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Abstract - We study modulation and code design 
for underspread time-varying fading channels. For 
a coherent receiver employing maximum-likelihood 
(ML) decoding, we derive the code design criteria 
and express the maximum achievable diversity order 
in terms of the channel's scattering function. 

I. UNDERSPREAD FADING CHANNELS 
We model the time-frequency selective fading channel H as 

a linear random system with input-output relation 

y ( t )  = s ~ ( 7 ,  v ) X ( t  - T )  ejaxUt d 7  d v ,  

where z( t )  is the input signal, y ( t )  is the output signal, and 
S H ( T , V )  = s, h(t, t - 7 ) e - j z T U t d t  is the channel's (delay- 
Doppler) spreading func t ion  with h(t, t ' )  denoting the ran- 
dom kernel of the linear operator H. A wide-sense sta- 
tionary uncorrelated scattering (WSSUS) channel is charac- 
terized by the scattering function CH(T,U) 2 0 satisfying 
€ { S H ( T ,  v ) S h ( ~ ' ,  v')} = CH(T., U) ~ (T-T ' )~ (v -u ' ) .  The chan- 
nel is said to  be underspread if' [l] 

C H ( T ,  U) = o for ( 7 , ~ )  $ [ - ~ o r ~ o ]  x [-UO,UO] 

with UH = 4 ~ 0 ~ 0  5 1. T h e  underspread assumption i s  rele- 
vant  as mos t  mobile radio channels are underspread. 

It has been shown in [2] that the impulse response h(t, t') 
of an underspread fading channel can be well approximated 
by setting 

k = - w  1=- 03 

where L H ( t ,  f )  = s, h(t, t - T )  d 7 ,  gk, l ( t )  = g ( t  - 
,z.~) e j z " lF t  

are suitably chosen window functions depending on CH(T ,  U). 
Furthermore, T 5 1 and F 5 and ( g k , l , y k ~ , l t )  = s, gk, l ( t )?iJ , i i ( t )  d t  = 6kk'&z' .  

, ? k , l ( t )  = y ( t  - kT)ej2"1Ft , and g ( t )  and y(t) 

2 V O  

11. MODULATION AND CODE DESIGN 
Based on the developments in the previous section, we 

suggest the use of pulse-shaped OFDM [2] as modula- 
tion scheme. We write the transmit signal as z ( t )  = zk=-03 CL;' a c k , l g k , l ( t ) ,  where C k J  denotes the infor- 
mation bearing data symbols, E,  is an energy normalization 
factor, and N is the number of OFDM tones. With the 
received signal r ( t )  = y ( t )  + n(t) and n(t) additive white 
Gaussian noise, the receiver computes the inner products 
&,z = ( r ,yk , l ) .  Exploiting the biorthogonality of the basis 
functions gk , l ( t )  and y k , ~ ( t )  and the orthonormality of the 
r k , l ( t ) ,  we obtain &,l = a L ~ ( k T , l F ) c k , l  + n k , l ,  where 

03 
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€ { n k , l n ; , , l , }  = U;bkk'&' .  

Code design criteria. The bit stream to be transmitted 
is encoded into blocks of size M x N, where M denotes the 
number of OFDM symbols. Stacking the transmitted vectors 
ck ( k  = 0,1, ..., M - 1) according to c = [c: cT ...  CL-^]^, 
assuming ML decoding with perfect channel knowledge, the 
Chernoff upper bound on the expected (with respect to the 
channel) probability of mistaking c(') for another code vector 
say c(j) is given by 

\ 

where X1(Y("j)) denotes the eigenvalues of the M N  x M N  

y(2.j) = c ( ~ ) - c ( ~ ) ,  R = €{hhH} with h = [hr hy ... hL-l]T 
and hk = [ L H ( ~ T , O )  L H ( ~ T , F )  ... L H ( ~ T , ( N  - l)F)IT is 
the channel's correlation matrix, and r(2,j) stands for the rank 
of Y(i , j ) .  With & { L H ( ~ ,  f) Lh(t', f')} =  RH(^ - t', f - f') we 
note the Fourier correspondence 

RH(&, Af) = 1 CH(7, v)ej2T(uAt-TAf) d7dv .  (3) 

Based on (2) and using simple identities involving Hadamard 
products it follows that the  m a x i m u m  achievable diversity or- 
der with any  code i s  given by the rank of t he  channel's come- 
lation matrix ,  i.e., d,,, = rank(R). 

In order to minimize the PEP upper bound the code should 
be designed such that the minimum rank of Y(i3j)  over all 
pairs i # j is maximized and in the high SNR case if full 
diversity gain is our goal the product of the nonzero eigen- 
values of Y(i>j)  over all pairs i # j is maximized. In- 
voking the eigenvalue decomposition of the channel's corre- 
lation matrix R = ~ ~ ' = - , ' c r ~ v l v ~  with r denoting the rank 
of R, we can find an alternative representation for Y(i, j)  as 

trix (note that r(z,j) 5 r )  

y(id) = G(c(i), c(j)) GH(c(i), c(j)) with the N M  x .(i,j) ma- 

G(c(i),c(j) ) = [ A V ,  @ (di) -& )  ... 

~ ~ V ? w - '  0 (2) - P)] f 

In order to achieve full diversity gain, the matrix G(c(~) ,  c(j)) 
has to have rank d,,, for every pair of codewords c ( ~ )  and 
We emphasize that the code design criteria depend strongly 
on the channel's scattering function. 
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