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ABSTRACT

The use of spatial multiplexing (SM) in multiple-input mul-
tiple-output (MIMO) wireless systems promises a linear (in
the minimum of the number of transmit and receive anten-
nas) increase in data rate. In practice, the performance of
SM depends critically on a variety of channel conditions
including antenna height and spacing, polarization of an-
tennas, and richness of scattering. Transmit correlation has
been shown to be detrimental to the performance of SM,
since it leads to the existence of preferred spatial directions.
In addition, the presence of an ill-conditioned fixed (pos-
sibly line-of-sight) component in the channel can severely
degrade performance. In this paper, we present a simple
transmit optimization strategy to partially mitigate the im-
pact of unfavorable channel statistics on the performance
of SM. The proposed strategy takes the scalar symbol con-
stellation and the channel statistics into account and relies
on simple phase-shifting of the multiplexed symbol streams
at the transmitter. The phase shifts are chosen such that
the cut-off rate of the effective channel (physical channel in
combination with finite constellation and ML decoding) is
maximized. We find SNR gains of up to 4 dB over the case
when no transmit optimization is employed.

1. INTRODUCTION

The use of spatial multiplexing (SM) in systems with mul-
tiple antennas at the transmitter and the receiver can yield
a dramatic increase in spectral efficiency [1, 2, 3]. In prac-
tice, the achievable multiplexing gain depends on a variety
of channel conditions including antenna height and spac-
ing, polarization of the antennas, and richness of scatter-
ing. With rich (omni-directional and isotropic) scattering
and all antenna elements identically polarized, the elements
of the matrix channel can be modeled as i.i.d. zero-mean
circularly symmetric complex gaussian random variables
(i.i.d. Rayleigh fading model). However, measurements
[4] have shown that the MIMO channel can deviate sig-
nificantly from this idealistic model and exhibit correlated
fading, Ricean fading as well as gain imbalances between
channel elements (if polarization diversity is employed). In
[5] it has been shown that the presence of transmit corre-
lation due to lack of scattering and/or insufficient transmit
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antenna spacing can have a detrimental impact on multi-
antenna signaling techniques. Furthermore, the presence of
an ill-conditioned fixed component (Ricean fading) in the
channel can severely degrade the performance of SM [6].

Contributions. In this paper, we introduce a simple
transmit optimization strategy which improves the perfor-
mance of SM over unfavorable channels. The proposed
technique is based on relative phase adjustments [7, 8] of
the multiplexed symbol streams at the transmitter and ex-
ploits knowledge of the channel statistics. In practice, this
assumption requires that the channel statistics vary slowly
which is certainly true for the fixed wireless case. The op-
timum phase adjustments are obtained by maximizing the
cut-off rate [9, 10] of the effective MIMO channel (physi-
cal MIMO channel in conjunction with a finite scalar sym-
bol constellation and ML decoding). We assume a gen-
eral MIMO channel model with correlated Rayleigh and/or
Ricean fading. Simulation results show that SNR gains of
up to 4 dB can be obtained. The idea of relative phase ad-
justment between the multiplexed symbol streams was first
proposed by the authors in [7] for channels with two trans-
mit antennas to reduce the average scalar symbol error rate
in the presence of Rayleigh fading. The analysis in this pa-
per extends the idea to MIMO channels with greater than
two transmit antennas and to the Ricean case with the ob-
jective of increasing the cut-off rate of the effective channel.

Organization of the paper. The organization of this
paper is as follows. Section 2 introduces the general MIMO
channel and signal model. In Section 3, we present our
transmit optimization technique. Section 4 provides sim-
ulation results, and Section 5 contains our conclusions.

2. GENERAL MIMO CHANNEL MODEL

Consider a MIMO channel with MT transmit antennas and
MR receive antennas. Assuming flat fading over the fre-
quency band of interest, the input-output relation for the
channel is given by1

y =
√

Es Hx + n,

where

1The superscript H stands for conjugate transpose. E is the expectation
operator. Im is the m × m identity matrix and 0 stands for an all zeros
matrix of appropriate size.



• y is the MR × 1 receive signal vector

• Es is the average energy available per transmit an-
tenna over a symbol period

• x is the MT × 1 transmitted codevector whose ele-
ments are drawn independently from a scalar constel-
lation (such as QAM) with unit average energy and
alphabet size A

• n is zero-mean spatially white complex gaussian noise
with E{nnH} = NoIMR

.

The MIMO channel transfer matrix H is expressed as
the sum of a fixed component and a fading component ac-
cording to

H =

√
K

1 + K
H +

√
1

1 + K
H̃,

where K > 0 is the Ricean K-factor of the channel (de-
fined as the ratio of the power in the fixed component to the
power in the fading component of the channel). The ele-

ments of H are complex constants that satisfy |[H]m,n|2 =
1 (m = 1, 2, ..., MR, n = 1, 2, ..., MT ). Furthermore, the

elements of H̃ are modeled as (possibly correlated) circu-
larly symmetric complex gaussian random variables with
unit variance. Correlation between the elements of H may
be captured through the following model [11, 5]

H̃ = R1/2HwS1/2,

where the elements of Hw are uncorrelated circularly sym-
metric complex gaussian random variables with unit vari-
ance and R and S are Hermitian positive semi-definite ma-
trices that reflect the receive and transmit correlation, re-
spectively.

3. TRANSMIT OPTIMIZATION

The transmit optimization strategy consists of premultiply-
ing the codevector to be transmitted, x, by an MT × MT

diagonal precoding matrix according to

x′ = Dx,

where
D = diag{ejθm}MT

m=1.

This translates to a phase-shift applied to each of the MT

scalar sub-streams at the transmitter. In the following we
assume that the channel H and the precoding matrix D are
perfectly known to the receiver. The performance criterion
that we seek to optimize is the cut-off rate Ro(D) of the
effective channel (i.e., physical channel in conjunction with
finite scalar constellation and ML decoding) given by (in
bps/Hz)

Ro(D) = log2

(
1

AMT

+

∑
f

∑
g 6=f β(f → g,D)

A2MT

)−1

,

(1)

where β(f → g,D) is the Chernoff upper-bound on the
average (over the channel H) probability that the receiver
decodes transmitted codevector f as codevector g (assum-
ing ML detection) for a given precoding matrix D. Further-
more, we assume that the same scalar constellation is em-
ployed on all transmit antennas and that the symbols trans-
mitted from the individual antennas are independent. The
cut-off rate satisfies

P e ≤ 2−n(Ro(D)−R), (2)

where R is the number of information bits transmitted per

vector symbol and P e is the probability of codeword error
averaged over the ensemble of coded systems with block
length n (under standard assumptions on the choice of code-
books as detailed in [12]). Clearly, if R < Ro(D) then

P e → 0 as n → ∞. Thus for a given D, Ro(D) lower-
bounds the capacity of the effective channel.

For the general MIMO channel, defining e = f − g,

y =

√
K

1 + K
HDe

ỹ =

√
1

1 + K
H̃De,

and Cey = E{ỹỹ} = UΛUH where Λ = diag{λi}MR

i=1 we

can show2 [13, 6]

β(f → g,D) = e−
Es

4No
‖y‖2

r(Cey)∏

i=1

e

( Es
4No

|di|λi)
2

1+
Es
4No

λi

1 + Es

4No
λi

, (3)

where di (i = 1, 2, · · · , MR) is the i-th element of

d = diag

{
1√
λ1

,
1√
λ2

, ...,
1√

λr(Cey)

, 0, ..., 0

}
UHy.

Straightforward manipulations reveal3

Cey =

(‖S1/2De‖2

1 + K

)
R, (4)

and hence r(Cey) = r(R) (assuming De does not lie per-
fectly in the nullspace of S) with

λi =

(‖S1/2De‖2

1 + K

)
γi, (5)

where γi(i = 1, 2, · · · , MR) is the i-th eigenvalue of R.

Now, if knowledge of the channel statistics (K , H, R,
and S) is available to the transmitter, the optimization prob-
lem can be posed as

2
r(A) stands for the rank of the matrix A.

3‖a‖ =
√

aHa is the Euclidean norm of the vector a.



θ
opt = arg max

θ
Ro(θ),

since θ = [θ1 θ2 ... θMT
]T completely parameterizes D.

In the simulations we resort to numerical search to compute

θ
opt. The complexity of this procedure can be reduced by

coarser quantization of the phases at the expense of perfor-
mance – i.e., the resulting solution may not be globally opti-
mal. Further, it is straightforward to show that it is only the
relative phase difference between the multiplexed symbol
streams that affects performance. Therefore, without loss
of generality we set θ1 = 0.

Note that if we do not impose a constraint on the struc-
ture of D (recall that in our case D is a diagonal matrix
with unit modulus entries) we can expect improved per-
formance. However, a more general D is likely to alter
the peak power constraints of the power amplifiers at the
transmitter which is an expensive proposition. The diag-
onal structure of D with simple phase-shifting leaves the
peak power constraints of the transmit amplifiers unaltered
thereby minimizing cost.

Physical Intuition. The physical intuition behind our
optimization scheme is as described in [7]. Codevectors that
lie along input singular directions with low gain are likely
to be mistaken for other codevectors, thereby resulting in a
reduction in cut-off rate. The precoding matrix D seeks to
steer codevectors in the direction of the input singular vec-
tors with high gain thereby making them more distinguish-
able at the receiver and increasing the cut-off rate. Further,
different codevectors need to be aligned differently depend-
ing on their geometry. Hence Dopt seeks to balance the
phase-shift settings through the in-built averaging over all
codevector differences (cf. Eq. (1)).

Additional Comments. Note from Eq. (4) the asym-
metry in the impact of transmit and receive correlation on
the performance of SM. This asymmetry has been noted be-
fore in [5], and has important implications on the transmit
optimization scheme at hand.

For example, consider pure Rayleigh fading (K = 0)
with no transmit correlation (S = IMT

). Since DHD =
IMT

, we get

Cey = ‖e‖2R, (6)

making the optimization technique redundant irrespectively
of the receive correlation. Such a scenario is likely to oc-
cur in the uplink (communication from the subscriber to the
base) at large ranges since scattering is typically rich around
the subscriber. An extension of this observation is that the
transmit optimization technique will not provide any gains
in an i.i.d. Rayleigh fading MIMO channel (R = IMR

and
S = IMT

). This is intuitively clear as the i.i.d. channel is
spatially white with no preferred directions.

The gains of the transmit optimization technique pro-
posed in this paper are available in Rayleigh fading environ-
ments with transmit correlation. Such propagation charac-
teristics are likely in the downlink (communication from the
base to the subscriber) at large ranges since scattering is typ-
ically poor at the base-station as the base-station antennas
are elevated with narrow vertical beamwidth and restricted

horizontal beamwidth. Further, at high SNR
(

Es

No
≫ 1

)

when K = 0, combining Eqs. (1) and (3) and assuming
that De does not lie perfectly in the null-space of S, we get

Ro(D) = log2


 1

AMT

+

∑
f

∑
g 6=f ‖S1/2De‖−2r(R)

A2MT

∏r(R)
i=1

(
Esγi

4No

)



−1

,

which indicates that in the presence of Rayleigh fading at
high SNR knowledge of the transmit correlation and rank of
the receive correlation matrix at the transmitter is sufficient
to optimize the cut-off rate. Additionally, θ

opt is indepen-
dent of the actual receive correlation (but for r(R)) and the
SNR (in practice 10-15dB).

The above comments pertain to the case of pure Rayleigh
fading. With increasing K , the geometry of the transmit-
ted vector constellation relative to the fixed component of

the channel H plays an important role. Simulations in the
following section will demonstrate the performance gains
through phase-shifting at the transmitter when the channel
contains a fixed component.

4. SIMULATION RESULTS

We consider a channel with MT = MR = 3 employ-
ing SM with BPSK modulation. The SNR is defined as

10 log10

(
MT Es

No

)
(in dB). Further, we assume that R =

IMR
and that the fixed component of the channel and the

transmit correlation matrix S are given by

H =

[
1 1 1
1 1 1
1 1 1

]
, S =




1 t1,2 t1,3

t∗1,2 1 t2,3

t∗1,3 t∗2,3 1


 ,

where ti,j is the coefficient of correlation between the i-th
and j-th transmit antennas. Note that the above fixed com-
ponent of the channel results when the antennas at the trans-
mitter and receiver are closely spaced and appear at broad-
side to each other. In the following, we set t1,2 = 0.95,
t1,3 = 0.8, and t2,3 = 0.9. Figs. 1 and 2 show the cut-off
rate for the channel with and without the optimal phase-shift
settings for K = 0 and K = 10. One can see a 4 dB gain in
SNR for the case of Rayleigh fading, restoring almost all of
the loss due to spatial fading correlation, and an even higher
gain for the case of Ricean fading. The gain is expected to
decrease when higher order codebooks are employed due
to the increased density of the input-signal space which in-
creases the probability that a favorable phase-setting for a
particular signal vector is detrimental to another signal vec-
tor. The double-humped nature of the cut-off rate curve in
the case of Ricean fading with no relative phase adjustment
can be explained as follows. Since K = 10, the effects of
the fading component of the channel remain buried beneath
the noise floor up to an SNR of about 10 dB. Beyond this
SNR the fading in the channel results in a more conducive
channel geometry resulting in two distinct behavior regions.



−10 −5 0 5 10 15 20
0

0.5

1

1.5

2

2.5

3

C
u

t−
o

ff
 r

a
te

 (
b

p
s
/H

z
)

SNR/dB

i.i.d. fading
Correlated fading, θ

2
 = θ

3
 = 0

Correlated fading, θ
2
 = 1.6584, θ

3
 = 0.6584

Fig. 1. Impact of relative-phase adjustment on cut-off rate
performance in a correlated Rayleigh fading environment.
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Fig. 2. Relative phase adjustment can result in significant
gains in cut-off rate performance in the presence of Ricean
fading.

5. CONCLUSION

We introduced a novel simple transmit optimization tech-
nique for spatial multiplexing in general MIMO channels.
The proposed strategy relies on relative phase adjustments
of the transmitted symbol streams with the phase shift val-
ues obtained by maximizing the cut-off rate of the effective
MIMO channel (physical channel in conjunction with finite
scalar constellation and ML decoding). The scheme is in-
expensive in terms of hardware complexity and simulation
examples demonstrate gains of up to 4 dB depending on the
channel conditions.
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