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ABSTRACT 
We provide a frame-theoretic analysis of oversampled and 
critically sampled, FIR and IIR, uniform filter banks (FBs). 
Our analysis is based on a relation between the polyphase 
matrices and the frame operator. For a given oversampled 
analysis FB, we parameterize all synthesis FBs providing 
perfect reconstruction, and we discuss the minimum norm 
synthesis FB and its approximative construction. We find 
conditions for a FB to provide a frame expansion. Parau- 
nitary and biorthogonal FBs are shown to correspond to 
tight and exact frames, respectively. A new procedure for 
the design of paraunitary FBs is formulated. We show that 
the frame bounds are related with the eigenvalues of the 
polyphase matrices and the oversampling factor, and that 
they determine important numerical properties of the FB. 

1. INTRODUCTION 
Uniform filter banks (FBs)', i.e., filter banks with the same 
integer decimation ratio in each channel [1]-[4], correspond 
to a class of discrete-time signal expansions. The rela- 
tion between discrete-time signal expansions and maximally 
decimated (or critically sampled) FBs has been studied in 
[5, 2, 61, and it has also been recognized that oversampled 
FBs [2, 41 correspond to redundant signal expansions [2], 
[7]-[lo]. In [7]-[lo] the use of the theory of frames [ll] for 
the study of oversampled FBs has been proposed. In [12] 
a frame-theoretic analysis of continuous-time FBs is pre- 
sented. In [7, 81 oversampled FIR FBs are studied using 
polynomial matrices [l]. A vector-filter framework for over- 
sampled FIR FBs has been proposed in [lo]. 

This paper presents a new frame-theoretic approach to 
oversampled and critically sampled FIR and IIR FBs. Our 
approach, which extends an analysis of continuous-time 
Weyl-Heisenberg frames proposed in [13], is based on an im- 
portant relation between the FB's polyphase matrices and 
the frame operator. In Section 2, we review FBs, intro- 
duce the corresponding type of frames, and show that the 
FB's polyphase matrices provide matrix representations of 
the frame operator. Section 3 shows that the frame bounds 
determine important numerical properties of FBs, and that 
they are related to the eigenvalues of the polyphase matrices 
and the oversampling factor. In Section 4, we parameterize 
all synthesis FBs providing perfect reconstruction (PR) for 
a given oversampled analysis FB, and we discuss the min- 
imum norm synthesis FB and its approximative construc- 
tion. Conditions for a FB to provide a frame expansion 
are formulated, and the equivalence of critically sampled 
(biorthogonal) FBs and exact frames is discussed. In Sec- 
tion 5, we show that paraunitary FBs correspond to tight 
frames, and we propose a method for constructing parauni- 
tary FBs from given nonparaunitary FBs. 

2. FILTER BANKS A N D  F R A M E S  
We consider an N-channel FB with subsampling by the 
integer factor M in each channel, PR, and zero delay,2 so 

denote the input and 
he transfer functions 

of the analysis and synthesis filters are &(z) and Fk(z) 
(0 < k 5 N - l), with corresponding impulse responses 
h k [ q  and fk[n] ,  respectively. The subband signals are 

n=-w 

and the reconstructed signal is 
N - 1  m 

k = O  m=-w 

In the oversampled case ( N  > M ) ,  the subband signals 
vk[m] are redundant since they contain more samples (per 
unit of time) than the input signal z[n]. Oversampled FBs 
offer more design freedom, improved numerical properties, 
and improved noise immunity as compared to critically sam- 
pled FBs. The increased design freedom corresponds to the 
fact that, for a given oversampled analysis FB, there exists 
a whole class of synthesis FBs providing PR (see Section 4). 
The improved noise immunity [ll, 14, 15 allows a coarser 
quantization of the subband signals (see 4 ection 3). 

The polyphase decomposition of the analysis filters Hk(z)  
reads Hk(z) = M-1 zn I&(zM), 0 5 IC 5 N - 1, where 

00 

m=-w 

with 0 5 k 5 N - 1, 0 5 n 5 M - 1 is the nth polyphase 
component of the kth analysis filter Hk(z). The N x M 
analysis polyphase matrix E(z) is defined as [E(z)]k+ = 
Ek,n(z). The synthesis filters can be similarly decom- 

polyphase components 
posed, Fk(z )  = M-1 z -n Rk,n(zM), with the synthesis 

m 

m=-w 

The M x N synthesis polyphase matrix R(z) is defined as 

FB analysis/synthesis can be interpreted as a signal ex- 
pansion [2, 16, 5, 1, 171. The subband signals in (1) 
can be written as inner products v k [ m ]  = ( z ,h; ,L)  = 

[R(z)]k,n = R n , k ( z ) .  

'For the sake of brevity, we shall henceforth use the term filter 
bank (FB) instead of uniform filter bank. 

2We note that our theory can easily be extended to PR with 
nonzero delay. 
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M - 1  E,"=-, .[TI] (hi,;[n])* with hi,',[n] = h;[mM - n], where 
* stands for complex conjugation. Furthermore, with (2) 
and the PR property, we have 

N-1 M 

k=O m=--03 

with fk,m[n] = fk[n - mM]. This shows that the FB cor- 
responds to an expansion of the input signal x[n] into the 
function set {fk, [ ] (0 5 k I N - 1, -m < m < m). 
In general the z?)fk,m[n]} is not orthogonal, so that 
the expansion coefficients, i.e., the subband signal samples 
Vk[m] = (.,hi,;), are obtained by projecting the signal 
z[n] onto a "dual" set of functions {h,",n]}. Critically 
sampled FBs provide orthogonal or biorthogonal signal ex- 
pansions 161, whereas oversampled FBs correspond to re- 
dundant [overcomplete) expansions [2] ,  [7]-[10], [17]. 

The theory of frames 1111 is a powerful vehicle for the 
study of redundant signal expansions. The set {fk,m n]} 
with fk,m[n] = fk[n - m M ]  will be called a uniform Alter 
bank frame (UFBF) for3 Z2(Z) if for all 4.1 E Z2(Z) 

N - 1  M 

k=O m=--03 

with the frame bounds A > 0 and B < 00. The frame 
bounds determine important numerical properties of the 
FB (see Sections 3 and 4). For synthesis filters fk[n] such 
that {fk,m[n]} is a UFBF for Z2((n), a particular analysis 
set (corresponding to expansion coefficients with minimum 
norm) is given by [ l l ]  

h,",n] = (s-'fk,m)[n]. (4) 

Here, S-l is the inverse of the frame operator defined as 
(Sz)[n] = E:=-, (z, f k , m )  fk,m[n]. If the synthe- 
sis set ( f r ~ , ~ [ n ] }  is a frame, then the analysis set {h,*,[n]} 
defined by (4) is again a frame (the "dual" frame), with 
frame bounds A' = 1/B and B' = 1/A. It can be shown 
[17 that the frame that is dual to a UFBF is itself a UFBF: 
If -)fk,m[n]} is a UFBF with parameters M and N ,  then the 
dual frame {hi,,*,[n]} is again a UFBF with the same pa- 
rameters M and N ,  i.e., 

hi,&] = h,*[n - mM], 0 5 k 5 N - 1, 
where 

hi,"[n] = h;[-n] = (s- l fk)[n] .  

A frame is called snug if B'/A' = B/A  M 1 and tight if 
B'/A' = B/A  = 1. For a tight frame we have S-' = A' I 
(where I is the identity operator on Z2(Z)), and hence there 
is simply fk[n] = & h*,[-n]. 

The following result [17] extends a similar result on 
continuous-time Weyl-Heisenberg frames [13]. 

Theorem 1. Let y[n] = (Sx)[n], where S is the frame 
operator corresponding to a UFBF. Then, the polyphase 
components Yn(r) = E:=-, y[mM + n] z - ~  of Y ( z )  and 
the polyphase components Xnt(z )  = xZ=-,z[mM + 
n'] z-m of X ( z )  are related as 

3Here 12(Z) denotes the space of square-summable functions 
~ [ n l ,  i.e., E,"=-, 1+42 < W. 

(5) 
,'=O 

where4 Sn,,, ( z )  = R~, , (z)  R ~ , , I  (z) .  Introducing the 
polyphase vectors x(z) = [Xo(r) X l ( z )  ... X M - ~ ( Z ) ] ~  and 
y ( z )  = [ G ( z )  Y I ( z )  ... YM-1(z)lT, ( 5 )  can be rewritten as5 

y ( r )  = S(z )  x(z) with S ( r )  = R ( r )  R(z) .  

Thus, the frame operator S is expressed in the polyphase 
domain by the M x M UFBF matrix S(z )  = R ( z ) R ( z ) .  
Similarly, the inverse frame operator S-l can be expressed 
in the polyphase domain by the M x M inverse UFBF ma- 
trix S-l(z) = E(z) E ( z ) .  Specializing to the unit circle ( z  = 
eJ2"'), it can be shown that S(eJ2"') = R(eJ2"') RH(eJ2"e) 
and S-'(eJ2"'j = EH(eJ2"') E(eJ2"') are matrix represen- 
tations of the rame operator S and the inverse frame oper- 
ator Sa', respectively [17]. Most of our subsequent discus- 
sion of FBs will be based on these matrix representations. 

An important consequence of Theorem 1 is the equality of 
the eigenvalues of the frame operator S and the eigenvalues 
A, 0) of the UFBF matrix S(e32"e) = R(eJ2"') RH(eJ2"') 
[17\. Thus, the frame operator (a 

eigenanalysis of an 
8 E [0, 1).  Similarly, 

the eigenvalues of the inverse frame operator S-' equal 
the eigenvalues of the inverse UFBF matrix S-1(eJ2"e) = 
EH(eJ2"') E(eJ2"'), which will be denoted A;(@). The ma- 

S-'(eJ2"') can be shown to be positive 
their eigenvalues are positive. 

3. F R A M E  BOUNDS 
Important numerical properties of the UFBF {hi,*, [n]} and 
the associated FB are determined by its frame bounds A 
and B or, equivalently, A' = 1/B and B' = 1/A [ll]. By 
analogy to (3), the subband signals vk[m] = (z,h$*,) of a 
FB providing a UFBF expansion satisfy 

N - 1  m 

k = O  m=-w 

with 0 < A' I B' < 00. This generalizes the well-known 
energy conservation, E:': E:=-, 1vk[mll2 = I I ~ I I ~ ,  in 
orthogonal FBs [5]. Note that (6) shows that the subband 
signals vk[m] are in Z 2 ( ( n )  if the input signal z[n] is in Z2((n). 

Consider now subband signals vk [m] corresponding to in- 
put signal 4.1 and reconstructed signal ?in], and perturbed 
subband signals vL[m] = vk[m] + Avk[m] corresponding to  
input signal z'[n] = 4.1 + Az[n] and reconstructed signal 
?'[n] = k[n] + A+]. Using the PR property, 2[n] = z[n] 
and ?'[n] = ~ ' [ n ] ,  it follows from (6) that the reconstruction 
error A2[n] = f'[n] - 2[n] = ~ ' [ n ]  - z[n] is bounded as 

k=O m=--a, 

With = E:=-, lAvk[m]12 denoting the to- 
tal energy of the subband signal perturbations Avk[m], this 
can be written as 

4 & , n ( ~ )  = R; , , ( l / z* )  is the paraconjugate of Rk,,(z). 
5R(z) = RH(l/z*) where denates conjugate transposition. 
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(7) 

where A = 1/B' and B = l/A'. Thus, for given subband 
perturbation energy llA~11~, the frame bounds A and B pro- 
vide lower and upper bounds on the resulting reconstruc- 
tion error energy )lA2Il2. The reconstruction error energy 
is minimized by making A as small as possible and B as 
close to A as possible. Note that A M B implies A' M B'. 
Thus it is desirable to have A' M B', i.e., a snug frame. 

The frame bounds can be related to the oversampling 
factor N / M .  It can be shown [17, 101 that A' 5 
&Er': llhk1I2 5 B'. Normalizing the hk[n] such that 
llhk1/2 = 1 for o 5 k 5 N - I, we get E:': llhk1I2 = N and 
thus A' 5 N / M  5 B' or equivalently 

We see that A will be smaller for larger N / M ,  i.e., more 
oversampling. In particular, in the case of a ti ht frame 
(corresponding to a paraunitary FB, see Section 57, we have 

Inserting this in (7) yields 

Thus, the energy of the reconstruction error for given sub- 
band perturbation energy llA~11~ is here inversely propor- 
tional to the oversampling factor. The improved noise im- 
munity of oversampled FBs allows a coarser quantization of 
the subband signals [15]. A similar result exists for over- 
sampled A/D conversions [18]. 

Since the frame bounds characterize important numerical 
properties of a FB as demonstrated above, their calculation 
is of importance. It can be shown [17] that the (tightest 
possible) frame bounds A' and B' of a FB providing a UFBF 
expansion are given by the essential infimum and supremum 
[ll], respectively, of the eigenvalues Ak(e) of the inverse 
UFBF matrix S- ' (e j zne)  = EH(ej2"') E(ej2"'), 

A' = essinfeE[o,i),n=o,i ,..., M - i X ( e )  

B' = esssupeE[o,i),n=o,i ,..., M-i xk(e). 

4. PERFECT RECONSTRUCTION AND 

The next theorem [17] states a PR condition for oversam- 
pled FBs, as well as a general expression of the synthesis 
FB providing PR for given analysis FB. 

Theorem 2. An oversampled or critically sampled FB 
satisfies the PR condition 2[n] = z[n] if and only if 

FRAME PROPERTIES 

R(z) E(z) = IM, (8 )  
where IM is the M x M identity matrix. This condition has 
solutions R(z) for given E(z) if and only if E(z) has full 
rank rank{E(z)} = M ,  almost everywhere. Any solution 
of (8) can be written as 

R(z) = R(z) + R(z)W(Z) [IN - E(z) R(z)] , (9) 

where a(,), the para-pseudo-inverse of E(%), is a particular 
solution of (8) defined as 

R(z)  = [E(z)E(z)] -' E(z) , (10) 

and W(z) is an N x N matrix with arbitrary elements 
Wk,l(z) satisfying IWk,l(ej"'))I < 00. 

In the oversampled case N > M ,  the nonuniqueness of 
the synthesis FB for given analysis FB as expressed by 
(9) entails a freedom of design that does not exist in the 
case of critical sampling (for critical sampling, N = M ,  (9) 
reduces to the unique solution R(z) = R(z) = E-'(z)). 
The expression (9) for R(z) is a canonical parameteriza- 
tion in terms of the N 2  complex numbers Wk,l(z)  that can 
be chosen arbitrarily [19, 201. It can be shown [17, 81 
that the particular synthesis polyphase matrix given by 
the para-pseudo-inverse R(z)  = [E(z)E(z)] -' E(z) corre- 
sponds to the synthesis FB provided by frame theory ac- 
cording to fk[n] = (Sh,*)[n], or in other words, {h,*,[n]} 
is the UFBF that is dual to {fk,m[n]}. It is shown in [17] 
that this frame-theoretic solution minimizes l l f k  [ I2 
among all possible solutions. We shall hereafter restrict 
our attention to this minimum norm synthesis FB, i.e., to 
the particular synthesis polyphase matrix R(z) = R ( z )  = 
[E(.) E(z)] -' E(z) (denoted simply R(z) in the following). 

We now formulate conditions for a FB to provide a UFBF 
expansion. In addition to PR, the frame property guaran- 
tees a certain degree of numerical stability (see Section 3). 

Theorem 3 [17]. An oversampled or critically sam- 
pled FB with BIB0 stable6 analysis filters hk[n] provides 
a UFBF expansion in 12(Z), i.e., the analysis set {hi,*,[n]} 
is a UFBF for Z 2  Z), if and only if the analysis polyphase 

rank{E(ej"')} = M for 0 5 6 < 1. 

We note that Theorem 3 holds for both FIR and IIR FBs. 
For the FIR case, where stability is inherently guaranteed, 
the full rank condition has been found independently in [8]. 
In the following, a FB providing a UFBF expansion in Z 2  Z 
will be called a frame FB (FFB). It can also be shown 1171 
that an FB is an FFB if and only if the eigenvalues Ak(e) of 
the inverse UFBF matrix S-1(ej2"e) = EH(ej2"') E(ejZne) 
satisfy the conditions essinfe, [0,1),~=0,1,..., ~ - 1  AL(0) > 0 

In the case of an FFB, it follows from (10) that calcula- 
tion of the minimum norm synthesis FB requires the inver- 
sion of the matrix E(z)E(z). However, by analogy to the 
approximation of dual frames described in [ll], a simple 
approximation to the synthesis FB can be based on a series 
expansion of S(z)  = [E(z)E(z)]-l which results in 

matrix E(z) has I ull rank on the unit circle, i.e., 

and esssupe E[o,l) ,n=o,i ,  ..., M-1 %(e)  < 00. 

We shall restrict our attention to the first-order approxi- 
mation of R(z) obtained by truncating this series at n = 0, 

or equivalently 

With 2(')[n] denoting the signal reconstructed using this 
"first-order synthesis FB," the resulting reconstruction er- 
ror can be bounded in terms of the frame bounds as [ll] 

6~~~~ stability means hk[n] E P(z ) ,  i.e., E,"=-, lhk[n]I < 
CO for 0 5 k 5 N - 1. 
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Note that the reconstruction error is small for B‘/A‘ x 1, 
i.e., when the underlying UFBF is snug. Here, the first- 
order impulse responses fro) [n] are good approximations to 
the minimum norm, PR impulse responses fk[n]. In the 
tight case where B’IA’ = 1, we have I12i.(o) - 211 = 0 and the 
approximation is exact, 

It is well known that in a critically sampled FB biorthog- 
onality of the analysis and synthesis filters and their shifted 
versions is equivalent to PR 16, 5, 1 . The following the- 

to exact UFBFs. Exact frames consist of linearly indepen- 
dent frame functions; they are minimal in that removal of 
an arbitrary frame function from the set fk [ } leaves 

here satisfy the biorthogonality relation (fk,-, hi,:-,) = 
S k , k ~  bm,+1 and, in particular, ( fh ,h ,* )  = b k , p  [ll]. 

Theorem 4. An FFB provides an exact UFBF expan- 
sion if and only if it is critically sampled. 

The linear independence of the set (fk,-[n] for a crit- 
ically sampled FB has also been observed in 151, and the 
biorthogonality has been reported in [16]. Note that Theo- 
rem 4 implies that an oversampled UFBF cannot be exact 
and, hence, the corresponding FB cannot be biorthogonal. 

5. PARAUNITARY FILTER BANKS AND 

The analysis UFBF {hL,k[n]} is tight if A’ = B’. From 

= fk[n] = + h;[-n]. 

orem [17] states that critical I 1  y samp ed FFBs correspond 

an incomplete set [ll]. Furthermore, the 1. rame ,-I unctions 

TIGHT FRAMES 

the theory of frames, we know that here S-l = A‘I 
and hence the minimum norm synthesis FB is fk[n 
-$ h;[-n]. This is precisely the relation between the syn- 
thesis and analysis filters in a paraunitary FB [l]. In fact 
we can formulate the following theorem [17]. 

Theorem 5. An FFB (oversampled or critically sam- 
pled) provides a tight UFBF expansion in Z z ( ( n )  if and only 
if it is paraunitary, i.e., 

S-l(z) = E(z)E(L) E A’IM. 

The equivalence of tight Weyl-Heisenberg frames (a sub- 
class of UFBFs) and paraunitary DFT FBs has been noted 
in [6] and independently in [7,8]. For oversampled FIR FBs, 
a result similar to Theorem 5 has been stated independently 
in [8]. Paraunitary FBs are also known as orthogonal FBs. 
However, a paraunitary FFB is orthogonal only if it is criti- 
cally sampled: an oversampled paraunitary FB corresponds 
to a UFBF that is tight but not orthogonal. 

The following theorem [17] describes a method for the 
derivation of a paraunitary FFB from a given nonparauni- 
tary FFB. This method is an adaptation of a procedure for 
the design of tight frames described in [l l] .  

Theorem 6. Consider an FFB with polyphase ma- 
trices E(z) and R(z), and let p(,) be an invertible, 
~arahermi t ian ,~  M x M matrix P(z) such that Pz(z) = 
E(z)  E(z). Then the FFB with analysis polyphase matrix 

Ep(z) = E(z) P-’(z) 
is paraunitary with frame bound A’ = 1, i.e., S,Õ(z) = 

Ep(z)Ep(z) 5 IM. If, moreover, the original FFB is 

biortho onal, then the FFB with analysis polyphase ma- 
trix Epr.) is orthogonal. 

6. CONCLUSION 
We have shown that the theory of frames is a powerful vehi- 
cle for the analysis and design of oversampled uniform filter 
banks (FBs). The frame-theoretic analysis of FBs was seen 
to be consistent with many results previously derived in the 
FB literature, and it also provided a number of new results 
and insights. In particular, we showed that most of the 
results formulated in [7, 8, 101 for the FIR case also hold 
in the IIR case. We discussed the relevance of the frame 
bounds and the benefits of oversampling. We furthermore 
presented a general expression of the PR synthesis FB for 
given oversampled analysis FB, and we discussed the special 
synthesis FB provided by frame theory. 
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