies| [1992), with the proviso that for,
given A € A, we actually have a continuum of frame coefficients as the translation
parameter b € R? is left unsampled.
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and LeCun, |2006; |Jarrett et al., [2009). As already mentioned in Sec-
tion we refer to the operator in as Lipschitz pooling through
dilation to indicate that essentially amounts to the application
of a Lipschitz-continuous mapping followed by a continuous-time dila-
tion. We note, however, that the operator in will not be unitary
in general.

We next state definitions and collect preliminary results needed for
the analysis of the general feature extraction network we consider.
The basic building blocks of this network are the triplets (V,,, M,,, P,)
associated with individual network layers and referred to as modules.

Definition 2. Forn € N, let V), = {TyIgx, }pera z, cn, be a semi-
discrete frame for L*(R?) and let M,, : L*(RY) — L?(R?) and P, :
L2(R%) — L2(R?) be Lipschitz-continuous operators with M, f = 0
and P, f =0 for f =0, respectively. Then, the sequence of triplets

Q= (W, My, Pa)) oy

is referred to as a module-sequence.

The following definition introduces the concept of paths on index
sets, which will prove helpful in characterizing the feature extraction
network. The idea for this formalism is due to (Mallat}, 2012).

Definition 3. Let Q = ((\I/n,MmPn))neN be a module-sequence, let
{gx, }r,en, be the atoms of the frame ¥,,, and let S, > 1 be the
pooling factor (according to ) assoctated with the n-th network
layer. Define the operator U, associated with the n-th layer of the
network as U, : A, x L?(R?) — L2(R%),

Un(Ans f) = Un[Aa] f = SrdL/QPn(Mn(f * QAW,))(Sn')- (3.7)

For 1 < n < oo, define the set A" := A1 X Ag x -+ X A,,. An ordered
sequence ¢ = (A1, A2, ..., A\p) € A™ is called a path. For the empty
path e := () we set A° := {e} and Uyle]f := f, for all f € L*(R?).

The operator U, is well-defined, i.e., U,[\,]f € L?(R%), for all
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3 DEEP CONVOLUTIONAL FEATURE EXTRACTION
(Ans f) € Ay x L2(R?), thanks to
1UaAal FI2 = 5 /
]Rd
’2

:/Rd Po (Mo (f #9x,.)) (v)| dy

= 1Pa (M (f + gx,)) 13 < RAIM(f % g0, )3 (3.8)
< LARANS * gx, |13 < BaLp RY 13- 3.9

P, (Mn(f * gkn)) (Snz)

:

For the inequality in we used the Lipschitz continuity of P,
according to || P, f — P,h||3 < R2||f — h||3, together with P,h = 0 for
h =0 to get || P,fl|3 < R2||f||3. Similar arguments lead to the first
inequality in . The last step in is thanks to

> lF#gx 13 < Ball f1I3,

A, €A,

I1f * ga, 13 <

which follows from the frame condition ([2.1)) on ¥,,. We will also need
the extension of the operator U, to paths ¢ € A™ according to

Ulglf = U[(A1, A2,y M) f i= UnlAn] - - - U2[X2)Ur[M]f,  (3.10)

with Ule]f := f. Note that the multi-stage operation (3.10) is again
well-defined thanks to

1Ulgl £113 < (H BkL2R2> IF13, Vg €A™, vf e L*(RY), (3.11)
k=1

which follows by repeated application of . The signals Ulq]f,

q € A", associated with the n-th network layer, are referred to as

feature maps in the deep learning literature.

In scattering networks one atom 1y, A € Ay, in the wavelet frame
Up, namely the low-pass filter ¥_; ), is singled out to generate
the extracted features, see Fig. [3.2] We follow this construction and
designate one of the atoms in each frame in the module-sequence
Q= ((\I/n, M, P"))neN as the output-generating atom x,_1 := gxx,
A, € Ay, of the (n—1)-th layer. The atoms {gx, }x,ea,\{rz} U{xn-1}
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3.2 GENERALIZED SCATTERING NETWORKS

in ¥, are thus used across two consecutive layers in the sense of
Xn—1 = gxx generating the output in the (n — 1)-th layer, and the
{97, }a,ern\{r:} DPropagating signals from the (n — 1)-th layer to
the n-th layer according to , see Fig. Note, however, that
the results established in this chapter do not require the output-
generating atoms to be low-pass ﬁltersﬂ From now on, with slight
abuse of notation, we shall write A,, for A, \{\}} as well.

We are now ready to define the feature extractor ® based on the
module-sequence ).

Definition 4. Let Q = ((\I/n,Mn,Pn))neN be a module-sequence.
The feature extractor ®q based on Q maps f € L*(RY) to its feature
vector

oo(f) == |J @5(0), (3.12)
n=0

where O (f) := {(Ulq|f) * Xn}qenn, for alln > 0.

The set @ (f) in corresponds to the features of the func-
tion f generated in the n-th network layer, see Fig. [3.3] where
n = 0 corresponds to the root of the network. The feature extractor
®q : L2(RY) — (LA(RY))9, with Q := [J;—, A", is well-defined, i.e.,
Pa(f) € (L2(R))C, for all f € L?(R?), under a technical condition
on the module-sequence 2 formalized as follows.

Proposition 3. Let Q) = ((\I'n,Mn,Pn))neN be a module-sequence.
Denote the frame upper bounds of ¥,, by B, > 0 and the Lipschitz
constants of the operators M, and P, by L, > 0 and R, > 0,
respectively. If

max{B,, B,L2R?} <1, VncN, (8.13)

then the feature extractor ®q : L2(RY) — (L2(R%))2 is well-defined,
i.e., ®q(f) € (L2(RY))C, for all f € L*(RY).

Proof. The proof is given in Section [3.6.1 O

41t is evident, though, that the actual choices of the output-generating atoms
will have an impact on practical performance.
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3 DEEP CONVOLUTIONAL FEATURE EXTRACTION

UL, A0 A)] 5 UL 287 28]
e ‘ 2
o A;/mf Lo U[(}”%A;;» s
ratioe ) e
U] ) U
L vl <1 (A1) #x

f*xﬁ//

Fig. 3.3: Network architecture underlying the general feature extractor. The
index A*) corresponds to the k-th atom UNG) of the frame ¥,

associated with the n-th network layer. The function Xn is the output-
generating atom of the n-th layer.

As condition (3.13)) is of central importance, we formalize it as
follows.

Definition 5. Let Q = ((\I/n, M, P"))neN be a module-sequence with
frame upper bounds B, > 0 and Lipschitz constants L, R, > 0 of
the operators M, and P,, respectively. The condition

max{B,, B,L2R?} <1, VncN, (3.14)

is referred to as admissibility condition. Module-sequences that satisfy
(13.14)) are called admissible.

We emphasize that condition is easily met in practice. To
see this, first note that B,, is determined through the frame ¥,, (e.g.,
the directional wavelet frame introduced in Section has B = 1),
L, is set through the non-linearity M, (e.g., the modulus function
M =|-| has L = 1, see Section , and R,, depends on the operator
P, in (e.g., pooling by sub-sampling amounts to P = Id and
has R =1, see Section . Obviously, condition is met if

B, <min{l,L%R;?}, Vn€EN,
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3.3 VERTICAL TRANSLATION INVARIANCE

which can be satisfied by simply normalizing the frame elements of ¥,,
accordingly. We refer to Proposition [2]in Section [2.2] for corresponding
normalization techniques, which, as explained in the Sections [3:3]
B4 and 3] do not affect our translation invariance result, our
deformation sensitivity bounds, as well as our energy decay and
conservation results.

3.3. VERTICAL TRANSLATION INVARIANCE

The following theorem states that under very mild decay conditions
on the Fourier transforms ¥, of the output-generating atoms Y,
the feature extractor ®g exhibits vertical translation invariance in
the sense of the features becoming more translation-invariant with
increasing network depth. This result is in line with observations made
in the deep learning literature, e.g., in (Serre et al., [2005; [Huang and
LeCun|, 2006} [Mutch and Lowe, 2006} [Ranzato et al.l [2007; |Jarrett
et al, 2009), where it is informally argued that the network outputs
generated at deeper layers tend to be more translation-invariant.

Theorem 1. Let Q = ((\Iln,Mn,Pn))neN be an admissible module-
sequence, let S, > 1, n € N, be the pooling factors in , and assume
that the operators M, : L*(R?) — L?(R%) and P, : L*(R%) — L?(R%)
commute with the translation operator Ty, i.e.,

M T f =TiM,f, P,Tif=T.P.f, (8.15)
for all f € L*(R?), allt € R?, and all n € N.
i) The features @3 (f) generated in the n-th network layer satisfy
OH(T1f) = Tiy(sy- 50) R0 (), (3.16)

for all f € L*(R?), allt € R, and all n € N. Here, T, ®%(f) refers
to element-wise application of Ty, i.e.,

Ti25(f) :=={Tih | h € ©4(f)}
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3 DEEP CONVOLUTIONAL FEATURE EXTRACTION

it) If, in addition, there exists a constant K > 0 (that does not depend
on n) such that the Fourier transforms X, of the output-generating
atoms xn satisfy the decay condition

[Xn(w)||lw| < K, a.e. w € RY Vn € Ny, (5.17)
then
BT — SOl < il (218)
for all f € L2(RY), allt € RY, and all n € N.
Proof. The proof is given in Section [3.6.2} O

We start by noting that all pointwise non-linearities M,, : L?(R?) —
L*(R?) satisfy the commutation relation in (3.15)). A large class of
non-linearities widely used in the deep learning literature, such as
rectified linear units, hyperbolic tangents, shifted logistic sigmoids,
and the modulus function as employed in 7 are, indeed,
pointwise and hence covered by Theorem |1} Moreover, P = Id as in
pooling by sub-sampling trivially satisfies . Pooling by averaging
Pf = fx¢, with ¢ € LY (RY)NL3(R?), satisfies as a consequence
of the convolution operator commuting with the translation operator
T;. Note that can easily be met by taking the output-generating
atoms {xn }nen, €ither to satisfy

sup {{[xnll1 + [Vxalli} < oo, (3.19)
ne€Np

see, e.g., Chapter 7), or to be uniformly band-limited
in the sense of supp(x») C B,(0), for all n € Ny, with an r that is
independent of n (see, e.g., Chapter 2.3)).

The bound in shows that we can explicitly control the amount
of translation invariance via the pooling factors S,,. This result is in
line with observations made in the deep learning literature, e.g., in
(Serre et al., 2005; Huang and LeCunl [2006; [Mutch and Lowe, 2006;
Ranzato et al., 2007} Jarrett et al.,2009), where it is informally argued
that pooling is crucial to get translation invariance of the extracted
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3.3 VERTICAL TRANSLATION INVARIANCE

<

2

(a) (b) (c)

=

Fig. 3.4: Handwritten digits from the MNIST data set (LeCun and Cortes,
1998]). For practical machine learning tasks (e.g., signal classification),
we often want the feature vector @ (f) to be invariant to the digits’
spatial location within the image f. Theorem establishes that the
features @& (f) become more translation-invariant with increasing
layer index n.

features. Furthermore, the condition hrn S1-Sy-...-8, =00 (easily

met by taking S, > 1, for all n € N) guarantees thanks to ,
asymptotically full translation invariance according to

T (|5 (T) ~ B(AII| =0, Vf e L(RY), vi e RL (3.20)

This means that the features ®g (T} f) corresponding to the shifted
versions T} f of the handwritten digit “3” in Figs. (b) and (c)
with increasing network depth increasingly “look like” the features
@4 (f) corresponding to the unshifted handwritten digit in Fig. (3.4 (a).
Casually speaking, the shift operator T} is increasingly absorbed by ®¢
as n — oo, with the upper bound quantifying this absorption
w.r.t. the layer index n, the constant K, and the pooling factors
{Sk}7_,. In contrast, the translation invariance result established
in (Mallat, 2012) is asymptotic in the wavelet scale parameter J,
and does not depend on the network depth, i.e., it guarantees full
translation invariance in every network layer. We honor this difference
by referring to as horizontal translation invariance and to
as vertical translation invariance.

We emphasize that vertical translation invariance is a structural
property. Specifically, if P, is unitary (such as, e.g., in the case
of pooling by sub-sampling where P, simply equals the identity
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3 DEEP CONVOLUTIONAL FEATURE EXTRACTION

mapping), then so is the pooling operator in (3.5)) owing to

1542 P, (£)(Su) 2 = S / Pa(f)(Sua) P = / IPu(f) () Pz
R4 R4
— IP(HIE = IF13

where we employed the change of variables y = S, z, % =S54,
Finally, we note that in practice in certain applications it is actually
translation covariance in the sense of ®E(Tyf) = T PE(f), for all
f € L*(R%) and all t € R?, that is desirable, for example, in facial
landmark detection where the goal is to estimate the absolute position
of facial landmarks in images. In such applications features in the
layers closer to the root of the network are more relevant as they are
less translation-invariant and more translation-covariant. The reader
is referred to Section [5.6| where corresponding numerical evidence
is provided. We proceed to the formal statement of our translation

covariance result.

Corollary 1. Let Q) = ((\Iln,Mn,Pn))neN be an admissible module-
sequence, let S, > 1, n € N, be the pooling factors in , and assume
that the operators M, : L?(R?) — L2*(RY) and P, : L*(R%) — L?(R%)
commute with the translation operator Ty in the sense of . If, in
addition, there exists a constant K > 0 (that does not depend on n)
such that the Fourier transforms X,, of the output-generating atoms

Xn satisfy the decay condition (3.17)), then
1@G(Tf) = L@ (NI < 27t K |1/ (S ... Sp) = 1[I £]l2,
for all f € L*(RY), all t € R?, and all n € N.
Proof. The proof is given in Section [3.6.3] O

Corollary [ shows that no pooling, i.e., taking S,, = 1, for all n € N,
leads to full translation covariance in every network layer. Conversely,
this proves that pooling is necessary to get vertical translation in-
variance as otherwise the features remain fully translation-covariant
irrespective of the network depth.
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5 e i

(a) (b) (c)

Fig. 3.5: Handwritten digits from the MNIST data set (LeCun and Cortes)
1998). If f denotes the image of the handwritten digit “5" in (a),
then—for appropriately chosen 7—the function F;f = f(- — 7(+))
models images of "'5" based on different handwriting styles as in (b)
and (c).

3.4. DEFORMATION SENSITIVITY BOUNDS

In this section we provide bounds on the sensitivity of the feature
extractor & w.r.t. deformations of the form

(Frf)(2) = f(z —7(x)).

This class of deformations encompasses non-linear distortions f(x —
7(z)) as illustrated in Fig. inter alia.

3.4.1. Decoupling

The deformation sensitivity bounds we derive are signal-class specific
in the sense of applying to input signals taken from a particular class.
Specifically, the signal class needs to exhibit inherent deformation
insensitivity in the following sense.

Definition 6. A signal class C C L?*(R?) is called deformation-
insensitive if there exist a,C > 0 such that for oll f € C and all
(possibly non-linear) 7 € C*(R%, R?) with ||7||oc < & and || D7 <
ﬁ, it holds that

If = Frflla < ClITSN 2 (3.21)

The constant C' > 0 and the Lipschitz exponent o > 0 in (3.21)
depend on the particular signal class C. Moreover, o > 0 determines
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fi(z), (Frf1) (=)

FE:T ;

x

5 2, on the functions
fi €C1 C L*(R) and fo € C2 € L*(R). The signal class C; consists
of smooth, slowly varying functions (e.g., band-limited functions, see
Section , and Cy consists of compactly supported functions that
exhibit discontinuities (e.g., cartoon functions, see Section [3.4.3]). We
observe that f1, unlike fo, is affected only mildly by F-. The amount
of deformation induced therefore depends drastically on the specific
f € L*(R).

Fig. 3.6: Impact of the deformation F,, with 7(z) = 2 e~

the decay rate of the deformation error ||f — F, f|l2 as ||7]|cc — O.
Clearly, larger o > 0 results in the deformation error decaying faster as
the deformation becomes smaller. Examples of deformation-insensitive
signal classes are

i) the class of band-limited functions with o = 1 (see Section [3.4.2)),
ii) the class of cartoon functions with o = % (see Section ,
iii) the class of Lipschitz functions with o =1 (see Section [3.4.4]).

While a deformation sensitivity bound that applies to all f € L%(R9)
would be desirable, the example in Fig. 3.6 illustrates the difficulty
underlying this desideratum. Specifically, we can see in Fig. [3.6] that
for given 7(x) the impact of the deformation induced by f(x — 7(z))
can depend drastically on the function f € L?(R?) itself. We note
that the deformation stability bound for scattering networks
reported in (Mallat, 2012, Theorem 2.12) applies to a signal class as

well, see (3.31) in Section [3.5]

Remark 4. [t is interesting to note that in order to obtain bounds
of the form || f — F-fll2 < C|IT|%|fll2, for f € C C L*(R?), for some
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3.4 DEFORMATION SENSITIVITY BOUNDS

C > 0 and some a > 0, we need to impose non-trivial constraints
on the set C C L?(R?). Indeed, consider d = 1 and 74(x) = s, for
some s < %; the corresponding deformation Fr  amounts to a simple
translation by s with |7sllcc = s < § and ||[D7llec = 0 < 5. Let
fs € L2(R?) be a function that has its energy || fs||3 = 1 concentrated
in a small interval according to supp(fs) C [—s/2,s/2]. Then, fs and

F,_fs have disjoint support sets and hence || fs — Fy. fs|l2 = V2, which
does not decay with ||7]|% = s* for any o > 0.

Our signal-class specific deformation sensitivity bound for the fea-
ture extractor ®q is based on the following two ingredients. First,
we establish—in Proposition [7] in Section [3.6.8|—that the feature ex-
tractor ®q is Lipschitz-continuous with Lipschitz constant Lo = 1,
ie.,

l1®a(f) = 2ol < IIf = hll2,  Vf he LXRY). (3.22)

Second, we derive for the signal classes under consideration (namely,
for band-limited functions in Section [3.4.2] for cartoon functions
in Section and for Lipschitz functions in Section @ an
upper bound on the deformation error || f — F f||> according to (3.21).
The deformation sensitivity bound for the feature extractor is then
obtained by setting h = F;. f in and using (see Section
for the corresponding technical details). This “decoupling” into
Lipschitz continuity of ®g and a deformation sensitivity bound for
the underlying signal class has important practical ramifications as it
shows that whenever we have a deformation sensitivity bound for a
signal class, we automatically get a deformation sensitivity bound for
the corresponding feature extractor thanks to its Lipschitz continuity.

We proceed to the formal statement of the deformation sensitivity
result.

Theorem 2. Let Q = ((\I!n, M,, P”))neN be an admissible module-
sequence and let C C L*(RY) be a deformation-insensitive signal class.
There exist constants o, C > 0 (that do not depend on Q) such that for

all f € C and all 7 € CY (R, RY) with ||7||e < 3 and | D7||s < o,
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the feature extractor ®q satisfies

[[@a(£7f) — Pa(HIIl < ClITlIS] 2 (3.25)
Proof. The proof is given in Section O

First, we note that the bound in holds for sufficiently “small”
7, ie., aslong as ||T]|e < 1 and || D7||o0 < 2. We can think of this
condition on 7 and on the Jacobian matrix D7 as follows: Let f
be an image of the handwritten digit “5” (see Fig. [3.5] (a)). Then,
{F-f | |I7]ls < % and ||D7|o < 55} is a collection of images of the
handwritten digit “5”, where each F,f models an image that may be
generated, e.g., based on a different handwriting style (see Figs.
(b) and (c)). The bounds ||7]|oc < 3 and ||D7||o < 55 now impose
a quantitative limit on the amount of deformation tolerated. The
deformation sensitivity bound provides a limit on how much
the features corresponding to the images in the set {F, f | |T]|co <
2 and ||D7l| < o5} can differ. The strength of the deformation
sensitivity bound in Theorem [2| derives itself from the fact that
the only condition on the underlying module-sequence 2 needed is
admissibility according to , which as outlined in Section can
easily be obtained by normalizing the frame elements of W¥,,, for all
n € N, appropriately. This normalization does not have an impact on
the constant C' in . More specifically, C' is shown in Sectionm
to be completely independent of . All this is thanks to the decoupling
technique used to prove Theorem [2| being completely independent
of the structures of the frames W,, and of the specific form of the
Lipschitz-continuous operators M,, and P,,. Moreover, as the vertical
translation invariance result in Theorem [I]in Section [3-3] applies to all
f € L?(R?), the results established in this chapter show that vertical
translation invariance and limited sensitivity to deformations—for
signal classes with inherent deformation insensitivity—are guaranteed
by the network structure per se rather than the specific convolution
filters, non-linearities, and pooling operators.

Finally, we note that the bound for scattering networks re-
ported in (Mallat} 2012, Theorem 2.12) depends upon first-order (D7)
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3.4 DEFORMATION SENSITIVITY BOUNDS

and second-order (D?7) derivatives of 7. In contrast, our bound
depends on (D7) implicitly only as we need to impose the condition
|D7||oc < 55 for the bound to hol We honor this difference by
referring to as deformation stability bound and to our bound
as deformation sensitivity bound.

Remark 5. It is interesting to note that the frame lower bounds
A, > 0 of the semi-discrete frames W, affect neither the vertical
translation invariance result in Theorem [0 in Section nor the
deformation sensitivity bound in Theorem[3 In fact, our entire theory
carries through as long as the collections V,, = {TyIgx, }x, en, berds
for all n € N, satisfy the Bessel property

S [T )P = Y 17 o B < BalfIE:
e, Y RY An€AL

for all f € L*(RY), for some B, > 0, which, by Proposition n
Section [2.3, is equivalent to

> gm @< By,  ae weR (3.24)
An€AR

Pre-specified unstructured filters (Ranzato et all, [2007; |Jarrett et al.,
and learned filters (Huang and LeCunl, [20006; |[Ranzato et all,
(2006, 2007; | Jarrett et all,[2009) are therefore covered by our theory as
long as is satisfied. In classical frame theory A, > 0 guarantees
completeness of the set W, = {Tylgx, }x, en, pera for the signal space
under consideration, here L?>(R?). The absence of a frame lower
bound A,, > 0 therefore translates into a lack of completeness of ¥,
which may result in the frame coefficients (f, TyIgx,) = (f * gx,)(b),
(An,b) € A, x RY, not containing all essential features of the signal f.
This will, in general, have a (possibly significant) impact on practical

feature extraction performance which is why ensuring the entire frame
property (2.1)) is prudent. Interestingly, satisfying the frame property
(2.1) for all ©,,, n € Z, does, however, not guarantee that the feature

5We note that ||D7||co < is needed for the bound (3.4) to hold as well.

1
2d

93



3 DEEP CONVOLUTIONAL FEATURE EXTRACTION

extractor ®q has a trivial null-set, i.e., ®o(f) = 0 if and only if
[ =0. We refer the reader to Section [{.¢] for an example of a feature
extractor with non-trivial null-set.

3.4.2. Bounds for band-limited functions

The following proposition states that the signal class of L-band-limited
functions

L2(RY) .= {f € L*(RY) | supp(f) C BL(0)}, L >0,

exhibits inherent deformation insensitivity in the sense of Definition

in Section 3.4.1]

Proposition 4. There exists a constant C > 0 such that for all
f € LA (RY) and all T € CH(RY, R?) with ||D7l|ec < 55, it holds that

If = Frflla < CL||7]|oo |l f|2- (3.25)
Proof. The proof is given in Section [3.6.5 O

The dependence of the upper bound in on the bandwidth L
reflects the intuition that the deformation sensitivity bound should
depend on the input signal class “description complexity”. Many sig-
nals of practical significance (e.g., natural images, see Fig. are,
however, either not band-limited due to the presence of sharp (and
possibly curved) edges or exhibit large bandwidths. In the latter case,
the bound effectively becomes void owing to its linear depen-
dence on L. We refer the reader to Section B.4.3] where deformation
sensitivity bounds for non-smooth signals are established.

A similar bound to was derived in (Mallat, 2012, Appendix
B) for wavelet-based scattering networks, namely

I1f *¥-g0) = Fo (f *-a0)llz < C27 7]l fll2, (3.26)

forall f € L?(R%), where Y~ 7,0) is the low-pass filter of a semi-discrete
directional wavelet frame for L2(R%). The techniques for proving ([3.25)
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Fig. 3.7: Left: A natural image (image credit: (Kutyniok and Labate| 2012a)))
is typically governed by areas of little variation, with the individual
areas separated by edges that can be modeled as curved singularities.
Right: An image of a handwritten digit.

and (3.26]) are related in the sense of both employing Schur’s Lemma

(Grafakos| 2008, Appendix I.1) and a Taylor series expansion argument

(Rudinl, |1983, page 411). The signal-class specificity of our bound
(3.25)) comes with new technical elements detailed at the beginning of

the proof in Section [3.6.5)

3.4.3. Bounds for cartoon functions

As already mentioned, the bound in applies to the space of
L-band-limited functions. Many signals of practical significance (e.g.,
natural images) are, however, not band-limited (due to the presence
of sharp and possibly curved edges, see Fig. or exhibit large
bandwidths. In the latter case, the deformation sensitivity bound
becomes void as it depends linearly on L. The goal of this
section is to take structural properties of natural images into account
by considering the class of cartoon functions introduced in
. These functions satisfy mild decay properties and are piecewise
continuously differentiable apart from curved discontinuities along
C?-hypersurfaces. Cartoon functions provide a good model for natural
images (see Fig. left) such as those in the Caltech-256
and CIFAR-100 (Krizhevsky, 2009) data sets, for images
of handwritten digits (LeCun and Cortes| [1998)) (see Fig. right),
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and for images of geometric objects of different shapes, sizes, and
colors as in the Baby AI School data setﬂ

We will work with the following—relative to the definition in
(Donohol, 2001)—slightly modified version of cartoon functions.

Definition 7. The function f : R? — C is referred to as a
cartoon function if it can be written as f = fi1 + 1pfa, where
B C R? is a compact domain whose boundary OB is a compact
topologically embedded C?-hypersurface of R® without boundarﬁ and
fi € H2(RY) N CYR?,C), i = 1,2, satisfy the decay condition

Vfi(x)| < C@)~¢, i=1,2, (3.27)
for some C' > 0 (not depending on f1,f2). Furthermore, we denote by

Clarr = {f +1pf | fi € H*RY) N C (R% C),
Vi) < K(z)™, vl (0B) < K, | falloo < K}

the class of cartoon functions of “size” K > 0.

We chose the term “size” to indicate the length vol?™*(8B) of the
hypersurface B. Furthermore, CE, rr € L?(R?), for all K > 0. This
simply follows from the triangle inequality according to || f1+1 5 fa||2 <
Il fillz+ LB fall2 < || fill2+ | f2]l2 < 0o, where in the last step we used
fi, fo € HY2(R%) C L2(R9). Finally, we note that our results can
easily be generalized to finite linear combinations of cartoon functions,
but this is not done here for simplicity of exposition.

We proceed to the formal statement of our deformation insensitivity
result.

Proposition 5. For every K > 0 there exists a constant Cx > 0
such that for all f € CEygy and all (possibly non-linear) T : R4 — R?
with ||7|o < %, it holds that

If = Frfllz < Crc || 3% (3.28)

Shttp://www.iro.umontreal.ca/%7Elisa/twiki/bin/view.cgi/Public/
BabyAISchool

"We refer the reader to (do Carmol 2013 Chapter 0) for a review on differentiable
manifolds.
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3.4 DEFORMATION SENSITIVITY BOUNDS

Proof. The proof is given in Section [3.6.6] O

The dependence of C'ir on K reflects the intuition that the deforma-
tion sensitivity bound should depend on the signal class description
complexity. For band-limited signals, this dependence is exhibited by
the right hand side (RHS) in being linear in the bandwidth L.
The Lipschitz exponent o = 3 on the RHS of determines the
decay rate of the deformation error ||f — F; f||2 as ||7]lcc — 0. Clearly,
larger ao > 0 results in the deformation error decaying faster as the
deformation becomes smaller. The following simple example shows
that the Lipschitz exponent a = % in (3.28]) is best possible, i.e., it
can not be larger. Consider, again, d = 1 and 74(z) = s, for a fixed
s satisfying 0 < s < % Let f = 1j_1,1j- Then f € CE\ g for some

K>0and |f — Fr,flls = v25 = v3||7|| 2.

3.4.4. Bounds for Lipschitz functions

The following proposition states that functions f that do not exhibit
discontinuities along C?-hypersurfaces (such as cartoon functions),
but otherwise satisfy the decay condition 7 are deformation-
insensitive. More formally, we establish with a = 1 for the
signal class

Vi = {f € L’(R) N C'(R",C) | [Vf(z)| < R(x)""}, R>0.

Proposition 6. For every R > 0 there exists a constant Cr > 0
such that for all f € Vg and all (possibly non-linear) 7 : R — RY
with ||| < %, it holds that

If = Frfll2 < Cr|I Tl co- (3.29)
Proof. The proof is given in Section O

We note that the condition f € C'(R?, C) in Proposition |§| can
be relaxed to Lipschitz-continuous f. This follows simply by noting
that Lipschitz-continuous functions are differentiable a.e. (Federer)
1969, Theorem 3.1.6) and that, since we only bound L2-norms, sets
of Lebesgue measure zero can be ignored.
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3 DEEP CONVOLUTIONAL FEATURE EXTRACTION

3.5. RELATION TO MALLAT'S RESULTS

3.5.1. Architectures

To see how Mallat’s wavelet-modulus feature extractor @y, defined in
(3.1) is covered by our generalized framework, simply note that &y
is a feature extractor ®q based on the module-sequence

QVV = ((\IIAW’ | ’ |7Id))n€N’

where each layer is associated with the same module (¥4, , ||, Id) and
thus with the same semi-discrete directional wavelet frame Wy, =
{ToIva} xenyy pere and the modulus non-linearity |- |. Since ®y does
not involve pooling, we have P, = Id and S,, = 1, for all n € N.
The output-generating atom for all layers is taken to be the low-pass
filter ¥ (_ 0, i-e., Xn = ¥(—10), for all n € Ny. Owing to (Mallat}
2012, Equation 2.7), the set {1x}reca,, satisfies the equivalent frame
condition with A = B =1, and ¥y, therefore forms a semi-
discrete Parseval frame for L?(R9), which implies A, = B,, = 1, for
all n € N. The modulus non-linearity M,, = |- | and the operator
P,, = Id are Lipschitz-continuous with Lipschitz constants L, = 1
and R, =1, and satisfy M,,f = |f|=0and P,f = f =0 for f =0,
respectively. Therefore, the weak admissibility condition is met
according to

max{B,, B,R,“ L2} =max{1,1} =1<1, VneN. (3.30)

Moreover, M,, = |- | and P, = Id trivially commute with the transla-
tion operator 7} in the sense of (3.15)), see Section [2.3] for the corres-
ponding formal arguments. Owing to [t s 0)(x)| < C1(1 + |z[) =472
and [Vip_ s0)(x)| < Co(1+]z])~*72, for some C1,Cy > 0, see (Mallat)
2012, page 1336), it follows that |[t)_s0)l[1 < oo and [[Vih_ o)1 <
oo (Grafakos, 2008, Chapter 2.2), and thus [|¢_ s.0) |1+ V(- 5.0) |1 <
0. By the output-generating atoms x,, = ¥(_ sy, n € Ny, sat-
isfy the decay condition , so that all the conditions required by
Theorem [I] and Corollary [T in Section 33} as well as by Theorem [2]in
Section 3.4.1] are satisfied.

98



3.5 RELATION TO MALLAT'S RESULTS

3.5.2. Horizontal vs. vertical translation invariance
Mallat’s horizontal translation invariance result (3.3)),

Jim[|[@w (72) = Sw (£)]]]

1/2
~ Jim. (n_0|||<1>%<nf>—%(f)w) ~o,

is asymptotic in the wavelet scale parameter J, and guarantees trans-
lation invariance in every network layer in the sense of

Jim [[|@5 (T, f) — @ (NI =0, V[ € L*(R), ¥t € R?, ¥n € No.
—00

In contrast, our vertical translation invariance result is asymp-
totic in the network depth n and is in line with observations made in
the deep learning literature, e.g., in (Serre et al., 2005; Huang and
LeCunl, 2006} [Mutch and Lowe, 2006} [Ranzato et al.l [2007; |Jarrett
et al., [2009), where it is found that the network’s output generated
at deeper layers tends to be more translation-invariant.

We can easily render Mallat’s feature extractor ®yy vertically
translation-invariant according to

lim [[|®F (T2f) — ®% (NIl =0, Vfe L*RY), vt e RY,

n—oo
by employing pooling by sub-sampling (i.e., P, = Id, n € N) and
choosing the pooling factors such that lim Sy -...- S, = oo, see
n—oo
Theorem [

3.5.3. Deformation stability vs. sensitivity

The deformation stability bound (3.4]) for scattering networks reported
in (Mallat, 2012 Theorem 2.12) applies to the space

Hy = {f € L2(RY) ‘ 1l < oo}, (3.31)

where

o 1/2
Lf 1l :=Z< > IU[q]fH%) :

n=0 qE(Aw)"
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3 DEEP CONVOLUTIONAL FEATURE EXTRACTION

Here, (Aw )™ denotes the set of paths g = )\(j), el )\(P)) of length
n with )\<j),...,)\(p) € Aw, see Section ﬁ While (Mallat, 2012,
page 1350) cites numerical evidence on the series - c(x, )n |Uqlf1I3
being finite (for some n € N) for a large class of signals f € L?(R9),
it seems difficult to establish this analytically, let alone to show
that ||f|lmw < oo. In contrast, our deformation sensitivity bound
(13.23)) applies provably to signal classes with inherent deformation
insensitivity (such as, e.g. band-limited functions, cartoon functions,
and Lipschitz functions). Moreover, the space Hyy in depends on
the wavelet frame atoms {1} ey, and thereby on the underlying
signal transform, whereas L2 (R?), C& gy, and Vi are, of course,
completely independent of the module-sequence ().

Finally, Mallat’s deformation stability bound depends on the
scale parameter J. This is problematic as Mallat’s horizontal transla-
tion invariance result requires J — oo, which, by J||D7||cc — o0
for J — oo, renders the deformation stability upper bound void
as it goes to co. In contrast, in our framework, the deformation sensi-
tivity bound and the conditions for vertical translation invariance are
completely decoupled.

3.5.4. Proof techniques

The techniques used in (Mallat] |2012) to prove the horizontal transla-
tion invariance result and the deformation stability bound
make heavy use of structural specifics of the wavelet transform, namely,
isotropic scaling (see, e.g., (Mallat, |2012, Appendix A)), a constant
number K € N of directional wavelets across scales (see, e.g., (Mal
lat, 2012, Equation E.1)), and several technical conditions such as
a vanishing moment condition on the mother wavelet ¢ (see, e.g.,
(Mallat, 2012} page 1391)). In addition, Mallat imposes the scattering
admissibility condition (Mallat, 2012, Theorem 2.6). First of all, this
condition depends on the underlying signal transform, more precisely
on the mother wavelet v, whereas our weak admissibility condition
is in terms of the frame upper bounds B,, and the Lipschitz con-
stants L,, and R,,. As the frame upper bounds B,, can be adjusted by

60
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simply normalizing the frame elements, and this normalization affects
neither vertical translation invariance nor deformation insensitivity,
we can argue that our weak admissibility condition is independent
of the signal transforms underlying the network. Second, Mallat’s
scattering admissibility condition plays a critical role in the proof of
the horizontal translation invariance result (see, e.g., (Mallat,
2012, page 1347)), as well as in the proof of the deformation stability
bound (see, e.g., (Mallat] 2012, Equation 2.51)). It is therefore
unclear how Mallat’s proof techniques could be generalized to arbi-
trary convolutional transforms. Third, to the best of our knowledge,
no mother wavelet 1 € L'(RY) N L2(R?), for d > 2, satisfying the
scattering admissibility condition (Mallat], [2012, Theorem 2.6) has
been reported in the literature. In contrast, our proof techniques are
completely detached from the algebraic structures of the frames W,
in the module-sequence Q = ((\I/n, M, Pn))neN' Rather, it suffices to
employ (i) a module-sequence ) that satisfies the weak admissibility
condition , (ii) non-linearities M,, and operators P, that com-
mute with the translation operator T, (iii) output-generating atoms
Xn that satisfy the decay condition , and (iv) pooling factors
S, such that lim S;-S3-...-5, = co. All these conditions were

n—oo
shown above to be easily satisfied in practice.

3.6. PROOFS

3.6.1. Proof of Proposition

We need to show that ®q(f) € (L?(R9))<, for all f € L?(R%). This
will be accomplished by proving an even stronger result, namely

@A <Ifll2,  ¥F € L*(RY), (3.32)

which, by || f]l2 < oo, establishes the claim. For ease of notation, we
let f, := Ulqlf, for f € L*(R%), in the following. Thanks to
and (3.14)), we have || fyll2 < [|f]l2 < oo, and thus f, € L*(R?). The
key idea of the proof is now—similarly to the proof of (Mallat) 2012}
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3 DEEP CONVOLUTIONAL FEATURE EXTRACTION

Proposition 2.5)—to judiciously employ a telescoping series argument.
We start by writing

PO =D D I1fa* xall3
n:()qGA"
= hm Z Z ||fq*Xn||2- (3.33)
n 0geA™

I=an

The key step is then to establish that a, can be upper-bounded
according to

a, <b, — bn+1, Vn € No, (334)

with by, =37 cxn | £4113, n € Ny, and to use this result in a telescoping
series argument according to

Zan\z by = bng1) = (bo — b1) + -+ + (by — by1)

n=0
=bo— b1 <bo= Y [Ifll3 = U5 =II£]3. (3.35)
H/_/ 0
>0 g&h

By (3.33) this then implies (3.32). We start by noting that (3.34))

reads

Z 1fa * xnll3 < Z 1fall3 — Z I fall3,  ¥neNo, (3.36)
geAn geA™ geA™t!
and proceed by examining the second term on the RHS of (3.36).
Every path

GEANT = Ay x oo X Ay XAy
—_—
=An

of length n+ 1 can be decomposed into a path ¢ € A™ of length n and

an index Apy1 € Any1 according to § = (¢, Ant1). Thanks to (3.10)
we have U[q] = U[(q, An+1)] = Un+1[An+1]U]g], which yields

SofalE=Y" > MUnraaralfel3- (3.37)

geAnt+l qEA™ Ny y1€A 41

62
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Substituting the second term on the RHS of (3.36) by (3.37) now
yields

S lfooxald< Y (a3 = X 1WnsiDaslfald),

qeEA™ geEA Ant1€AL 11

for all n € Ny, which can be rewritten as

S (Merxal3+ Y 10w Dasalfall3)

qEA™ An41€AL11
<Y Nl VneN,. (3.38)
qun

Next, note that the second term inside the sum on the left hand side
(LHS) of (3.38]) can be written as

S Wabanlili = X [ bl

Ant1€AR41 Ant1€AL11

2

= Z Sngl/d Pn+1(Mn+1(fq*gkn+1))(5n+1fﬂ)‘ dx
R

An+1€AR 11
2
STED S LRSI 0]
Ant1€An 11
= Y P (Masa(fa # 9r000)) 3, ¥n € No. (3.39)
Ant1€An 41

Noting that f, € L*(R?), as established above, and gy, ., € L'(R?),
by assumption, it follows that (fg*gx,,,) € L*(R?) thanks to Young’s
inequality (Grafakos| [2008, Theorem 1.2.12). We use the Lipschitz
property of M, 1 and Pyy1, e, [[Myi1(fg * gx,,1) — Mnsrhll2 <
Lot1llfg % ganiy — Rl and [ Posa (fg * 9r,0) — Pagahllz < Roga || fo *
9xrni1 — hl|, together with M, 1h =0 and P,41h =0 for h =0, to
upper-bound the term inside the sum in according to

1Pt (M1 (fq * grni)) I3 < By [ Maga (Fo * gai)l3

<R
<L +1Rn+1\|fq *gAn+1H27 (3.40)
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for all n € Ny. Substituting the second term inside the sum on the
LHS of (3.38]) by the upper bound resulting from insertion of (3.40))

into (3.39) yields
S (Moxal3+I20R20 > Mo+ onal)

geA™ Ant1€AR41
Z max{1, L; nt 18, +1}<||fq * xnll>
gEA™

+ Y aronald), e (3.41)
Ant+1€ARn4+1

As the functions {gx, ., }r,.1eA,1 U{Xn} are the atoms of the semi-
discrete frame U, for L?(R¢) and f, € L*(R%), as established above,
we have

s xallz+ D fa* grnsn I3 < Basallfall3,

Ant1€AR11

which, when used in (3.41) yields

S (Ml + > WnaDaslfald)

geEA™ Ant1€An11

< Z maX{].,Li+1RZ+1}Bn+1quH§
qeA™

= > max{Buny1, B L Ro Yol YneNg.  (342)
geA™

Finally, invoking the assumption

max{B,, B,L? Rn+1} 1, VneN,
in - 3.42)) yields (3.38]) and thereby completes the proof.

3.6.2. Proof of Theorem

We start by proving i). The key step in establishing (3.16]) is to show
that the operator U,, n € N, defined in (3.7)) satisfies the relation

Un[)\n]th = Tt/Sn Unp‘n}fa (343)
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for all f € L?(R?), all t € R?, and all \,, € A,,. With the definition of
[¢] in (3.10) this then yields

UldTif = Ty)(s,.-s,)Uldlf, (3.44)

for all f € L2(R%), all t € R, and all \,, € A,,. The identity (3.16)) is
then a direct consequence of (3.44)) and the translation-covariance of
the convolution operator:

(T2 f) = { (Uld)T2f) *Xn}qun {(T3)(s,--5.,)Udlf) *Xn}qun
={T/(s1-5) ((ULd)f) * xn) } e
=Tyy(s,--5){Ulalf) # xn} g pn
= Tt/(SI»--s”)‘PS(f) Vf e L*(RY), vt € RY.

To establish (3.43)), we first define the unitary operator D,, : L?(R?%) —
L*(R%), D f = Sd/2f(5 -), and note that

UnDlTef = S22 P (M (Tf) # 92,) ) (S

= D,P, ( ((T3f) *g/\n)>
:DnP( (Tu(f * g».) ))
:ann( w(f %9, )) (3.45)
- DT, (P (( (f*gkn)))> (3.46)

for all f € L?(R%) and all t € R, where in ) and (3.46) we
employed M, T; = T;M,, and P,T; = T;P,, for all n € N, and all
t € R?, respectively, both of which are by assumption. Next, using

DT f = Sg/zf(sn : _t) = Sz/Qf(Sn( - t/Sn)> = Tt/SnDnﬁ
for all f € L2(R?) and all ¢ € R? in (3.46)) yields

Un[MTif = DT, (Pn ((Mn(f * g&))))
= Tus, (DuPa (00,0 5 91.)) ) = Tigs, U1,
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for all f € L2(R?) and all ¢ € R%. This completes the proof of i).

Next, we prove ii). For ease of notation, again, we let f, := Ulq|f,
for f € L?(R%). Thanks to and the admissibility condition
([3:14), we have || fyll2 < || fll2 < oo, and thus f, € L?2(R?). We first
write

@G (T f) = GO = N Tes sy 50) @G (f) — PGNP (3.47)
Z ”Tt/ S,L) 4 * Xn) _fq*Xnug

qeEA™
Z [ M t/(S1--Sn )(f *Xn)ffq*anga (3.48)
qeEA™

for all n € N, where in (3.47) we used (3.16), and in (3.48) we

employed Parseval’s formula (Rudin) [1991, page 189)—mnoting that
(fq * Xn) € L*(R?) thanks to Young’s inequality (Grafakos| 2008,
Theorem 1.2.12)—together with the relation th = M_tf, for all
f € L?(R?) and all t € R?. The key step is then to establish the upper
bound
o o 20412 2
IV, Fain) = vl < (gl Al (349

for all n € N, where K > 0 corresponds to the constant in the decay

condition ([3.17)), and to note that
DUfE< D] Ifl3 Ve, (3.50)

geEA™ geAn—!
which follows from (3.34]) thanks to
0< Y fo*xn1ll3=an

qun—l

Sbpo1 —bp = Z ”fq”% - Z ||qu§7 Vn € N.

geAn—1 qEAT

Iterating on (3.50) yields
DB D0 MfllE << D I3

geEA™ qgeAn—1 geN®
=[|U[e]fI2 = IIfll5, VneN. (3.51)
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The identity (3.48] - ) together with the inequalities (3.49) and -
then directly imply

472 |t|2K?

1@ (T3 f) — @G (NI < S G52

Ifl3, vneN.  (3.52)

It remains to prove (3.49)). To this end, we first note that
1Mty (fa ) = Jo X3
= [ Jermtas s PGP e (353)
Since |e~2™* — 1] < 27|x], for all x € R, it follows that

2 2 214]2 2
—2mi(tw)/(S1+-Sn) _ 1|2 < Zlg |<t,;)>)2 < (4; |t| ;ng, (3'54)
1S, 1 Sh

le

where in the 1abt step we employed the Cauchy-Schwartz inequality.

Substituting (3.54) into (3.53) yields

1M _t/(s,.-5,)(fqg * Xn) — fq * XnH%
472(t|?

Ees L I P
Ar?|t* K -
s (STHS)?/W fale) P (3.55)

42K 42 K2
= G5 174113 = G52 1fqll5,  VneN,  (3.56)

N

where in (3.55)) we employed the decay condition (3.17)), and in the
last step, again, we used Parseval’s formula (Rudinl {1991, page 189).

This establishes (3.49)) and thereby completes the proof of ii).

3.6.3. Proof of Corollary

The key idea of the proof is—similarly to the proof of ii) in Theorem
[ in Section [3:6.2}—to upper-bound the deviation from perfect co-
variance in the frequency domain. For ease of notation, again, we let

67



3 DEEP CONVOLUTIONAL FEATURE EXTRACTION

fe:=Ulq f for f € L?(R%). Thanks to and the admissibility

condition ([3.14), we have || f,]l> < ||f||2 < o0, and thus f, € L%(R?).
We first write

N@G(T2f)-Ti @G (N> = 1 Tescs, 5. P6(f) — Ti@G (NI (3.57)
= > I Toyesie50) = To)(f + xa) 3

qEA“
= IM_y(sy8,) — M_o)(fg = xn) 3, (3.58)
qEAY

for all n € N, where in (3.57) we used (3.16), and in (3.58) we
employed Parseval’s formula (Rudin) 1991} page 189)—mnoting that

(fy * Xn) € L*(R?) thanks to Young’s inequality (Grafakos, [2008
Theorem 1.2.12)—together with the relation Ty f = M_.f, for all

f € L%(R?), and all t € R%. The key step is then to establish the
upper bound

(M _t/(8,--5,) = M—t)(fq % xn) 13
2
AT PE2|1/(S1 -+ 8) = 111 43, (3.59)
where K > 0 corresponds to the constant in the decay condition

(3.17). Arguments similar to those leading to (3.52)) then complete
the proof. It remains to prove (3.59):

1M t/(51--5,) = M=) (fo % xn)3
:/ |ef2fri(t,w>/(81-~~5n) o 672”“"‘»’2|ﬂ(w)|2|ﬁ1(w)|2dw. (360)
Rd

Since |e ™2™ — ¢=2™W| L 27|z — y|, for all 2,y € R, it follows that

|€727ri<t,w)/(51---5n) o 6727ri<t,w>|2

ATt |w|?[1/(Sy -+ Sn) = 1|7, (3.61)

|2
where, again, we employed the Cauchy-Schwartz inequality. Substi-

tuting (3.61]) into (3.60)), and employing arguments similar to those
leading to (3.56]), establishes ([3.59)) and thereby completes the proof.
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3.6.4. Proof of Theorem

As already mentioned at the beginning of Section [3.4] the proof of the
deformation sensitivity bound is based on two key ingredients.
The first one, stated in Proposition [7] in Section [3.6.8] establishes
that the feature extractor ®¢ is Lipschitz-continuous with Lipschitz
constant Lo =1, i.e.,

ll@a(f) — 2ol < |If = hll2,  ¥f.he LXRT), (3.62)

and needs the admissibility condition (3.14]) only. The second ingredi-
ent is an upper bound on the deformation error || f — F f||2 according
to (see Definition [6] in Section [3.4.1))

If = Frfll2 < ClITlIS N fl2, (3.63)

and is established in Proposition [ in Section for band-limited
functions, in Proposition [f] in Section for cartoon functions,
and in Proposition [6] in Section for Lipschitz functions. We
now show how and can be combined to establish the
deformation sensitivity bound . To this end, we first apply
with h:= F.f = f(- — 7(-)) to get

[1@a(f) = Pa(F Il < If = Fefll, - VF € LARY).  (3.64)

Here, we used F, f € L?(R?), which is thanks to

1718 = [ | 1#@ = r(o)Pde < 21513,

obtained through the change of variables u = z — 7(z), together with

d
ﬁ = |det(E — (D7)(2))| > 1—d||D7||oo = 1/2, VzcR% (3.65)
The first inequality in (3.65]) follows from:

Lemma 2. (Brent et all, 2015, Corollary 1) Let M € R¥*? be such
that |M; ;| < a, for all i,j with 1 <i,j <d. If da < 1, then

|det(E — M)| 21— da.
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The second inequality in (3.65]) is a consequence of the assumption
|D7||oe < 55. The proof is finalized by replacing the RHS of (3.64)

by the RHS of (3.63).

3.6.5. Proof of Proposition

We first determine an integral operator
(Kf)(x) = /Rd k(z,u)f(u)du (3.66)

satisfying the signal-class specific identity Kf = F.f — f, for all
f € L2(RY), and then upper-bound the deformation error || f — F f||2
according to

If = Frflla = I1Frf = fll2 = 1K fll2 < [ K]]2,2

fll2,

for all f € L2 (R?). Application of Schur’s Lemma, stated below, then
yields
1K ]l2.2 < CL||7|loo,

for some C > 0, which completes the proof.

Schur’s Lemma. (Grafakos, 2008, Appendiz 1.1) Let k : R x RY —
C be a locally integrable function satisfying

(i) sup |k(z,u)|du < o, (ii) sup / |k(z,u)|de < «, (8.67)
z€R4 JR4 weRd JRd

where a > 0. Then, (Kf)(x) = [pa k(x, u) f(u)du is a bounded opera-

tor from L*(R?) to L*(R?) with operator norm ||K |22 < a.

We start by determining the integral operator K in (3.66). To
this end, consider n € S(R%,C) such that 7j(w) = 1, for all w €
B1(0). Setting v(z) := Lin(Lx) yields v € S(R? C) and F(w) =
N(w/L). Thus, 7(w) = 1, for all w € Br(0), and hence f=7-7
so that f = f %, for all f € L2 (R?). Next, we define the operator
A, o L*(RY) — L2(RY), A,f = f =, and note that A, is well-
defined, i.e., A, f € L2(R%), for all f € L?(R?), thanks to Young’s
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inequality (Grafakos| [2008, Theorem 1.2.12) (since f € L*(R%) and
v € S(R%,C) C LY(R?)). Moreover, A, f = f, for all f € L% (R?).
Setting K := F; A, — A, weget Kf = F; A, f —A,f =F,f— f, for
all f € L2(RY), as desired. Furthermore, it follows from

(P 1)@) = [ 2o = r(@) =) f(udu

that the integral operator K = F;A, — A,, ie, (Kf)(z) =
fRd (u)du, has the kernel

k(x,u) :=y(x —7(x) — u) — y(z — u). (3.68)

Before we can apply Schur’s Lemma to establish an upper bound on
| K||2,2, we need to verify that k in is locally integrable, i.e.,
we need to show that for every compact set S C R? x R? we have
Jo lk(z,u)|d(z,u) < co. To this end, let S C R? x R? be a compact
set. Next, choose compact sets Si,S> C R? such that S C S} x 9.
Thanks to v € S(RY,C), 7 € CY(R4,RY), and w € C(R%,R), all
by assumption, the function |k| : S x S; — C is continuous as a
composition of continuous functions, and therefore also Lebesgue-
measurable. We further have

/ |k(z, u)|dedu < / |k(z, u)|dzdu
S1 /S; R4

/ |Wx—7()—u|dxdu+// [v(z — u)|dzdu

Sy Jre

<2 [ e [ [ )y du (369
S1 R4 Sy Rd

= 3ur(S1)|lvl < oo, (3.70)

where the first term in (3.69) follows by the change of variables
y = — 7(x) — u, together with

dy

1, = |det(B—= (D) @) > 1-d|Drlloc > 1/2,  Vr € R?. (3.71)
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3 DEEP CONVOLUTIONAL FEATURE EXTRACTION

The arguments underlying (3.71)) were already detailed at the end of
Section [3.6.4] It follows that k is locally integrable owing to

/|k(x,u)|d(x,u) g/ le(z, )| d(z, u) (3.72)
S Sl><SQ
:/ V(i ) |ddu < oo, (3.73)
S, J8Ss

where follows from S C Sy x Sa, (3.73)) is thanks to the Fubini-
Tonelli Theorem (DiBenedetto], 2002, Theorem 14.2) noting that
|k| : S1 x So — C is Lebesgue-measurable (as established above) and
non-negative, and the last step is due to . Next, we need to
verify conditions (i) and (ii) in and determine the corresponding
a > 0. In fact, we seek a specific constant « of the form

a = CL||7]| oo, (3.74)

for some C > 0. This will be accomplished as follows: For z,u € R?,
we parametrize the integral kernel in according to hy . (t) :=
Y(x —tr(z) —u) —y(xr — u). A Taylor series expansion (Rudin, 1983}
page 411) of hy . (t) w.r.t. the variable ¢ now yields

t t
() = o (0) + / B ()dA = / BN, (3.75)
S—— 0 ' 0 ’
=0
for all t € R, where hl, ,(t) = (& hy.)(t). Note that hy, € C*(R,C)

thanks to v € S(RY,C). Setting t = 1 in (3.75) we get

k(@ u)] = [heu(D] < [ R ,(A)|dA, (3.76)

where
Wy (X)) = = (Vy(z = Ar(z) — u), 7(2)),
for A € [0, 1]. We further have

Iy N < (VA2 = A (2) —u), 7(2))|
< r@)||Vy(z — At(z) — ). (3.77)
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Now, using |7(z)| < sup |7(y)| = ||7]leo in (3.77)), together with

yERd

(3.76)), we get the upper bound
1
|k (2, u)] < ||T||oo/ [V (z = AT(z) — w)ldA. (3.78)
0
Next, we integrate (3.78]) w.r.t. u to establish (i) in (3.67)):
1
/ Ik(z, w)ldu < ||T||oo/ / V(e — Ar(z) — w)ldrdu
Rd re Jo
1
=||T||oo/ / V(e — Ar(z) — w)ldudr  (3.79)
0 JRrd

1
= I / / V() ldydA
0 R4
= Il |11, (3.80)

where follows by application of the Fubini-Tonelli Theorem
(DiBenedetto, [2002, Theorem 14.2) noting that the functions (u, \) —
|V (z—AT(x)—u)|, (u,\) € R¥x[0,1], and (u, \) — |y(z—AT(x)—u)|,
(u, ) € R% x [0, 1], are both non-negative and continuous (and thus
Lebesgue-measurable) as compositions of continuous functions. Finally,
using v = L4n(L-), and thus Vy = L41Vn(L-) and || V7|1 = L||Vnl1
in yields

sup / [k (2, w)|du < L[Vl 7]|oo, (3.81)

z€ERE JR

which establishes an upper bound of the form (i) in (3.67) that exhibits
the desired structure for a. Condition (ii) in (3.67) is established
similarly by integrating (3.78]) w.r.t. z according to

1
/Rd [k(z,uw)|de <70 /]Rd/o |Vy(x — At(x) — u)|d\dx
_ ||T||<,o/O /R V(@ — Ar(z) — w)lded)  (3.82)

1
<2lrl [ [ 1930 1dsax (385)
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3 DEEP CONVOLUTIONAL FEATURE EXTRACTION

=2{|7lloolV7[lx = 2L [V 1[Il oo, (3.84)

which yields an upper bound of the form (ii) in with the desired
structure for «. Here, again, follows by application of the Fubini-
Tonelli Theorem (DiBenedettol 2002, Theorem 14.2) noting that the
functions (z,\) — |Vy(z — Ar(z) — u)|, (z,)\) € R? x [0,1], and
(z,\) = |y(z = A7(x) —u)], (v, \) € R%x [0, 1], are both non-negative
and continuous (and thus Lebesgue-measurable) as a composition of
continuous functions. The inequality follows from a change of
variables argument similar to the one in and . Combining
and (3.84), we finally get with C := 2||Vnlj;. This

completes the proof.

3.6.6. Proof of Proposition

The proof of ([3.28) is based on judiciously combining deformation sen-
sitivity bounds for the components f1, f2 in (f1 + 15 f2) € C\rr and
for the indicator function 1 5. The first bound, stated in Proposition

[6] in Section [3:4:4] reads
If = Frfllz < Ok, (3.85)
and applies to functions f satisfying the decay condition
Vf@)] < K@)~ (3.86)

with the constant Cx > 0 not depending on f, 7 (see (3.93)). The
bound in (B.85)) needs the assumption ||7||o < 3. The second bound,
stated in Lemma [3] below, is

I1s — Fripls < CopliTlIi2, (3.87)

where the constant Csp > 0 is independent of 7. We now show

how (3.85)) and (3.87) can be combined to establish (3.28). For f =

(fr +1pfs) € CE\gy, we have

If = F-flle < lfr — Frfall2
+[1s(fa = Frfo)ll2 + |(1p — Fr i) (Frf2)ll2 (3.88)
<|fr = Frfilla+ 1 f2 = Fr follo+ 1B — FrAB|l2]| Fr f2l oo
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where in we used F,(1gfo)(x) = (Apfo)(z —7(x)) = 1g(x —
() f2((x — 7(2))) = (Fr1p)(z)(Fr f2)(x). With the upper bounds
and , invoking properties of the class of cartoon func-
tions CExrr (namely, (i) f1,fo satisfy and thus , and (ii)
1 fallow = $up, g | fo(@ — 7(2))] < supyega [fa(0)] = [fallow < K,
this yields

If = Fr flls <20k |I7lloe + KCyi3 17|22
<2max{2Cre, KCY2Y ||r]|1/2

oo

=:C

which completes the proof of ([3.28]).
We continue with the deformation sensitivity result (3.87)) for indi-
cator functions 1 5.

Lemma 3. Let B C R? be a compact domain whose boundary OB
is a compact topologically embedded C?-hypersurface of R without
boundary. Then, there exists a constant Cyg > 0 (that does not depend
on 7) such that for all 7 : R* — RY with ||7|| < 1, it holds that

115 — E-aplla < O Il
Proof. In order to upper-bound
e - Frtalf = [ Ls(s) - La(o - r(e))dz,
R

we first note that the integrand h(z) := |[1g(z) — 1g(z — 7(2))|?
satisfies h(z) = 1, for € S, where

S:={zeRzeB and z—1(z) ¢ B}

U{zeRY|z¢ B and z —7(z) € B},

and h(z) = 0, for z € R\ S. Moreover, owing to S C (9B+ B, (0)),
where (0B + By (0)) is a tube of radius [|7 || around the boundary
9B of B, and Lemma[4] stated below, there exists a constant Cyp > 0
such that

vol’(8) < vol (0B + Bjr|,(0)) < Cop|7]loc, (3.89)
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3 DEEP CONVOLUTIONAL FEATURE EXTRACTION

for all 7 with ||7||cc < 1. We therefore have

I1s - Frip|2 = / h(2)de = / 1de = vol*(S) < Col|7loc.
Rd s
which completes the proof. O

It remains to establish the second inequality in (3.89)).

Lemma 4. Let M C R be a compact topologically embedded C?-
hypersurface of R® without boundary and let

T(M,r) = {z €R!| inf |p—y|<r}, r>0,
Y

be the tube of radius v around M. Then, there exists a constant
Cyr > 0 (that does not depend on r) such that for all r < 1 it holds
that

vol (T(M, 1)) < Cas 7. (5.90)

Proof. The proof is based on Weyl’s tube formula (Weyl, [1939)). Let

K:= max K,
ie{l,...,d—1}
where £, is the i-th principal curvature of the hypersurface M (see
(Grayl 2004, Section 3.1) for a formal definition). It follows from
(Grayl, [2004, Theorem 8.4 (i)) that

L5

27‘21-"_1](321' (M)
i Il—o(1+25)

for all r < k™1, where koy(M) = [, Hai(z)dz, i € {0,..., %]},
with Hs; denoting the so-called (2i)-th curvature of M, see (Gray,
2004}, Section 4.1) for a formal definition. Now, thanks to M being
a C?-hypersurface, we have that Hy;, i € {0,. .., L%J}, is bounded
(see (Gray, 2004, Section 4.1)), which together with M compact
(and thus bounded) implies |ka;(M)| < oo, for all i € {0,..., [45]}.

vol'(T(M,r)) =
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3.6 PROOFS

Moreover, by definition, ko;(M), i € {0,...,[ 952}, is independent
of the tube radius r. Therefore, setting

establishes (3.90) for 0 < r < min{1, x~'}. It remains to prove (3.90)
for min{1,x '} <7 < 1. Let

R*:=inf{R>0| M C Br(0)}
and Dg. := vol*(Bg-41(0)). Since
vol(T(M,r)) < Dg-, Y0<r<1,
it follows that
vol'(T(M,r)) < Dg- max{1,x},

for all min{l,x7'} < r < 1, which establishes (3.90) for
min{l, k7 '} <7 <1 and thereby concludes the proof. O

3.6.7. Proof of Proposition |§|

We first upper-bound the integrand in ||f — F,f|3 = [qa [f(z) —
f(z — 7(z))|*dz. Owing to the mean value theorem (Comenetz, 2002,
Theorem 3.7.5), we have

lf(@) = fl@—T@)|<|7lec sup  [VF(y)l
YEB| 7| (%)

<R[l sup ()Y
YEB| | o (%)

=:h(x)

where the last inequality follows by assumption. The idea is now to
split the integral [;, |h(z)[*dz into integrals over the sets B (0) and
RY\ B;(0). For = € B;(0), the monotonicity of the function o + (x)~¢
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implies h(z) < R||7]|0c(0)"¢ = R||7||co, and for x € R4\ B;(0), we
have (1 — ||7||e0) < (1 — m), which together with the monotonicity

|]

of . — ()~ yields h(z) < R||7||oe (1 — ITl=)2) =4 < R||7||o0 (1 —

||

17]|00 )2) ~¢. Putting things together, we hence get

If — Frf|% < R?||T||§o(vold(31(o)) +2d/ <u>—2ddu) (3.91)

Rd
< B2, (vol (B1(0)) +27)1¢)~I3),

=:D2

where in we used the change of variables u = (1 — ||7]|0 ),
together with
du
dz
The inequality in follows from ||7]|c0 < %, which is by assump-
tion. Since ||{-) ~¢||2 < oo, for d € N (see, e.g., (Grafakos, [2008, Section
1)), and, obviously, vol (B1(0)) < oo, it follows that D? < co. We

finally get (3.29) with

= (1= lIlle)® > 27 (3.92)

Cr:=RD, (3.93)

which completes the proof.

3.6.8. Proof of Proposition

Proposition 7. Let Q = ((\I/m M,, P"))neN be an admissible module-
sequence. The corresponding feature extractor ®q : L?*(R%Y) —
(L2(R%))C is Lipschitz-continuous with Lipschitz constant Lo = 1,
i.e.,

llea(f) = o)l < [If = A2, Vf he L*(RY). (3.94)

Remark 6. Proposition @ generalizes (Mallat, 2012, Proposition
2.5), which shows that the wavelet-modulus feature extractor Oy
generated by scattering networks is Lipschitz-continuous with Lip-
schitz constant Ly = 1. Specifically, our generalization allows for
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3.6 PROOFS

general semi-discrete frames (i.e., general convolution filters), gene-
ral Lipschitz-continuous non-linearities M,,, and general Lipschitz-
continuous operators P, all of which can be different in different
layers. Moreover, thanks to the admissibility condition , the
Lipschitz constant Lo =1 in is completely independent of the
frame upper bounds B,, and the Lipschitz-constants L,, and R, of
M, and P,, respectively.

Proof. The key idea of the proof is again—similarly to the proof of
Proposition [3] in Section [3.6.1}—to judiciously employ a telescoping
series argument. For ease of notation, we let f, := Ulq]f and hy :=
Ulglh, for f,h € L?(R%). Thanks to (3.11) and the admissibility
condition ([3.14), we have || fyll2 < || f]l2 < 0o and [|hg|2 < [|All2 < oo
and thus f,, h, € L?(RY). We start by writing

Z Z [[fq* Xn — hq * Xnll3

n=0geA"

N

N—o00
n=0geA"

l1@a(f) = Pa (k)|

=:an

As in the proof of Proposition [3]in Section [3.6.1] the key step is to
show that a,, can be upper-bounded according to

an < b, — bn+1, Vn e No, (395)

where here by, := > an [[fq — hql|3, for all n € Ny, and to note that,

similarly to (3.35)),

N N
Z an < Z(bn —bpy1) =(bo —b1)+ -+ (by —bny1)
n=0 n=0
—bo— by <bo= 3 Ilfa— hall3 = IULelf — Ulelhl3
N—— 0
>0 geEA
= || — nll3,
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3 DEEP CONVOLUTIONAL FEATURE EXTRACTION

which then yields ((3.94) according to
N
_ 2 _ < ki U2 — ([ f 12
[1@a(f) — ®a(h)]| Avlgnw;an\]vlgrloollf hl = |1 = bl

Writing out (3.95)), it follows that we need to establish
Z ||fq*Xn_hq*Xn||§ < Z qu_thg_ Z ||fq_hq||§a (3.96)
qeEA™ geEA™ geAn+1
for all n € Ny. We start by examining the second term on the RHS of
(13.96]) and note that, thanks to the decomposition

GEAT = Ay x oo x Ay xApyg
[ S —
—An

and U[q] = U[(¢, An41)] = Un41[An+1]U[q], by (B.10)), we have

> Iz — hall3

qun+1

=3 > NUnt1laralfs = Unga[Angalhgll3. (3.97)

qEA™ Npp1€Ap 41

Substituting (3.97)) into (3.96)) and rearranging terms, we obtain
> (Masxn—hasxald+ X WUnribasilfs

geA™ Ant1€An 11

— Unii Do lhal3) < 37 116y = Al (3.98)

qun

for all n € Ng. We next note that the second term inside the sum on
the LHS of (3.98) satisfies

Z NUns1[Ant1]fq — Un+1[)‘n+1]hq‘|g

An4+1€An 11

< Z [Pt (M1 (fq * 9rnin))

An+1€An4+1

—Andtl (MnJrl(hq * g>\n+l)) ||§, (399)
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where we employed arguments similar to those leading to (3.39).
Substituting the second term inside the sum on the LHS of by
the upper bound , and using the Lipschitz property of M, 11
and P,y yields

S (Moxa—hesxald+ > WasaPasalfy

geAn An+1€An11
~UniaParalhgl3) < 3 max{1, L2 B2 (11 = o) *xll}
qun
Y k) onlB): (3.100)
Ant+1€AR11

for all n € Ny. As the functions {gx, ., }x,,1 €A, U{Xn } are the atoms
of the semi-discrete frame W,, 1 for L?(R?) and f,, hy € L*(R?), as
established above, we have

I =h) s xallz+ D I(fa =) ¥ 9rall3 < Busallfo = hall3,

Ant1€AR+1

which, when used in (3.100) yields

> (o xn = ko xal3

qgeEA

+ Y WU Penalfs = UnsaPasalhgl3)
Ant+1€AR1+1

< Y max{ By, Bur1 Lo Royi I fa — holl3, (3.101)
geEA™

for all n € Ny. Finally, invoking the admissibility condition
max{B,, B,L2R?} <1, Vn€N,

in (3.101) we get (3.98) and hence (3.95). This completes the proof.
O
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CHAPTER 4

Energy propagation in

deep convolutional neural networks

ANY practical machine learning tasks employ very deep
M convolutional neural networks (He et al., |2015)). Such large

depths pose formidable computational challenges in train-
ing and operating the network. It is therefore important to understand
how fast the energy contained in the propagated signals (a.k.a. feature
maps) decays across layers. In addition, it is desirable that the feature
extractor generated by the network be informative in the sense of the
only signal mapping to the all-zeros feature vector being the zero input
signal. This “trivial null-set” property can be accomplished by asking
for “energy conservation” in the sense of the energy in the feature
vector being proportional to that of the corresponding input signal.
In this chapter, we establish conditions for energy conservation (and
thus for a trivial null-set) for a wide class of DCNNs and characterize
corresponding feature map energy decay rates. Specifically, we con-
sider generalized scattering networks (introduced in Chapter |3) and
find that under mild analyticity and high-pass conditions on the filters
(which encompass, inter alia, various constructions of Weyl-Heisenberg
filters, wavelets, ridgelets, («)-curvelets, and shearlets) the feature
map energy decays at least polynomially fast. For broad families of
wavelets and Weyl-Heisenberg filters, the guaranteed decay rate is
shown to be exponential. Moreover, we provide handy estimates of
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4 ENERGY PROPAGATION IN DEEP CONVOLUTIONAL NEURAL NETWORKS

the number of layers needed to have at least ((1 —¢) - 100)% of the
input signal energy be contained in the feature vector. Finally, we
show how networks of fixed (possibly small) depth can be designed
to capture most of the input signal’s energy.

QOutline

The remainder of this chapter is organized as follows. Section 4]
presents the modulus-based scattering network architecture considered
throughout this chapter. In Section [£.2] we formalize the notions of
feature map energy decay and feature vector energy conservation, and
present previous work on that topic. Section [£.3] contains our main
results of this chapter, Theorems [3| and 4] which establish polynomial
energy decay for general filters and exponential energy decay for
structured filters (namely, for broad families of wavelets and Weyl-
Heisenberg filters), respectively. Handy estimates of the number of
layers needed to have most of the input signal energy be contained
in the feature vector are provided in Section [£.4] Finally, in Section
we design scattering networks of fixed (possibly small) depth that
capture most of the input signal’s energy.

4.1. MODULUS-BASED NETWORKS

Throughout this chapter we consider (unless explicitly stated other-
wise) input signals f € L?(R%), and employ the module-sequence (see

Definition |2| in Section

Q= (V] ].10)) (4.1)

neN’

i.e., each network layer is associated with (i) a collection of ﬁltereﬂ
U, = {xn_1}U{gr, }r,en, € LYR?) N L2(RY), where y,_; and the

IWe note that it is actually the notation ¥, = {TbIXn—l}beRd U

{ToIgx, tperd r, en,  rather than Un = {xn—1} U {gx, }xr,en, that was in-
troduced in Definition [2]in Section [3.2} but in this chapter we prefer to work with
Wy = {xn-1}U{gr, }r,en, for the sake of expositional simplicity.
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4.1 MODULUS-BASED NETWORKS

[[1f*g m\*(] ol *g,om] [If * g o |* gy | % gy 0]
Al A XS )\ XS XS
// _\\\

I’g >
Hf*!)yn\*gwﬂ \lf*gym\*yw)\
Hf*l}m\*gm\*)(z Hf*gm\*ll()\*)(z
Al A A XS
*g)\u)\ *LJA(m
L S
‘f*J)\(J)'*Xl f |f*g)\<»>\*X1
)

.
P
f#*Xxo0

Fig. 4.1: Network architecture underlying the module sequence . The
index AJY) corresponds to the k-th filter NG of the collect|on v,

associated with the n-th network layer. The function Xn is the output-
generating filter of the n-th network layer. The root of the network
corresponds to n = 0.

gx, , indexed by a countable set A,,, satisfy the frame condition (2.1),
ie.,

2<BfE (42)

Al I3 <N 5 xnal3+ D I1f * g,

An €A,

forall f € L?(R%), for some A,,, B,, > 0, (ii) the modulus non-linearity
|- |: L2(RY) — L2(R?), |f|(z) = | f(z)| (see Section [2.3)), and (iii) no
pooling, which corresponds to pooling through the identity operator
with pooling factors S, = 1, for all n € N, see . Associated
with the module (¥,,,]| - |,1d), the operator U,[)\,] defined in
particularizes to

Un[Aa]f = ‘f*gAn‘-

The feature maps Ulq]f, ¢ € A™, defined in (3.10]), can therefore be

written as

Ulglf = Un[An] - - - Ua[X2]Ur[M] f
:|"'||f*g)\1|*g>\2""*gAn|~ (4.3)
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4 ENERGY PROPAGATION IN DEEP CONVOLUTIONAL NEURAL NETWORKS

The architecture corresponding to the module sequence 2 in (4.1)
is illustrated in Fig. [I.]

4.2. PROBLEM STATEMENT

The first central goal of this chapter is to understand how quickly the
energy contained in the feature maps decays across layers. Specifically,
we shall study the decay of

Wa(f) =Y Uldfl5 feL®RY, (4.4)

gEAN

as a function of network depth N. Moreover, it is desirable that the
infinite-depth feature vector ®q(f) be informative in the sense of the
only signal mapping to the all-zeros feature vector being the zero
input signal, i.e., ®q has a trivial null-set

N(®q) := {f € L*(RY) | o(f) = 0} = {0}. (4.5)

Fig. [£:2] illustrates the practical ramifications of a non-trivial null-set
in a binary classification task. N'(®g) = {0} can be guaranteed by
asking for “energy conservation” in the sense of

Aol fI3 < [l@a(HII* < Ballfl3, ¥feL*RY),  (4.6)

for some constants Aq, Bg > 0 (possibly depending on the module-
sequence ) and with the feature space norm |[||®qo(f)||| =

(oo @A), where [1RBII = (X,ean IUlalf) *
XnH%)l/z. Indeed, follows from as the upper bound in
yields {0} C N (®g), and the lower bound implies {0} D N (®q).
We emphasize that, as ®q is a non-linear operator (owing to the
modulus non-linearities), characterizing its null-set is non-trivial in
general. The upper bound in was established in Section m
While the existence of this upper bound is implied by the filters ¥,,,
n € N, satisfying the frame property , perhaps surprisingly, this
is not enough to guarantee Ag > 0 (see Section for an illustrative
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Fig. 4.2: Impact of a non-trivial null-set N'(®q) in a binary classification task.
The feature vector ®o(f) is fed into a linear classifier |Bishop| (2009)),
which determines set membership based on the sign of the inner
product (w, ®a(f)). The (learned) weight vector w is perpendicular
to the separating hyperplane (dashed line). If the null-set of the
feature extractor ®g is non-trivial, there exist input signals f* # 0
that are mapped to the origin in feature space, i.e., o (f*) = 0 (gray
circle), and therefore lie—independently of the weight vector w—on
the separating hyperplane. These input signals f* # 0 are therefore
unclassifiable.

example). We refer the reader to Section for results on the null-set
of the finite-depth feature extractor UnN:0 ®¢. Finally, we emphasize
that throughout the thesis energy decay results pertain to the feature
maps Ulq]f, whereas energy conservation according to applies
to the feature vector ®q(f).

Previous work on the decay rate of Wi (f) in (Waldspurger} 2015,
Section 5) shows that for wavelet-based networks (i.e., in every network
layer, the filters ¥ = {x} U{gr}rea in are taken to be (specific)
1-D wavelets that constitute a Parseval frame, with y a low-pass filter)
there exist € > 0 and a > 1 (both constants unspecified) such that

W) < [1FelP(=[m(ovm)[Jae @)

for real-valued 1-D signals f € L?(R) and N > 2, where 7 (w) := e’
To see that this result indicates energy decay, Fig. [4.3]illustrates the
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fw)P?

Fig. 4.3: lllustration of the impact of network depth N on the upper bound on

~

Wi (f) in (4.7), for e = 1. The function hn(w) := (1 — 74(5=71)),
where 7, (w) = e’ is of increasing high-pass nature as NV increases,
which results in cutting out increasing amounts of low-frequency
energy of f and thereby making the upper bound in ([4.7)) decay as a
function of N.

influence of network depth IV on the upper bound in . Specifically,
we can see that increasing the network depth results in cutting out
increasing amounts of low-frequency energy of f and thereby making
the upper bound in decay as a function of N. Moreover, it is in-
teresting to note that the upper bound on W (f) = >_, ¢ an 1Ulql f113
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4.2 PROBLEM STATEMENT

is independent of the wavelets generating the feature maps Ulq]f,
g € AN . For scattering networks that employ, in every network layer,
uniform covering filters ¥ = {x} U {ga}rea C L*(R?) N L2(R?) form-
ing a Parseval frame (where x, again, is a low-pass filter), exponential
energy decay according to

Wx(f)=0@™), VfeL*R?), (4.8)

for an unspecified a > 1, was established in (Czaja and Li, [2017,
Proposition 3.3). Moreover, (Waldspurger}, 2015| Section 5) and (Czaja
and Li, [2017, Theorem 3.6 (a)) state—for the respective module-
sequences—that holds with Ag = Bg = 1 and hence

2o = 1713 (4.9)

The first main goal of this chapter is to establish i) for d-dimensional
complex-valued input signals that (4.4) decays polynomially according
to

w8y [ Ff (1= [a(5s) Jae @0

for all f € L?(R%) and all N > 1, where

1, d=1,
‘T {10g2(\/d/(d —-1/2)), d=>2,

BY = chvzl max{l, By}, and 7, : R — R, f(w) = (1 — |w])4,
with [ > |d/2]| + 1, for networks based on general filters {x,—1} U
{9r, }r,en, that satisfy mild analyticity and high-pass conditions
and are allowed to be different in different network layers (with the
proviso that x,_1, n € N, is of low-pass nature in a sense to be made
precise), and ii) for 1-D complex-valued input signals that decays
exponentially according to

wa(n) < [ Fel (1=]a(me)| ) @

for all f € L?(R?) and all N > 1, for networks that are based, in every
network layer, on a broad family of wavelets or on a broad family
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4 ENERGY PROPAGATION IN DEEP CONVOLUTIONAL NEURAL NETWORKS

of Weyl-Heisenberg filters. Here, we emphasize that an arbitrary
decay factor a > 1 can be realized through suitable choice of the
mother wavelet bandwidth or the Weyl-Heisenberg prototype function
bandwidth. Thanks to the RHS of and not depending on
the specific filters {xn—1} U{gx, }r,en,, we will be able to establish—
under smoothness assumptions on the input signal f—universal energy

decay results. Specifically, particularizing the RHS in (4.10]) and (4.11))
to Sobolev-class input signals f € H*(R?), s > 0, where

Y = {f e @Y | [ (14 I flw)fds < oo},
we show that yields polynomial energy decay according to
Wx(f)=O(NT?), Vfe H(R?), (4.12)
and exponential energy decay according to
O(a™ ), Vfe H'(R), (4.13)

where 7 := min{1,2s} in both cases. Sobolev spaces H*(R?) contain
a wide range of practically relevant signal classes such as, e.g.,

i) the space L2(RY) = {f € L2(RY) | supp(f) C BL(0)}, L > 0,
of L-band-limited signals according to L2 (R?) C H*(R?), for all
L > 0 and all s > 0, which follows from

[ s lyifera= [ @ PyifePa
Rd Br(0)
<(+ILPEYIAIE < oo,

for f € L2(RY), L > 0, and s > 0, where we used Parseval’s
formula and the fact that w + (14 |w|?)*, w € R?, is monotonically
increasing in |w/|, for all s > 0,

ii) the space CE g of cartoon functions of size K, introduced in
(Donoho, [2001)), and widely used in the mathematical signal process-
ing literature (Kutyniok and Labate, |2012a; (Grohs and Kutyniok)
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4.3 ENERGY DECAY AND CONSERVATION

2014} |Grohs et al.l [2015) as a model for natural images such as,
e.g., images of handwritten digits (LeCun and Cortes, |1998)) (see

Fig.[3.7). For a formal definition of C&, 1, we refer the reader to
Section In Section we show that C&ygp C H*(RY), for

all K > 0 and all s € (0,1/2).

Moreover, Sobolev functions are contained in the space of k-
times continuously differentiable functions C*(R?, C) according to
H*(RY) C C*(R?,C), for all s > k+ ¢ (Adams| [1975| Section 4).

Our second central goal in this chapter is to establish energy
conservation according to (4.6) (which, as explained above, implies
N(Dq) = {0}) for the network configurations corresponding to the

energy decay results (4.10) and (4.11)). Finally, we provide handy esti-
mates of the number of layers needed to have at least ((1—¢)-100)%

of the input signal energy be contained in the feature vector.

4.3. ENERGY DECAY AND CONSERVATION

Throughout Chapter [d] we make the following assumptions on the
filters {ga, }r,en,, -

Assumption 1. The {gx, }x, en,, n € N, are analytic in the follow-
ing sense: For every layer index n € N, for every A\, € A,, there
exists an orthant Ha, CR?, with Ay, € O(d), such that

supp(gx,) € Ha,, - (4-14)

Moreover, there exists 6 > 0 such that

> g WP =0, ae we Bs(0). (4.15)
An €A,

In the 1-D case, i.e., for d = 1, Assumption [l| simply amounts to
every filter gy, satisfying

either supp(gx,) € (—oo0,—=d] or supp(gx,) C [4,00),
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4 ENERGY PROPAGATION IN DEEP CONVOLUTIONAL NEURAL NETWORKS

which constitutes an “analyticity” and “high-pass” condition. For
dimensions d > 2, Assumption |I| requires that every filter g, be
of high-pass nature and have a Fourier transform supported in a
(not necessarily canonical) orthant. Since the frame condition is
equivalent to the Littlewood-Paley condition (see Proposition
1)), i.e.,
Ap < X1 (W))? + Z |9n, (W)|?> < B, ae.weRY  (4.16)
An€AL,
(4.15)) implies low-pass characteristics for x,_1 to fill the spectral gap
Bj;(0) left by the filters {gx, }r, e, -
The conditions and we impose on the ¥,,, n € N,
are not overly restrictive as they encompass, inter alia, various con-
structions of Weyl-Heisenberg filters (e.g., with a prototype function

whose Fourier transform is a 1-D B-spline (Grochenig et al., 2003

Section 1)), wavelets (e.g., analytic Meyer wavelets (Daubechies| [1992]
Section 3.3.5) in 1-D, and Cauchy wavelets (Vandergheynst), 2002b)
in 2-D), and specific constructions of ridgelets Section
2.2), curvelets (Candés and Donohol, [2005, Section 4.1), a-curvelets
(Grohs et all,[2015] Section 3), and shearlets (e.g., cone-adapted shear-
lets (Kutyniok and Labate] [2012a), Section 4.3)). We refer the reader
to Sections 2.2.3] and for a brief review of some of these filter
structures.

4.3.1. Polynomial energy decay

We are now ready to state our first main result on energy decay and
energy conservation.

Theorem 3. Let Q0 be the module-sequence (4.1) with filters

{9, banen, satisfying the conditions in Assumption[d], and let § > 0

be the radius of the spectral gap B;s(0) left by the filters {gx, }r, e,

according to (4.15). Purthermore, let AY := Hszl min{1, Ay}, BY =
N

[I,-; max{1, By}, and

L

= ’ 17
{bggu/d/(d—l/z)), . (417)
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4.3 ENERGY DECAY AND CONSERVATION
i) We have

() a5

for all f € L*(R?) and all N > 1, where 7 : R? = R, 7j(w) =
(1—|w])y, with 1 > |d/2] + 1.

wain <8y [ 1Fel(1-

ii) For every Sobolev function f € H*(RY), s > 0, we have
Wi (f) =O(BgN™™), (4-19)
where ~ := min{1, 2s}.
it1) If, in addition to Assumption
0 < Ag:= lim AN < Bq:= lim B} < oo, (4.20)
N—o0 N—oo
then we have energy conservation according to
AallfI5 < Nl@a(NHII* < Ballfl3,  YfeL*RY). (4.21)

Proof. For the proofs of i) and ii), we refer to the Sections and
respectively. The proof of statement iii) is based on two key in-
gredients. First, we establish—in Proposition [§]in Section [£.7.4}—that
the feature extractor @, satisfes the energy decomposition identity

N—-1
AQIIFIIE < Z 119G (AP + Wi (f) < BYIIFII3, (4.22)

for all f € L?(R?) and all N > 1. Second, we show—in Proposition
|§| in Section that the integral on the RHS of goes to
zero as N — oo which, thanks to ]\}E)noo BY = Bg < oo, implies that
Wx(f) = 0as N — co. We note that while the decomposition
holds for general filters {gx, }x,ea, satisfying the frame property ,
it is the upper bound that makes use of the analyticity and
high-pass conditions in Assumption [T} The final energy conservation

result (4.21)) is obtained by letting N — oo in (4.22)). O
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4 ENERGY PROPAGATION IN DEEP CONVOLUTIONAL NEURAL NETWORKS

The strength of the results in Theorem [3] derives itself from the fact
that the only condition we need to impose on the filters {gx, }x,ea,,
is Assumption [I} which as already mentioned, is met by a wide array
of filters. Moreover, condition is easily satisfied by normalizing
the filters ¥,,, n € N, appropriately (see, e.g., Propositionin Section
. We note that this normalization, when applied to filters that
satisfy Assumption [T} yields filters that still meet Assumption [I]

The identity establishes, upon normalization (see, e.g., Propo-
sition [2| in Section of the ¥,, to get B, < 1, n € N, that the
energy decay rate, i.e., the decay rate of Wy (f), is at least polynomial
in N. We hasten to add that does not preclude the energy from
decaying faster in practice.

Underlying the energy conservation result is the following
demodulation effect induced by the modulus non-linearity in com-
bination with the analyticity and high-pass properties of the filters
{gx, }r,en, - In every network layer, the spectral content of each indi-
vidual feature map is moved to base-band (i.e., to low frequencies),
where it is extracted by the low-pass output-generating atom x,,, see
Fig. 4.4 The components not collected by x., (see Fig. bottom
row) are captured by the analytic high-pass filters {gx, ., }r,.1eA, 1
in the next layer and, thanks to the modulus non-linearity, again
moved to low frequencies and extracted by xp,+1. Iterating this process
ensures that the null-set of the feature vector (be it for the infinite-
depth network or, as established in Section [£.4] for finite network
depths) is trivial. It is interesting to observe that the sigmoid, the
rectified linear unit, and the hyperbolic tangent non-linearities—all
widely used in the deep learning literature—exhibit very different
behavior in this regard, namely, they do not demodulate in the way
the modulus non-linearity does (Wiatowski et al., [2017, Figure 6). It is
therefore unclear whether the proof machinery for energy conservation
developed in this thesis extends to these non-linearities or, for that
matter, whether one gets energy decay and conservation at all.

The feature map energy decay result relates to the feature
vector energy conservation result via the energy decomposition

identity (4.22)). Specifically, particularizing (4.22)) for Parseval frames,
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4.3 ENERGY DECAY AND CONSERVATION

Fig. 4.4: Illustration of the demodulation effect of the modulus non-linearity.
The {gx, }r,ea,, are taken as perfect band-pass filters (e.g., band-
limited analytic Weyl-Heisenberg filters) and hence trivially satisfy the
conditions in Assumption [1] The modulus operation in combination
with the analyticity and the high-pass nature of the filters {gx,, }»,.ea,,
ensures that—in every network layer—the spectral content of each
individual feature map is moved to base-band (i.e., to low frequencies),
where it is extracted by the (low-pass) output-generating filter xy.

ie, A, =B, =1, for all n € N, we get

N-1
D RSN+ Wi (f) = 1115 (4.23)
n=0

This shows that the input signal energy contained in the network
layers n > N is precisely given by Wi (f). Thanks to Wx(f) — 0 as
N — oo (established in Proposition @] in Section this residual
energy will eventually be collected in the infinite-depth feature vector
O (f) so that no input signal energy is “lost” in the network. In
Section [£.4] we shall answer the question of how many layers are

95
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Fig. 4.5: Illustration of the Fourier transforms of the wavelet filters g; on the
frequency band [0, L]. The Fourier transform 1) of the mother wavelet
4 is supported on the interval [r=1, r].

needed to absorb ((1 —¢) - 100)% of the input signal energy.

4.3.2. Exponential energy decay

The next result shows that, under additional structural assumptions
on the filters {gx, } 1, ea, the guaranteed energy decay rate can be
improved from polynomial to exponential. Specifically, we construct
1-D wavelets and 1-D Weyl-Heisenberg filters that realize exponential
energy decay according to W, (f) = O(a™"), with arbitrary a > 1.
Moreover, we want to tune the decay factor a by adjusting a single
parameter, which will be seen to determine the mother wavelet or
the Weyl-Heisenberg prototype function bandwidth. This will be
accomplished through the following constructions:

i) Wawvelets: For fixed r > 1, let the mother and father wavelets
¥, ¢ € LY(R) N L?(R) satisfy the Littlewood-Paley condition

D)+ WP =1, ae w0, (4.24)
j=1

with supp(@) = [r~1,7] and 1Z real-valued. Moreover, let g;(z) :=
rip(riz), § > 1, gj(z) = rlily(—rlilz), j < —1, and let the output-
generating filter be x(z) := ¢(|z|), € R. The Fourier transforms
of the wavelets g; and the mother wavelet v are illustrated in Fig.
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4.3 ENERGY DECAY AND CONSERVATION

-R ‘ 6 R R+9 2R+9 3R+9 L

Fig. 4.6: lllustration of the Fourier transforms of the Weyl-Heisenberg filters gx
on the frequency band [0, L]. The Fourier transform g of the prototype
function g is supported on the interval [—R, R].

il) Weyl-Heisenbery filters: For fixed R > 0, 0 > %, let the functions
g,¢ € LY(R) N L%(R) satisfy the Littlewood-Paley condition

D)+ [Gw— (RE+6)P =1, aew>0,  (4.25)
k=1

with supp(g9) = [-R,R|, g(—w) = g(w), and g real-valued.
Moreover, let gp(z) = 2™ FEtDeg() & > 1, gp(z) :=
e 2miBIkI+02 () k< —1, and set x(z) := ¢(|z|), z € R. The
Fourier transforms gy and ¢ are illustrated in Fig.

The conditions we impose can be satisfied by constructing ¢, ¢ in
i) from, e.g., an analytic Meyer wavelet (Daubechies| (1992, Section
3.3.5), and g, ¢ in ii) from a function whose Fourier transform is a 1-D
B-spline (Grochenig et al., 2003, Section 1). We emphasize that both
the wavelet and Weyl-Heisenberg filters satisfy—Dby construction—the
analyticity and highpass condition in Assumption [I}

We next state our main result on exponential feature map energy
decay. For simplicity of exposition, we employ filters that are identical
across network layers.

Theorem 4. Let 7 : R = R, 7(w) := (1 — |w|)y, with I > 1.
1) Wavelets: Let r > 1, set

r2+1
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4 ENERGY PROPAGATION IN DEEP CONVOLUTIONAL NEURAL NETWORKS

and let Q0 be the module-sequence (4.1)) with filters ¥ = {x} U
{95} jez\qoy in every network layer. Then,

Wa(h) < [P (1= ()| ) w2

for all f € L*(R) and all N > 1. Moreover, for every Sobolev
function f € H*(R), s > 0, we have

Wy (f) = 0(a™), (4.28)
where v := min{1, 2s}.

ii) Weyl-Heisenberyg filters: Let R >0, 6 > %, set

a =

0
+ 7 (4.29)

| =

and let Q be the module-sequence (4.1)) with filters ¥ = {x} U
{9k }rez\foy in every network layer. Then,

waih) < [ 1Fel (1= [a(msg) [ Jae ws0)

for all f € L*(R) and all N > 1. Moreover, for every Sobolev
function f € H*(R), s > 0, we have

Wy (f) =0(a™"N), (4-31)
where v := min{1, 2s}.
Proof. The proof is given in Section [4.7.6 O

The identities and show that the filter constructions
we propose, indeed, allow to tune the decay factor a through a single
parameter, namely 7 in the wavelet case and R in the Weyl-Heisenberg
case. Reducing r, R results in faster energy decay (see also Fig. . In
addition, we note that in the presence of pooling by sub-sampling, say
with pooling factors S,, := S € [1,a), for all n € N, the effective decay

factor in (4.28)) and (4.31) becomes %. Hence, exponential energy
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4.3 ENERGY DECAY AND CONSERVATION

Fig. 4.7: Illustration of the functions a;(r) := :;% for 7 > 1, (left plot) and
az(R) = 3 + %, for R < 26, (right plot).

decay is compatible with vertical translation invariance according to
Theorem |1|in Section albeit at the cost of slower (exponential)
decay. The proof of this statement is structurally very similar to
that of Theorem [4] and will therefore not be presented here. We next
put the results in Theorems [3] and [ into perspective w.r.t. to the
literature.

4.3.3. Relation to the literature

Relation to (Waldspurger, [2015, Section 5)

The basic philosophy of our proof technique for (4.18)), (4.21)), (4.27)),
and is inspired by the proof in (Waldspurger, 2015, Section
5), which establishes and for scattering networks based
on certain wavelet filters and with 1-D real-valued input signals f €
L?(R). Specifically, in (Waldspurger, [2015, Section 5), in every network
layer, the filters Uy = {x} U {g;}jez (where g;(w) = 27¢(2/w),
j € Z, for some mother wavelet 1 € L'(R) N L?(R)) are 1-D functions
satisfying the frame property with A, = B, =1, n € N, a
mild analyticity condition (Waldspurger, [2015, Equation 5.5) in the
sense of |g;(w)|, j € Z, being larger for positive frequencies w than for
the corresponding negative ones, and a vanishing moments condition
(Waldspurger 2015, Equation 5.6) which controls the behavior of
¢ (w) around the origin according to WJ( )| < Clw|*e, w € R, for
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4 ENERGY PROPAGATION IN DEEP CONVOLUTIONAL NEURAL NETWORKS

some C, e > 0. Similarly to the proof of in (Waldspurger} [2015}
Section 5), we base our proof of on the energy decomposition
identity and on an upper bound on Wix(f) (see for
the corresponding upper bound established in (Waldspurger} 2015
Section 5)) shown to go to zero as N — oo. The explicit energy
decay results , , and for f € H*(R?) are entirely
new. The major differences between (Waldspurger} 2015, Section 5)
and our results are (i) that (£.7) (reported in (Waldspurger] 2015]
Section 5)) depends on an unspecified a > 1, whereas our results
in [@.18), @19), @27), (@.28), (#.30), and make the decay
factor a and the decay exponent « explicit, (ii) the technical elements
employed to arrive at the upper bounds on Wi (f), specifically, while
the proof in (Waldspurger], [2015] Section 5) makes explicit use of the
algebraic structure of the filters, namely, the multi-scale structure of
wavelets, our proof of is oblivious to the algebraic structure of
the filters, which is why it applies to general (possibly unstructured)
filters that, in addition, can be different in different network layers,

(iii) the assumptions imposed on the filters, namely the analyticity

and vanishing moments conditions in (Waldspurger}, 2015, Equations
5.5-5.6), in contrast to our Assumption (1} and (iv) the class of input
signals f the results apply to, namely 1-D real-valued signals in

(Waldspurger], 2015, Section 5), and d-dimensional complex-valued
signals in our Theorem [3]in Section

Relation to (]Czaja and Li|, |2017D

For scattering networks that are based on so-called uniform covering

filters (Czaja and Li, [2017), (4.8) and (4.9) are established in (Czajal
2017) for d-dimensional complex-valued input signals f €

L?(R%). Specifically, in (Czaja and Li, 2017), in every network layer,
the d-dimensional filters {x} U {gx}rea are taken to satisfy i) the
frame property with A = B = 1 and hence A, = B, = 1,
n € N, see (Czaja and Li, [2017, Definition 2.1 (c)), ii) a vanishing
moments condition (Czaja and Li| 2017, Definition 2.1 (a)) according
to gx(0) = 0, for all A € A, and iii) a uniform covering condition
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(Czaja and Li, [2017, Definition 2.1 (b)) which says that the filters’
Fourier transform support sets can be covered by a union of finitely
many balls. The major differences between (Czaja and Li, 2017) and
our results are as follows: (i) the results in (Czaja and Li, 2017)
apply exclusively to filters satisfying the uniform covering condition
such as, e.g., Weyl-Heisenberg filters with a band-limited prototype
function (Czaja and Lil [2017, Proposition 2.3), but do not apply
to multi-scale filters such as wavelets, («)-curvelets, shearlets, and
ridgelets (see (Czaja and Li, [2017, Remark 2.2 (b))), (ii) (4.8) as
established in (Czaja and Li, [2017) leaves the decay factor a > 1
unspecified, whereas our results in @ and make the decay
factor a explicit (namely, a = %, r > 1, in the wavelet case and

a= %4— %, R < 26, in the Weyl-Heisenberg case), (iii) the exponential
energy decay result in as established in (Czaja and Li, [2017)
applies to all f € L?(R?) and thus, in particular, to Sobolev input
signals (owing to H*(R?) C L?(R?), for all s > 0), whereas our decay
results in , , and pertain to Sobolev input signals
f € H*(RY), s > 0, only, (iv) the technical elements employed to
arrive at the upper bounds on Wy (f), specifically, while the proof
in (Czaja and Li, [2017) makes explicit use of the uniform covering
property of the filters, our proof of is completely oblivious to
the (algebraic) structure of the filters, (v) the assumptions imposed on
the filters, i.e., the vanishing moments and uniform covering condition
in (Czaja and Lil [2017, Definition 2.1 (a)-(b)), in contrast to our
Assumption [1} which is less restrictive, and thereby makes our results
in Theorem in Section apply to general (possibly unstructured)
filters that, in addition, can be different in different network layers.

4.4. NUMBER OF LAYERS NEEDED

DCNNSs used in practice employ potentially hundreds of layers
. Such network depths entail formidable computational
challenges both in training and in operating the network. It is therefore
important to understand how many layers are needed to have most of

101



4 ENERGY PROPAGATION IN DEEP CONVOLUTIONAL NEURAL NETWORKS

the input signal energy be contained in the feature vector. This will
be done by considering Parseval frames in all layers, i.e., frames with
frame bounds A,, = B, = 1, n € N. The energy conservation result
(4.21) then implies that the infinite-depth feature vector ®q(f) =
U~ @& (f) contains the entire input signal energy according to

@A = ZHI@” HIE =115

Now, the decomposition (4.23) reveals that thanks to lim Wx(f) —
N—o0

0, increasing the network depth N implies that the feature vector
ngo ®¢ (f) progressively contains a larger fraction of the input signal
energy. We formalize the question on the number of layers needed by
asking for bounds of the form

SN llea )l
GE

i.e., by determining the network depth N guaranteeing that at least
((1 —¢) - 100)% of the input signal energy are captured by the cor-
responding depth-N feature vector Uﬁ;o @2 (f). Moreover,
ensures that the depth-N feature extractor UZ«LV:[) O exhibits a trivial
null-set.

(I-¢)<

<1, (4.32)

4.4.1. Estimates for band-limited functions

The following results establish handy estimates of the number of layers
needed to guarantee (4.32). For pedagogical reasons, we start with
the case of band-limited input signals and then proceed in Section

[M:4:2) to a more general statement that pertains to Sobolev functions
H*(RY).

Corollary 2.

i) Let Q be the module-sequence (4.1)) with filters {gx, }r, en, satis-
fying the conditions in Assumption [1, and let the corresponding
frame bounds be A, = B, =1, n € N. Let § > 0 be the radius of
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(1-e)

0.25 0.5 0.75 0.9 0.95 0.99
wavelets 2 3 4 6 8 11
Weyl-Heisenberg filters| 2 4 5 8 10 14
general filters 2 3 7 19 39 199

Table 4.1: Number N of layers needed to ensure that ((1 —¢) - 100)% of the
input signal energy is contained in the features generated in the
first N network layers.

the spectral gap Bs(0) left by the filters {gx, }x,en, according to
4.15). Furthermore, let | > |d/2] + 1, e € (0,1), « as defined in
41.17), and f € L*(RY) L-band-limited. If

I 1/«
v lts)

then (4.32)) holds.

ii) Assume that the conditions in Theorem[)] i) and ii) hold. For the
wavelet case, let a > 1 as defined in and 6 =1 (where )
corresponds to the radius of the spectral gap left by the wavelets
{9;}jen\(01)- For the Weyl-Heisenberg case, let a > 1 as defined in
and § > % (here, 0 corresponds to the radius of the spectral
gap left by the Weyl-Heisenberg filters {gk}kez\{o}). Moreover, let
1>1,e€(0,1), and f € L*(R) L-band-limited. If

L
N2> |lo —_— 1, .3
i)l
then (4.32)) holds in both cases.
Proof. The proof is given in Section [£.7.7] O

Corollary [2] nicely shows how the description complexity of the
signal class under consideration, namely the bandwidth L and the
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4 ENERGY PROPAGATION IN DEEP CONVOLUTIONAL NEURAL NETWORKS

dimension d through the decay exponent « defined in , determine
the number N of layers needed to guarantee . Specifically, (4.33])
and show that larger bandwidths L and large dimension d
render the input signal f more “complex”, which requires deeper
networks to capture most of the energy of f. The dependence of the
lower bounds in and on the network properties (i.e., the
module-sequence Q) is through the radius ¢ of the spectral gap left
by the filters {gx, }x,ea, and the decay factor a.

The following numerical example provides quantitative insights on
the influence of the parameter £ on and (4.34)). Specifically, we
set L = 1, d = 1 (which implies @ = 1, see @), r = 2 (which
implies @ = 2 in the wavelet case, see (£.26)), R = § = 1 (which
implies a = % in the Weyl-Heisenberg case, see ), 1 =1.0001, and
show in Table the number N of layers needed according to
and for different values of €. The results show that 95% of the
input signal energy are contained in the first 8 layers in the wavelet
case and the first 10 layers in the Weyl-Heisenberg case. We can
therefore conclude that in practice a relatively small number of layers
is needed to have most of the input signal energy be contained in the
feature vector. In contrast, for general filters, where we can guarantee
polynomial energy decay only, at least N = 39 layers are needed to
absorb 95% of the input signal energy. We hasten to add, however,
that simply guarantees polynomial energy decay and therefore
does not preclude the energy from decaying faster in practice.

4.42. Estimates for Sobolev functions

We proceed with the estimates on the number of layers for Sobolev-
class input signals.

Corollary 3.

i) Let Q be the module-sequence with filters {gx, }r,en, satis-
fying the conditions in Assumption [1, and let the corresponding
frame bounds be A, = B, =1, n € N. Let § > 0 be the radius of
the spectral gap Bs(0) left by the filters {gx, }r,en, according to
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4.4 NUMBER OF LAYERS NEEDED

4.15). Furthermore, let | > |d/2] + 1, e € (0,1), a as defined in
4.17), and f € H*(RY)\{0}, for s > 0. If

2/ 1/«
N> 201 Il 1), (4.95)
et/ 8| £

where v := min{1, 2s}, then (4.32) holds.

ii) Assume that the conditions in Theorem[)] i) and ii) hold. For the
wavelet case, let a > 1 as defined in and 6 =1 (where )
corresponds to the radius of the spectral gap left by the wavelets
{9;}jen\(01)- For the Weyl-Heisenberg case, let a > 1 as defined in
and § > % (here, 0 corresponds to the radius of the spectral
gap left by the Weyl-Heisenberg filters {gk}kez\{o}). Furthermore,
letl>1,e€(0,1), and f € H*(R)\{0}, for s > 0. If

20 || fI|27
N2> |1 o\ —————5 , .36
{Og <sl/w||f||§” (430)

where v := min{1, 2s}, then (4.32) holds in both cases.

Proof. The proof is given in Section [£.7.8] O

As already mentioned in Section Sobolev spaces H*®(R?) contain
a wide range of practically relevant signal classes. The results in
Corollary [3] therefore provide—for a wide variety of input signals—a
picture of how many layers are needed to have most of the input
signal energy be contained in the feature vector.

The width of the networks considered throughout this thesis is,
in principle, infinite as the sets A, need to be countably infinite in
order to guarantee that the frame property is satisfied. For input
signals that are essentially band-limited, the number of “operationally
significant nodes” will, however, be finite in practice. For a treatment
of this aspect as well as results on depth-width tradeoffs, the interested
reader is referred to (Wiatowski et al., [2017).
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4.5. DEPTH-CONSTRAINED NETWORKS

We now turn to the design of scattering networks of fixed (possibly
small) depth N that capture most of the input signal’s energy. This
will be formalized by seeking wavelet and Weyl-Heisenberg filters that,
for given € > 0 and given depth N € N, result in feature extractors

satisfying
N

L=l fI5 <D NSGANIP <15, Vfe L (R).  (4.37)
n=0
The next result explains how to choose r in the wavelet and R in
the Weyl-Heisenberg case so as to satisfy (4.37)). In particular, we
shall see that for every (possibly small) e > 0 and every N € N, say
e = 0.01 and N = 1, there exist » > 1 and R > 0 such that (4.37)
holds.

Corollary 4. Assume that the conditions in Theorem i) and i)
hold. For the wavelet case, let r > 1 and 6 =1 (where 0 corresponds
to the radius of the spectral gap left by the wavelets {g; }jeZ\{O})- For
the Weyl-Heisenberg case, let R > 0, § > g (here, & corresponds
to the radius of the spectral gap left by the Weyl-Heisenberg filters
{9k}trez\(0}). Moreover, take f € H*(R)\{0}, s > 0, fix e € (0,1)
and N € N, let | > %51/“’ 0, where v := min{1,2s}, and define

1/N
oo (2
e/ a| 1137

If, in the wavelet case,
k+1
1 < R .
<r<y/i (4.98)

or, in the Weyl-Heisenberg case,

0
< .
0<r< . (4.99)
then (4.37)) holds.
Proof. The proof is given in Section [4.7.9 O
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4.6. A FEATURE EXTRACTOR WITH A
NON-TRIVIAL NULL-SET

In this section, we show, by way of example, that employing filters
W,, which satisfy the frame property (4.2)) alone does not guarantee
that the feature extractor ®q defined in (3.12) satisfies

Aa|lf113 < lllea(HII, vf e L*(RY),

for some Aq > 0. The existence of such a lower bound Aq > 0 would
imply a trivial null-set for the feature extractor ®g and thereby ensure
that the only signal f that maps to the all-zeros feature vector is
f=0.

Our example employs, in every network layer, filters ¥ = {x} U
{9k }rez that satisfy the Littlewood-Paley condition with A,, =
B, =1, n € N, and where gq is such that go(w) = 1, for w € B1(0).
We emphasize that no further restrictions are imposed on the filters
{x} U {9k }rez, specifically x need not be of low-pass nature and the
filters {gi }rez may be structured (such as wavelets, see Sections
and or unstructured (such as random filters (Ranzato et al.)
2007} [Jarrett et al., [2009))), as long as they satisfy the Littlewood-
Paley condition ({.16). Now, consider the input signal f € L*(R%)
according to

~

flw):=(1- |w|)l+, w e R,

-~ —

with I > |d/2| + 1. Then f % go = f, owing to supp(f ) = B1(0) and
Jgo(w) = 1, for w € B1(0). Moreover, 7 is a positive definite radial basis
function (Wendland,, 2004, Theorem 6.20) and hence by (Wendland),
2004, Theorem 6.18) f(z) > 0, z € R%, which, in turn, implies |f| = f.
This yields

Ulgd'lf =] |If * gol * go| - * g0| = £

for ¢l := (0,0,...,0) € Z¥ and N € N. Owing to the energy
decomposition identity (4.22), together with AY = BY =1, N e N,
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which, in turn, is by A, = B, = 1, n € N, we have

N-1
IF15 = D GNP + Wi (f)
n=0
—Z SN+ 10T 13+ Y- ULl f113,

N N
=g ISP Ma

for N € N. This implies

ZIII‘P" MIF+ > luldslz=o. (4.40)

q€ZN\{q)'}

As both terms in (4.40) are positive, we can conclude that
Yo I@E(AII? =0, N €N, and thus

llea()II* = ZIII@ I =

Since |||®a(f)|||* = 0 implies ®o(f) = 0, we have constructed a
non-zero f, namely

flz) = / (1= o)), €275 o,
]Rd

that maps to the all-zeros feature vector, i.e., f € N(®gq).

The point of this example is the following. Owing to the nature of
Go(w) (namely, go(w) = 1, for w € B;(0)) and the Littlewood-Paley
condition

P+ |gw)? =1, ae weR,
kEZ
it follows that neither the output-generating filter x nor any of the
other filters g, k € Z\{0}, can have spectral support in B(0).
Consequently, the only non-zero contribution to the feature vector
can come from

Ulg'lf = f,
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which, however, thanks to supp(f) = B1(0), is spectrally disjoint from
the output-generating filter x. Therefore, @ (f) will be identically
equal to 0. Assumption [T] disallows this situation as it forces the filters
gr, k € Z, to be of high-pass nature which, in turn, implies that x
must have low-pass characteristics. The punch-line of our general
results on energy conservation, be it for finite V or for N — oo, is
that Assumption [I]in combination with the frame property and the
modulus non-linearity prohibit a non-trivial null-set in general.

4.7. PROOFS

47.1. Proof of Lemma

Cartoon functions, introduced in (Donoho), 2001)), satisfy mild decay
properties and are piecewise continuously differentiable apart from
curved discontinuities along C2-hypersurfaces (for a formal definition
we refer to Definition [7|in Section . Even though cartoon func-
tions are in general discontinuous, they still admit Sobolev regularity.
The following result formalizes this statement.

Lemma 5. Let K > 0. Then C&ypy € H*(RY), for all s € (0,1/2).

Proof. Let (f1 + 1pf2) € CEygp. We first establish € H*(R?), for all
s € (0,1/2). To this end, we define the Sobolev-Slobodeckij semi-norm
(Runst and Sickel| [1996], Section 2.1.2)

fle = W0 =T 45 ay) "
R JR4 \95* |25+d ’

and note that, thanks to (Runst and Sickel, |1996] Section 2.1.2),
1p € H*(RY) if |15|gs < co. We have

[p(x) —1p(y)P
|IlB|HS /Rd /]Rd |$— |28+d dl’dy

7/ t|25+d/ s(z) — 1 5(z — O)2dedt,
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(B+1t)

0B
Fig. 4.8: Illustration in dimension d = 2. The set (B +t) (grey) is obtained
by translating the set B (white) by ¢t € R?. The symmetric difference

BA(B +t) is contained in (0B + By;(0)), the tube of radius |t|
around the boundary 9B of B.

where we employed the change of variables t = z — y. Next, we note
that, for fixed ¢t € R?, the function

hi(z) = [1p(z) — Lp(x — 1)
satisfies hy(x) = 1, for x € S;, where

S;:={zxcRYzecB and x—t¢ B}
U{zeR 2 ¢ B and »—t€ B} = BA(B+1t), (4.41)

and hy(x) = 0, for z € R\S;. It follows from (4.41)) that
vol?(Sy) < 2vol(B), VteR™ (4.42)

Moreover, owing to S; C (0B + By (0)), where (0B + By (0)) is a
tube of radius |¢| around the boundary 9B of B (see Fig. [£.8), and
Lemma [] in Section [3.6.6] there exists a constant Cpp > 0 such that

vol?(S;) < vol“(8B + By (0)) < Caplt], (4.43)

for all t € R? with |¢| < 1. Next, fix R such that 0 < R < 1. Then,

s _ 1 2
1153 _/]Rd W/Rd [1p(x) —1p(x —t)|*dedt
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1
_ /R , T / hy(2)da dt
1 vol(S;)
= _ ldz dt = —~dt
/Rd eSS /s ; / HESK

2vol*(B C
g/ "C’Tid)dH/ Bt (4.44)
RI\Br(0) |t[** Br(0) [t1**
= 2volY(B) vol*™ 1 (8B, (0)) / pm sty
R
—
:211
R
+Canold—1(aBl(0))/ r2sdr, (4.45)
N
::Iz

where in (4.44]) we employed (4.42) and (4.43]), and in the last step

we introduced polar coordinates. The integral I 1 is finite for all s > 0,
while I is finite for all s < 1/2. Moreover, vol =/ p 1dz is finite
owing to B being compact. We can therefore conclude that - is
finite for s € (0,1/2), and hence 1z € H*(R?), for s € (0,1/2). To
see that (f1 + 1pf2) € H*(RY), for s € (0,1/2), we first note that

|fi +1sfolms < |files + 1B f2lA5, (4.46)

which is thanks to the sub-additivity of the semi-norm | - |zs. Now,
the first term on the RHS of is finite owing to f; € HY/?(R) C
H*(R%), for all s € (0,1/2). For the second term on the RHS, we
start by noting that

[1pfolpys = /Rd /Rd |(1Bf2)|f)__y(2]jfj2)(y)| dz dy (4.47)

and
(L5f2)(z) — (Lpf2)(y)I”
=|(]lB(w)—]1 W) fa(x) + (f2(z) = fa(y)Lp(y)
< 2|(Lg(@) = Lp(y)P|f2(2) (4.48)
+2[(f2(2) = () P1LB(y)1%, (4.49)
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where and (£.49) are thanks to |a + b[* < 2|a|® + 2[b[?, for
a,b € C. Substituting (4.48)) and (4.49)) into (4.47) and noting that
If2(2)]? < || f2]% < K2, 2 € RY, which is by assumption, and 1 5(y) <
1, y € R?, implies

15 fol5e < 2K21p|5. +2|falf. < 0o, (4.50)

where in the last step we used 1 € H*(R?), established above, and
fo € HY2(R?) C H*(R?), both for all s € (0,1/2). This completes
the proof. O

4.7.2. Proof of statement i) in Theorem

We start by establishing with a = logy(1/d/(d —1/2)), for
all d > 1. Then, we sharpen our result in the 1-D case by proving
that holds for d = 1 with a = 1. This leads to a signifi-
cant improvement, in the 1-D case, of the decay exponent from
logy(v/d/(d—1/2)) = 1 to 1.

The idea for the proof of ([{.18) for @ = log,(+/d/(d —1/2)), for
all d > 1, is to establish thatE

> 1Ulalf13

qEAXApp1 X XApyN_1

< o /Rd |]?(w)|2<1 _

ﬁ(NL%)‘Q)dw, YN €N, (451)

where
n+N-—1

cntiN=1.— H max{1, By}.
k=n

Setting n = 1 in ([4.51)) and noting that C% = BY yields the desired
result (4.18]). We proceed by induction over the path length ¢(q) := N,

2We prove the more general result (4.51)) for technical reasons, concretely in
order to be able to argue by induction over path lengths with flexible starting
index n.
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for q = ()\7“ )\n+1,..., )‘n+N—1) S An X An+1 X X An+N—1~ Starting
with the base case N = 1, we have

Yo U= D IF*9nl3

qgeEAN, A €A,
- [ Pl (4.52)
R\ EAn
< B, |f(w)Pdw (4.53)
R\ B;(0)
w 2
< max{1l, B, } 1— 7 dw, (4.54)
7(5)[)
_C"

for all n € N, where (4.52)) is by Parseval’s formula, (4.53) is thanks
o (4.15) and (4.16), and (4.54)) is due to supp(7;) € B1(0) and

0 < 7(w) < 1, for w € R, The inductive step is established as follows.
Let N > 1 and suppose that (4.51)) holds for all paths ¢ of length
lqg)=N—-1,1ie,

> IUTal£1I3

qEAXApp1 X XApiN_2

< CHN-2 /R |f(w)|2(1 - ‘ﬁ((N—wW) de, (4.55)

for all n € N. We start by noting that every path ¢ € A, x A,41 X

.. X Ay yn_1 of length ¢(G) = N, with arbitrary starting index n,
can be decomposed into a path ¢ € A1 X ... X Apyn—1 of length
l(g) = N —1 and an index \,, € A, according to § = (A, ¢). Thanks
to we have U[q] = U[(An, q)] = Ulq)Un[ n], which yields

> IULa) 113

qENXApp1 X XApyN_1

= > > 1U1a) (Un [l £) 12, (4.56)

An€AR qEN 1 XX ApiN_1

for all n € N. We proceed by examining the inner sum on the RHS of
(4.56)). Invoking the induction hypothesis (4.55) with n replaced by
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(n+ 1) and employing Parseval’s formula, we get

> 1U1a) (Un (Al )13

qEN 1 X XAy N-1

N T LI w 2
< G /Rd [UnAnlf (@)] (1 ‘”((N—l)%)‘ )dw
= Cp Y T UL RANE = 1(Un[Aa ) * 7en—1,0,013)
= O T L+ ga, 115 = (11 % g, 3), (4.57)

*TIN—-1,0,6

for n € N, where r; y_1,q,6 is the inverse Fourier transform of
ﬁ(m) Next, we note that ﬁ(wfw) is a positive definite
radial basis function (Wendland|, 2004, Theorem 6.20) and hence
by (]WendlandL |2004|, Theorem 6.18) r; nv_1,a,6(x) = 0, for z € R4,
Furthermore, it follows from Lemma [0} stated below, that for all

{va, Ia,en, € R we have

1 % g5, % rin—1,05l3 = I1f * ga, * (Mo, riv-1.06) 13- (4.58)

Here, we note that choosing the modulation factors {vx, }x, ea, C
R? appropriately (see (4.62)) below) will be key to establishing the
inductive step.

Lemma 6. Lemma 2.7) Let f,g € L*(R?) with g(z) >

0, for x € R, Then,
/1% gl = 1f * (Mog)ll3, Ve € R

Inserting (4.57) and (4.58) into the inner sum on the RHS of (4.56)
yields

> IUlal f112

qEANXApp1 X XAppN_1

<O N (I 0n 3 = 15 gn, + (M 1 —1,0,0)113)
An€An

= Cntih-t /R , |F(@)[2hn N.as(w)dw, VN €N, (4.59)
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where we applied Parseval’s formula together with Z\/L} =T wf, for
f € L3(RY), and w € R? and set

hvase) = 3 @ (1= [A(=az)])- - @

An€An

The key step is now to establish—by appropriately choosing
{vy, }r, en, € R9—the upper bound

w

N“(S)‘Q)’ VweR?, (4.61)

BN, (w) < max{1, Bn}<1 _ ’,fl(

which upon noting that C"*N =1 = max{1, B,,} C2{V ! yields ([@.51)

and thereby completes the proof. We start by defining Ha, , for
An € Ay, to be the orthant supporting gy, i.e., supp(gx,) € Ha,, ,
where Ay, € O(d) (see Assumption [T). Furthermore, for A, € A, we
choose the modulation factors according to

vy, = Ay, veR?, (4.62)

where the components of v € R? are given by vy, := (1 +271/2)¢  for

ke {l,...,d}. Invoking and ([4.15)), we get
- o 2 | w — V)\n 2
nvas@) = 3 I @) (1 ‘Tl((N - 1)&5)‘ )

An€A,
w—vV 2
(sl ) o9

= 3 @) s, @) (1 -
A’VLEA’VL
for all w € R?, where Sy, 5 := Ha, \B5(0). For the first canonical
orthant H = {z € R? | 2, > 0, k = 1,...,d} we show in Lemma

below that ~ o W
\’"l(m)\ > [7i((75)

for all w € H\Bs(0) and all N > 2. This will allow us to deduce

=)l > Filw=s)

, (4.64)

, (4.65)
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for all w € Sy, 6, all A, € Ay, and all N > 2, where Sy, 5 =
Ha, \B5(0), simply by noting that
(=5l - (-]
T\ TN —as /| = TN —1)es
(N —1)2§ (N=1)5 |)
w —v ! w —v
=
( (N—=1)esl) 4~ M"\(N=1)20 (4.66)
W' w' N
> ()| = 1_)—) 4.67
‘”(Naa)‘ ( Nesl) . (4.67)
Ay W' ! o w
=\ ves |), T ‘”(Naé) ’
+
for w = Ay W' € Ha, \Bs(0), where " € H\Bs(0). Here, (4.66]) and

(4.68]) are thanks to |w| = |A, w|, which is by Ay, € O(d), and the
inequality in (4.67) is due to (4.64). Insertion of (4.65)) into (4.63)

then yields

horos@) < Y @, @)1 ()]

=)

(4.68)

An€An

= > @l A(5)]) (4.69)
An€Ap
cmstt ) (1 (sg)f) v ew 0

where in ([£.69) we employed Assumption [I, and ([£.70) is thanks to
4.16]). This establishes (4.61) and completes the proof of (4.18)) for

a = logy(y/d/(d —1/2)), for all d > 1
It remains to show (4.64), which is accomplished through the
following lemma.

Lemma 7. Let a := log, (v/d/(d—1/2)), 7 : R = R, 7j(w) :=
(1—|w|)y, with 1 > |d/2] +1, and define v € R? to have components
v = (1+27Y2)2 for k€ {1,...,d}. Then,

w—v w
YTV N s (Y
‘”((N— 1)a5)‘ z ‘”(Naé) ’
for allw € H\B5(0) and all N > 2

(4.71)

116



4.7 PROOFS

Wi
T N<6§

Fig. 4.9: lllustration in dimension d = 2. The mapping w — |w — V|*>, w €
2, = {w = (wi,w2) €R? | |w| =7, w1 =0, wa > 0}, computes the
squared Euclidean distance between an element w of the spherical
segment =, and the vector v = (v1,v2) with components v, =
1+ 271/2)3, k € {1,2}. The mapping attains its maxima along the
coordinate axes, e.g., for w* = (7,0) € E-.

Proof. The key idea of the proof is to employ a monotonicity argument.
Specifically, thanks to 7 monotonically decreasing in |w|, i.e., 7j(w1) =
71 (ws), for wy,ws € RY with |wa| > |wil, can be established
simply by showing that

2c

N -1
—Jw—v* >0, (4.72)

N

2

kN (w) = |w]

for allw € H\Bs(0) and all N > 2. We first note that for w € H\Bs(0)
with |w| > N9, (]Z?l_[) is trivially satisfied as the RHS of equals
zero (owing to |5%5| > 1 together with supp(7;) € B1(0)). It hence
suffices to prove @ for w € H with 0 < |w| < N%4. To this end, fix
T € [6, N*0], and define the spherical segment =, := {w € H | |w| =
7}. We then have

2a 2c
N -1
—|w—v]* > 72 N | " |w* — v|?, (4.73)

N -1

N

kN (w) = 72

for w € E; and N > 2, where w* = (7,0,...,0) € E;. The inequality
in ([4.73)) holds thanks to the mapping w + |w—v|?, w € Z,, attaining
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7 Ne§:

Fig. 4.10: The function pn(7) is quadratic in 7, with the coefficient of

the highest-degree term negative. Establishing pn(4) > 0 and
pn(N®J) > 0 therefore implies py(7) > 0, 7 € [0, N*0].

its maxima along the coordinate axes (see Fig. [4.9). Inserting

—1/2\\ 2 1VS2 —1/2)2
|w*fy|2:(775(1+2 )) +(d 1)6%(1+2 )

d P
o T6(242Y2)  §2(1+271/2)2
—To g ¢ d

into (4.73]) and rearranging terms yields

N -1
kn(w) = T2<’N

2a T6(2+21/%) G2 (1+271/2)?
-1)+ ] P ;

=wpn(T)

for all w € Z; and all N > 2. This inequality shows that xxy(w) is

lower-bounded—for w € E;—by the 1-D function py (7). Now, px(7)
2c

(|55

is quadratic in 7, with the highest-degree coefficient
1) negative (owing to o = log, (v/d/(d—1/2)) > 0, for d > 1).
Therefore, thanks to pn, N > 2, being concave, establishing px (§) > 0
and py(N*9) > 0, for N > 2, implies px(7) > 0, for 7 € [0, N¥0] and
N > 2 (see Fig. , and thus , which completes the proof. It
remains to show that py(d) = 0 and pxy(N*§) > 0, both for N > 2.
We have

N -1 2422 (142°1/2)2
_ 52 _ _
pn(6) =46 (‘ N 1+ 7 7 )

> 62 (2—20“ - d_dl/Q> = (4.74)
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where the inequality in (4.74) is by N — |%‘2a, for N > 2,
monotonically increasing in IV, and the equality is thanks to a =
log, (v/d/(d —1/2)), which is by assumption. Next, we have

pN(N®9) 20 _ oo NO@2+2V2)  (14+2712)°
T SN N d - d
2x(9 21/2 1 2—1/2 2
>1-22 4 (Z )—(+d ) (4.75)
) 21/2 1 2—1/2 2
PP S 1 CE 0 B U o S (4.76)

S d-1/2 7 4d-1/2 d

for all d > 1 and all N > 2, where (4.75) is by N — (N — 1)2® —
N2 4 d='N*(2 4 2Y/2), for N > 2, monotonically increasing in N
(owing to o = log, (v/d/(d —1/2)) > 0, for d > 1), and the equality
in is thanks to @ = log, (1/d/(d —1/2)). The inequality in
is established in Lemma [§| below. This completes the proof. [

It remains to show (4.76)), which is accomplished through the

following lemma.

Lemma 8. For every d > 1 it holds that

d__ Vd@+2'2) (1427122 0
d—1/2  d\/d—1)2 d g
Proof. We start by multiplying the inequality by d(d — 1/2), which
(after rearranging terms) yields
Vdd—1/2)a > (d—1/2)8+d/2, d>1, (4.77)

where a := (24 2'/2) and B := (14 27/2)2. Squaring ([#.77) yields
(again, after rearranging terms)

1

1 a? 153 32
202 2 o L o 2 Py_ P S
(0" == - )+d(-5 +5+35)- 1 20, d>1,
——
=0 >4 <3
which completes the proof. O
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We proceed to sharpen the exponent oo = logy(1/d/(d —1/2)) to
a =1 for d = 1. The structure of the corresponding proof is similar to

that of the proof for d > 1 with o = log, (1/d/(d — 1/2)). Specifically,
we start by employing the arguments leading to with N¢
replaced by N. With this replacement h, n s in becomes
hovas(®@) = Ta,cn, [T @ (1 = [7i(2225)[%), where, again,
appropriate choice of the modulation factors {vy, }x, ea, € R will be
key to establishing the inductive step. We start by defining A} to
be the set of indices A, € A,, such that supp(gx,) C [, c0), and take
A;, to be the set of indices \,, € A,, such that supp(gx,) C (—oc0, —d]
(see Assumption . Clearly, A,, = A} U A, . Moreover, we define

the modulation factors according to vy, := 4, for all A, € A}, and
vy, = —0, for all A\, € A;. We then get
— S (WA P
hnvas@) = 32 o @R (- [A(=155)])
An€An
_ o w—0 |2
= ¥ @@ (- A(ogs)|)  e®
An€AL
_— o wH+d |2
+ 2 P @) (- [y ogs) ) @)
An €A,
o w—0 |2
< max{LBn}]l[(;,oo)(w)@ - ‘ l<m)’ ) (4.80)

+max{1, B} 1(_oo—s)(w) (1 -

( w+d \|?

— 4.81
Tl((N—l)(S)’ ) (4.81)
where (4.78) and (4.79) are thanks to Assumption |1} and for the last

step we employed (4.16). For the set [§,00), we show in Lemma [9]
below that

(=19 [7(55)

This will allow us to deduce
( w+6 W
7 ) > et
‘ l((N— 1)5)’ g ‘TI(N6>

120

, Vw e [0,00), VN > 2. (4.82)
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4.7 PROOFS
simply by noting that
w+d w+o ! —(—w—=0)\!
) - -kt - -
Tl((N—l)é)‘ < ‘(N—1)5‘>+ ( (N —1)0 >+
o —w=90 [ —w
‘Tl((Nfl)(S)‘ z ‘TI(N(F)’ (4.84)
—w\! W
= (1-|%50), = (”(m) !
for w € (—oo, 5] Here the inequality in is due to (4.82).
Insertion of (4.82) into and of - ) into (4.81)) then yields

BN a6 (W) < max{1, By} L(—oo, 57015, o0) (W )(1—‘?1(%)‘2)
< max{1, B, (1 - \ (35)):

for w € R, where the last inequality is thanks to 0 < 7j(w) < 1,
for w € R. This establishes —in the 1-D case—for a = 1 and
completes the proof of statement i) in Theorem

It remains to prove , which is done through the following

lemma.

Lemma 9. Let 7 : R = R, 7j(w) := (1 — |w|)’, with I > 1. Then,

‘ﬂ((;fu_f)é)’ > ‘rl(]i};(s)‘ Vwe [0,00), VN >2. (4.85)
Proof. We first note that for w > NJ, is trivially satisfied as the
RHS of equals zero (owing to | % | > 1 together with supp(7) C
B;(0)). It hence suffices to prove for 6 < w < NJ. The key
idea of the proof is to employ a monotonicity argument. Specifically,
thanks to 7; monotonically decreasing in |w|, i.e., 7(w1) > 7(w2),
for wy,ws € R with |wa| > |wi], can be established simply by
showing that

Yw € [5,N§], YN > 2,

=
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which, by w € [4, N¢], is equivalent to

w—20 w
= < oo
(N—-1)0 = N¢

Rearranging terms in (4.86)), we get
w < N, Vwe [0, Nd§], VN > 2,

Yw € [§,N6], YN > 2. (4.86)

which completes the proof. O

Remark 7. What makes the improved exponent a possible in the
1-D case is the absence of rotated orthants. Specifically, for d =
1, the filters {gx, }r,en, satisfy either supp(gx,) C (—oo,—0d] or
supp(gx,) C [d,00), i.e., the support sets supp(gy, ) are located in one
of the two half-spaces.

4.7.3. Proof of statement ii) in Theorem

We need to show that there exist constants C4 5, C2 s > 0 (that are
independent of N) such that

W (f) < CLsBYN™2%  Vse€(0,1/2), YN > 1, (4.87)
and
Wn(f) < Co s BYN™, Vs [1/2,00), VN > 1. (4.88)
Let us start by noting that
max{0,1 — 2lw|} < (1 - [w))?, weRY, (4.89)
where [ > |d/2] + 1, see Fig. This implies

t-Ja(ga)l = 1= (- |xwl),

21 |wl
gl* alf
max{() NO‘(S}

2
:min{l,lL“"}, Yw € R%. (4.90)

122



4.7 PROOFS

Fig. 4.11: Illustration of (| in dimension d = 1. The functions g1 (w) :=
max{0, 1 — 2l|w|} (dashed line) and g2(w) := (1 — |w|)3* (solid line)
satisfy g1(w) < g2(w), for w € R. Note that [ > |d/2] + 1.

The key idea of the proof of (4.87)) is to upper-bound the integral on
the RHS of (4.18)) according to

[ Fer (1= [a (5| a
\/Rdf(w)gmin{l,il[&? }dw (4.91)
= [ Ferfgaes [ Fepas @

) 4\ B.(0)

where 7 := NT?S. Here, the inequality in (4.91)) follows from (4.90)),

and (4.92) is owing to

21 |w|
min{1,2l |W|} — Nag§» |(JJ‘ gT?
NG ST\, s

Now, the first integral in (4.92)) satisfies

2l |w 21 sl 1928
[, Ferfgae = go [ 1F@Plr
2071 25/ ~ 21 12
< f()|*|w]**dw (4.93)
Neg BT(O|)( )7 |w]
20 71728 ~ s
S “Nag [ F@)P(1+[w]?)*dw

B, (0)
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21 2s - .
<(5ag) [, RO+ 1ol (194)

‘1—23

where (4.93)) is owing to |w| — |w monotonically increasing in
|w]| for s € (0,1/2). For the second integral in (4.92)), we have

/Rd\B,.((J)f(w)Fdw :/ R\ B

| F () [2]w] 728 |w] > dew
(0)

.

< [l e e (1.95)
R\ B, (0) —
S(A+[w]?)

<7 / IFP+ ol
RI\ B, (

<(3m5) [ IF@PO+Prdw @90
N3/ Jra\g, (0)
where (4.95)) is thanks to

jwl = w7, weRY,

monotonically decreasing in |w| for s € (0,1/2). Inserting (4.94) and
(4.96)) into (4.92)) establishes (4.87) with

Cus = (2067 fl1 -
Next, we show (4.88) by noting that

Jfr (1= [a(e5) o

P uin {1, 2 (4.97)

Na§
N%/ 1P Plul o

< 5 [, TR+ ) do = oz 1B

where (4.97) is by (4.90), and the last inequality follows from |w| <
(1+ |w|?)®, for w € R? and s € [1/2,00). This establishes (4.88)) with

Ca,s = (20) 07| Il
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and thereby completes the proof.

4.7.4. Proof of Proposition
Proposition 8. Let Q be the module-sequence (4.1)). Then,

ASIfI3 < Z @SN +Wn(f) < BY 13, (4-98)

for all f € L*(R?) and all N > 1, where

AN = Hmm{l Ay}, BY = Hmax{l By}

Proof. We proceed by induction over N and start with the base case
N =1 which follows directly from the frame property (4.2)) according
to

A £113 = min{L, AHIFIZ < Al FII5 < IF*xoll3+ D 1 *ga 13

A1EA;

= 11124, (N 112+W1.(1)
< Billfll; < max{L, B} f3 = Ballfl3, YV feL*RY.

The inductive step is obtained as follows. Let N > 1 and suppose
that (4.98) holds for N — 1, i.e.,

Ag IS < ZIH‘P” PP+ Wxa(F) < B HIFIB (4.99)

for all f € L?(R%). We start by noting that

ZIII@” PP+ Wy (f lelq’" O

n=0 n=0

+ ) | yexn-al3+ D 1ULdlf13, (4.100)

geAN—1 gEAN
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and proceed by examining the third term on the RHS of (4.100]).
Every path

Ge AN = Ay x ... x Ay_1 xApn

—_—
—AN-1

of length N can be decomposed into a path ¢ € AN ~1 of length N — 1
and an index Ay € Ay according to § = (¢, Ay ). Thanks to (4.3)) we
have U[q] = Ul(q, An)] = Un[An]U|q], which yields

YoWEsE= Y Y W) gl (4.101)

ge AN qgeEAN-1ANEAN

Substituting the third term on the RHS of (4.100) by (4.101) and
rearranging terms, we obtain

N—-2

ZIII‘P" DI +Wn(f) = ZH\‘P"( O

+ > ( yrxnvalli+ Y |l *SJANH%)

geAN-1 ANEAN

=:pn (Ulq]f)

Thanks to the frame property (4.2)) and Ulg]f € L?(R¢), which is by
(3.11)), we have

An[IUqlf113 < pn(Ulglf) < BullU[g)f13,

and thus
min{1, AN}(Z @B+ Wa-1(f)) (4.102)
n=0
Z 15 + W ()
N-2
<max{1, By} (D I®&(NIIE +Waa(h), (4.103)
n=0
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where we employed the identity > . ~v—1 [UldlflI3 = Wn-1(f).

Invoking the induction hypothesis (4.99) in (4.102)) and (4.103) and

noting that
AY = min{1, AN}AN Y, BY = max{1, By}BJ 7,

completes the proof. O

4.7.5. Proof of Proposition@

Proposition 9. Let 7, : R — R, 7j(w) = (1 — |[w|)}, with | >
d/2] + 1, and « as defined in (4.17). Then, we have

lim |f(w)|2(1 _ ’ﬁ(]\%é)‘z)dw:o, (4.104)

N—oco R4
for all f € L?>(RY).
Proof. We start by setting

AN,5(w) = (1 - ‘7(%)‘2) weRY NeN.

Let f € L%(R?). For every ¢ > 0 there exists R > 0 such that

/ F@)Pdw < e/2,
R4\ BRr(0)

where Bg(0) denotes the closed ball of radius R centered at the origin.
Next, we employ Dini’s Theorem (DiBenedetto), 2002, Theorem 7.3)
to show that (dn.q.6)Nen converges to the zero function zp(w) := 0,
w € R? uniformly on Bg(0). To this end, we note that (i) dx a.s is
continuous as a composition of continuous functions, (ii) zo(w) = 0,
for w € RY, is, clearly, continuous, (iii) AN o,s(W) =2 dni1,a,6(w), for
w € RYand N € N, and (iv) dn,a,s converges to zy pointwise on
Br(0), i.e., ]\}gnoo AN a.5(W) = 2o(w) = 0, for w € R This allows us
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to conclude that there exists Ny € N (that depends on €) such that
AdN,s(w) < QH;HQ, for w € Bg(0) and N > Ny, and we therefore get
2

/ | Fw) P a5 (w)do = / |F@)]? () oo
R4 R4\ Br(0) ——
<1

1715 =,

l\D\m

[ [P dyaste) do <
Br(0)

———
£
S22

2Hfll2

where in the last step we employed Parseval’s formula. Since € > 0
was arbitrary, we have (4.104)), which completes the proof. O]

47.6. Proof of Theorem
Wavelet case

We start by establishing in statement i). The structure of the
proof is similar to that of the proof of statement i) in Theorem
in Section [1.7.2] specifically we perform induction over N. Starting
with the base case N = 1, we first note that supp(¢)) € [r—1,7],

g (w) = d)(r Jw), for j > 1, and gj(w) = 1/)( r=lilw), for 7 < —1, all
by assumption, imply

supp(g;) = supp(P(r~—7-)) € [/, 17, (4.105)
for j > 1, and
supp(7;) = supp(eh(—r V7)) C [—rlIHE —plil=t), (4.106)

for j < —1. We then get

m= 3 ||f*gg||r/ S G (4.107)
JEZ\{0} JEZ\{0}

/Z (r i) fw 2dw+/2|w 1i10) 2| ) Pl
izl Jj<—1
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(r9w)’|f(w)[Pdw

e
/ ; )] f )] de (4.108)
</R\

@b < [Ifof 0= Rebae. @)

where is by Parseval’s formula, and is thanks to @
and (| m The first inequality in is owing to @ , and
the second inequality is due to supp(rl) [ 1,1] and 0 < 7 (w) < 1,
for w € R. The inductive step is obtained as follows. Let N > 1 and
suppose that holds for N — 1, i.e.,

Waah) < [ 1fel (1=[a(mm)| ae @

for all f € L?(R). We start by noting that every path § € (Z\{0})¥
length N can be decomposed into a path ¢ € (Z\{0})¥~! of length
N — 1 and an index j € Z\{0} according to § = (j,q). Thanks to
(4.3) we have U[q] = U[(j, q)] = Ulq]U1[j], which yields
> > WUa@hNIE
JEZN{0} g€ (Z\{oH)N 1
Z W1 (U1[5]f). (4.111)
JeZ\{0}

We proceed by examining the term Wy _1(U;i[j]f) inside the sum

in (4.111). Invoking the induction hypothesis (4.110) and employing
Parseval’s formula, we get

Wt / BT (1 [ (m) | o
(1Ll F15 — ||(U1[ /) % rin—2ll3)
= (Hf*gj”z —If *gjl xmin—2l3),  (4.112)

where r; y_o is the inverse Fourier transform of 7 ((113"—_2) Next, we
note that 7} ((115“—_2) is a positive definite radial basis function (

2004, Theorem 6.20) and hence by (Wendland, 2004, Theorem
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6.18) 7, n—2(x) > 0, for x € R. Furthermore, it follows from Lemma
in Section 7.2 that

I1f * gl * rin—2ll3 = || f * g5 % (My,ri,n—2)]|3, (4.113)

for all {vj};ez\foy € R. Choosing the modulation factors
{vj}iez\for € R appropriately (see below) will be key to
establishing the inductive step. Using (#.112)) and (4.113) to upper-
bound the term Wy_1(U1[j]f) inside the sum in yields

Wa(h) < D (I * gl = 1 g5 % (M min—2)3)

JEZ\{0}
= [ 1Ry, (4.114)
R
where
._ ~ 2 (w5 |2
hv—a(w) = Y |g(w)] (1_‘”(7&7;)‘ ) (4.115)
JEZ\{0}

In (4.114) we employed Parseval’s formula together with J\/JD” = wa,
for f € L?(R) and w € R. The key step is now to establish—for
appropriately chosen {v;};cz\ {0y € R—the upper bound

o w \|?
hin-a(w) < (1 - 'rl(mﬂ ) Vw e R, (4.116)
which then yields (4.27)) and thereby completes the proof. To this end,
we set 1 1= 7’22:-1’
vi=1rln, =1, vj = —rbly,  j< -1, (4.117)

and note that it suffices to prove (4.116)) for w > 0, as
o —~ 2 ~f W — l/j 2
hv-a-w) = 3 15-)P(1- (=)

jez\{o}
()

= Y @) (1-

js—1
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- S (- ()

=1

=S lG )P (1- ﬁ(zjj_’;f)f) (4.119)
i>1
= hLN_g(w), Vw Z O (4120)

Here, (4.118) is thanks to g;(—w) =0, for j > 1 and w > 0, which is
by (4.105)), and (4.120)) is owing to g;(w) =0, for j < —1 and w > 0,
which is by . Moreover, in we used that 7; satisfies
71(—w) = 1 (w), for w € R, and is thanks to

75 (—w) = 907wy =9 (riw) = Gi(w), VweR, Vi1,

as well as v_; = —rin = —v;, for j > 1. Now, let w € [0, 1], and note
that
~ (W =V |2
hy—a(w) = Y |gj(w)|2(1 - ‘rl(ﬁ)‘ ) =0 (4.121)
jez\{o}

2

YN > 2, (4.122)

where the second equality in is simply a consequence of g;(w) =
0, for j € Z\{0} and w € [0, 1], which, in turn, is by and
(4.106)). The inequality in is thanks to 0 < 7(w) < 1, for
w € R. Next, let w € [1,7]. Then, we have

() = @ (1 - 7 (L)) (1.123)

<ar(- D)

+ (1= lgi@)?) (1- ’ﬁ(zN—__Z) ’2) (4.124)
>0 >0

=1 [a(d)|

(D).
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where (4.123)) is thanks to g;(w) =0, for j € Z\{0,1} and w € [1,r],
which, in turn, is by (4.105]) and (]4.106|). Moreover, is owing
to |g1(w)|? € [0,1], which, in turn, is by (#.24) and 0 < 7(w) < 1, for
w € R. Next, fix j > 2 and let w € [r77! 7"]] Then, we have

w—riny |2
(=)l

huv—2(w) = 15 @)* (1 -

_ w—riTpy 2
+ |gj*1(w)|2 (1 - ‘W(ﬁ)‘ ) (4.126)
———
=(1-1g5 @)[2—[$(w)I?) >0
w—7ri7Iny 2
<1- (=)
~ . w—’l"j_ln 2 R w—rjn 2
+|9j(w)|2(‘rl(w)‘ —’7“1( N2 )‘ ), (4.127)

where (4.126) is thanks to i) g;/(w) = 0, for j' € Z\{0, j,j — 1} and
w € [ri~1,79], which, in turn, is by ([4.105) and (4.106]), and ii)

|6(@)]* + g1 @) + |G @) =1, Ywe[ 7], (4.128)

which is a consequence of the Littlewood- Paley condition (4.24)) and

of m and m It follows from ) and (4.127) that for

every j > 1, we have
_fw =iy 2
v -2() < 1= [7i (S y=)|

~ w=rTgN 2w =iy 2
sl (A=) - R
=:s(w)

for w € [r771,r7]. Next, we divide the interval [r/~! rJ] into two
intervals, namely I := [r7~1, L] and Ip := [&55r7,r7], and
note that s(w) > 0, for w € I, and s(w) < 0, for w € IR, as 7}

is monotonically decreasing in |w| and |w — rin| > |w — r771n]|, for

w € I, and |w—rin| < |w—17"1y|, for w € IR, respectively (see Fig.
14.12). For w € I, we therefore have
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r241

Fig. 4.12: The functions h1(w) := |w — r7n| (solid line), ha(w) := |w — r? 7]
(dashed line), and hs(w) := % (dotted line) satisfy ha < hy < hs

PSR YRS
on Iy = [r? ,—T’;Hrj]andhlghgghgonIR—[r’;HrJ,r]].

_w—riTigy 2
huv-2(@) <152 + 15 sw)

a NN
€0, =20
_fw—riTigy 2
<1- (=) o)

2

)

_qw—1riny |2 [ w
=1- Tl( alN—2 )‘ <1_‘”(CLN—1)

where |g;(w)[? € [0, 1] follows from ({.128)), and the last inequality is
a consequence of |w — 17| < £ for w e Ir, see Fig. 4.12| For w € I,
we have

qw—riTignz
hy-2() <1 [7(F oy )|+ 8 @) s(w)
a —_————
clo,1] <0

_fw—1I"ny 2 [ W
(] <A

where the last inequality now follows from |w—7"1n| < £, for w € I,

see Fig. This completes the proof of .

Next, we establish (4.28]). The proof is very similar to that of
statement ii) in Theorem [3]in Section We start by noting that
(4.28]) amounts to the existence of constants C 5, Ca s > 0 (that are
independent of N) such that

2

)

Wy (f) < Crsa N, Vs e (0,1/2), VN > 1, (4.129)
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and

Wy (f) < Cosa™™, Vse[l/2,00), VN > 1, (4.130)

where a = :zf}, r > 1. The key idea of the proof of (4.129) is to
upper-bound the integral on the RHS of (4.27)) according to

JFer (1= 7 (55) [ a
< /R|f(w)|2min{1,zl]v|ﬂ}dw (4.131)

= [ FerZEa [ fwpa. (1132)
B, R

(0) \B-(0)

where 7 := ‘12—;1 Here, the inequality in (4.131)) follows from (4.90)),

and (4.132)) is owing to
oy 20wl ?Ni“fl? |l <7,
min| 1, -5y ¢ = ) |
, w| > T
Now, the first integral in (4.132)) satisfies

Y 2“"‘)‘ 21 7 21 11—2 2
Fopdlely, = 2 / F@) ]2 2o
/B,(o) alN -1 aV=1 (0)

-

2071728 ~ s
< o /B(O|f(w)|2 lw?*  dw (4.133)
’ <1+ w[?)?
2 2s/ ~ )
< | —— Fl)|* (1 + |w]*)® dw, 4.134
(av=1) ], F@Pa+leP) (4.134)

where ([£.133)) is owing to |w| + |w|'~2% monotonically increasing in
|w]| for s € (0,1/2). For the second integral in (4.132)), we have

/ Flw)Pdw = / F@) L] e
R\ B, (0) R\ B, (0)

<2 / TP w2 dw (4.135)
R\ B, (0) —_
<(14]w?)s
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90 \2s PO ,
< (= 1 5 duw, 4.1
() [, o ROy as, s

where (4.135]) is thanks to |w| + |w|~2® monotonically decreasing
in |w| for s € (0,1/2). Inserting (4.134) and (4.136) into (4.132)
establishes (4.129)) with

Cu,s = (20)*a® || f|7--

Next, we show (4.130) by noting that
w 2
1712 P
/ 1f(w |2mln{ |“1| }dw (4.137)

< oer | W) Plolde
2l
< o [ PO+ lwP)* o = 15

where is by (4.90] , and the last inequality follows from
lw| < (1+|w]?)®, VYweR, Vse[l1/2,00).
This establishes with
Co,s = 2lal f|I%:

and thereby completes the proof of statement i).

Weyl-Heisenberg case

We proceed to the proof of statement ii), again, effected by induction
over N. Specifically, we first establish (4.30]) by employing the same
arguments as those leading to (4.114) with a™¥~2 (where a is defined

in ([4.26))) replaced by a™¥ =26 (where a is defined in ([4.29)). With this
replacement h; n_o in (4.115)) becomes

hinoow)i= > |G(w) (1—‘ (N Zf;)‘) (4.138)

kez\{0}
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where, again, appropriate choice of the modulation factors
{Vk}rezv oy S R (see below) will be key in establishing the
inductive step. Here, we note that the functions g in satisfy
gr(w) =g(w — (Rk+0)), for k > 1, gr(w) = glw + (R|k| + 0)), for
k < —1, by assumption, as well as

supp(gr) = supp(g(- — (Rk +9)))
Co+RKk-1),0+R(Ek+1)], k=1, (4.139)

and

supp(gr) = supp(g(- + (R|k| +9)))
C[—(6+ R(k|+1)),—(6 + R(Jk| — 1))], (4.140)

for k < —1, where (£.139)) and (4.140) follow from supp(g) C [~ R, R],

which is by assumption. It remains to establish the equivalent of

(4.116]), namely

2

. w
hl7N_2(OJ) S 1-— ’T[(m) s Vw € R. (4141)
R2
To this end, we set n = 755,

vp:=0+Rk—n, Vk>=1, vk ==V, VRS -1, (4.142)
and note that it suffices to establish (4.141]) for w > 0, thanks to

5, (- G

kez\{0}

=2 |!J7c(*w)\2(1f ‘ﬁ(%)r) (4.143)

hin—2(—w)

k<—1
SRl D)
=Yl (1= (S Zj;)\ ) "
— :ijvz(w), Vw > 0. (4.145)
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Here, follows from gp(—w) =0, for k > 1 and w > 0, which,
in turn, is by (4.139)), and (4.145) is owing to gi(w) =0, for k < —1
and w > 0, which is by . Moreover, in we used that
7 satisfies 7(—w) = 7(w), for w € R, and (4.144) is thanks to
v_ = —ug, for k> 1, and

where we used g(—w) = g(w), for w € R, which is by assumption.
Now, let w € [0, 4], and note that

w

2
W)’ . VYN =2, (4.146)

hun-2(w) =0 <1 |fi(

where the equality in (4.146]) is a consequence of (4.139) and (4.140)),
and the inequality is thanks to 0 < 7(w) < 1, for w € R. Next, let
w € [0,0 + R]. Then, we have

mv-2@) = 1) (1= [7( S )] (4.147)

(- (&)

+ -G @ (- R () (4.145)
20 >0

)

(A - (E)). a

where is thanks to gp(w) = 0, for k € Z\{0,1} and w €
[0, + R], which, in turn, is by (4.139) and (4.140]). Moreover,
is owing to |gi(w)|? € [0,1], which, in turn, is by ([25), and 0 <
7(w) <1, for w € R. Next, fix k > 2, and let w € [0+ R(k—1),0+ RE].
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Then, we have
R (W= |2
hi,N—2(w) = |9k(w)|2(1 - ‘rl(m)‘ )

O (e = |y (4150)

. , alV—2§
=(1—|gn (@) 2= [d(w)]?) >0

(W= Vg1 |2
<1-[i(Sv50 )|

Ha@P (7 () - (G, @y

where (4.150)) is thanks to i) gr (w) = 0, for ¥’ € Z\{0,k,k — 1} and
w € [0+ R(k —1),6 + RE], which, in turn, is by (4.139)) and (4.140)),

and ii)

X@)P + 1ge=1 ()P + g (@) = 1, (4.152)

for all w € [0 + R(k — 1),6 + Rk], which is a consequence of the

Littlewood-Paley condition (4.25) and of (4.139)) and (4.140)). It fol-
lows from (4.149) and (4.151) that for £ > 1, we have

(W= Vg1 |2
) <1 (5251)
1L.N—2(w) Gy

il (a(57) -G

=:s(w)

for w e [0 + R(k — 1), + RE], where v := (0 — v). Next, we divide
the interval [§ + R(k — 1), + Rk] into two intervals, namely I, :=
[0+ R(k—1),7] and Ig := [r,0 + Rk], where 7 := 0 + Rk — R/2 —n,
and note that s(w) > 0, for w € I, and s(w) < 0, for w € Iy, as 7y is
monotonically decreasing in |w| and |w — vg| = |w — vg_1], for w € Iy,
and |w — vy| < |w—vg_1], for w € Iy, respectively (see Fig. [£.13). For
w € I, we therefore have

(W= VE_1\ |2~
hin—2(w) <1— ‘ I(T’;’l)‘ + [gr(w)? s(w)
aN—2§ —
c01] >0

138



4.7 PROOFS

S+ R(k—1) T § + Rk

Fig. 4.13: The functions h1(w)
(dashed line), and hs
on Iy =1[0+R(k—

= |w— I/k\ (solid line), ha(w) := |w — vi—1]
(w) = £ (dotted line) satisfy ha < h1 < hg
1), 7] ndh1<h2<h3oan—[76+sz]

(W= Vg1 |2
<1—\ l(iaN_Qd )\ +s(w)

W= VRN |2 . w
Tl(aN—2(5>’ si- Tl(aN—l(S)

where |gx(w)|? € [0,1] follows from (4.152)), and the last inequality is
by |w — | < %, for w € I, (see Fig. [4.13). For the interval w € Ig,
we have

2
—1-

W=\ |2~
hu-a(w) < 1= [ (S22 Ik w) 2 s(w)
———— ——
€l <O
(W — V1) |2 [ w 2
Sl—’rl( alN—2§ )‘ <1_‘Tl<aN_15)

where the last inequality is by |w —vx_1| < %, for w € I (see Fig.

4.13). This completes the proof of (4.30).

Next, we establish (4.31]). The proof is very similar to that of
statement ii) in Theorem [3[in Section We start by noting that
amounts to the existence of constants C 5,C2 s > 0 (that are
independent of N) such that

W (f) < Cr.a 3N, Vse(0,1/2), VN > 1, (4.153)
and

Wn(f) < Casa™, Vse[1/2,00), YN > 1, (4.154)
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where a = % + %, o> g. The key idea of the proof of (4.153) is to
upper-bound the integral on the RHS of (4.30) according to

/'f 1_ ”( Nb—leNz)d”

l
/|f mm{ Nh}%}dw (4.155)
21 N
- [ fwpiiaes [ fepa, s
B-(0) R\ B-(0)
where
aV 1R
T = .
21

Here, the inequality in ) follows from , and m is

owing to
21 |w]|
min{l7 ?VH(T' } = oNTIR wl <7,
aV 1R 1, lw| > 7.
Now, the first integral in (4.156) satisfies

iy 2Z|W\ 21 Y 2| 11-2 2
Fap2iel g, 2 / | Flw) Pl 2 ]2 oo
/BT(O) a"IR aV=IR Jp (o]

2071728 ~ 9 9
< ——— flw w|?®  dw 4.157
R [, JOF (4.157)
S(A+|w]?)?
2l 2s/ ~ )
< | —=—= F)F(1+ |w]?)? dw, 4.158
(G7R) [, o PP (4.158)

where (4.157)) is owing to |w| — |w|'~2* monotonically increasing in
|w]| for s € (0,1/2). For the second integral in (4.156)), we have

[ k= [ |fwll P
R\ B (0) R\ B (0)

<7 / 1F@)? |w*  dw (4.159)
R\ B, (0) ——
<(1+wl?)
20 \2s / ~ )
<N === flw)*(1 4 |w|?)® dw, 4.160
(7) o TP ol (4.160)

140



4.7 PROOFS
where (4.159)) is thanks to
Wl = w7, weR,

monotonically decreasing in |w| for s € (0,1/2). Inserting (4.158) and
(4.160]) into (4.156f) establishes (4.153) with

Crs = 2D)*a** R f||%..

Next, we show (4.154)) by noting that

2
L7 (1= A
21 |w
</R|f(w)l2min{1,cﬂvll|R}dw (4.161)
21 ~
< ovorg [ IFPld
21 —~
m/'fW)lQ(HIwP)de

= N 1RHf||Héa

N

where (4.161)) is by (4.90), and the last inequality follows from |w| <
(14 |w|?)?, for w € R and s € [1/2,00). This establishes (4.154)) with

Cos :=2laR™"|| f||3

and thereby completes the proof of statement ii).

4.7.7. Proof of Corollary

We start with statement i) and note that A = BY =1, N € N,
by assumption. Let f € L?(R?) with supp(f) € Br(0). Then, by
Proposition ﬁ in Section together with 1\}51100 Wx(f) =0, for

f € L*(R%), which follows from Proposition |§| in Section we
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have

I£113 = [[|®a(HIII* = ZIII‘P" il

Zm«b" DIE = 1£15 = W1 (£) (4.162)
—~ w 2
P e | (4.163)
:/BL(O) lﬂw)ﬂﬁ((ﬁfﬁwﬂ dw, (4.164)

where (4.162)) is by the lower bound in (4.98]), (4.163) is thanks to
Parseval’s formula and (4.18)), and (4.164)) follows from f being L-

band-limited. Next, thanks to 7, monotonically decreasing in |w|, we
get

2

(o) 2 il veeBo. @)

Employing (4.165]) in (4.164)), we obtain
L

> rrmyes)| 118 = (1= s M1 (4166)
=(l—ﬁ) 1718 > (= )l 718, (4.167

where in we used Parseval’s formula, the equality in is
due to L < (N + 1)?4, which, in turn, is by , and the inequality
in is also by (upon rearranging terms). This establishes
(4.32) and thereby completes the proof.

The proof of statement ii) is very similar to that of statement i).
Again, we start by noting that Ay = BY =1, N € N, by assumption.
Let f € L?(R) with supp(f) C Br(0). Then, by Proposition [§] in
Section together with A}grlw Wx(f) =0, for f € L?(R), we have

1715 = [l @a(HIII* = ZIH‘P” I
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Z SN = 11£115 = W1 (f) (4.168)
/|f )‘ dw (4.169)
B /m(o) Fr rl(a;]&)’ dw, (4.170)

where (4.168)) is by the lower bound in (4.98)), (4.169)) is thanks to Par-
seval’s formula and (4.27)) as well as (4.30)), and (4.170)) follows from

f being L-band-limited. Next, thanks to 7; monotonically decreasing
in |w|, we get

~ 2 /L \|?
Tl(%)’ 2 l(m) Yw € Br(0). (4.171)
Employing in yields
(L \? L
1713 > |75 )| an%:( ) @)
L
= (1= ) B = - 213 (4.173)

where in (4.172)) we used Parseval’s formula, the equality in (4.173]) is
by L < a™Né, Wthh in turn, is by (4 , and the inequality in (4.173
is also due to 4) (upon rearranging terms). This establishes (4.32

and thereby completes the proof of ii).

4.7.8. Proof of Corollary

The proof is very similar to that of Corollary 2] in Section [I.7.7 We
start with statement i). Let f € H*(R?)\{0} and ¢ € (0,1) and note
that, by (4.87) and (4.88) together with BY =1, N € N, which is by
assumption, we have
COY[1f 112

W (f) < (S’YT’Y@H’ Vs > 0, (4.174)
where v = min{1, 2s}. By Proposition |8 in Section with A =
BY =1, N € N, and I\}im Wy (f) =0, f € L?>(R%), which follows

—00

from Proposition [9]in Section [.7.5] we have
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1£13 = ll@a(H)III* = ZIH‘P” il

Z @SN = (113 = W1 (f) (4.175)
D711 f Il

>[I £15 - SN+ 1) (4.176)

> |IF13 = el £15 = (1 =)l f13, (4.177)

where (4.175]) is by the lower bound in (4.98]), (4.176)) is thanks to
(4.174), and (4.177) follows from (4.35)). This establishes (4.32]) and

thereby completes the proof of i).

The proof of statement ii) is very similar to that of statement i).

Let f € H*(R)\{0} and £ € (0, 1) and note that, by (4.129)), (4.130)),
(4.153), and (4.154)), we have

20)7(| £1I%-
WN(f)i%, Vs > 0, (4.178)

where v = min{1, 2s}. By Proposition [8in Section with A =
BY =1, N € N, and A}im Wn(f) = 0, f € L?(R), which follows
—00

from Proposition [9] in Section [£.7.5] we have

1713 = lllea (NI = ZHI‘P” il

ZW OIE =13~ Waan(h) (4179)
2

> 113~ 20 e (4.180

> 1513 - <1718 = (1 - )7 1B. (1.181)

where (4.179) is by the lower bound in (4.98)), (4.180)) is thanks to
(4.178]), and (4.181) follows from (4.36)). This establishes (4.32)) and
thereby completes the proof of ii).
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4.7.9. Proof of Corollary
Let a be the decay factor in (4.26]) or (4.29). Then, it follows from

([E30) that

) /N

. < 20 ||f||H/5/ ) ok (4.182)
e £

is sufficient for (4.37)) to hold. In the wavelet case, we have a = :Zi,
r > 1, which, when combined with (4.182), yields

> k. (4.183)

Rearranging terms in (4.183)) establishes (4.38)). Next, in the Weyl-

Heisenberg case, we have a = % + %, o> g, which, when combined

with (4.182), leads to
1 46
-+ = > k. 4.184
5 + Roh (4.184)

Rearranging terms in (4.184]) establishes (4.39) and thereby completes
the proof.
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CHAPTER 5

From theory to practice:
Discrete-time deep convolutional

neural networks

HE first four chapters of this thesis focused on a mathematical
I theory of DCNNSs for feature extraction in continuous time.
This chapter considers the practically relevant discrete-time
case, introduces new convolutional neural network architectures, and
proposes a mathematical framework for their analysis. Specifically, we
establish deformation and translation sensitivity results of local and
global nature, and we investigate how certain structural properties of
the input signal are reflected in the corresponding feature vectors. Our
theory applies to general filters and general Lipschitz-continuous non-
linearities and pooling operators. For simplicity of exposition, we focus
on the 1-D case throughout this chapter, noting that the extension to
the higher-dimensional case does not pose any significant difficulties.
Experiments on handwritten digit classification and facial landmark
detection—including a feature importance evaluation—complement
the theoretical findings.
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Outline

The remainder of this chapter is organized as follows. Section 5.1
presents the notation and preparatory material of interest in the
context of this chapter. In Section [5.2] we introduce the basic building
blocks of the discrete-time DCNNs analyzed in this chapter, and in
Section [5.3] we present the network topology. In Section we define
sampled cartoon functions which allow us to understand how certain
structural properties of the input signal, such as the presence of sharp
edges, are reflected in the feature vector. Section [5.5 contains our
main results of this chapter, Theorems [5] and [6 which provide global
and local feature vector properties, respectively. Finally, experiments
on handwritten digit classification and facial landmark detection are
presented in Section @

5.1. NOTATION AND PREPARATORY MATERIAL

Welet Hy :={f :Z — C | f[n] = fln+ N], Vn € Z} be the set
of N-periodic discrete-time signalsﬂ7 and set Iy :={0,1,...,N —1}.
The delta function 6 € Hy is d[n] := 1, for n = kN, k € Z, and
d[n] := 0, else. For f,g € Hy, we set (f,g) = > ;. fIKlg[K],
1l = Soere Ul 1l = (Coery P2, and Ifllse =
sup,cry |f[n]]. We denote the discrete Fourier transform (DFT) of
f € Hy by flk] ==, ¢, flnle 27"/~ The circular convolution
of f€ Hy and g € Hy is (f x g)[n] == > yc;, flklgn — k]. We write
(T f)[n] == f[n — m], m € Z, for the cyclic translation operator.
The supremum norm of a continuous-time function ¢ : R — C is

lelloo := supger |e(2)]-

IWe note that Hy is isometrically isomorphic to CV, but we prefer to work
with Hpy for the sake of expositional simplicity.
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5.2 THE BASIC BUILDING BLOCK

5.2. THE BASIC BUILDING BLOCK

The basic building block of the discrete-time DCNNs we analyze
in this chapter consists of a convolutional transform followed by a
non-linearity and a pooling operator.

5.2.1. Convolutional transform

A convolutional transform is made up of a set of filters U = {gx}ren-
The finite index set A can be thought of as labeling a collection of
scales, directions, or frequency-shifts. The filters gy—referred to as
atoms—may be learned (in a supervised or unsupervised fashion), pre-
specified and unstructured such as random filters, or pre-specified and
structured such as wavelets, curvelets, shearlets, or Weyl-Heisenberg
functions.

Definition 8. Let A be a finite index set. The collection W) =
{gr}rear C Hy is called a convolutional set with Bessel bound B > 0
if
DI * ol < BIfIE,  Vf € Hy. (5.1)
AEA

Condition (5.1) is equivalent to

STk < B, Vkely, (5.2)
AEA

and hence, every finite set {g)}rea is a convolutional set with Bessel
bound B* :=maxyery >y [OAK][2 As (f % gx)[n] = (f,galn — ),
n € Iy, A € A, the outputs of the filters g, may be interpreted as
inner products of the input signal f with translates of the atoms gy .
Frame theory (Daubechies| [1992)) therefore tells us that the existence
of a lower bound A > 0 in according to

A< |Gak]P < B, Vke€ Iy, (5.3)
AEA

implies that every element in Hy can be written as a linear combina-

tion of elements in the set {gx[n — ]} or in more technical

neln,AEA (
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parlance, the set {gx[n — ~}}n€IN’/\€A is complete for Hy). The ab-
sence of a lower bound A > 0 may therefore result in ¥, failing to
extract essential features of the signal f. We note, however, that even
learned filters are likely to satisfy as all that is needed is, for
each k € I, to have gx[k] # 0 for at least one A € A. As we shall see
below, the existence of a lower bound A > 0 in is, however, not
needed for our theory to apply.

Examples of structured convolutional sets with A = B =1 include,
in the 1-D case, wavelets (Daubechies, 1992)) and Weyl-Heisenberg
functions (Bolcskei and Hlawatsch) 1997), and in the 2-D case, ten-

sorized wavelets (Mallatl [2009)), curvelets (Candes et al., 2006), and
shearlets (Kutyniok and Labate| 2012b)).

5.2.2. Non-linearities

The non-linearities p : C — C we consider are all point-wise and
satisfy the Lipschitz property |p(z) — p(y)| < L|z — y|, Va,y € C, for
some L > 0.

Example non-linearities
i) The hyperbolic tangent non-linearity, defined as

p(x) = tanh(Re(z)) + ¢ tanh(Im(x)),

where tanh(z) = &= has Lipschitz constant L = 2.

ette—T)

ii) The rectified linear unit non-linearity is given by
p(z) = max{0,Re(x)} + i max{0,Im(x)},
and has Lipschitz constant L = 2.

iii) The modulus non-linearity is p(x) = |z|, and has Lipschitz constant
L=1.

iv) The logistic sigmoid non-linearity is defined as

plx) = sig(Re(x)) + isig(Im(z)),
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where sig(z) = H%, and has Lipschitz constant L = 1/2.
We refer the reader to Section [2:3]for proofs of the Lipschitz properties
of these example non-linearities.

5.2.3. Pooling operators

The essence of pooling is to reduce signal dimensionality in the
individual network layers and to ensure robustness of the feature
vector w.r.t. deformations and translations.

The theory developed in this chapter applies to general pooling
operators P : Hy — Hy/g, where N, S € N with N/S € N, that
satisfy the Lipschitz property ||Pf — Pg|l2 < R||f —¢l, Vf,g € Hn,
for some R > 0. The integer S will be referred to as pooling factor,
and determines the “size” of the neighborhood values are combined
in, see Fig. [5.1] for an illustrative example.

Example pooling operators

i) Sub-sampling, defined as P : Hy — Hyyg,

(Pf)ln] = fISn], n€lnys,

has Lipschitz constant R = 1. For S = 1, P is the identity operator
which amounts to “no pooling”.

ii) Averaging, defined as P : Hy — Hyyg,

Sn+S—1

(PHInl= Y ar_snflk]l, n€Iyss,

k=Sn

has Lipschitz constant R = S1/2 maxXye(o,...,s—1} |ax|- The weights
{ax}7=5 can be learned (LeCun et al.,[1998) or pre-specified (Pinto
et al.| [2008) (e.g., uniform pooling corresponds to «j =
ke{0,...,5—1}).

I
g, for
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flnl

(Psubf)[n]

(Pmaxf)[n]

ARRARERER .

Fig. 5.1: Impact of pooling operators (with S = 2) on the signal f € Hao (top

row). Pooling by sub-sampling amounts to retaining every second
sample. Pooling by averaging amounts to computing local averages
of two consecutive samples. Pooling by maximization amounts to
picking the maximal value of two consecutive samples. Here, we used
the notation sub.: sub-sampling, avg.: average-pooling, and max.:
max-pooling.

iii) Mazximization, defined as P : Hy — Hyys,
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has Lipschitz constant R = 1.

We refer to Section [5.7-1] for proofs of the Lipschitz property of these
three example pooling operators along with the derivations of the
corresponding Lipschitz constants.

5.3. THE NETWORK ARCHITECTURE

The architecture we consider is flexible in the following sense. In each
layer, we can feed into the feature vector either the signals propagated
down to that layer (i.e., the feature maps), filtered versions thereof, or
we can decide not to have that layer contribute to the feature vector.

The basic building blocks of our network are the triplets (¥4, pa, Pg)
of filters, non-linearities, and pooling operators associated with the
d-th network layer and referred to as modules. We emphasize that
these triplets are allowed to be different across layers.

Definition 9. For network layers d, 1 < d < D, let ¥y =
{grs}rgen, € Hpn, be a convolutional set, pg : C — C a point-
wise Lipschitz-continuous non-linearity, and Py : Hy, — Hn,., @
Lipschitz-continuous pooling operator with Ngi1 = g—j, where Sg € N
denotes the pooling factor in the d-th layer. Then, the sequence of
triplets

0= ((\Ild,pd,Pd))

is called a module-sequence.

1<d<D

Note that the dimensions of the spaces Hy, satisfy N; > Ny >
... = Np. Associated with the module (¥4, p4, Pi), we define the
operator

(UalAdlf) = Palpalf * gr,)) (5.4)

and extend it to paths on index sets

q:(>\17>\2,...,)\d)6/\1><A2><...><Ad::Ad7
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U8 M) Ul A N
vlpr s K, X Ul
U 2A]1) e \/ \/ (UIOF28)]1) e
U f UAP)
(UP11) Uldf = f (U1 *xa

-
-

k.
I *xo

Fig. 5.2: Network architecture underlying the feature extractor ([5.6)). The index
)\fik') corresponds to the k-th atom RO of the convolutional set ¥,

d
associated with the d-th network layer. The function x4 is the output-

generating atom of the d-th layer. The root of the network corresponds
tod=0.

for 1 < d < D, according to
U[q}f = U[()\l, )\2, ey )\d)]f = Ud[)\d} e UQ[)\Q]Ul[)\l]f (55)

For the empty path e := 0 we set A? := {e} and let Ule]f := f, for
all f S ]‘IN1 .

The network output in the d-th layer is given by (Ulq]f) * xd,
q € A4, where x4 € Hy, ., is referred to as output-generating atom.
Specifically, we let x4 be (i) the delta function é[n], n € Iy, ,, if
we want the output to equal the unfiltered features Ulq]f, ¢ € A9,
propagated down to layer d, or (ii) any other signal of length Ny 1, or
(iii) xa = 0 if we do not want layer d to contribute to the feature vector.
From now on we formally add x4 to the set Wai1 = {gx,p1 FAars€Ausrs
noting that {gx,,, }a.1enqs U {xa} forms a convolutional set Wy
with Bessel bound B}, | < Bay1 +maxgery,, | |Xa[k]|?. We emphasize
that the atoms of the augmented set {gx, , }r,.,erqy, U {Xxa} are
employed across two consecutive layers in the sense of x4 generating
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the output in the d-th layer according to (Ulq|f) * xa4, ¢ € A%, and
the remaining atoms {gx,,, } ., A4, Propagating the signals Ulq]f,
q € A4, from the d-th layer down to the (d + 1)-st layer according to
, see Fig. With slight abuse of notation, we shall henceforth
write Wq for ¥/, and By for B/, as well.

We are now ready to define the feature extractor ®g based on the
module-sequence ().

Definition 10. Let Q = ((\Ild,pd7 Pd))1<d<D be a module-sequence.
The feature extractor ®q based on Q maps f € Hy, to its features

D—-1
oo (f) = |J 2405, (5.6)
d=0

where ®4(f) :== {(U[q)f) * Xa}qend is the collection of features gene-
rated in the d-th network layer (see Fig. .

The dimension of the feature vector ®qo(f) is given by

D—1 d
eogN1 + Z €de+1( H card(Ak)),
d=1 k=1

where 4 = 1, if an output is generated (either filtered or unfiltered) in
the d-th network layer, and g4 = 0, else. As N1 = g—: =...= sll-\-]-lsd’
for d > 1, the dimension of the overall feature vector is determined
by the pooling factors Sy and, of course, the layers that contribute to

the feature vector.

Remark 8. It was argued in (Bruna and Mallat, |2015; |Andén and
\Mallat, |2014; |Oyallon and Mallat,|2015) that the features ®%,(f) when
generated by wavelet filters, modulus non-linearities, without intra-

layer pooling, and by employing output-generating atoms with low-pass

characteristics, describe mel frequency cepstral coefficients
\Mermelstein, |1980) in 1-D, and SIFT-descriptors (Lowe, |2004; | Toldl

in 2-D.
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5.4. SAMPLED CARTOON FUNCTIONS

While our main results hold for general signals f, we can provide
a refined analysis for the class of sampled cartoon functions. This
allows to understand how certain structural properties of the input
signal, such as the presence of sharp edges, are reflected in the feature
vector. As already mentioned in Section [3:4.3] cartoon functions—
as introduced in continuous time in (Donohoj, 2001)—are piecewise
“smooth” apart from curved discontinuities along C?-hypersurfaces.
They hence provide a good model for natural images (see Fig. [3.7]
left) such as those in the Caltech-256 (Griffin et al., 2007)) and the
CIFAR-100 (Krizhevsky], 2009) data sets, for images of handwritten
digits (LeCun and Cortes, [1998) (see Fig. right), and for images
of geometric objects of different shapes, sizes, and colors as in the
Baby AI School data setﬂ

We refer the reader to Section B.4.3] for bounds on deformation
sensitivity for cartoon functions in continuous time DCNNs. Here, we
analyze deformation sensitivity for sampled cartoon functions passed
through discrete-time DCNNSs.

Definition 11. The function ¢ : R — C is referred to as a cartoon
function if it can be written as ¢ = ¢y + 14 yc2, where [a,b] C [0, 1]
is a closed interval, and ¢; : R — C, i = 1,2, satisfies the Lipschitz
pmpertﬁ

lei(z) — ci(y)| < Clz —yl, Va,y €R, (5.8)

2http://www.iro.umontreal.ca/%7Elisa/twiki/bin/view.cgi/Public/
BabyAISchool
3We note that it is actually the condition

|Vei(z)| < Cl)~t, i=1,2, (5.7)

for some C' > 0, rather than that was introduced in Definition [7]in Section
In this chapter, however, we prefer to work with condition (5.8)), which is
less restrictive than due to the fact that every continuously differentiable
function with bounded derivative is Lipschitz-continuous, see, e.g., (Searcoid} 2007,
Theorem 9.5.1).
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5.4 SAMPLED CARTOON FUNCTIONS

Fig. 5.3: Left: Image of a handwritten digit. Right: Pixel values corresponding
to the dashed row in the left image.

for some C > 0. Furthermore, we denote by

Clarr = {c1 + Lapjea | lei(x) — i(y)] < Kl —yl,
vx7y eR, i=1,2, ||02||oo < K}

the class of cartoon functions of variation K > 0, and by
Coifer = { Fn) = eln/N), m e {0,1,... N =1} |

. 1 N -1
c=(c1 +1gpe2) € CEyrr with a,b ¢ {O, N T}}
the class of sampled cartoon functions of length N and variation
K >0.

We note that excluding the boundary points a,b of the interval
[a, b] from being sampling points n/N in the definition of Cév AII({T is of
conceptual importance (see Remarkin the Section. Moreover,
our results can easily be generalized to classes CJCV AT consisting of
functions f[n] = ¢(n/N) with ¢ containing multiple “1-D edges” (i.e.,
multiple discontinuity points) according to ¢ = ¢; + Zlel La, 02
with NF, [ar, b)) = 0. We also note that CgAflgT reduces to the class of
sampled Lipschitz-continuous functions upon setting ¢y = 0.

A sampled cartoon function in 2-D models, e.g., an image acquired
by a digital camera (see Fig. left); in 1-D, f € CgAflgT can be
thought of as the pixels in a row or column of this image (see Fig.[5.3
right, which shows a cartoon function with 6 discontinuity points).
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5.5. ANALYTICAL RESULTS

We analyze global and local feature vector properties with globality
pertaining to characteristics brought out by the union of features
across all network layers, and locality identifying attributes made
explicit in individual layers.

5.5.1. Global properties

Theorem 5. Let Q = ((\I/d,pd,Pd))lgng be a module-sequence.
Assume that the Bessel bounds By > 0, the Lipschitz constants Lg > 0
of the non-linearities pg, and the Lipschitz constants Rq > 0 of the
pooling operators Py satisfy

1I<‘I}1aX max{ By, B4R3L3} < (5.9)

i) The feature extractor ®q is Lipschitz-continuous with Lipschitz
constant Lo =1, i.e.,

12a(f) = Do)l < IIf = hll2; (5.10)

for all f,h € Hn,, where the feature space norm is defined as

@A = Z > Wlglf) * xall3- (5.11)

d=0 geAd
ii) If, in addition to (5.9), for alld € {1,..., D —1} the non-linearities
pa and the pooling operators Py satisfy pa(0) = 0 and Py(0) =0

(as all non-linearities and pooling operators in the Secﬁions
and apart from the logistic sigmoid non-linearity, do), then

@Il < Ifll2s  Vf € Hny,. (5.12)

iti) For every variation K > 0 and deformation F, of the form

(Frf)[n] : =e(n/N1—7(n/Ny)), n€ Iy, (5.13)
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where 7 : R — [=1,1], the deformation sensitivity is bounded
according to

|1@a(Ff) — (NIl < 4K N2 (|22, (5.14)

for all f € Clxmr-
Proof. The proof is given in Section O

The Lipschitz continuity guarantees that pairwise distances
of input signals do not increase through feature extraction. As an
immediate implication of the Lipschitz continuity we get robustness
of the feature extractor w.r.t. additive bounded noise n € Hy;, in the
sense of

[ ®@a(f +n) = 2a(HII < [Inll2
for all f € Hy,.

Remark 9. As detailed in the proof of Theorem [3, the Lipschitz
continuity combined with the deformation sensitivity bound (see
Proposition in the Section for the signal class under conside-
ration, namely sampled cartoon functions, establishes the deformation
sensitivity bound for the feature extractor. This insight has
tmportant practical ramifications as it shows that whenever we have
deformation sensitivity bounds for a signal class, we automatically
get deformation sensitivity guarantees for the corresponding feature
extractor.

From (5.14)) we can deduce a statement on the sensitivity of ®¢q w.r.t.
translations on R. To this end, we first note that setting (z) = ¢,

z € R, for t € [-1,1], (5.13) becomes
(Fr, f)[n] =c(n/Ny—1t), né€ly,.
Particularizing (5.14)) accordingly, we obtain
1@ (Fr, f) = Pa(HII] < 4K Ny *Jt]/2, (5.15)

which shows that small translations |¢| of the underlying analog signal
c(z), z € R, lead to small changes in the feature vector obtained by
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passing the resulting sampled signal through a discrete-time DCNN.
We shall say that is a translation sensitivity bound. Analyzing
the impact of deformations and translations over R on the discrete
feature vector generated by the sampled analog signal closely models
real-world phenomena (e.g., the jittered acquisition of an analog
signal with a digital camera, where different values of Ny in
correspond to different camera resolutions).

We note that, while iii) in Theoremis specific to cartoon functions,
i) and ii) apply to all signals in Hy, .

The strength of the results in Theorem [f] derives itself from the fact
that condition on the underlying module-sequence {2 is easily
met in practice. To see this, we first note that By is determined by
the convolutional set W4, Ly by the non-linearity pg, and Ry by the
pooling operator P;. Condition is met if

By < min{1, R;?L;?}, Vde{1,2,...,D}, (5.16)

which, if not satisfied by default, can be enforced simply by normalizing
the elements in W,. Specifically, for Cy := max{Bg, RZL2} the set
Uy = {C;l/Qg)\d}AdeAd has Bessel bound By = g—: and hence satisfies
(5.16). While this normalization does not have an impact on the
results in Theorem [5] there exists, however, a tradeoff between energy
preservation and deformation (respectively translation) sensitivity in

®¢ as detailed in Section

5.5.2. Local properties

Theorem 6. Let ) = ((\Ild, Pds Pd))1gng be a module-sequence with
corresponding Bessel bounds By > 0, Lipschitz constants Ly > 0 of the
non-linearities pq, Lipschitz constants Rq > 0 of the pooling operators
Py, and output-generating atoms xq. Let further LY := | xol1 andlﬂ

d 1/2
1= lxal (T BeL2RE) © d>1 (5.17)
k=1

4We note that ||xq/|1 in (5.17) can be upper-bounded (and hence substituted)

by \/Bg+1, see Remark |13[in Section
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i) The features genmerated in the d-th network layer are Lipschitz-
continuous with Lipschitz constant Lg, i.e.,

[196(f) = @G < LG f = All2, (5.18)

for all f,h € Hy,, where [[|& ()] = 2 epa I(Ulalf) * xal 3.

it) If the non-linearities py, and the pooling operators Py, satisfy pr(0) =
0 and Py (0) = 0, respectively, for all k € {1,...,d}, then

RGN < LI fll2e VS € Hy,. (5:19)

i) For all K >0 and all 7 : R — [—1,1], the features generated in the
d-th network layer satisfy

119G (Er ) — @G| < ALGENYZ||r|1 327, (5.20)

forall f € CéVA’RT, where F f is defined in (5.13)).

iv) If the module-sequence employs sub-sampling, average pooling, or
mazx-pooling with corresponding pooling factors Sq € N, then

O (T f) = T _P4(f), (5.21)

forall f € Hy, and all m € Z with 5", € Z. Here, T ®3(f)
refers to element-wise application of Ty, i.e.,

Tn®(f) = A{Th | h € ®4(F)}-

Proof. The proof is given in Section O

One may be tempted to infer the global results ((5.10)), (5.12), and
(5.14) in Theorem [5| in Section from the corresponding local

results in Theorem |§|, e.g., the energy bound in (5.12) from (5.19)

according to

D—
el = (X 1enIE) " < Vs,

d=0

,_.
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where we employed LQ 1 owing to . This would, however, lead
to the “global” Lipschitz constant LQ = 1 in (5.10)), (5.12)), and (5.14)
to be replaced by Lo = v/D and thereby render the corresponding
results much weaker.

Again, we emphasize that, while iii) in Theorem |§| is specific to
cartoon functions, i), ii), and iv) apply to all signals in Hy, .

For a fixed network layer d, the “local” Lipschitz constant L&
determines the noise sensitivity of the features ®%(f) according to

[[@G(f +m) = @I < L2, (5.22)

where (5.22) follows from (5.18). Moreover, Lg via (5.20) also quanti-

fies the impact of deformations (or translations when 7 (z) = ¢, x € R,
for t € [-1,1]) on the feature vector. In practice, it may be desirable
to have the features <I>?2 become more robust to additive noise and
less deformation-sensitive (respectively, translation-sensitive) as we
progress deeper into the network. Formally, this vertical sensitivity
reduction can be induced by ensuring that L?{H < LY. Thanks to

1/2
Xl Ba*LaRa | 4y

LY =
I xa-1ll1 e

this can be accomplished by choosing the module-sequence such that
||Xd||1B;/2Lde < |Ixa-1ll1- Note, however, that owing to
this will also reduce the signal energy contained in the features
(). We therefore have a tradeoff between deformation (respectively
translation) sensitivity and energy preservation. Having control over
this tradeoff through the choice of the module-sequence €2 may come
in handy in practice.

For average pooling with uniform weights af = S ,k=0,...,5—1

(noting that the corresponding Lipschitz constant is Rq = S 1/ 2, see

Section [5.2.3)), we get

= s (T 255) .

k=1
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which illustrates that pooling can have an impact on the sensitivity
and energy properties of @6.

We finally turn to interpreting the translation covariance result
. Owing to the condition ﬁ € Z, we get translation covari-
ance only on the rough grid induced by the product of the pooling
factors. In the absence of pooling, i.e., Sy = 1, for k € {1,...,d},
we obtain translation covariance w.r.t. the fine grid the input signal
f € Hy, lives on.

Remark 10. We note that ScatNets (Bruna and Mallat, |2015) are
translation-covariant on the rough grid induced by the factor 27 cor-
responding to the coarsest wavelet scale. Our result in is hence
in the spirit of (Bruna and Mallad, |2013) with the difference that the
grid in our case is induced by the pooling factors Sy.

5.6. EXPERIMENTS

PWe consider the problem of handwritten digit classification and
evaluate the performance of the feature extractor ®¢ in combination
with a SVM. The results we obtain are competitive with the state-of-
the-art in the literature. The second line of experiments we perform
assesses the importance of the features extracted by ®g in facial
landmark detection and in handwritten digit classification, using
random forests (RF) for regression and classification, respectively.
Our results are based on a DCNN with different non-linearities and
pooling operators, and with tensorized (i.e., separable) wavelets as
filters, sensitive to 3 directions (horizontal, vertical, and diagonal).
Furthermore, we generate outputs in all layers through low-pass
filtering. Circular convolutions with the 1-D filters underlying the
tensorized wavelets are efficiently implemented using the algorithme
a trous (Holschneider et al., [1989).

To reduce the dimension of the feature vector, we compute features
along frequency decreasing paths only (Bruna and Mallat], 2013, i.e.,

5Code available at http://www.nari.ee.ethz.ch/commth/research/
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for every node Ulg]f, ¢ € A{™", we retain only those child nodes
UalA\a)Ulglf = Pa(pa((Ulg]f) * gr,)) that correspond to wavelets gy,
with scales larger than the maximum scale of the wavelets used to
get Ulq]f. We refer to (Bruna and Mallat), 2013; |Waldspurger, [2017)
for a detailed justification of this approach for scattering networks.

5.6.1. Handwritten digit classification

We use the MNIST data set of handwritten digits (LeCun and Cortes),
1998) which comprises 60,000 training and 10,000 test images of size
28 x 28. We set D = 3, and compare different network configurations,
each defined by a single module (i.e., we use the same filters, non-
linearity, and pooling operator in all layers). Specifically, we consider
Haar wavelets and reverse biorthogonal 2.2 (RBIO2.2) wavelets (Mal;
lat}, [2009), both with J = 3 scales, the non-linearities described in
Section [5.2.2] and the pooling operators described in Section [5.2.3
(with S; =1 and S5 = 2). We use a SVM with radial basis function
(RBF) kernel for classification. To reduce the dimension of the feature
vectors from 18,424 (or 50,176, for the configurations without pooling)
down to 1000, we employ the supervised orthogonal least squares
feature selection procedure described in (Oyallon and Mallat), [2015)).
The penalty parameter of the SVM and the localization parameter
of the RBF kernel are selected via 10-fold cross-validation for each
combination of wavelet filter, non-linearity, and pooling operator.

Table [5.1] shows the resulting classification errors on the test set.
Configurations employing RBIO2.2 wavelets tend to yield a marginally
lower classification error than those using Haar wavelets. For the tanh
and LogSig non-linearities, max-pooling leads to a considerably lower
classification error than other pooling operators. The configurations
involving the modulus and ReLLU non-linearities achieve classification
accuracy competitive with the state-of-the-art (Bruna and Mallat)
2013)) (class. err.: 0.43%), which is based on directional non-separable
wavelets with 6 directions without intra-layer pooling. This is interest-
ing as the separable wavelet filters employed here can be implemented
more efficiently.
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Haar RBIO2.2
abs ReLU tanh LogSig || abs ReLU tanh LogSig
n.p. [0.55 057 141 1.49 0.50 0.54 1.01 1.18
sub. | 0.60 0.58 1.25 1.45 0.59 0.62 1.04 1.13
max. | 0.61 0.60 0.68 0.76 0.55 0.56 0.71  0.75
avg. | 0.57 0.58 1.26 1.44 0.51 0.60 1.04 1.18

Table 5.1: Classification error in percent for handwritten digit classification
using different configurations of wavelet filters, non-linearities, and
pooling operators (sub.: sub-sampling; max.: max-pooling; avg.:
average-pooling; n.p.: no pooling).

5.6.2. Feature importance evaluation

In this experiment, we investigate the “importance” of the features
generated by ®q corresponding to different layers, wavelet scales, and
directions in two different learning tasks, namely, facial landmark
detection and handwritten digit classification. The primary goal of
this experiment is to illustrate the practical relevance of the notion
of local properties of ®g as established in Section For facial
landmark detection we employ a RF regressor and for handwritten
digit classification a RF classifier (Breiman, |2001). In both cases, we
fix the number of trees to 30 and select the tree depth using out-of-bag
error estimates (noting that increasing the number of trees does not
significantly increase the accuracy). The impurity measure used for
learning the node tests is the mean square error for facial landmark
detection and the Gini impurity for handwritten digit classification. In
both cases, feature importance is assessed using the Gini importance
(Breiman et al., [1984), averaged over all trees. The Gini importance
1(0,T) of feature € in the (trained) tree T is defined as

ne (. ey, A g
I(G,T) = Z n ('LZ_ nLZKL - TRZZR)v
eT: ()= O ¢ ¢
where ¢(¢) denotes the feature determined in the training phase for
the test at node £, ny is the number of training samples passed through

node £, Nyt = e M, ¢ is the impurity at node ¢, and £ and
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Fig. 5.4: Images from the Caltech 10,000 Web Faces data base (Angelova et al.

2005) with corresponding annotations for eyes, nose, and mouth.

{r denote the left and right child node, respectively, of node £. For
the feature extractor ®q we set D = 4, employ Haar wavelets with
J = 3 scales and the modulus non-linearity in every network layer, no
pooling in the first layer and average pooling with uniform weights
1/52, Sq =2, in layers d = 2, 3.

Facial landmark detection

We use the Caltech 10,000 Web Faces data base (Angelova et al.
2005)). Each of the 7092 images in the data base depicts one or more

faces in different contexts (e.g., portrait images, groups of people), see
Fig. The data base contains annotations of the positions of eyes,
nose, and mouth for at least one face per image. The learning task is
to estimate the positions of these facial landmarks. The annotations
serve as ground truth for training and testing. We preprocess the data
set as follows. The patches containing the faces are extracted from the
images using the Viola-Jones face detector (Viola and Jones| [2004).
After discarding false positives, the patches are converted to grayscale
and resampled to size 120 x 120 (using linear interpolation), before
feeding them to the feature extractor ®qg. This procedure yields a
data set containing a total of 8776 face images. We select 80% of
the images uniformly at random to form a training set and use the

remaining images for testing. We train a separate RF for each facial
landmark. Following (Dantone et al., 2012) we report the localization
error, i.e., the fo-distance between the estimated and the ground
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left eye right eye nose mouth digits disp. digits

Layer 0 0.020 0.023 0.016 0.014 0.046 0.004
Layer 1  0.629 0.646 0.576 0.490 0.426 0.094
Layer 2 0.261 0.236  0.298 0.388 0.337 0.280
Layer 3 0.090 0.095 0.110 0.108 0.192 0.622

Table 5.2: Cumulative feature importance per layer. Columns 1-4: facial land-
mark detection. Columns 5 and 6: handwritten digit classification.

truth landmark positions, on the test set as a fraction of the (true)
inter-ocular distance. The errors obtained are: left eye: 0.062; right
eye: 0.064; nose; 0.080, mouth: 0.095. As an aside, we note that these
values are comparable with the ones reported in (Dantone et al., 2012
for a conditional RF using patch comparison features (evaluated on a
different data set and a larger set of facial landmarks).

Handwritten digit classification

For this experiment, we again rely on the MNIST data set. The
training set is obtained by sampling uniformly at random 1,000
images per digit from the MNIST training data set and we use the
complete MNIST test set. We train two RFs, one based on unmodified
images, and the other one based on images subject to a random
uniform displacement of at most 4 pixels in (positive and negative) x
and y direction to study the impact of offsets on feature importance.
The resulting RFs achieve a classification error of 4.2% and 9.6%,
respectively.

Discussion

Fig. shows the cumulative feature importance (per triplet of
layer index, wavelet scale, and direction, averaged over all trees in
the respective RF) in handwritten digit classification and in facial
landmark detection. Table [5.2] shows the corresponding cumulative
feature importance for each layer.
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Fig. 5.5: Average cumulative feature importance and standard error for facial
landmark detection and handwritten digit classification. The labels
on the horizontal axis indicate the layer index d € {0,1,2,3} and the
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5.7 PROOFS

For facial landmark detection, the features in layer 1 clearly have
the highest importance, and the feature importance decreases with
increasing layer index d. For handwritten digit classification using the
unshifted MNIST images, the cumulative importance of the features in
the second/third layer relative to those in the first layer is considerably
higher than in facial landmark detection (see Table . For the
translated MNIST images, the importance of the features in the
second/third layer is significantly higher than those in the 0-th and in
the first layer. An explanation for this observation could be as follows:
In a classification task small sensitivity to translations is beneficial.
Now, according to our theory (see Section translation sensitivity,
indeed, decreases with increasing layer index for average pooling as
used here. For localization of landmarks, on the other hand, the RF
needs features that are covariant on the fine grid of the input image
thus favoring features in the layers closer to the root.

5.7. PROOFS

5.7.1. Proof of Lipschitz continuity of poolings
We verify the Lipschitz property ||P(f) — P(h)|l2 < R||f — hl|2, for
all f,h € Hy, for the pooling operators in Section
Sub-sampling
Pooling by sub-sampling is defined as

P:Hx — Hyys, P(f)[n] = f[Sn], n € lnys,

where N/S € N. Lipschitz continuity with R = 1 follows from

IP(f) = PM)3= D [f[Sn] — h[Sn]?

’ﬂGIN/s

< > Ifln] = hn)> =|If = hl3, Vf.heHy.

neln
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Averaging
Pooling by averaging is defined as
Sn+S—1
P:Hy — Hyys, P(f)n] = Z ak—sn flk],
k=Sn

for n € Injg, where N/S € N. We start by setting o' :=
maXge{o,...,5—1} |ag|. Then,

Sn+S—1

IPGY = PMIZ= > | Y cw-salfIK] - hlk])

n€ln,s k=Sn
Sn+S—1

< Y| X i

n€ln,s k=Sn
Sn+S—1

<a?5 >N |k - nlK]

n€ly;s k=Sn

=a”s Z

neln

‘ 2

‘2 (5.23)

2
f1] = hlkl|” = 2115 = I3,

where we used Y, ;. | f[k] — h[K]| < SY2||f = hll2, f,h € Hg, to get
(5.23)), see, e.g., (Golub and Van Loan| [2013, Equation 2.2.5).
Maximization

Pooling by maximization is defined as

P:Hy — Hyys,  P(f)[n] = pe(sn DA o [ F ]I,

for n € Iy/s, where N/S € N. We have

1P —PMIz= > |

TLEIN/S

| IRl

max
ke{Sn,...,.Sn+S—-1}

|h[K]|

2
max ‘
ke{Sn,...,.Sn+S—1}
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2
gﬂgj}/s ke{Sn,..., Sn+S 1}|f[k] h[k” (5.24)
S_
< > D IfISn+ k= h[Sn+E]P  (5.25)
TLGIN/S k=0

= | f = hll3,
where we employed the reverse triangle inequality
Iflloe = l1Blloc| < 1f = hlloc,  fih € Hs,

to get (5.24)), and in (5.25)) we used || flleo < ||fll2, f € Hg, see, e.g.,
(Golub and Van Loan, 2013, Equation 2.2.6).

5.7.2. Proof of Theorem

We start by proving i). The key idea of the proof is—similarly to the
proof of Proposition [7] in Section [3.6.8—to employ telescoping series
arguments. For ease of notation, we let f, := Ulq]f and hq := Ulqlh,
for f,h € Hy,, ¢ € A?. With we have

1@ (f) — a(h)l[]* = Z > N = hg) * xall3-

d=0 geAd

=iaq

The key step is then to show that a4 can be upper-bounded according
to

adgbd—bd+1, d:O,...,.D—l7 (526)

with bg == cpallfq — hql|3, for d =0,..., D, and to note that

— D-1

Zad > " (ba = bag1) = bo — bp < bo
——
d=0 d=0 >0
= D o= hall3 = IIF = hl13,
geN®
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which then yields ((5.10]). Writing out (5.26]), it follows that we need
to establish

Do e —ha) *xalls < Y 1y — hall3

geA geAd
= > lfa—hgll3, d=0,...,D—1. (5.27)
qud+1

We start by examining the second sum on the RHS in (5.27)). Every
path

(jEAd+1 :Al Xoeen XAdXAd+1
—_————
—Ad

of length d + 1 can be decomposed into a path ¢ € A? of length d and
an index Ag+1 € Agy1 according to ¢ = (g, Ag+1). Thanks to (5.5)) we
have U[q] = Ul(q, Aa+1)] = Ua+1[MNa+1]U]g], which yields

> fa—hall3
GeAd+1
=Y Y NUaraPaslfs = Uapa[Xaralhqli3. (5.28)

gEAY Ng+1€Aa11

Substituting (5.28)) into (5.27) and rearranging terms, we obtain

>~ (s = o) % xall} (5.29)

geAd

+ ) UaraPanlfs - Ud+1[>\d+1]hq\|§> (5.30)
Ad+1€A+1

<Y Mfa—hgll3, d=0,...,D—1. (5.31)
geN?

We next note that the sum over the index set A4y inside the brackets

in (5.29)-(5.30) satisfies

D WUapaParalfy = Uara[Pasalhgll3

Ad+1€AG11
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= Z HPd—&-l(pd-&-l(fq *gkd+1)) _Pd—l-l(Pd—l-l(hq *gkd+1))”§

Aa+1€AG11
<RI Y, lpasi(fo* grus) = pasri(hg x a3 (5.32)
Ad+1€AG+1
<SEaLin > MUa=h) s gl (5.33)
Ad+1€AG+1

where we employed the Lipschitz continuity of P41 in and
the Lipschitz continuity of pgy1 in . Substituting the sum over
the index set Ag41 inside the brackets in — by the upper
bound yields

> (I = ha) % xal}

geA

Y WanPanlfy = UasaPaslhl3)
Aa+1€AG41

<Y max{L R L3 (I — o) X} (5.34)
geEN?

X U=k *analB). (5.35)
Ad+1€Aa+1

ford =0,...,D — 1. As {gx,., Frur1€hass U {Xa} are atoms of the
convolutional set Wg 1, and fq, hy € Hy, ,, we have

1o =) s xall3+ S 10 = he) % gruns |12

Ad+1€AG+1
< Bd+1||fq - hq”%v

which, when used in ([5.34)-(5.35) yields
> (10 = ha) % xal

geA?

> WanPaslfy = UasiDaalhgll3)
Ad+1€Aa+1

< Z maX{BdHaBd+1R<21+1L3+1}||fq — hyll3, (5.36)
geA?
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for d =0,...,D — 1. Finally, invoking (5.9) in (5.36]) we get (5.29)-
(5.31)) and hence (5.26)). This completes the proof of i).
We continue with ii). The key step in establishing ((5.12]) is to show

that for pg(0) = 0 and Py(0) =0, for d € {1,...,D — 1}, the feature
extractor ®q satisfies P (0) = 0, and to employ with h =0
which yields |||®(f)||| < ||f|l, for f € Hn,. It remains to prove that
D (h) =0 for h = 0. For h = 0, the operator Uy, d € {1,2,..., D},
defined in satisfies

(Ua[Aalh) = Pa(pa(h = g,)),

for \q € A4, by assumption. With the definition of Ulg] in . ) this
then yields (U[g]h) = 0 for h = 0 and all ¢ € A% (I>Q( ) = 0 finally
follows from

= |J { Uldh) * xa } jepu = 0. (5.37)
d=0 o
We proceed to iii). The proof of the deformation sensitivity bound
is based on two key ingredients. The first one is the Lipschitz
continuity result stated in . The second ingredient, stated in
Proposition [10]in Section [6.7.3] is an upper bound on the deformation
error || f — Fr f||2 given by

If = Frflla < 4KN1/2||TH1/2 (5.38)

where f € C’g /ir?r We now show how and (| can be com-
bined to establish - To this end we ﬁrst apply with
h:= (F;f) to get

[1@a(f) = Pa(F NI < If = Frfll2, (5.39)

for f € C’gg’lf& C Hpn,, N1 € N, and K > 0, and then replace the
RHS of (5.39) by the RHS of (5.38]). This completes the proof of iii).
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5.7.3. Proof of Proposition

Proposition 10. For every N € N, every K > 0, and every 7 : R —
[—1,1], we have

If = Frfll2 < 4KNY2||7|| 12, (5.40)
forall f € CéVAléT.

Remark 11. As already mentioned at the end of Section ex-
cluding the interval boundary points a,b in the definition of sampled
cartoon functions CgAIIiT (see Deﬁm’tion n Sect@'on s mecessary
for technical reasons. Specifically, without imposing this exclusion, we
can not expect to get deformation sensitivity results of the form .
This can be seen as follows. Let us assume that we seek a bound of the
form ||f — F-fll2 < Cn k|7, for some Cn x> 0 and some a > 0,
that applies to all fn] = c¢(n/N), n € Iy, with ¢ € CE\gy. Take
7(x) = 1/N, in which case the deformation (F; f)[n] = ¢c(n/N —1/N)
amounts to a simple translation by 1/N and ||7||oc = 1/N < 1. Let
c(x) = Lo n)(x). Then ¢ € CExpy for K =1 and ||f — F- fll2 = V2,
which obviously does not decay with ||| = N~ for some o > 0.
We note that this phenomenon occurs only in the discrete case.

Proof. The proof of is based on judiciously combining deforma-
tion sensitivity bounds for the sampled components ¢ (n/N), ca(n/N),
n € Iy, in (c1 + Ljgpc2) € CEpgrr, and the sampled indicator func-
tion 1y, 4)(n/N), n € In. The first bound, stated in Lemma [10| below,
reads

If = Frflla < CNY? 7]l oe, (5.41)

and applies to discrete-time signals f[n] = f(n/N), n € Iy, with
f : R — C satisfying the Lipschitz property with Lipschitz constant
C. The second bound we need, stated in Lemma [T1] below, is given by

10775 = FrIf gyl < 2N'2)7 (1322, (5.42)
and applies to sampled indicator functions ]lfib] [n] := 145 (n/N),

n € Iy, with a,b ¢ {0, %,..., 2=}, We now show how (5.41) and
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(5.42) can be combined to establish (5.40)). For a sampled cartoon
function f € CJCVAIET, ie.,

fln] = e1(n/N) + Lja 4 (n/N)ea(n/N) = fi[n] + 15 4 [n] faln],

where n € Iy, we have

If = Frfll2 < ||f1 Fofillz + 105 5y (f2 = Fr fo) 2

Gy = Frify ) (Frfo)ll2 (5.43)
<A - Ff1||2+||f2*Ff2||2+||]1[ab FAR ll2l1Fx f2lloo,
where in (5.43)) we used

(F- (11 1 £2))[n] = (Ljapyc2)(n/N = 7(n/N))
= L5 (n/N — 7(n/N))e2((n/N — 7(n/N)))
= (B ) [n](F- f2) [n].

With the upper bounds (5.41) and (5.42)), invoking properties of
Cév AI;{T (namely, (i) c¢1, co satisfy the Lipschitz property with Lipschitz

constant C K and hence f1[n] = c1(n/N), fa[n] = ca(n/N), n € Iy,
satisfy (5.41) with C' = K, and (ii) || F: f2]|cc = sup,er, |(Frf2)[n]| =
SUD,,cry |02(n/N—T(n/N))\ < supeg [e2(7)] = [le2foo < K), this
yields
If = Fr fllz 2ENY2 |7l + 2KN2? |17 L
SAKN'?||71 L2,

where in the last step we used ||7||o0 < ||7'H1/2 which is thanks to the
assumption ||7]|e < 1. This completes the proof of (5.40)). O

It remains to establish (5.41) and (5.42).

Lemma 10. Let ¢ : R — C be Lipschitz-continuous with Lipschitz
constant C. Let further f[n] :=c(n/N), n € In. Then,

If = Frfll2 < ONY2||7| .
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Proof. Invoking the Lipschitz property of ¢ according to

If = Frfll5 = le |f[n] = (Fr£)[n])?
= ZI le(n/N) = e(n/N = 7(n/N))|”
< 0 NZ [7(n/N)|* < C*NJ|r||3,
neT
completes the proof. O

We continue with a deformation sensitivity result for sampled
indicator functions 1, 3 (x).

Lemma 11. Let [a,b] C [0, 1] and set ]lfz’b} [n] := a4 (n/N), n € Iy,
with a,b ¢ {0, = Nreees %} Then, we have

10775 = Fr1f gl < 2NV 71222,
Proof. In order to upper-bound

”]l[lg,b] - Ffllfi,b]l\i = Z |]1[1<\1[,b] [n] — (FT]IfX,b])[n]\Q

neln

= Z L0, (n/N) — Loy (n/N — T(n/N))\Qy

neln

we first note that the summand h(n) := [1(q4(n/N) — L) (n/N —
7(n/N))|? satisfies h(n) = 1, for n € S, where

S = {nEIN‘%E[a,b] and %—T(%)%[a,b]}
U{nEIN‘%¢[a,b] and %—T(%)E[a,b}}

and h(n) = 0, for n € Iy\S. Thanks to a,b ¢ {0, ,..., 52}, we
have S C X, where

S = {nEZH%_a‘ < |\T||m}u{nez‘ ‘%—b‘ < ||T|\oo}.
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The cardinality of the set ¥ can be upper-bounded by 2 2lrlee  which

I/N >
then yields
IRy — A yls = D hm)P =1

neln nes
< Z 1 <A4AN|7]|oo- (5.44)
nex
This completes the proof. O

Remark 12. For general a,b € [0,1], i.e., when we drop the assump-
tion a,b ¢ {0, + N %}, it follows that S C ¥/, where

2 {neZ‘ ‘7 —a’ ||T||oo}u{nez‘ ’%—b‘ < HT||OO}.

Noting that the cardinality of ¥’ can be upper-bounded by 2 (% +
1) = 4AN||7|lo0 + 2, this then yields (similarly to (5.44)))

I3y — Al ll3 < D 1 <4N|Ir]lo +2,
nex

which shows that the deformation error—for general a,b € [0, 1] —does
not decay with ||7]| for some a > 0 (see also the example in Remark

.

5.7.4. Proof of Theorem |§|

We start by establishing i). For ease of notation, again, we let f, :=
Ulg)f and hy := U[q]h7 for f,h € Hy,, ¢ € A%. We have

11®Ef) = @EMI1P = D I(fq — hg) * xall3 (5.45)
geA
< xall? Y (s = hao)ll3, (5.46)
geAd

=iaq

where (5.46|) follows by Young’s inequality (Folland} [2015, Proposition
2.3.9).
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Remark 13. We emphasize that can also be upper-bounded
by Bat1 Y ogena I(fq — ho)ll3, which follows from the fact that
{90 i1 Prasienas U {xa} are atoms of the convolutional set W4
with Bessel bound Bgy1. Hence, one can substitute ||xq|1 in

by \/Bat1-
The key step is then to show that a4 can be upper-bounded accor-
ding to
ap < (BkL%R%)ak—la k= 13"~7d7 (547>

and to note that

d
aqg < (BaLiR%)ag_1 <... < (H BkLiRi)ao
k=1

d
= (TI BeL2R2) 3 1fa = hal3
k=1

q€eA?
d
= (T Berir2)is = nl3,
k=1

which yields (5.18]). We now establish (5.47)). Every path

(jGA’f:Al X o X A1 XA
—————
—Ak—1

of length k can be decomposed into a path ¢ € A*~! of length k£ — 1
and an index A; € Ay according to ¢ = (g, Ax). Thanks to (5.5 we
have U[q] = Ul(q, A\x)] = Ui[ x]U|q], which yields

STlfa=hald= D D NUMfs — UlMelhglls.  (5.48)

GEAF gEAF—1 AR EA

We next note that the term inside the sums on the RHS in (5.48)
satisfies

1Uk[Me)fq = Uk[Melhgll3 = 1Pe (o (fa * 9)) — Pr(or(hg = gx,)) |13
< LiR{|I(fq — hq) * ga, I3, (5.49)
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where we used the Lipschitz continuity of Py and pg with Lipschitz
constants Ry > 0 and Ly > 0, respectively. As {gx, Froen, U {xu-1}
are the atoms of the convolutional set Uy, and fy, hy € Hy, by (5.5),

we have

ST s = ha) * 9313 < Bellfo = hall3s
AL EAE

which, when used in ([5.48)) together with (5.49)), yields
D lfa—halls <BRLERE > |1fa = hali,

GEAF geNk—1
and hence establishes , thereby completing the proof of i).

We now turn to ii). The proof of follows—as in the proof of
ii) in Theorem [5[in Section from together with ®¢ (h) =
{(U[q]Rh) * xa}qera = 0 for h =0, see (5.37).

We continue with iii). The proof of the deformation sensitivity
bound is based on two key ingredients. The first one is the
Lipschitz continuity result in . The second ingredient is, again,
the deformation sensitivity bound stated in Proposition [10]in
Section Combining and (5.40)—as in the proof of iii) in
Theorem [5 in Section [5.7.2}—then establishes and completes
the proof of iii).

We proceed to iv). For ease of notation, again, we let f, := Ulq|f,
for f € Hy,, ¢ € A%. Thanks to , we have f, € Hy,,,,forq € A4
The key step in establishing is to show that the operator Uy,
ke {l,2,...,d}, defined in satisfies the relation

(UM T f) = Tony s, (Uk[Ak] f), (5.50)

for f € Hn,,, m € Z with Sﬂk € Z, and A\, € Ap. With the definition
of Ulg] in (5.5)) this then yields

Ul T f) = T ysy -5 (Uld) f), (5.51)

for f € Hy,, m € Z with g™ € Z, and q € A9, The identity (5.21)
is then a direct consequence of ([5.51)) and the translation-covariance of
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the circular convolution operator (which holds thanks to "« € Z):
O (T f) = { (Ul T f) = Xd}qud = {(Tomy(s1--5)Uld) f) * Xd}qud
= {Tonyis1--50) (UlaLf) ¥ Xa) } yena = T /(5150 PG (F)s

for f € Hy, and m € Z with
(5.50)):

€ Z. It remains to establish

m
S1...84

(UM ) = (Pelpn(Tn) + 90,)) )
= (Pe(oe(Tu(f < 91))) ) (5.52)
= (Pe(Tnlor(f * 90))) ) (5.53)

where in we used the translation covariance of the circular
convolution operator (which holds thanks to m € Z), and in
we used the fact that point-wise non-linearities commute with the
translation operator thanks to

(0k T f)[n] = pk (T f)[n]) = pr(fln —m]) = (Tmpr.f)[n],

for f € Hy,, n € In,, and m € Z. Next, we note that the pooling
operators Py in Section (namely, sub-sampling, average pooling,
and max-pooling) can all be written as (Pyf)[n] = (P}, f)[Skn], for
some P; that commutes with the translation operator, namely, for (i)
sub-sampling (PLf)n] = fn], with (P{Ty, f)ln] = (T f)ln] = fn
m|] = (T, P}, f)[n], (ii) average pooling (P}, f)[n] = lnjnskfl ag—n fll]
with

n+Sk—1 (n—m)+Sk—1

(PTnf)ln) = > anfll-ml= > o (emfll]

l=n I'=(n—m)

= (TmPr.f)[n],

and for (iii) max-pooling (P}, f)[n] = max;c(n, .. nts, 1y |f[I]| with

(PiTnf)ln) = max . |fll—m]]
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= max l—m
(I—m)e{n—m,...,(n—m)+Sk—1} |f[ ”

Mgl

max
l'e{(n—m),....,(n—m)+Sk—1}
= (TmPr.f)Inl,

in all three cases for f € Hy,, n € Iy, , and m € Z. This then yields

(PeT f)[n] = (P T f)[Skn] = (Tn Py f)[Skn]
= PL(f)[Skn —m] = PL(f)[Sk(n — Sy 'm)]
= Pu(f)ln— Sy 'm] = (Thys, P f)Inl, (5.54)

for f € Hy, and n € Iy, . Here, we used m/S) € Z, which is by
assumption. Substituting (5.54) into (5.53) finally yields

(UM T f) = Thy5,, Uk [ Ak £,

for f € Hy,, m € Z with Sﬂk € Z, and A\ € Ay. This completes the

proof of (5.50) and hence establishes (5.21)).
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