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Abstract—Stotz et al., 2016, reported a sufficient (injectivity)
condition for each user in a K-user single-antenna constant
interference channel to achieve 1/2 degree of freedom. The
present paper proves that this condition is necessary as well and
hence provides an equivalence characterization of interference
channel matrices allowing full degrees of freedom.

I. INTRODUCTION

Cadambe and Jafar [1], [2] proposed a signaling
scheme—known as interference alignment—that exploits
time-frequency selectivity to achieve K/2 degrees of freedom
(DoF) in K-user single-antenna interference channels (ICs). In
[3] and [4] it was shown that K/2 DoF can also be achieved
in ICs with constant channel matrix, i.e, in the absence of
selectivity. Wu et al. [5] developed a general formula for the
number of DoF in single-antenna ICs, extended to vector ICs
in [6]. This formula can, however, be difficult to evaluate as
it is expressed in terms of Rényi information dimension [7].
Building on the work by Wu et al. [5] and a recent break-
through result in fractal geometry by Hochman [8], Stotz and
Bölcskei [9] derived a DoF-formula for single-antenna ICs,
which is exclusively in terms of Shannon entropy; this formula
was then used to develop an explicit sufficient condition for
achieving K/2 DoF. Stotz et al. [10] later identified an even
more general sufficient (injectivity) condition for each user to
achieve 1/2 DoF and hence K/2 DoF in total.

The main contribution of the present paper is to establish
that the sufficient condition in [10] is also necessary for
each user to achieve 1/2 DoF in fully connected ICs1. The
tools used in the proof of this result are the DoF-formula
developed in [9] and the entropy version of the Plünnecke-
Ruzsa inequality [11].

II. SYSTEM MODEL

We consider a single-antenna K-user (additive) IC with
fully connected channel matrix H = (hij)16i,j6K ∈ RK×K ,
i.e, hij 6= 0 for all i, j, and input-output relation

Yi =
√
snr

K∑
j=1

hijXj + Zi, i = 1,...,K,

where Xi ∈ R is the input at the i-th transmitter, Yi ∈ R
is the output at the i-th receiver, and Zi ∈ R is noise of

1Note that the sufficient condition in [10] applies to all ICs, whereas here
we restrict ourselves to fully connected ICs.
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absolutely continuous distribution satisfying h(Zi) > −∞
and H(bZic) < ∞. The input signals are independent across
transmitters, and noise is i.i.d. across users and channel uses.

The channel matrix H is known perfectly at all transmitters
and receivers. We impose the average power constraint

1

n

n∑
k=1

(x
(k)
i )2 6 1

on codewords (x
(1)
i ... x(n)i ) of block-length n transmitted by

user i = 1,...,K. The number of DoF of the channel is

DoF(H) := lim sup
snr→∞

C(H; snr)
1
2 log snr

,

where C(H; snr) stands for the sum-capacity of the IC.
We note that [10] studies conditions for each user to achieve

1/2 DoF as opposed to K/2 DoF for all users in total. This is
done to avoid trivial exceptions induced by particular network
topologies reflected by zeros in the IC matrix. Here, we also
study conditions for each user to achieve 1/2 DoF. We remark,
however, that topology-induced exceptions cannot occur for
fully connected ICs.

III. MAIN RESULT

We start by reviewing the sufficient (injectivity) condition
for each user to achieve 1/2 DoF identified in [10]. Let
ȟ ∈ RK(K−1) denote the vector containing the off-diagonal
elements of H. There are

ϕ(d) :=

(
K(K − 1) + d

d

)
monomials2 in K(K − 1) variables of degree not larger than
d, which we enumerate as f1,..., fϕ(d). We will further need
the following sets

WN,d :=

{
ϕ(d)∑
i=1

aifi(ȟ) : a1,..., aϕ(d) ∈ {0,..., N − 1}

}

W :=
⋃
d>0

⋃
N>1

WN,d. (1)

It was shown in [10, Th. 1] that for each user to achieve 1/2
DoF, it is sufficient that the following condition be satisfied
for either H directly or at least one scaled version of H, where

2A monomial in k variables xi is an expression of the form
xn1
1 xn2

2 ... x
nk
k , where n1,..., nk ∈ N, and the degree of the monomial

is n1 + ... + nk .



scaling, as defined in [10], refers to a finite number of scalings
of individual rows and columns by nonzero constants:

For each i = 1,...,K, the map

W ×W →W + hiiW
(w1, w2) 7→ w1 + hiiw2

(∗∗)

is injective.
The main result of the present paper is as follows.

Theorem 1. Let W be as in (1). Then, for almost all fully
connected IC matrices H, the following condition is necessary
for each user to achieve 1/2 DoF: Either the channel matrix H
itself or at least one scaled version thereof satisfies condition
(∗∗).

Proof: See Section V.
With the matching sufficient condition in [10, Th. 1] this

yields an equivalence characterization of full-DoF-achieving
IC matrices.

Remark 1. Note that thanks to W containing integer linear
combinations of monomials in the off-diagonal elements of
H, the condition (∗∗) is exclusively in terms of channel
coefficients.

Remark 2. Almost all channel matrices H are fully con-
nected. Since an almost all subset of an almost all set is
itself almost all, the set of channel matrices H not covered
by Theorem 1 has measure zero.

IV. BALANCING RESULTS
We start with a simple modification of [9, Th. 3], with the

proof omitted due to space constraints.
Proposition 1. For almost all fully connected IC matrices

H the following holds: If each user achieves 1/2 DoF, then for
ε ∈ (0, 1/2), there exist independent discrete random variables
V1,..., VK of finite entropy such that

1

2
− ε ≤

[
H
(∑K

j=1 hijVj

)
−H

(∑K
j 6=i hijVj

)]
maxi=1,...,K H

(∑K
j=1 hijVj

) , (2)

for i = 1,...,K, with the denominator of (2) nonzero.

The following lemma, based on Proposition 1, states “bal-
ancing” results on the entropies of signal and interference
contributions and will turn out instrumental in the proof of
our main statement.

Lemma 1. For ε ∈ (0, 1/2), let V1,..., VK be the corre-
sponding independent discrete random variables satisfying (2)
for the fully connected IC matrix H. Then,

H
(∑K

j 6=i hijVj

)
H(Vi)

= 1 +O(ε), for i = 1,...,K, (3)

H(Vi)

H(Vj)
= 1 +O(ε), for i, j ∈ {1,...,K}, i 6= j, (4)

H
(∑K

j=1 hijVj

)
H(Vi)

= 2 +O(ε), for i = 1,...,K. (5)

Proof: Starting from (2), we have

1

2
− ε ≤

[
H
(∑K

j=1 hijVj

)
−H

(∑K
j 6=i hijVj

)]
H
(∑K

j=1 hijVj

) , (6)

for i = 1,...,K. Rearranging terms, we get

2H

(
K∑
j 6=i

hijVj

)
≤ (1 + 2ε)H

(
K∑
j=1

hijVj

)
. (7)

Invoking the following inequality for independent discrete
random variables X , Y [12, Ex. 2.14]

H(X + Y ) ≤ H(X) +H(Y ), (8)

on the right-hand side (RHS) of (7) yields

(1− 2ε)H

(
K∑
j 6=i

hijVj

)
≤ (1 + 2ε)H(Vi). (9)

Next, we show that for fully connected ICs

H

(
K∑
j 6=i

hijVj

)
≥ (1− 2ε)

(1 + 2ε)
H(Vi). (10)

To this end, w.l.o.g., we assume that H(V1) ≥ H(V2) ≥ ... ≥
H(VK). Applying [12, Ex. 2.14]

H(αX + βY ) ≥ max {H(X), H(Y )} (11)

repeatedly for independent discrete random variables X and
Y , and arbitrary α, β ∈ R \ {0}, with X =

∑K
j 6=1,i hijVj ,

Y = V1, α = 1, β = hi1, for i = 2,...,K, we obtain

(1−2ε)H(Vi) ≤ (1−2ε) H(V1) ≤ (1+ 2ε)H

(
K∑
j 6=i

hijVj

)
.

(12)
This proves (10) for i = 2,...,K. The case i = 1 is obtained
as follows. First note that

(1− 2ε)H(V1) ≤ (1− 2ε)H

(
K∑
j 6=i

hijVj

)
≤ (1 + 2ε)H(Vi)

(13)
for all i 6= 1, where the first inequality is by (11) and the
second by (9). Further, again by (11), we have

(1 + 2ε)H(Vi) ≤ (1 + 2ε)H

(
K∑
j 6=1

hijVj

)
,

for all i 6= 1, and inserting into (13) establishes (10) for i = 1.
We can now combine (9) and (10) to get

1− 2ε

1 + 2ε
≤
H
(∑K

j 6=i hijVj

)
H(Vi)

≤ 1 + 2ε

1− 2ε
(14)

for all i, which yields (3).
To prove (4), we again assume, w.l.o.g., that H(V1) ≥ ... ≥

H(VK), and simply note that thanks to (13)

1− 2ε

1 + 2ε
≤ H(VK)

H(V1)
≤ H(Vi)

H(Vj)
≤ H(V1)

H(VK)
≤ 1 + 2ε

1− 2ε
, (15)



for i, j = 1,...,K.
Finally, to establish (5), we start by noting that

H
(∑K

j=1 hijVj

)
H(Vi)

≥
(1− 2ε

1 + 2ε

)H(∑K
j=1 hijVj

)
H
(∑K

j 6=i hijVj

) (16)

≥ 2(1− 2ε)

(1 + 2ε)2
,

owing to (14) and (7). Using (8) and (14), it follows that

H

(
K∑
j=1

hijVj

)
≤
(

1 +
1 + 2ε

1− 2ε

)
H(Vi). (17)

Combining (17) with (16) then yields (5).

We conclude this section by recording, for later use, a
simple variation of the entropy version of the Plünnecke-Ruzsa
inequality [11].

Lemma 2. [A simple variation of [11, Th. 2.8.2]]: For ε ∈
(0, 1/2), assume that there exist independent discrete random
variables X,Y1, ..., Ym, all of finite entropy, such that,

H(X + Yi)

H(X)
= 1 +O(ε), (18)

for i = 1,...,m. Then, for finite m,

H(X + Y1 + ... + Ym)

H(X)
= 1 +O(ε). (19)

Proof: In [11, Th. 2.8.2], set logKi = H(X)O(ε) for i =
1,...,m, and take the additive group G as R. This results in
H(X + Y1 + ... + Ym) ≤ H(X) +mH(X)O(ε). Divide this
inequality by H(X) and note that owing to (11) the expression
on the LHS of (19) is greater than or equal to 1. The proof is
concluded by noting that O(ε)m = O(ε) for finite m.

V. PROOF OF THEOREM 1

For simplicity of exposition and due to space constraints,
we detail the proof for the 3-user case only. The proof for the
K-user case follows by induction over the number of users
with the 3-user case constituting the base case.

Consider the 3-user fully connected IC matrix

H =

h11 h12 h13
h21 h22 h23
h31 h32 h33

.
The proof is effected by contradiction, with the contradiction
established by induction on the degrees of polynomials in W
as defined in (1). Towards this contradiction, we assume that
H is in the almost all set covered by Theorem 1, while at the
same time each user achieves 1/2 DoF and condition (∗∗) is
violated for H and all scaled versions thereof. In particular,
condition (∗∗) must also be violated for

H̃ =

g1 1 1
1 g2 1
1 h g3

, g1, g2, g3, h 6= 0, (20)

which can be obtained from H by scaling (cf. [5, p. 259]).
It follows from a simple modification of the arguments in [3,
Lem. 1] that for fully connected ICs, scaling does not change
the number of DoF achieved by each user. Hence, each user
achieves 1/2 DoF in H̃ as well. The reduction to H̃ is for
simplicity of exposition as all elements of the corresponding
set W in (1) are polynomials in h.

We proceed by assuming that the map in (∗∗) is not injective
for user i = 1 so that condition (∗∗) is violated. This implies
the existence of w1, w2, w̃1, w̃2 ∈ W such that w1 6= w̃1,
w2 6= w̃2, and

w1 + g1w2 = w̃1 + g1w̃2.

We can hence write

g1 =
w1 − w̃1

w̃2 − w2
=

∑d1

p=0 âph
p∑d2

p=0 b̂ph
p
, (21)

where d1 and d2 are finite and the coefficients âp, b̂p are
integers. Since w1 6= w̃1 and w2 6= w̃2, the polynomials on
the RHS of (21) are nonzero.

Since H̃ is fully connected, we know from (5) that, for
i = 1,

H
(∑d1

p=0 âph
p∑d2

p=0 b̂php
V1 + V2 + V3

)
H(V1)

= 2 +O(ε). (22)

We shall show that this leads to a contradiction, by proving
that (2) implies

H
(∑ d1

p=0aph
p∑d2

p=0 bphp
V1 + V2 + V3

)
H(V1)

= 1 +O(ε) (23)

for every nonzero finite-degree polynomial in h with integer
coefficients ap and bp, in particular âp and b̂p. The im-
plication (2) =⇒ (23) is established by induction over
d = max{d1, d2}.

Base case (d = 0): When d = 0, we need to show that

H
(
a0V1 + b0(V2 + V3)

)
H(V1)

= 1 +O(ε). (24)

From (3) with i = 1 we have

H(V2 + V3)

H(V1)
= 1 +O(ε). (25)

Likewise, (3) with i = 2, upon using (4) with i = 1, j = 2
yields

H(V1 + V3)

H(V1)
= 1 +O(ε). (26)

As the polynomials in (23) are nonzero, it suffices to prove the
statement for a0, b0 ∈ Z \ {0}. Using (4) with i = 1, j = 3,
we can replace the denominators of (25) and (26) by H(V3)
and then apply Lemma 2 to get

H(V1 + V2 + V3)

H(V3)
= 1 +O(ε). (27)

Replacing H(V3) in (27) by H(V1), which is possible thanks



to (4) with i = 1, j = 3, we obtain

H(V1 + V2 + V3)

H(V1)
= 1 +O(ε). (28)

Applying [5, Th. 14] with p = a0, q = b0, X = V1, and
Y = V2 +V3, and dividing the result thereof by H(V1) yields

H(a0V1 + b0(V2 + V3))

H(V1)
− H(V1 + V2 + V3)

H(V1)
≤

(29)

τa0,b0

(
(2H(V1 + V2 + V3)−H(V1)−H(V2 + V3))

H(V1)

)
,

where τa0,b0 = 7blog |a0|c+7blog |b0|c+2. By (25) and (28),
the RHS of (29) equals O(ε). We therefore have

1 ≤ H(a0V1 + b0(V2 + V3))

H(V1)
≤ 1 +O(ε), (30)

where the first inequality follows from (11). In summary, we
have

H(a0V1 + b0(V2 + V3))

H(V1)
= 1 +O(ε), (31)

which establishes (24) as desired.

Induction step. We assume that (23) holds for d = m − 1,
with m ≥ 1, and show that this implies (23) for d = m. The
following lemma contains the central technical result in the
induction step.

Lemma 3. For ε ∈ (0, 1/2), let V1, V2, and V3 be the corre-
sponding independent discrete random variables satisfying (2)
for the IC matrix H̃ in (20). Assume further that V1, V2, and
V3 satisfy (23) for d = max {d1, d2} = m− 1, where m ≥ 1.
Let V ∗1 be an independent copy of V1, and Ṽ2, V̂2 and Ṽ3, V̂3
independent copies of V2 and V3, respectively. Then,

H
(
h(V2 + V3) + amh

mV ∗1 + bmh
m(Ṽ2 + Ṽ3)

)
H(V1)

= 1 +O(ε)

(32)

H
(
h(V2 + V3) +

∑m−1
i=0 aih

iV1 +
∑m−1

i=0 bih
i(V̂2 + V̂3)

)
H(V1)

=

1 +O(ε) (33)

H
(
α1V

∗
1 + α2V1 + β1(Ṽ2 + Ṽ3) + β2(V2 + V3)

)
H(V1)

+O(ε) ≥

(34)

H
(

(α1 + α2)V1 + (β1 + β2)(V2 + V3)
)

H(V1)
,

for all α1, α2, β1, β2 ∈ R.

Proof: To establish (32), we apply Lemma 2 with X =
amh

mV ∗1 , Y1 = h(V2 + V3), and Y2 = bmh
m(Ṽ2 + Ṽ3). The

corresponding conditions (18) hold as dividing X + Y1 and
X + Y2 by h yields (23), which is satisfied by the induction
hypothesis.

For (33) we have to distinguish the cases m > 1 and m = 1.
For m > 1, one applies Lemma 2 with X =

∑m−1
i=0 aih

iV1,

Y1 = h(V2 + V3), and Y2 =
∑m−1

i=0 bih
i(V̂2 + V̂3). Again, the

corresponding conditions (18) of Lemma 2 are satisfied thanks
to the induction hypothesis. For m = 1, (33) reduces to

H(h(V2 + V3) + a0V1 + b0(V̂2 + V̂3))

H(V1)
= 1 +O(ε). (35)

Using (11) and (28), we get

H(V2)

H(V1)
≤ H(hV̂2 + hV̂3)

H(V1)
≤ H(V1 + V2 + V3)

H(V1)
= 1 +O(ε).

(36)
Thanks to (4), the leftmost term in (36) equals 1 + O(ε).
Hence,

H(hV̂2 + hV̂3)

H(V1)
= 1 +O(ε). (37)

Furthermore, applying (3) with i = 3, we have

H(hV̂2 + V1)

H(V3)
= 1 +O(ε), (38)

which thanks to (4) with i = 1, j = 3 yields

H(hV̂2 + V1)

H(V1)
= 1 +O(ε). (39)

Combining (37) and (39), and applying Lemma 2 with X =
hV̂2, Y1 = V1, and Y2 = hV̂3, we obtain

H(V1 + h(V̂2 + V̂3))

H(V1)
= 1 +O(ε). (40)

Repeating the steps leading from (28) to (31) now results in

H(a0V1 + b0h(V̂2 + V̂3))

H(V1)
= 1 +O(ε). (41)

Using (41) and applying Lemma 2 with X = a0V1, Y1 =

b0h(V̂2 + V̂3), and Y2 = h(V2 + V3), we get

H(h(V2 + V3) + a0V1 + b0h(V̂2 + V̂3))

H(V1)
= 1 +O(ε), (42)

which establishes (35), and thereby completes the proof of
(33).

To prove (34), we first apply Lemma 2 with X = V1, Y1 =
V2 + V3 and Y2 = Ṽ2 + Ṽ3, resulting in

H(V1 + V2 + V3 + Ṽ2 + Ṽ3)

H(V1)
= 1 +O(ε). (43)

The corresponding conditions (18) of Lemma 2 are satisfied
thanks to (28), and upon noting that Ṽ2, Ṽ3 are independent
copies of V2, V3. Thanks to (25) and (11), we have

1 +O(ε) =
H(V2 + V3)

H(V1)
≤ H(V2 + V3 + Ṽ2 + Ṽ3)

H(V1)
(44)

≤ H(V1 + V2 + V3 + Ṽ2 + Ṽ3)

H(V1)
, (45)

which, when combined with (43), yields

H(V2 + V3 + Ṽ2 + Ṽ3)

H(V1)
= 1 +O(ε). (46)



The same line of reasoning, with Lemma 2 applied with X =
V3, Y1 = V1, and Y2 = V ∗1 , upon invoking (26), delivers

H(V1 + V ∗1 )

H(V1)
= 1 +O(ε). (47)

We next use [5, Lem. 18] with Z = β1(Ṽ2+Ṽ3)+β2(V2+V3),
X = V1, X ′ = V ∗1 , r = α1, and p = α1 + α2 to get3

H
(
(α1+α2)V1 + β1(Ṽ2+Ṽ3) + β2(V2+V3)

)
H(V1)

−∆(V1, V
∗
1 )

H(V1)

≤
H
(
α1V

∗
1 + α2V1 + β1(Ṽ2 + Ṽ3) + β2(V2 + V3)

)
H(V1)

,

(48)

where ∆(V,W ) = H(V −W )− 1
2H(V )− 1

2H(W ). Note that
due to (47), we have

∆(V1,−V ∗1 )

H(V1)
= O(ε). (49)

Thanks to [13, Th. 3.5] this implies

∆(V1, V
∗
1 )

H(V1)
= O(ε). (50)

We next apply [5, Lem. 18] with Z = (α1 + α2)V1,
X = V2 + V3, X ′ = Ṽ2 + Ṽ3, p = β1 + β2, and r = β2.
Noting that thanks to (46), (49) continues to hold if we replace
∆(V1,−V ∗1 ) by ∆(V2 + V3,−(Ṽ2 + Ṽ3)), we obtain

H
(

(α1 + α2)V1 + (β1 + β2)(V2 + V3)
)

H(V1)
≤ O(ε)

+
H
(

(α1 + α2)V1 + β1(V2 + V3) + β2(Ṽ2 + Ṽ3)
)

H(V1)
. (51)

Finally, combining (48) and (51), we get (34).

We now use Lemma 3 to finalize the induction argument.
First, let

p(h) :=h (V2 + V3) +
m−1∑
i=0

aih
iV̂1 +

m−1∑
i=0

bih
i(V̂2 + V̂3)

+ amh
mV ∗1 + bmh

m(Ṽ2 + Ṽ3),

where Ṽ2, V̂2 and Ṽ3, V̂3 are independent copies of V2 and V3,
respectively.

Applying Lemma 2 with X = h(V2+V3), Y1 = amh
mV ∗1 +

bmh
m(Ṽ2 + Ṽ3), and Y2 =

∑m−1
i=0 aih

iV̂1 +
∑m−1

i=0 bih
i(V̂2 +

V̂3), noting that the corresponding conditions (18) are satisfied
thanks to (32) and (33), and invoking (26), we get

H(p(h))

H(V1)
= 1 +O(ε). (52)

3Note that [5, Lem. 18] assumes p and r to be nonzero integers. A closer
inspection of the proof reveals, however, that the result holds for all p, r ∈ R.

Now define

p̃(h) :=

m−1∑
i=0

aih
iV̂1 +

m−1∑
i=0

bih
i(V̂2 + V̂3)

+ amh
mV ∗1 + bmh

m(Ṽ2 + Ṽ3).

Thanks to (11) and (52), we have

1 +O(ε) =
H(p(h))

H(V1)
≥ H(p̃(h))

H(V1)
≥ 1. (53)

Applying (34) with α1 =
∑m−1

i=0 aih
i, α2 = amh

m, β1 =∑m−1
i=0 bih

i, and β2 = bmh
m, yields

H(p̃(h))

H(V1)
+O(ε) ≥

H
(∑m

i=0 aih
iV1 +

∑m
i=0 bih

i(V2 + V3)
)

H(V1)
.

(54)
Thanks to (11), the RHS of (54) cannot be smaller than one.
Combining (53) and (54), we hence get

H
(∑m

i=0 aih
iV1 +

∑m
i=0 bih

i(V2 + V3)
)

H(V1)
= 1+O(ε). (55)

This concludes the induction argument and thereby the proof.
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