Covariant Time-Frequency Distributions Based on Conjugate Operators

Franz Hlawatsch and Helmut Bölcskei

Abstract— We propose classes of quadratic time-frequency distributions that retain the inner structure of Cohen’s class. Each of these classes is based on a pair of “conjugate” unitary operators satisfying time-frequency displacements. The classes satisfy covariance and marginal properties corresponding to these operators. For each class, we define a “central member” generalizing the Wigner distribution and the Q-distribution, and we specify a transformation by which the class can be derived from Cohen’s class.

I. INTRODUCTION

COHEN’S class with signal-independent kernels (Cohen’s class hereafter) consists of all quadratic time-frequency representations (QTFR)’s $T_g(t, f)$ that are covariant to time-frequency shifts $T_{g,x}(t, f) = T_g(t - x, f - v)$ [1]–[3]. Here, $x(t)$ is a signal with Fourier transform $X(f) = \int x(t) e^{-j2\pi ft} dt$, and $S_{x,v} = F_1 T_T$ with the time-shift operator $(T_T x)(t) = x(t-\tau)$. The properties of the operators T_T and F_1 are characteristic of a commutative structure. In this letter, this structure will be worked out in a generalized framework. We construct QTFR classes that are based on pairs of “conjugate” operators and that satisfy generalized covariance and marginal properties [4], [5]. Due to space limitations, we summarize our results without providing proofs. The concept of conjugate operators has been developed independently in [6] and [7].

II. CONJUGATE OPERATORS

We consider two operators A_α and B_β indexed by parameters $\alpha \in G$ and $\beta \in G$ with $G \subseteq \mathbb{R}$. They are assumed to be unitary on a linear signal space $X \subseteq L^2(\mathbb{R})$, and to satisfy identical composition laws $A_{\alpha_1} A_{\alpha_2} = A_{\alpha_1 \alpha_2}$ and $B_{\beta_1} B_{\beta_2} = B_{\beta_1 \beta_2}$ where $(G \bullet *)$ is a commutative group [4], [8], [9]. The eigenvalues $\lambda_{a,b}^A$ and eigenfunctions $\psi_{a,b}^\ast(t)$ of A_α are defined by $A_\alpha \psi_{a,b}^\ast(t) = \lambda_{a,b}^A \psi_{a,b}^\ast(t)$; they are indexed by a “dual parameter” α. The A-Fourier transform (A-FT) [8] is defined as $X_A(\hat{\alpha}) = (F_A x)(\hat{\alpha}) = \frac{1}{\sqrt{2\pi}} \int x(t) \psi_{a,b}^\ast(t) dt$. Analogous definitions apply to $\lambda_{a,b}^B$, $\psi_{a,b}^\ast(t)$, and $X_B(\hat{\beta}) = (F_B x)(\hat{\beta})$. We now assume that applying one operator to an eigenfunction of the other operator merely shifts the eigenfunction parameter [4], [5].

Definition 1. Two operators A_α and B_β as described above will be called conjugate if $\alpha \in G$, $\beta \in G$ and

\[
\{B_\beta \psi_{a,b}^\ast(t)\} = \psi_{a,b}^\ast(\xi(t)), \quad (A_\alpha \psi_{a,b}^\ast(t)) = \psi_{a,b}^\ast(\eta(t)).
\]

Two conjugate operators A_α, B_β can be shown to satisfy the following remarkable properties [4]:

1) Their eigenvalues can be written as $\lambda_{a,b}^A = e^{j2\pi \mu(a) \mu(\beta)}$ and $\lambda_{a,b}^B = e^{j2\pi \mu(a) \mu(\beta)} = \lambda_{a,b}^A^*$. Here, $\mu(g) \in \mathbb{R}$ maps $(G \bullet *)$ onto $(\mathbb{R}, +)$ in the sense that $\mu(g_1 \bullet g_2) = \mu(g_1) + \mu(g_2)$, $\mu(g_0) = 0$, and $\mu(g^{-1}) = -\mu(g)$, where g_0 is the identity element in G and g^{-1} denotes the group-inverse of g. In the following, we shall simply write $\lambda_{a,b}^A = \lambda_{a,b}$, $\lambda_{a,b}^B = \lambda_{a,b}^\ast$.

2) They commute up to a phase factor, $A_\alpha B_\beta = \lambda_{a,b} B_\beta A_\alpha$.

3) Their eigenfunctions are related as $\langle \psi_{a,b}^\ast(t) \rangle = \lambda_{a,b} \psi_{a,b}^\ast(t)$, $\int \psi_{a,b}^\ast(t) \psi_{a,b}^\ast(t') = \delta(\mu(a) \mu(b), \mu(a) \mu(b)) = \int \psi_{a,b}^\ast(t) \psi_{a,b}^\ast(t') dt'$, where $\delta(\cdot) = \delta(\mu(\alpha) \mu(\beta))$ denotes the Dirac delta function (cf. [10]).

4) The inner product of their kernels is $\int \int A_\alpha B_\beta \delta(\beta, \beta') = \delta(\mu(a) \mu(b), \mu(a) \mu(b)) = \int \psi_{a,b}^\ast(t) \psi_{a,b}^\ast(t') dt'$, and they are related as $X_B(\hat{\beta}) = \int X_A(\hat{\alpha}) \lambda_{a,b} \psi_{a,b}^\ast(\hat{\beta}) dt$ and $A_\alpha B_\beta = \int A_\alpha B_\beta \delta(\beta', \beta') dt$. [6].

We now compose two conjugate operators A_α, B_β and $D_\theta = B_\beta A_\alpha$ where $\theta = (\alpha, \beta) \in G^2$ with $G^2 = \tilde{G} \times \tilde{G}$. It is readily shown that D_θ is unitary on X and satisfies the composition property [4], [11] $D_{\theta_1} D_{\theta_2} = \lambda_{\alpha_1, \alpha_2} D_{\beta_1, \beta_2}$ where (G^2, \circ) is the commutative group with group operation $\theta_1 \circ \theta_2 = (\alpha_1, \beta_1) \circ (\alpha_2, \beta_2) = (\alpha_1 \circ \alpha_2, \beta_1 \circ \beta_2)$, identity element $\theta_0 = (g_0, g_0)$, and inverse elements $\theta^{-1} = (\alpha^{-1}, \beta^{-1})$.

Furthermore, $D_{\theta^{-1}} = \lambda_{a,b} D_{\theta^{-1}}$ and $D_{\theta} = I$ where I is the identity operator on X.

Examples. The shift operators T_T, F_1 underlying Cohen’s class are conjugate with $(G \bullet *) = (\mathbb{R}, +)$, $\mu(g) = g$, eigenvalues $\lambda_{a,b} = e^{-j2\pi \mu(a) \mu(\beta)}$, $\lambda_{a,b}^* = e^{-j2\pi \mu(a) \mu(\beta)}$, eigenfunctions $\psi_{a,b}^\ast(t) = e^{j2\pi \mu(a) \mu(\beta)}$, and dual parameters $\tau = f = \nu$. The operators are conjugate since $\{F_1 \psi_{a,b}^\ast(t)\} = \psi_{a,b}^\ast(\tau(t))$ and $(T_T \psi_{a,b}^\ast(t)) = \psi_{a,b}^\ast(t)$. The operators underlying the hyperbolic QTFR’s class [12] are conjugate as well, but the operators underlying the affine class and the power classes [13]–[15] are not conjugate.

Manuscript received March 29, 1995. This work was supported by FWF grants P10012-OPH and P10531-OPH. The associate editor coordinating the review of this letter and approving it for publication was Prof. A. Tsopei.

The authors are with INFT, Vienna University of Technology, Vienna, Austria.

Publisher Item Identifier S 1070-9908(96)01162-5.
III. COVARIANCE AND MARGINAL PROPERTIES

Let $u_3(t)$ and $\tau_3(f)$ denote the instantaneous frequency and group delay of the eigenfunctions $u_3(t)$ and $u_3(t)$, respectively. For any $\tilde{\beta} = (\tilde{\alpha}, \tilde{\beta}) \in \mathbb{G}^2$, the corresponding functions $u_3(t)$ and $\tau_3(f)$ are assumed to intersect in a unique time-frequency (TF) point $z = (t, f)$. Hence, $z = (\tilde{\theta})$ where $\tilde{\theta}$ will be called the localization function (LF) of the operator D_0. The LF is constructed by solving the system of equations $u_3(t) = f$, $\tau_3(f) = t$ for $(t, f) = z$. It is assumed to be invertible, i.e., $z = (\tilde{\theta}) = \tilde{\theta} = l^{-1}(z)$.

The LF describes the TF displacements caused by D_0. If a signal $x(t)$ is localized about a TF point $z = (t, f)$, then $(D_0 x)(t)$ will be localized about a new TF point $z' = (t', f')$. Since z is the intersection of $u_3(t)$ and $u_3(t)$ with $(\tilde{\alpha}, \tilde{\beta}) = \tilde{\theta} = l^{-1}(z)$, z' will be the intersection of $(D_0 u_3(t))$ and $(D_0 u_3(t))$. Due to the conjugate nature of A_α and B_β, $(D_0 u_3(t)) = \lambda_\alpha,\beta u_30,\beta(t)$ and $(D_0 u_3(t)) = \lambda_\beta,\beta,-\alpha0,\beta(t)$. Hence, $z' = (\tilde{\theta} \cdot \tilde{\alpha}, \tilde{\beta} \cdot \tilde{\alpha}) = l(\tilde{\theta} \cdot \tilde{\alpha}) = l^{-1}(z)$ with $\tilde{\theta} = (\beta, \alpha)$. This motivates the following definition.

Definition 2. A QTFR $T_a(z) = T_a(t, f)$ is called covariant to an operator D_0 if

$$T_{D_0}(z) = T_a\left(l^{-1}(z) \cdot \theta^{-1}\right)$$

with $\theta^{-1} = (\theta^{-1})^{-1} = (\beta^{-1}, \alpha^{-1})$.

The class of all QTFR's covariant to D_0 is characterized as follows (cf. [4], [11]):

Theorem 1. A QTFR $T_a(z) = T_a(t, f)$ is covariant to an operator D_0 if and only if

$$T_a(z) = \langle x, H^a x \rangle$$

$$= \int \int x(t_1, t_2) x^*(t_2) h_a^2(t_1, t_2, 1) dt_1 dt_2$$

with $H^a = D_0^{-1}(z)H D_0^{-1}(z)\tau_f$, i.e. $h_a^2(t_1, t_2) = \int_1 \int_1 D_0^{-1}(z)\tau_f(t_1, t_2) h(t_1, t_2) D_0^{-1}(z)\tau_f(t_1, t_2) dt_1 dt_2$. Here, H is an arbitrary operator with kernel $h(t_1, t_2)$, assumed independent of $z(t)$, and $D_0(t_1, t_2)$ and $D_0^{-1}(t_1, t_2)$ are the kernels of D_0 and D_0^{-1}, respectively.

For given operator D_0, (2) defines a class of QTFR's parameterized by the 2-D kernel $h(t_1, t_2)$ of the operator H.

This class consists of all QTFR's satisfying the covariance (1). For $D_0 = S_{\mu, \nu} = F_{\mu} F_{\nu}$, (1) becomes the TF shift covariance $T_{S_{\mu, \nu}}(z) = T_{\nu}(t - \mu, f - \nu)$ and (2) becomes Cohen's class.

Besides the covariance property (1), the marginal properties

$$\int_0 T_a(l(\tilde{\theta})) \mu(\tilde{\alpha}) = \left| X_\alpha(\tilde{\alpha}) \right|^2;$$

$$\int_0 T_a(l(\tilde{\theta})) \mu(\tilde{\beta}) = \left| X_\beta(\tilde{\beta}) \right|^2$$

are of importance. A class of QTFR's satisfying (3) is

$$\tilde{T}(z) = \int_0 \Psi(\theta) A_{\theta}^2(\theta) \Lambda(l^{-1}(z), \theta) \mu(\theta)$$

where $\Lambda(\tilde{\theta}, \theta) = \lambda_{\alpha, \beta} \lambda_{\alpha, \beta}^*$, $A_{\theta}^2(\theta) = \langle D_{\theta} x, D_{\theta} x \rangle$ (the characteristic function), $\mu(\theta) = \mu(\alpha) \mu(\beta)$, and $\Psi(\theta) = \Psi(\alpha, \beta)$ is a kernel (assumed independent of $x(t)$) satisfying $\Psi(\alpha, 0) = \Psi(0, \beta) = 1$ [4], [8], [17]. In the case of the conjugate operators T_ν and F_{μ}, the marginal properties (3) become $\int_0 T_a(l(\tilde{\theta})) dt = \left| X(f) \right|^2$ and $\int_0 T_a(l(\tilde{\theta})) df = \left| x(t) \right|^2$, $A_{\theta}^2(\theta) = A_\alpha^2(\nu, \nu)$ becomes the symmetric ambiguity function [3], and the QTFR class (4) becomes Cohen's class.

So far, we have formulated the QTFR class $T = \{T_a(z)\}$ in (2) comprising all QTFR's satisfying the covariance property (1), and the QTFR class $\tilde{T} = \{\tilde{T}(z)\}$ in (4) related to the marginal properties (3). These classes are equivalent in the conjugate case [4], [5]:

Theorem 2. For conjugate operators A_α, B_β, there is $T = \tilde{T}$ or equivalently $T_a(z) = \tilde{T}_a(z)$ where the kernel $h(t_1, t_2)$ of $T_a(z)$ and the kernel $\Psi(\theta)$ of $\tilde{T}_a(z)$ are related as $h(t_1, t_2) = \int_0 \tilde{T}_a(l(\tilde{\theta})) dt_1 dt_2$.

Hence, in the conjugate case considered, the "covariance approach" and the "characteristic function approach" to the construction of QTFR classes are fully equivalent.

With $\Psi(\theta) \equiv 1$, the "central member" $W_a^2(z) = \int_0 W_a^2(\theta) \Lambda(l^{-1}(z), \theta) \mu(\theta)$ of the QTFR class $T = \tilde{T}$ is obtained [5], [18]. It can be expressed as

$$W_a^2(z) = \int \int X_\alpha^2(\beta) X_\alpha^2(\beta) \lambda_{\alpha, \beta}^2(\theta) \mu(\beta)$$

$$= \int_0 X_\alpha^2(\beta) \mu(\alpha) \mu(\beta)$$

with $\lambda_{\alpha, \beta}(\theta) = l^{-1}(z)$. Any QTFR $T_a(z)$ of $T = \tilde{T}$ can be derived from $W_a^2(z)$ as

$$T_a(z) = \int_0 W_a^2(l(\tilde{\theta})) \psi(l^{-1}(z) \cdot \theta^{-1}) \mu(\theta)$$

with $\psi(\theta) = \int_0 \Psi(\theta) \Lambda(\tilde{\theta}, \theta) \mu(\theta)$. In the special cases of Cohen's class and the hyperbolic class, the central member becomes the Wigner distribution and the Q-distribution, respectively [3], [12].

1. In certain cases, this assumption holds if one uses the group delay of $u_3(t)$ and the instantaneous frequency of $u_3(t)$; here, an analog theory can be formulated.

2. z is the intersection of $u_3(t)$ and $u_3(t)$ in the sense that $u_3(t)$ and $u_3(t)$ are concentrated, in the TF plane, along $u_3(t)$ and $\tau_3(f)$, respectively, and z is the intersection of $u_3(t)$ and $\tau_3(f)$.

3. We note that $\theta^{1/2}$ is defined by $\theta^{1/2} = \theta^{1/2} \cdot \theta^{1/2} = \theta$, and that $\lambda_{\alpha, \beta}^{1/2} = (\lambda_{\alpha, \beta}^{1/2}) \mu(\alpha) \mu(\beta)$.
IV. TRANSFORMATION APPROACH, A FACT LINKING OUR THEORY TO THE "WARPING" THEORY IN THE OPERATORS COMMUTATIVE GROUP OTHER SPACE AND CLASS REFERENCE TIME CONSTANT.

A corresponding to function can be derived independently associated to be isometric isomorphisms on signal space and isometric isomorphism mapping the dual parameters (*). Thus, isometric isomorphisms V and one-to-one group transformations s(·) preserve the conjugateness property of two operators. The following theorem states that any QTFR class T = T corresponding to conjugate operators Aα, Bβ can be derived from Cohen's class using a transformation. Similar results have been derived independently in [6, 7].

Theorem 3: Let Aα, Bβ be conjugate with group (G, •) corresponding to function μ(·), so that λαβ = e^{2πfμ(α)(μ(β))}. If λαβ = e^{-2πfμ(α)(μ(β))} (− sign), then Aα = V T_{β,μ(α)}V^{-1} and Bβ = V F μ(β)/t V^{-1}, where t_0 > 0 is an arbitrary reference time constant, and (V_{β}^{-1})(t) = \frac{t_0}{t_0 - \tau} X_{β}(μ^{-1}(\frac{t}{t_0})) with μ^{-1}(·) denoting the function inverse to μ(·). Furthermore, any QTFR T_σ(z) = T_σ(t, f) of the QTFR class T = T associated to Aα, Bβ can be derived from a corresponding QTFR C_σ(t, f) of Cohen's class as

T_σ(z) = C_σ^{-1} \left(t_0, \mu(\tilde{\beta}), \frac{\mu(\tilde{\alpha})}{t_0} \right) |_{\tilde{t} = t^{-1}(z)}

where \tilde{t}^{-1}(·) is the inverse LF of D_θ = BβAα. If λαβ = e^{2πfμ(α)(μ(β))} (+ sign), then the above relations have to be replaced by Aα = V F μ(α)/t V^{-1} and Bβ = V T_{β,μ(α)}V^{-1}, (V_{β}^{-1})(t) = \frac{t_0}{t_0 - \tau} X_{β}(μ^{-1}(\frac{t}{t_0})) , and T_σ(z) = C_σ^{-1} \left(t_0, \mu(\tilde{\beta}), \frac{\mu(\tilde{\alpha})}{t_0} \right) |_{\tilde{t} = t^{-1}(z)}.

REFERENCES