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Completion of Matrices with Low Description Complexity

Erwin Riegler, Günther Koliander, David Stotz, and Helmut Bölcskei

Abstract. We propose a theory for matrix completion that goes beyond the low-rank structure
commonly considered in the literature and applies to general matrices of low description com-
plexity. Specifically, complexity of the sets of matrices encompassed by the theory is measured
in terms of Hausdorff and upper Minkowski dimensions. Our goal is the characterization of
the number of linear measurements, with an emphasis on rank-1 measurements, needed for the
existence of an algorithm that yields reconstruction, either perfect, with probability 1, or with
arbitrarily small probability of error, depending on the setup. Concretely, we show that matrices
taken from a set U such that U −U has Hausdorff dimension 𝑠 can be recovered from 𝑘 > 𝑠

measurements, and random matrices supported on a set U of Hausdorff dimension 𝑠 can be
recovered with probability 1 from 𝑘 > 𝑠 measurements. What is more, we establish the existence
of recovery mappings that are robust against additive perturbations or noise in the measure-
ments. Concretely, we show that there are 𝛽-Hölder continuous mappings recovering matrices
taken from a set of upper Minkowski dimension 𝑠 from 𝑘 > 2𝑠/(1 − 𝛽) measurements and, with
arbitrarily small probability of error, random matrices supported on a set of upper Minkowski
dimension 𝑠 from 𝑘 > 𝑠/(1 − 𝛽) measurements. The numerous concrete examples we consider
include low-rank matrices, sparse matrices, QR decompositions with sparse R-components, and
matrices of fractal nature.

Funding. The work of G. Koliander was supported by the Vienna Science and Tech-
nology Fund (WWTF): MA16-053.

1. Introduction

Matrix completion refers to the recovery of a low-rank matrix from a (small) subset
of its entries or a (small) number of linear combinations thereof. This problem arises
in a wide range of applications including quantum state tomography, face recognition,
recommender systems, and sensor localization (see, e.g., [8,12] and references therein).
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The formal problem statement is as follows. Suppose we have 𝑘 linear measure-
ments of the matrix 𝑿 ∈ R𝑚×𝑛 with 𝑟𝑎𝑛𝑘 (𝑿) ≤ 𝑟 in the form of

𝒚 = (⟨𝑨1, 𝑿⟩ . . . ⟨𝑨𝑘 , 𝑿⟩)T, (1.1)

where ⟨𝑨𝑖 , 𝑿⟩ = 𝑡𝑟 (𝑨T
𝑖 𝑿) is the standard trace inner product between matrices; the

𝑨𝑖 ∈ R𝑚×𝑛 are referred to as measurement matrices. The number of measurements,
𝑘 , is typically much smaller than the total number of entries, 𝑚𝑛, of 𝑿. Depending
on the 𝑨𝑖 , the measurements can simply be individual entries of 𝑿 or general linear
combinations thereof. Can we recover 𝑿 from 𝒚?

The vast literature on matrix completion (for a highly incomplete list see [5–10,
12,18,20–22,28,29,34]) provides thresholds on the number of measurements needed
for successful recovery of the unknown low-rank matrix 𝑿, under various assumptions
on the measurement matrices 𝑨𝑖 and the low-rank models generating 𝑿. For instance,
in [18] the 𝑨𝑖 are chosen randomly from a fixed orthonormal (w.r.t. the trace inner
product) basis for R𝑛×𝑛 and it is shown that an unknown 𝑛 × 𝑛 matrix 𝑿 of rank no
more than 𝑟 can be recovered with high probability if 𝑘 ≥ O(𝑛𝑟𝜈 ln2 𝑛). Here, 𝜈 denotes
the coherence [18, Def. 1] between the unknown matrix 𝑿 and the orthonormal basis
the 𝑨𝑖 are drawn from.

The setting in [9] assumes random1 measurement matrices A𝑖 with the position of
the only nonzero entry, which is equal to one, chosen uniformly at random. It is shown
that almost all (a.a.) matrices 𝑿 (where a.a. is with respect to the random orthogonal
model [9, Def. 2.1]) of rank no more than 𝑟 can be recovered with high probability
(with respect to the measurement matrices) provided that the number of measurements
satisfies 𝑘 ≥ 𝐶𝑛1.25𝑟 ln 𝑛, where 𝐶 is a constant.

In [8] it is shown that for random measurement matrices A𝑖 satisfying a certain
concentration property, matrices 𝑿 of rank no more than 𝑟 can be recovered with high
probability from 𝑘 ≥ 𝐶 (𝑚 + 𝑛)𝑟 measurements, where 𝐶 is a constant.

The results on recovery thresholds reviewed so far as well as those in [5,6,10,28,29]
all pertain to recovery through nuclear norm minimization.

In [14] measurement matrices A𝑖 containing i.i.d. entries drawn from an absolutely
continuous (with respect to Lebesgue measure) distribution are considered. It is shown
that rank minimization (which is NP-hard, in general) recovers 𝑛 × 𝑛 matrices 𝑿 of
rank no more than 𝑟 with probability 1 if 𝑘 > (2𝑛 − 𝑟)𝑟 . Furthermore, it is established
that all matrices 𝑿 of rank no more than 𝑛/2 can be recovered, again through rank
minimization and with probability 1, provided that 𝑘 ≥ 4𝑛𝑟 − 4𝑟2.

The recovery thresholds in [14],[8] do not exhibit a (log 𝑛)-factor, but assume sig-
nificant richness in the random measurement matrices A𝑖 . Storing and applying the

1We indicate random quantities by roman sans-serif letters such as A.
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realizations of such measurement matrices is costly in terms of memory and compu-
tation time, respectively. To alleviate this problem, [6] considers rank-1 measurement
matrices of the form A𝑖 = a𝑖bT

𝑖
, where the random vectors a𝑖 ∈ R𝑚 and b𝑖 ∈ R𝑛 are

independent with i.i.d. Gaussian or sub-Gaussian entries; it is shown that nuclear
norm minimization succeeds under the same recovery threshold as in [8], namely
𝑘 ≥ 𝐶 (𝑚 + 𝑛)𝑟 for some constant 𝐶.

The recovery of matrices that, along with the measurement matrices, belong to
algebraic varieties was studied in [32, 35, 38]. As a byproduct, it is shown that almost
all rank-𝑟 matrices in R𝑚×𝑛 can be recovered from 𝑘 > (𝑚 + 𝑛 − 𝑟)𝑟 measurements
taken with measurement matrices of arbitrary rank.

Finally, the application of recent results on analog signal compression [1,2,33,37]
to matrix completion yields recovery thresholds for a.a. measurement matrices 𝑨𝑖 and
random matrices X that have low description complexity in the sense of [1]. Specif-
ically, the results in [1] can be transferred to matrix completion by writing the trace
inner product ⟨𝑨𝑖 , 𝑿⟩ as the standard inner product between the vectorized matrices
𝑨𝑖 and 𝑿 (obtained by stacking the columns). The definition of “low description com-
plexity” as put forward in [1] goes beyond the usual assumption of X having low rank.
It essentially says that the matrix takes value in some low-dimensional2 set U ⊆ R𝑚×𝑛

with probability 1. This set U can, for example, be the set of all matrices with rank no
more than 𝑟 , but much more general structures are possible.

Contributions. The purpose of this paper is to establish fundamental recovery
thresholds (i.e., thresholds not restricted to a certain recovery scheme) for rank-1 mea-
surement matrices 𝑨𝑖 = 𝒂𝑖𝒃

T
𝑖 applied to data matrices 𝑿 taking value in low-dimensional

sets U ⊆ R𝑚×𝑛. Rank-1 measurement matrices are practically relevant due to reduced
storage requirements and lower computational complexity in the evaluation of the trace
inner product ⟨𝒂𝑖𝒃T

𝑖 , 𝑿⟩ = 𝒂T
𝑖
𝑿𝒃𝑖 . We consider both deterministic data matrices 𝑿 with

associated recovery guarantees for all 𝑿 ∈ U and random X accompanied by recov-
ery guarantees either with probability 1 or with arbitrarily small probability of error.
The recovery thresholds we obtain are in terms of the Hausdorff dimension of the sup-
port set U of the data matrices. Furthermore, we establish bounds–in terms of the
upper Minkowski dimension of U–on the number of measurements needed to guaran-
tee Hölder continuous recovery, and hence robustness against additive perturbations or
noise. Hausdorff and upper Minkowski dimension are particularly easy to characterize
for countably rectifiable and rectifiable sets [16], respectively. These concepts com-
prise most practically relevant data structures such as low rank and sparsity in terms

2The precise dimension measures used in the definition of low description complexity in [1,
2,33,37] are, depending on the context, lower modified Minkowski dimension, upper Minkowski
dimension, or Hausdorff dimension.
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of the number of nonzero entries as well as the Kronecker product, matrix product,
or sum of any such matrices. As an example of sets that do not fall into the rich class
of rectifiable sets, but our theory still applies to, we consider sets of fractal nature.
Specifically, we investigate attractor sets of recurrent iterated function systems [3].

Recovery thresholds for general (as opposed to rank-1) measurement matrices fol-
low in a relatively straightforward manner through vectorization from the theory of
lossless analog compression as developed in [1]. For the reader’s convenience, we shall
describe these extensions in brief wherever appropriate. We finally note that a prelimi-
nary version of part of the work reported in the present paper, specifically weaker results
for more restrictive sets U of bounded Minkowski dimension and without statements
on Hölder-continuous recovery, was presented in [30] by a subset of the authors.

Organization of the paper. In Section 2, we present recovery thresholds for matrices
𝑿 taking value in a general set U ⊆ R𝑚×𝑛. These results are formulated in terms
of Hausdorff and upper Minkowski dimension of U. In Section 3, we introduce the
concept of rectifiable and countably rectifiable sets from geometric measure theory
[16] and we characterize the upper Minkowski and Hausdorff dimensions of such sets.
Furthermore, it is shown that many practically relevant sets of structured matrices
are (countably) rectifiable. The particularization of our general recovery thresholds to
the rectifiable case concludes this section. In Section 4, we particularize our general
recovery thresholds to attractor sets of recurrent iterated function systems. The proofs
of our main results, Theorems 2.1 and 2.2 and Propositions 2.1 and 2.2 are contained
in Sections 5–8.

Notation. Capitalized boldface letters 𝑨, 𝑩, . . . designate deterministic matrices
and lowercase boldface letters 𝒂, 𝒃, . . . stand for deterministic vectors. We use roman
sans-serif letters for random quantities (e.g., x for a random vector and A for a random
matrix). Random quantities are assumed to be defined on the Borel 𝜎-algebra of the
underlying space. P[X ∈ U] denotes the probability of X being in the Borel set U. We
write 𝜆 for Lebesgue measure. The superscript T stands for transposition. The ordered
singular values of a matrix 𝑨 are denoted by𝜎1(𝑨) ≥ · · · ≥ 𝜎𝑛 (𝑨). We write 𝑨 ⊗ 𝑩 for
the Kronecker product of the matrices 𝑨 and 𝑩, denote the trace of 𝑨 by 𝑡𝑟 (𝑨), and let
⟨𝑨,𝑩⟩ = 𝑡𝑟 (𝑨T𝑩) be the trace inner product of 𝑨 and 𝑩. Further, ∥𝑨∥2 =

√︁
⟨𝑨, 𝑨⟩ and

∥𝑨∥0 refers to the number of nonzero entries of 𝑨. For the Euclidean space (R𝑘 , ∥ · ∥2),
we denote the open ball of radius 𝑠 centered at 𝒖 ∈ R𝑘 by B𝑘 (𝒖, 𝑠), 𝑉 (𝑘, 𝑠) stands for
its volume. Similarly, forthe Euclidean space (R𝑚×𝑛, ∥ · ∥2), the open ball of radius 𝑠
centered at 𝑼 ∈ R𝑚×𝑛 is B𝑚×𝑛 (𝑼, 𝑠). We set M𝑚×𝑛

𝑟 = {𝑿 ∈ R𝑚×𝑛 : 𝑟𝑎𝑛𝑘 (𝑿) ≤ 𝑟}
and let A𝑚×𝑛

𝑠 = {𝑿 ∈ R𝑚×𝑛 : ∥𝑿∥0 ≤ 𝑠}. The closure of the set U is denoted by U.
The Cartesian product of the sets A and B in Euclidean space is written as A ×B and
their Minkowski difference is designated by A − B. The indicator function of a set U
is designated by 𝜒U . For a bounded set U ⊆ R𝑚×𝑛 and 𝛿 > 0, we denote the covering
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number of U by

𝑁𝛿 (U) = min

{
𝑁 ∈ N : ∃𝒀1, . . . ,𝒀𝑁 ∈ U s.t. U ⊆

𝑁⋃
𝑖=1

B𝑚×𝑛 (𝒀 𝑖 , 𝛿)
}
. (1.2)

For U,V ⊆ R𝑚×𝑛, we set U −V = {𝑼 −𝑽 : 𝑼 ∈ U,𝑽 ∈ V}. We let dimH(·) denote
the Hausdorff dimension [15, Equation (3.10)], defined by

dimH(U) = inf{𝑠 ≥ 0 : ℋ𝑠 (U) = 0}, (1.3)

where ℋ
𝑠 (U) = lim𝛿→0 inf

{ ∑∞
𝑖=1 diam𝑠 (U𝑖) : {U𝑖} is a 𝛿-cover of U

}
is the 𝑠-di-

mensional Hausdorff measure of U [15, Equation (3.2)].
Furthermore, dimB(·) and dimB(·) refer to the upper and lower Minkowski dimen-

sion [15, Definition 2.1] defined as

dimB(U) = lim sup𝛿→0
log 𝑁𝛿 (U)
log(1/𝛿) (1.4)

and
dimB(U) = lim inf 𝛿→0

log 𝑁𝛿 (U)
log(1/𝛿) , (1.5)

respectively. Finally, we note that [15, Proposition 3.4]

dimH(U) ≤ dimB(U) ≤ dimB(U) (1.6)

for all nonempty subsets in Euclidean spaces.

2. Main Results

Our first main result provides a threshold for recovery of matrices 𝑿 from rank-1 mea-
surements in a very general setting. Specifically, the matrices 𝑿 are assumed to take
value in some set U and the recovery threshold is in terms of either dimH(U) or
dimH(U −U).

Theorem 2.1. For every nonempty set U ⊆ R𝑚×𝑛, the following holds:

i) The mapping

U → R𝑘 (2.1)
𝑿 ↦→ (𝒂T

1𝑿𝒃1 . . . 𝒂
T
𝑘𝑿𝒃𝑘)T (2.2)

is one-to-one for Lebesgue a.a. ((𝒂1 . . . 𝒂𝑘), (𝒃1 . . . 𝒃𝑘)) ∈ R𝑚×𝑘 × R𝑛×𝑘
provided that dimH(U −U) < 𝑘 .
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ii) Suppose that U is Borel and consider an 𝑚 × 𝑛 random matrix X satisfying
P[X ∈ U] = 1. Then, for Lebesgue a.a. ((𝒂1 . . . 𝒂𝑘), (𝒃1 . . . 𝒃𝑘)) ∈ R𝑚×𝑘 ×
R𝑛×𝑘 , there exists a Borel-measurable mapping 𝑔 : R𝑘 → R𝑚×𝑛 satisfying

P
[
𝑔

(
(𝒂T

1X𝒃1 . . . 𝒂
T
𝑘X𝒃𝑘)T

)
≠ X

]
= 0 (2.3)

provided that dimH(U) < 𝑘 .

Proof. See Section 5.

The first part of the theorem states that in the deterministic case, 𝑘 > dimH(U −U)
rank-1 measurements suffice for unique recovery of 𝑿 ∈ U (except for measurement
vectors 𝒂𝑖 , 𝒃𝑖 supported on a Lebesgue null-set). In the probabilistic setting of the sec-
ond part, 𝑘 > dimH(U) measurements suffice for the existence of a Borel-measurable
recovery mapping achieving zero error. While these are the most general versions of
our recovery results, it can be difficult to evaluate dimH(U) and dimH(U − U) for
sets U with interesting structural properties. In Section 3, we shall see, however, that
these dimensions are easily computed for rectifiable sets, which, in turn, encompass
many structures of practical relevance such as low rank or sparsity.

A version of Theorem 2.1 in terms of lower Minkowski dimension instead of Haus-
dorff dimension was found by a subset of the authors of the present paper in [30,
Theorem 2] and was subsequently extended by Li et al. to the complex-valued case in
[25, Theorem 8]. As lower Minkowski dimension is always greater than or equal to
Hausdorff dimension (see (1.6)), Theorem 2.1 strengthens [30, Theorem 2]. In addi-
tion, lower Minkowski dimension is defined for bounded sets U only, a restriction not
shared by Hausdorff dimension.

A vectorization argument, concretely, stacking the columns of the data matrix 𝑿

and the measurement matrices 𝑨𝑖 , shows that [2, Theorem 3.7] implies Item i) in
Theorem 2.1 and [2, Corollary 3.4] implies Item ii), in both cases, however, for the rank-
1 measurement matrices 𝒂𝑖𝒃T

𝑖 replaced by generic measurement matrices 𝑨𝑖 ∈ R𝑚×𝑛.
As the set of rank-1 matrices is a null-set when viewed as a subset ofR𝑚×𝑛, these results
do not imply our Theorem 2.1. Furthermore, the technical challenges in establishing
Theorem 2.1 are quite different from those encountered in [2], which, in turn, builds
on [1]. In particular, here we need a stronger concentration of measure inequality (see
Lemma 6.2 in Section 6).

The proof of Theorem 2.1 detailed in Section 5 is based on the following result,
which is similar in spirit to the null-space property in compressed sensing theory [17,
Theorem 2.13]:

Proposition 2.1. Consider a nonempty set U ⊆ R𝑚×𝑛 with dimH(U) < 𝑘 . Then,

{𝑿 ∈ U\{0} : (𝒂T
1𝑿𝒃1 . . . 𝒂

T
𝑘𝑿𝒃𝑘)T = 0} = ∅, (2.4)



Completion of Matrices with Low Description Complexity 7

for Lebesgue a.a. ((𝒂1 . . . 𝒂𝑘), (𝒃1 . . . 𝒃𝑘)) ∈ R𝑚×𝑘 × R𝑛×𝑘 .

Proof. See Section 6.

Our second main result establishes thresholds for Hölder-continuous recovery, that
is, recovery which exhibits robustness against additive perturbations or noise. Here, we
have to impose the stricter technical condition of bounded upper Minkowski dimension
dimB(U) and, in turn, can only consider bounded sets U.

Theorem 2.2. For every nonempty and bounded set U ⊆ R𝑚×𝑛 and 𝛽 ∈ (0, 1), the
following holds:

i) Suppose that

dimB(U −U)
1 − 𝛽 < 𝑘. (2.5)

Then, for Lebesgue a.a. ((𝒂1 . . . 𝒂𝑘), (𝒃1 . . . 𝒃𝑘)) ∈ R𝑚×𝑘 ×R𝑛×𝑘 , there exists
a 𝛽-Hölder continuous mapping 𝑔 : R𝑘 → R𝑚×𝑛 satisfying

𝑔

(
(𝒂T

1𝑿𝒃1 . . . 𝒂
T
𝑘𝑿𝒃𝑘)T

)
= 𝑿, for all 𝑿 ∈ U. (2.6)

ii) Suppose that U is Borel with

dimB(U)
1 − 𝛽 < 𝑘. (2.7)

Fix 𝜀 > 0 arbitrarily and consider an 𝑚 × 𝑛 random matrix X with P[X ∈
U] = 1. Then, for Lebesgue a.a. ((𝒂1 . . . 𝒂𝑘), (𝒃1 . . . 𝒃𝑘)) ∈ R𝑚×𝑘 × R𝑛×𝑘 ,
there exists a 𝛽-Hölder continuous mapping 𝑔 : R𝑘 → R𝑚×𝑛 satisfying

P
[
𝑔

(
(𝒂T

1X𝒃1 . . . 𝒂
T
𝑘X𝒃𝑘)T

)
≠ X

]
≤ 𝜀. (2.8)

Proof. See Section 7.

Again, the first part of the theorem concerns deterministic data matrices 𝑿 for
which 𝑘 > dimB(U −U)/(1 − 𝛽) rank-1 measurements (except for measurement vec-
tors supported on a Lebesgue null-set) guarantee 𝛽-Hölder continuous recovery. The
higher the desired Hölder exponent 𝛽, the larger the number of measurements has to
be. In the probabilistic setting of the second part of the theorem, 𝑘 > dimB(U)/(1− 𝛽)
measurements suffice for 𝛽-Hölder continuous recovery. We hasten to add that recov-
ery is only with probability 1 − 𝜀, where, however, 𝜀 can be arbitrarily small. Also note
that the number of measurements, 𝑘 , is independent of 𝜀. We shall evaluate dimB(U)
for several rectifiable sets with interesting structural properties in Section 3 and for
attractor sets of recurrent iterated function systems in Section 4.
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A version of Theorem 2.2 for the rank-1 measurements replaced by measurements
taken with general matrices can be obtained from results available in the literature.
Specifically, the equivalent of Item i) in Theorem 2.2 follows from [31, Theorem 4.3],
that of Item ii) is obtained from [33, Theorem 2], in both cases by vectorization.

The proof of Theorem 2.2 is again based on a variant of the null-space property as
used in compressed sensing theory, concretely on the following result:

Proposition 2.2. Consider a nonempty and bounded set U ⊆ R𝑚×𝑛, and suppose that
there exists a 𝛽 ∈ (0, 1) such that

dimB(U)
1 − 𝛽 < 𝑘. (2.9)

Then,

inf

{
∥(𝒂T

1𝑿𝒃1 . . . 𝒂
T
𝑘
𝑿𝒃𝑘)T∥2

∥𝑿∥1/𝛽
2

: 𝑿 ∈ U\{0}
}
> 0, (2.10)

for Lebesgue a.a. ((𝒂1 . . . 𝒂𝑘), (𝒃1 . . . 𝒃𝑘)) ∈ R𝑚×𝑘 × R𝑛×𝑘 .

Proof. See Section 6.

Regarding converse statements, i.e., the question of whether too few rank-1 mea-
surements of a given random matrix X necessarily render unique reconstruction impos-
sible, we note that [1, Corollary IV.2] allows a partial answer. Specifically, the simple
characterization of the support set U of X through its dimension dimB(U) does not
enable a general impossibility result. If one assumes, however, that the vectorized ver-
sion of X is 𝑘-analytic according to [1, Definition IV.2], then we can conclude that fewer
than 𝑘 measurements necessarily lead to reconstruction of X being impossible, with
probability 1. This statement holds for arbitrary measurement matrices, so in particular
also for rank-1 matrices.

3. Rectifiable Sets

To illustrate the practical applicability of the general recovery thresholds obtained
in Theorems 2.1 and 2.2 and expressed in terms of Hausdorff and upper Minkowski
dimension, we first introduce the concept of rectifiable sets, a central element of geo-
metric measure theory [16]. The relevance of rectifiability derives itself from the fact
that a broad class of structured data matrix support sets we are interested in turns out to
be rectifiable. In addition, Hausdorff and upper Minkowski dimensions of rectifiable
sets have been characterized in significant detail in the literature.

We start with the formal definition of rectifiable sets.
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Definition 3.1. [16, Definition 3.2.14] For 𝑠 ∈ N, the set U ⊆ R𝑚×𝑛 is

i) 𝑠-rectifiable if there exist a nonempty and compact setA ⊆ R𝑠 and a Lipschitz
mapping 𝜑 : A → R𝑚×𝑛 such that U = 𝜑(A);

ii) countably 𝑠-rectifiable if it is the countable union of 𝑠-rectifiable sets;

iii) countably ℋ𝑠-rectifiable if it is ℋ𝑠-measurable and there exists a countably
𝑠-rectifiable set V ⊆ R𝑚×𝑛 such that ℋ𝑠 (U \ V) = 0.

We have the following obvious chain of implications:

𝑠-rectifiable ⇒ countably 𝑠-rectifiable ⇒ countably ℋ
𝑠-rectifiable.

Countably ℋ
𝑠-rectifiable sets thus constitute the most general class.

We proceed to state preparatory results, which will be used later to establish that
many practically relevant sets of structured matrices are (countably) 𝑠-rectifiable and
to quantify the associated rectifiability parameter 𝑠.

Lemma 3.1. (Properties of 𝑠-rectifiable sets)

i) If U ⊆ R𝑚×𝑛 is 𝑠-rectifiable, then it is 𝑡-rectifiable for all 𝑡 ∈ N with 𝑡 > 𝑠.

ii) For U𝑖 ⊆ R𝑚×𝑛 𝑠𝑖-rectifiable with 𝑠𝑖 ≤ 𝑠, 𝑖 = 1, . . . , 𝑁 , the set

U =

𝑁⋃
𝑖=1

U𝑖 (3.1)

is 𝑠-rectifiable. In particular, the finite union of 𝑠-rectifiable sets is 𝑠-rectifi-
able.

iii) If U ⊆ R𝑚1×𝑛1 is 𝑠-rectifiable and V ⊆ R𝑚2×𝑛2 is 𝑡-rectifiable, then U ×V
is (𝑠 + 𝑡)-rectifiable.

iv) Every compact subset of an 𝑠-dimensional 𝐶1-submanifold [23, Definition
5.3.1] of R𝑚×𝑛 is 𝑠-rectifiable.

Proof. See Appendix A.

Lemma 3.2. (Properties of countably 𝑠-rectifiable sets)

i) If U ⊆ R𝑚1×𝑛1 is countably 𝑠-rectifiable and V ⊆ R𝑚2×𝑛2 is countably 𝑡-
rectifiable, then U ×V is countably (𝑠 + 𝑡)-rectifiable.

ii) For U𝑖 ⊆ R𝑚×𝑛 countably 𝑠𝑖-rectifiable with 𝑠𝑖 ≤ 𝑠, 𝑖 ∈ N, the set

U =
⋃
𝑖∈N

U𝑖 (3.2)

is countably 𝑠-rectifiable.
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iii) Every 𝑠-dimensional𝐶1-submanifold [23, Definition 5.3.1] ofR𝑚×𝑛 is count-
ably 𝑠-rectifiable. In particular, every 𝑠-dimensional affine subspace ofR𝑚×𝑛

is countably 𝑠-rectifiable.

Proof. Follows from [1, Lemma III.1].

To establish the rectifiability of structured matrices obtained as products or sums
of structured matrices, we need to understand the impact of continuous mappings on
rectifiability. Specifically, we shall need the following result from [1, Lemma III. 3] for
locally-Lipschitz mappings, i.e., functions that are Lipschitz continuous on all compact
subsets:

Lemma 3.3. Let U ⊆ R𝑚1×𝑛1 and let 𝑓 : R𝑚1×𝑛1 → R𝑚2×𝑛2 be a locally-Lipschitz
mapping.

i) If U is 𝑠-rectifiable, then 𝑓 (U) is 𝑠-rectifiable.

ii) If U is countably 𝑠-rectifiable, then 𝑓 (U) is countably 𝑠-rectifiable.

We will mainly use the following generalization of Lemma 3.3:

Lemma 3.4. Consider a locally-Lipschitz mapping 𝑓 :
>𝑁

𝑖=1 R
𝑚𝑖×𝑛𝑖 → R𝑚×𝑛, and

suppose that U𝑖 ⊆ R𝑚𝑖×𝑛𝑖 , for 𝑖 = 1, . . . , 𝑁 .

i) If U𝑖 is 𝑠𝑖-rectifiable, for 𝑖 = 1, . . . , 𝑁 , then 𝑓 (U1 × · · · ×U𝑁 ) is 𝑠-rectifiable
with 𝑠 =

∑𝑁
𝑖=1 𝑠𝑖 .

ii) If U𝑖 is countably 𝑠𝑖-rectifiable, for 𝑖 = 1, . . . , 𝑁 , then 𝑓 (U1 × · · · × U𝑁 ) is
countably 𝑠-rectifiable with 𝑠 =

∑𝑁
𝑖=1 𝑠𝑖 .

Proof. Item i) follows from Item iii) of Lemma 3.1 and Item i) of Lemma 3.3, and
Item ii) follows from Item i) of Lemma 3.2 and Item ii) of Lemma 3.3.

Before we can particularize our results in Theorems 2.1 and 2.2, it remains to char-
acterize the Hausdorff dimension and the upper Minkowski dimension of rectifiable
sets in terms of their rectifiability parameters.

Lemma 3.5. Let U ⊆ R𝑚×𝑛 be nonempty. Then, the following properties hold:

i) If U is countably ℋ𝑠-rectifiable, then

dimH(U) ≤ 𝑠. (3.3)

ii) If U ⊆ V with V ⊆ R𝑚×𝑛 𝑠-rectifiable, then

dimB(U) ≤ 𝑠. (3.4)
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Proof. We first prove Item i). Since U is countably ℋ
𝑠-rectifiable, by Definition 3.1,

there exists a countably 𝑠-rectifiable set V ⊆ R𝑚×𝑛 with ℋ
𝑠 (U \ V) = 0. By [1,

Lemma III.2], the upper modified Minkowski dimension of a countably 𝑠-rectifiable
set V is upper-bounded by 𝑠. Combined with [15, Equation (3.27)], which states that
the Hausdorff dimension of V is upper-bounded by the upper modified Minkowski
dimension, this yields

dimH(V) ≤ 𝑠. (3.5)

Since ℋ𝑠 (U \ V) = 0, the definition of Hausdorff dimension implies

dimH(U \ V) ≤ 𝑠 (3.6)

so that

dimH(U) = max{dimH(U ∩V), dimH(U \ V)} (3.7)
≤ max{dimH(V), dimH(U \ V)} (3.8)
≤ 𝑠, (3.9)

where (3.7) follows from countable stability of Hausdorff dimension [15, Section 3.2],
in (3.8) we used monotonicity of Hausdorff dimension [15, Section 3.2], and (3.9) is
by (3.5) and (3.6).

To establish Item ii), we note that, by Definition 3.1, a nonempty 𝑠-rectifiable setV
can be written as V = 𝜑(A) for a Lipschitz mapping 𝜑 : A → R𝑚×𝑛 and a nonempty
compact set A ⊆ R𝑠. We thus have

dimB(U) ≤ dimB(V) (3.10)

≤ dimB(A) (3.11)
≤ 𝑠, (3.12)

where (3.10) and (3.12) follow from the monotonicity of upper Minkowski dimension
[15, Section 2.2] upon noting that the compact set A is a subset of an open ball in R𝑠

of sufficiently large radius, which has upper Minkowski dimension 𝑠, and in (3.11) we
applied [15, Proposition 2.5, Item (a)].

The following result will be useful in particularizing our deterministic recovery
thresholds in Item i) of Theorem 2.1 and Item i) of Theorem 2.2 to rectifiable sets.

Lemma 3.6. Let U ⊆ R𝑚×𝑛 be nonempty. Then,

dim𝐻 (U −U) ≤ dimB(U −U) ≤ 2 dimB(U). (3.13)
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If, in addition, U is (countably) 𝑠-rectifiable, then U −U is (countably) 2𝑠-rectifiable
with

dimH(U −U) ≤ 2𝑠. (3.14)

Proof. The first inequality in (3.13) is by (1.6) and the second inequality in (3.13)
follows from [15, Proposition 2.5, Item (a)] with 𝑓 (𝑨1, 𝑨2) = 𝑨1 − 𝑨2 and the product
formula [15, Equation (7.9)]. The set U − U is (countably) 2𝑠-rectifiable owing to
Item i) (Item ii)) in Lemma 3.4 with 𝑓 (𝑨1, 𝑨2) = 𝑨1 − 𝑨2. Together with Item i) in
Lemma 3.5 this yields (3.14).

We are now in a position to particularize the results in Theorems 2.1 and 2.2 to
rectifiable sets.

Theorem 3.1. (Recovery for rectifiable sets)

i) Let U ⊆ R𝑚×𝑛 be nonempty with U − U countably ℋ
𝑠-rectifiable. Then,

for 𝑘 > 𝑠 and Lebesgue a.a. ((𝒂1 . . . 𝒂𝑘), (𝒃1 . . . 𝒃𝑘)) ∈ R𝑚×𝑘 × R𝑛×𝑘 , every
𝑿 ∈ U can be recovered uniquely from the rank-1 measurements

(𝒂T
1𝑿𝒃1 . . . 𝒂

T
𝑘𝑿𝒃𝑘)T. (3.15)

ii) Let U,V ⊆ R𝑚×𝑛 be nonempty with V 𝑠-rectifiable and U −U ⊆ V. Fix
𝛽 ∈ (0, 1 − 𝑠/𝑘) with 𝑘 > 𝑠. Then, for Lebesgue a.a. ((𝒂1 . . . 𝒂𝑘), (𝒃1 . . . 𝒃𝑘))
∈ R𝑚×𝑘 × R𝑛×𝑘 , every 𝑿 ∈ U can be recovered uniquely from the rank-1
measurements

(𝒂T
1𝑿𝒃1 . . . 𝒂

T
𝑘𝑿𝒃𝑘)T (3.16)

by a 𝛽-Hölder continuous mapping 𝑔.

iii) Let U ⊆ R𝑚×𝑛 be nonempty, Borel, and countably ℋ
𝑠-rectifiable. Suppose

that the random matrix X satisfies P[X ∈ U] = 1. Then, for Lebesgue a.a.
((𝒂1 . . . 𝒂𝑘), (𝒃1 . . . 𝒃𝑘)) ∈ R𝑚×𝑘 × R𝑛×𝑘 , there exists a Borel-measurable
mapping 𝑔 : R𝑘 → R𝑚×𝑛, satisfying

P
[
𝑔

(
(𝒂T

1X𝒃1 . . . 𝒂
T
𝑘X𝒃𝑘)T

)
≠ X

]
= 0 (3.17)

provided that 𝑘 > 𝑠.

iv) Let U,V ⊆ R𝑚×𝑛 be nonempty with U Borel, V 𝑠-rectifiable, and U ⊆ V.
Suppose that the random matrix X satisfies P[X ∈ U] = 1. Fix 𝜀 > 0 and let
𝛽 ∈ (0,1− 𝑠/𝑘) with 𝑘 > 𝑠. Then, for Lebesgue a.a. ((𝒂1 . . . 𝒂𝑘), (𝒃1 . . . 𝒃𝑘)) ∈
R𝑚×𝑘 × R𝑛×𝑘 , there exists a 𝛽-Hölder continuous mapping 𝑔 : R𝑘 → R𝑚×𝑛

satisfying

P
[
𝑔

(
(𝒂T

1X𝒃1 . . . 𝒂
T
𝑘X𝒃𝑘)T

)
≠ X

]
≤ 𝜀. (3.18)
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Proof. The proof is a straightforward combination of results already established:

• Item i) is by Item i) in Lemma 3.5 combined with Item i) in Theorem 2.1.

• Item ii) is by Item ii) in Lemma 3.5 combined with Item i) in Theorem 2.2.

• Item iii) is by Item i) in Lemma 3.5 combined with Item ii) in Theorem 2.1.

• Item iv) is by Item ii) in Lemma 3.5 combined with Item ii) in Theorem 2.2.

We now apply Theorem 3.1 to various interesting structured sets and start with
sparse matrices.

Example 3.1. Let A𝑚×𝑛
𝑠 be the set of 𝑠-sparse matrices in R𝑚×𝑛, i.e., the set of

matrices with at most 𝑠 nonzero entries. Further, let A𝑚×𝑛
I denote the set of matrices

that have their nonzero entries indexed by I ⊆ {1, . . . , 𝑚} × {1, . . . , 𝑛}. Obviously,
A𝑚×𝑛

I is a linear subspace of R𝑚×𝑛 of dimension |I |. By Item iii) of Lemma 3.2,
the set A𝑚×𝑛

I is hence countably |I |-rectifiable. As A𝑚×𝑛
𝑠 =

⋃
I: | I |=𝑠 A𝑚×𝑛

I , it fol-
lows from Item ii) in Lemma 3.2 that A𝑚×𝑛

𝑠 is countably 𝑠-rectifiable. Also note that
A𝑚×𝑛

𝑠 − A𝑚×𝑛
𝑠 = A𝑚×𝑛

2𝑠 is countably 2𝑠-rectifiable.
Similarly, for every bounded subset U ⊆ A𝑚×𝑛

𝑠 , U is 𝑠-rectifiable. This follows
by first noting that U is compact in R𝑚×𝑛 and, therefore, for given I, A𝑚×𝑛

I ∩ U is a
compact subset of the linear subspace A𝑚×𝑛

I . Hence, by Items ii) and iv) of Lemma 3.1,
U =

⋃
I: | I |=𝑠 (A𝑚×𝑛

I ∩U) is 𝑠-rectifiable.
We can therefore apply the corresponding items of Theorem 3.1 to obtain recovery

thresholds for Lebesgue a.a. ((𝒂1 . . . 𝒂𝑘), (𝒃1 . . . 𝒃𝑘)) ∈ R𝑚×𝑘 ×R𝑛×𝑘 for the following
sets:

i) IfU ⊆ A𝑚×𝑛
𝑠 is nonempty, then every 𝑿 ∈ U can be recovered uniquely from

𝑘 > 2𝑠 measurements since U −U ⊆ A𝑚×𝑛
2𝑠 is countably ℋ2𝑠-rectifiable.

ii) If U ⊆ A𝑚×𝑛
𝑠 is nonempty and bounded, then every 𝑿 ∈ U can be recovered

uniquely from 𝑘 > 2𝑠 measurements by a 𝛽-Hölder continuous mapping with
𝛽 ∈ (0, 1 − 2𝑠/𝑘) since V = U −U ⊆ A𝑚×𝑛

2𝑠 is (2𝑠)-rectifiable.

iii) If U ⊆ R𝑚×𝑛 is nonempty, Borel, and satisfies ℋ
𝑠 (U \ A𝑚×𝑛

𝑠 ) = 0, then
every 𝑿 with P[𝑿 ∈ U] = 1 can be recovered from 𝑘 > 𝑠 measurements with
zero error probability since U is countably ℋ𝑠-rectifiable.

iv) If U ⊆ A𝑚×𝑛
𝑠 is nonempty, Borel, and bounded, then every 𝑿 with P[𝑿 ∈

U] = 1 can be recovered from 𝑘 > 𝑠 measurements with arbitrarily small
error probability by a 𝛽-Hölder continuous mapping with 𝛽 ∈ (0, 1 − 𝑠/𝑘)
since V = U ⊆ A𝑚×𝑛

𝑠 is 𝑠-rectifiable.

We proceed to particularizing our recovery thresholds for low-rank matrices.
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Example 3.2. The set M𝑚×𝑛
𝑟 of matrices in R𝑚×𝑛 that have rank no more than 𝑟

is a finite union of {0} and 𝐶1-submanifolds of R𝑚×𝑛 of dimensions no more than
(𝑚 + 𝑛 − 𝑟)𝑟 . This follows by noting that the set of matrices in R𝑚×𝑛 of fixed rank 𝑘
is a 𝐶1-submanifold of R𝑚×𝑛 of dimension (𝑚 + 𝑛 − 𝑘)𝑘 [24, Ex. 5.30], [36, Ex. 1.7].
Application of Items ii) and iii) in Lemma 3.2 therefore yields that M𝑚×𝑛

𝑟 is countably
(𝑚 + 𝑛 − 𝑟)𝑟-rectifiable. Also note that M𝑚×𝑛

𝑟 −M𝑚×𝑛
𝑟 = M𝑚×𝑛

2𝑟 .
Similarly, for every bounded subsetU ⊆M𝑚×𝑛

𝑟 ,U is (𝑚 + 𝑛− 𝑟)𝑟-rectifiable. This
follows by first noting that U is compact in R𝑚×𝑛 and, therefore, the intersection of
U with any of the finitely many 𝐶1-submanifolds participating in M𝑚×𝑛

𝑟 is a compact
subset of a 𝐶1-submanifold. Hence, by Items ii) and iv) of Lemma 3.1, U is (𝑚 + 𝑛 −
𝑟)𝑟-rectifiable.

We can therefore apply the corresponding items of Theorem 3.1 to obtain recovery
thresholds for Lebesgue a.a. ((𝒂1 . . . 𝒂𝑘), (𝒃1 . . . 𝒃𝑘)) ∈ R𝑚×𝑘 ×R𝑛×𝑘 for the following
sets:

i) If U ⊆ M𝑚×𝑛
𝑟 is nonempty, then every 𝑿 ∈ U can be recovered uniquely

from 𝑘 > 2(𝑚 + 𝑛 − 2𝑟)𝑟 measurements since U −U ⊆ M𝑚×𝑛
2𝑟 is countably

ℋ
2(𝑚+𝑛−2𝑟 )𝑟 -rectifiable.

ii) If U ⊆ M𝑚×𝑛
𝑟 is nonempty and bounded, then every 𝑿 ∈ U can be recovered

uniquely from 𝑘 > 2(𝑚 + 𝑛 − 2𝑟)𝑟 measurements by a 𝛽-Hölder continuous
mapping with 𝛽 ∈ (0, 1 − 2(𝑚 + 𝑛 − 2𝑟)𝑟/𝑘) since V = U −U ⊆ M𝑚×𝑛

2𝑟 is
(2(𝑚 + 𝑛 − 2𝑟)𝑟)-rectifiable.

iii) If U ⊆ R𝑚×𝑛 is nonempty, Borel, and satisfies ℋ
𝑠 (U \ M𝑚×𝑛

𝑟 ) = 0, then
every 𝑿 with P[𝑿 ∈ U] = 1 can be recovered from 𝑘 > (𝑚 + 𝑛 − 𝑟)𝑟 measure-
ments with zero error probability sinceU is countablyℋ (𝑚+𝑛−𝑟 )𝑟 -rectifiable.

iv) If U ⊆ M𝑚×𝑛
𝑟 is nonempty, Borel, and bounded, then every 𝑿 with P[𝑿 ∈

U] = 1 can be recovered from 𝑘 > (𝑚 + 𝑛− 𝑟)𝑟 measurements with arbitrarily
small error probability by a 𝛽-Hölder continuous mapping with 𝛽 ∈ (0, 1 −
(𝑚 + 𝑛 − 𝑟)𝑟/𝑘) since V = U ⊆ M𝑚×𝑛

𝑟 is ((𝑚 + 𝑛 − 𝑟)𝑟)-rectifiable.

We proceed with the development of our general theory by demonstrating that sim-
ple, albeit relevant algebraic manipulations preserve rectifiability and hence allow the
direct statement of recovery thresholds in the spirit of Theorem 3.1 through application
of the approach just described.

Lemma 3.7. Let U𝑖 ⊆ R𝑚×𝑛, for 𝑖 = 1, 2, and define

i) A = {𝑿𝑿T : 𝑿 ∈ U1},
ii) A× = {𝑿1𝑿

T
2 : 𝑿1 ∈ U1, 𝑿2 ∈ U2},

iii) A+ = {𝑿1 + 𝑿2 : 𝑿1 ∈ U1, 𝑿2 ∈ U2},



Completion of Matrices with Low Description Complexity 15

iv) A⊗ = {𝑿1 ⊗ 𝑿2 : 𝑿1 ∈ U1, 𝑿2 ∈ U2}.
If the sets U𝑖 are (countably) 𝑠𝑖-rectifiable, for 𝑖 = 1, 2, then A is (countably) 𝑠1-
rectifiable and A× ,A+, and A⊗ are (countably) (𝑠1 + 𝑠2)-rectifiable.

Proof. The mapping 𝑿 ↦→ 𝑿𝑿T is continuously differentiable, and hence locally Lip-
schitz. Thus, by Item ii) in Lemma 3.4, the set A is countably 𝑠1-rectifiable for U1
countably 𝑠1-rectifiable, and, by Item i) in Lemma 3.4, the set A is 𝑠1-rectifiable for
𝑠1-rectifiable U1. Similarly, all of the mappings 𝑓× (𝑿1, 𝑿2) ↦→ 𝑿1𝑿

T
2 , 𝑓+(𝑿1, 𝑿2) ↦→

𝑿1 + 𝑿2, and 𝑓⊗ (𝑿1, 𝑿2) ↦→ 𝑿1 ⊗ 𝑿2 are continuously differentiable, and thus locally
Lipschitz. Hence, by Item ii) in Lemma 3.4, the sets A× , A+, and A⊗ are countably
(𝑠1 + 𝑠2)-rectifiable when the setsU𝑖 are countably 𝑠𝑖-rectifiable, for 𝑖 = 1,2. Likewise,
by Item i) in Lemma 3.4, the sets A× , A+, and A⊗ are (𝑠1 + 𝑠2)-rectifiable when the
sets U𝑖 are 𝑠𝑖-rectifiable, for 𝑖 = 1, 2.

Lemma 3.7 in combination with Examples 3.1 and 3.2 immediately yields recovery
thresholds for sums, products, and Kronecker products of sparse and low-rank matrices
and covers, e.g., the structured matrices discussed in [22]. A concrete example making
use of Item ii) in Lemma 3.7 is the QR-decomposition of matrices with sparse R-
components.

Example 3.3. Let 𝑚, 𝑛 ∈ N with 𝑚 ≥ 𝑛 and denote by C𝑚×𝑛
𝑠 the set of all matrices in

R𝑚×𝑛 with 𝑠-sparse upper triangular matrix in their QR-decomposition, i.e,

C𝑚×𝑛
𝑠 = {𝑸𝑹 : 𝑸 ∈ Q𝑚×𝑚, 𝑹 ∈ R𝑚×𝑛

𝑠 }, (3.19)

where R𝑚×𝑛
𝑠 ⊆ A𝑚×𝑛

𝑠 designates the set of all 𝑠-sparse upper triangular matrices and
Q𝑚×𝑚 stands for the set of orthogonal matrices in R𝑚×𝑚. Employing the same reason-
ing as in Example 3.1, it follows that R𝑚×𝑛

𝑠 is countably 𝑠-rectifiable. Further, Q𝑚×𝑚 is
a compact 𝑚(𝑚 − 1/2)-dimensional 𝐶1-submanifold of R𝑚×𝑚 [11, Section 1.3.1] and
thus, by Item iv) in Lemma 3.1, (𝑚(𝑚 − 1)/2)-rectifiable. We therefore conclude that,
by Item ii) in Lemma 3.7, C𝑚×𝑛

𝑠 is countably (𝑚(𝑚 − 1)/2 + 𝑠)-rectifiable. Further,
thanks to Lemma 3.6, C𝑚×𝑛

𝑠 − C𝑚×𝑛
𝑠 is countably (𝑚(𝑚 − 1) + 2𝑠)-rectifiable.

Now, consider a bounded subset U ⊆ C𝑚×𝑛
𝑠 . Then,

U2 =
{
𝑹 ∈ R𝑚×𝑛

𝑠 : ∃𝑸 ∈ Q𝑚×𝑚 with 𝑸𝑹 ∈ U
}

(3.20)

is bounded because multiplication by 𝑸 does not change the 2-norm and U ⊆ Ũ :=
{𝑸𝑹 : 𝑸 ∈ Q𝑚×𝑚,𝑹 ∈U2}. Now,Q𝑚×𝑚 is𝑚(𝑚 − 1)/2-rectifiable, and using the same
argumentation as in Example 3.1 with R𝑚×𝑛

𝑠 in place of A𝑚×𝑛
𝑠 , it follows that U2 is

𝑠-rectifiable. Thus, Ũ is (𝑚(𝑚 − 1)/2 + 𝑠)-rectifiable owing to Item ii) in Lemma 3.7.
Further, thanks to Lemma 3.6, Ũ − Ũ is (𝑚(𝑚 − 1) + 2𝑠)-rectifiable.
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We can therefore apply the corresponding items of Theorem 3.1 to obtain recovery
thresholds for Lebesgue a.a. ((𝒂1 . . . 𝒂𝑘), (𝒃1 . . . 𝒃𝑘)) ∈ R𝑚×𝑘 ×R𝑛×𝑘 for the following
sets:

i) If U ⊆ C𝑚×𝑛
𝑠 is nonempty, then every 𝑿 ∈ U can be recovered uniquely from

𝑘 > 𝑚(𝑚 − 1) + 2𝑠measurements sinceU −U ⊆ C𝑚×𝑛
𝑠 − C𝑚×𝑛

𝑠 is countably
ℋ

𝑚(𝑚−1)+2𝑠-rectifiable.

ii) If U ⊆ C𝑚×𝑛
𝑠 is nonempty and bounded, then every 𝑿 ∈ U can be recovered

uniquely from 𝑘 > 𝑚(𝑚 − 1) + 2𝑠 measurements by a 𝛽-Hölder continuous
mapping with 𝛽 ∈ (0, 1 − (𝑚(𝑚 − 1) + 2𝑠)/𝑘) since V = Ũ − Ũ ⊆ C𝑚×𝑛

𝑠 −
C𝑚×𝑛
𝑠 is (𝑚(𝑚 − 1) + 2𝑠)-rectifiable.

iii) If U ⊆ R𝑚×𝑛 is nonempty, Borel, and satisfies ℋ
𝑠 (U \ C𝑚×𝑛

𝑠 ) = 0, then
every 𝑿 with P[𝑿 ∈ U] = 1 can be recovered from 𝑘 > 𝑚(𝑚 − 1)/2 + 𝑠
measurements with zero error probability sinceU is countablyℋ𝑚(𝑚−1)/2+𝑠-
rectifiable.

iv) If U ⊆ A𝑚×𝑛
𝑠 is nonempty, Borel, and bounded, then every 𝑿 with P[𝑿 ∈

U] = 1 can be recovered from 𝑘 > 𝑚(𝑚 − 1)/2 + 𝑠 measurements with arbi-
trarily small error probability by a 𝛽-Hölder continuous mapping with 𝛽 ∈
(0, 1 − (𝑚(𝑚 − 1)/2 + 𝑠)/𝑘) since V = Ũ ⊆ C𝑚×𝑛

𝑠 is (𝑚(𝑚 − 1)/2 + 𝑠)-
rectifiable.

We finally note that since Lemma 3.4 holds for general 𝑁 ∈N, Lemma 3.7 is readily
extended to sums, products, and Kronecker products of more than two matrices. This
extension allows to deal, inter alia, with singular value decompositions and eigende-
compositions in a manner akin to Example 3.3. Another interesting example, which can
be worked out using the same arguments as in Example 3.3 with Item iii) in Lemma 3.7
in place of Item ii) in Lemma 3.7, is the recovery of matrices that are sums of low-rank
and sparse matrices.

4. Recurrent Iterated Function Systems

We now demonstrate how our theory can be applied to sets of fractal nature, which
do not fall into the rich class of rectifiable sets. Specifically, we investigate attractor
sets of recurrent iterated function systems defined as follows [3]. Let K be a compact
subset of (R𝑚, ∥ · ∥2) and fix 𝑛 ∈ N. For 𝑖 = 1, . . . , 𝑛, let 𝑤𝑖 : K → K be similitudes of
contractivity 𝑠𝑖 ∈ [0, 1), i.e.,

∥𝑤𝑖 (𝑥) − 𝑤𝑖 (𝑦)∥2 = 𝑠𝑖 ∥𝑥 − 𝑦∥2, for all 𝑥, 𝑦 ∈ K and 𝑖 = 1, . . . , 𝑛, (4.1)
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and designate 𝒘 = (𝑤1, . . . , 𝑤𝑛)T. Finally, let 𝑷 ∈ [0, 1]𝑛×𝑛 with entries 𝑝𝑖, 𝑗 in the 𝑖-th
row and 𝑗-th column. The triple (K,𝒘, 𝑷) is referred to as a recurrent iterated function
system. In what follows, we assume that 𝑷 is

i) row-stochastic, i.e.,
𝑛∑︁
𝑗=1

𝑝𝑖, 𝑗 = 1, for 𝑖 ∈ {1, . . . , 𝑛}, and (4.2)

ii) irreducible, i.e., for every 𝑖, 𝑗 ∈ {1, . . . , 𝑛}, there exist 𝑖1, . . . , 𝑖𝑚 ∈ {1, . . . , 𝑛}
such that 𝑖1 = 𝑖, 𝑖𝑚 = 𝑗 , and

𝑝𝑖1 ,𝑖2 𝑝𝑖2 ,𝑖3 . . . 𝑝𝑖𝑚−1 ,𝑖𝑚 > 0. (4.3)

Further, define the connectivity matrix 𝑪 ∈ {0, 1}𝑛×𝑛 with entries 𝑐𝑖, 𝑗 in the 𝑖-th row
and 𝑗-th column according to

𝑐𝑖, 𝑗 =

{
1, if 𝑝𝑖, 𝑗 > 0
0, if 𝑝𝑖, 𝑗 = 0,

for 𝑖, 𝑗 ∈ {1, . . . , 𝑛} (4.4)

and set 𝐼 (𝑖) = { 𝑗 ∈ {1, . . . , 𝑛} : 𝑐𝑖, 𝑗 = 1} for 𝑖 ∈ {1, . . . , 𝑛}. Note that 𝑷 is irreducible
if and only if 𝑪 is irreducible. For every recurrent iterated function system (K,𝒘, 𝑷),
there exist unique nonempty compact sets A1, . . . ,A𝑛 ⊆ K satisfying [3, Corollary
3.5]

A𝑖 =
⋃
𝑗∈𝐼 (𝑖)

𝑤𝑖 (A 𝑗), for 𝑖 = 1, . . . , 𝑛. (4.5)

The set

U = (A1, . . . ,A𝑛) ⊆ R𝑚×𝑛 (4.6)

is called the attractor set of the recurrent iterated function system (K, 𝒘, 𝑷). We say
that the sets A𝑖 in (4.5) are nonoverlapping if, for every 𝑖 ∈ {1, . . . , 𝑛},

A 𝑗 ∩ A𝑘 = ∅, for all 𝑗 , 𝑘 ∈ 𝐼 (𝑖) with 𝑗 ≠ 𝑘 . (4.7)

To apply the recovery thresholds from Theorems 2.1 and 2.2 to attractor setsU accord-
ing to (4.6), we need the following dimension result:

Theorem 4.1. [3, Theorem 4.1] Let (K,𝒘, 𝑷) be a recurrent iterated function system
with 𝑷 satisfying (4.2) and (4.3). For every 𝑡 ∈ (0,∞), define the diagonal matrix
𝑺(𝑡) = 𝑑𝑖𝑎𝑔(𝑠𝑡1, 𝑠

𝑡
2, . . . , 𝑠

𝑡
𝑛), where 𝑠𝑖 is the contractivity of the similitude 𝑤𝑖 , for 𝑖 =

1, . . . , 𝑛. Let U = (A1, . . . ,A𝑛) be the attractor set of (K, 𝒘, 𝑷) and suppose that
the sets A1, . . . ,A𝑛 are nonoverlapping. Finally, let 𝑑 be the unique positive number
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such that 1 is an eigenvalue of 𝑺(𝑑)𝑪 of maximum modulus (cf. [3, Perron-Frobenius
Theorem]). Then, it holds that

max
{
dimB(A𝑖) : 𝑖 = 1, . . . , 𝑛

}
= 𝑑. (4.8)

One obtains the following immediate consequence:

Corollary 4.1. Under the assumptions of Theorem 4.1, the attractor set
U = (A1, . . . ,A𝑛) satisfies

dimB(U) ≤ 𝑛𝑑. (4.9)

Proof. Follows from Theorem 4.1 and the product formula [15, Equation (7.9)].

We next present a simple example application of Theorem 4.1 and Corollary 4.1,
which can easily be extended to higher dimensions.

Example 4.1. Let 𝑠 ∈ (0, 1/2) and consider the similitudes 𝑤𝑖 : [0, 1]2 → [0, 1]2 of
contractivity 𝑠 defined as 𝑤𝑖 (𝒙) = 𝑠 𝒙 + 𝒃𝑖 , for 𝑖 = 1, . . . , 4, where 𝒃1 = (0, 0)T, 𝒃2 =

(1 − 𝑠, 0)T, 𝒃3 = (0, 1 − 𝑠)T, and 𝒃4 = (1 − 𝑠, 1 − 𝑠)T. Now, let 𝑷 ∈ [0, 1]4×4 be a
row-stochastic matrix and suppose that 𝑝𝑖,𝑖 = 0, for 𝑖 = 1, . . . , 4, and 𝑝𝑖, 𝑗 > 0, for
𝑖, 𝑗 ∈ {1, . . . , 4} with 𝑖 ≠ 𝑗 . Further, let A1, . . .A4 be as in (4.5) and U as in (4.6).
By construction, the sets A𝑖 are nonoverlapping as (4.5) implies

A𝑖 ⊆ 𝑤𝑖 ( [0, 1]2) for 𝑖 = 1, . . . , 4 (4.10)

and the 𝑤′
𝑖
𝑠 have pairwise disjoint codomains. Next, note that, owing to [19, Theorem

1.3.22], the characteristic polynomial of the all-ones matrix

𝑱 =

©­­­­«
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

ª®®®®¬
(4.11)

is given by

𝑝𝑱 (𝑥) = det(𝑱 − 𝑥𝑰) = (𝑥 − 4)𝑥3, (4.12)

where 𝑰 = 𝑑𝑖𝑎𝑔(1, 1, 1, 1). We conclude that the characteristic polynomial of the
matrix 𝑺(𝑡)𝑪 equals

𝑝𝑺 (𝑡 )𝑪 (𝑥) = 𝑝𝑠𝑡𝑪 (𝑥) (4.13)
= 𝑠4𝑡 det(𝑪 − 𝑠−𝑡𝑥𝑰) (4.14)
= 𝑠4𝑡 det(𝑱 − (𝑠−𝑡𝑥 + 1)𝑰) (4.15)
= 𝑠4𝑡 𝑝𝑱 (𝑠−𝑡𝑥 + 1) (4.16)
= 𝑠4𝑡 (𝑠−𝑡𝑥 − 3) (𝑠−𝑡𝑥 + 1)3, (4.17)
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where (4.15) follows from 𝑪 = 𝑱 − 𝑰 and in (4.17) we applied (4.12). Hence, the
eigenvalue of maximum modulus of 𝑺(𝑡)𝑪 is 𝜆max = 3𝑠𝑡 . Setting 𝑡 = log(1/3)/log(𝑠)
therefore yields 𝜆max = 1 so that

max
{
dimB(A𝑖) : 𝑖 = 1, . . . , 4

}
=

log(1/3)
log(𝑠) (4.18)

owing to Theorem 4.1 and hence

dimB(U) ≤ 4 log(1/3)
log(𝑠) (4.19)

thanks to Corollary 4.1.

The upper bound in (4.9) now leads to the following recovery thresholds:

Theorem 4.2. (Recovery of matrices taking values in attractor sets) Let U be the
attractor set of a recurrent iterated function system satisfying the assumptions of The-
orem 4.1. Then, the following statements hold.

i) For 𝑘 > 2𝑛𝑑 and Lebesgue a.a. ((𝒂1 . . . 𝒂𝑘), (𝒃1 . . . 𝒃𝑘)) ∈ R𝑚×𝑘 × R𝑛×𝑘 ,
every 𝑿 ∈ U can be recovered uniquely from the rank-1 measurements

(𝒂T
1𝑿𝒃1 . . . 𝒂

T
𝑘𝑿𝒃𝑘)T. (4.20)

ii) Let 𝛽 ∈
(
0,

(
1 − 2𝑛𝑑

𝑘

) )
with 𝑘 > 2𝑛𝑑. Then, recovery in Item i) can be accom-

plished by a 𝛽-Hölder continuous mapping 𝑔.

iii) Let X be a random matrix satisfying P[X ∈ U] = 1. Then, for Lebesgue a.a.
((𝒂1 . . . 𝒂𝑘), (𝒃1 . . . 𝒃𝑘)) ∈ R𝑚×𝑘 × R𝑛×𝑘 , there exists a Borel-measurable
mapping 𝑔 : R𝑘 → R𝑚×𝑛 satisfying

P
[
𝑔

(
(𝒂T

1X𝒃1 . . . 𝒂
T
𝑘X𝒃𝑘)T

)
≠ X

]
= 0 (4.21)

provided that 𝑘 > 𝑛𝑑.

iv) Let X be a random matrix satisfying P[X ∈ U] = 1, fix 𝜀 > 0, and let 𝛽 ∈(
0,

(
1− 𝑛𝑑

𝑘

) )
with 𝑘 > 𝑛𝑑. Then, for Lebesgue a.a. ((𝒂1 . . . 𝒂𝑘), (𝒃1 . . . 𝒃𝑘)) ∈

R𝑚×𝑘 × R𝑛×𝑘 , there exists a 𝛽-Hölder continuous mapping 𝑔 : R𝑘 → R𝑚×𝑛

satisfying

P
[
𝑔

(
(𝒂T

1X𝒃1 . . . 𝒂
T
𝑘X𝒃𝑘)T

)
≠ X

]
≤ 𝜀. (4.22)

Proof. With dimB(U) ≤ 𝑛𝑑 from Corollary 4.1, we have

dimH(U −U) ≤ dimB(U −U) ≤ 2dimB(U) ≤ 2𝑛𝑑 (4.23)

thanks to Lemma 3.6. The statements in Item i)–Item iv) now follow readily from the
corresponding parts of Theorems 2.1 and 2.2.
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5. Proof of Theorem 2.1

Item i) is by linearity of the mapping defined in (2.1)–(2.2) combined with Proposi-
tion 2.1 applied to the set U −U.

The proof of Item ii) follows along the same lines as the proof of [1, Theorem II.1].
We therefore present a proof sketch only. First, note that by [2, Lemma 2.3], there exist
compact sets U𝑖 ⊆ U, 𝑖 ∈ N, such that P[X ∈ V] = 1, where

V =
⋃
𝑖∈N

U𝑖 . (5.1)

Next, consider the “encoder” mapping3

𝑒 : R𝑚×𝑘 × R𝑛×𝑘 × R𝑚×𝑛 → R𝑘 (5.2)(
𝑨, 𝑩,𝑽

)
↦→ (𝒂T

1𝑽𝒃1 . . . 𝒂
T
𝑘𝑽𝒃𝑘)T. (5.3)

With the decomposition of V in (5.1), argumentation as in [1, Section V.A] (with the
mapping ∥𝒚 − 𝑨𝒗∥2 in [1, (139)–(140)] replaced by ∥𝒚 − 𝑒(𝑨, 𝑩,𝑽)∥2) implies the
existence of a measurable mapping

𝑔̂ : R𝑚×𝑘 × R𝑛×𝑘 × R𝑘 → R𝑚×𝑛 (5.4)
𝑨 × 𝑩 × 𝒚 ↦→ 𝑿 (5.5)

such that

𝑒
(
𝑨, 𝑩, 𝑔̂(𝑨, 𝑩, 𝒚)

)
= 𝒚, for all 𝑨 ∈ R𝑚×𝑘 , 𝑩 ∈ R𝑛×𝑘 and 𝒚 ∈ 𝑒({𝑨} × {𝑩} × V).

(5.6)

Moreover, the mapping 𝑔̂ is guaranteed to deliver an 𝑿 ∈ V that is consistent if at least
one such consistent 𝑿 ∈ V exists, otherwise an error is declared by delivering an error
symbol not contained in V. Next, for every 𝑨 ∈ R𝑚×𝑘 and 𝑩 ∈ R𝑛×𝑘 , let 𝑝e(𝑨, 𝑩)
denote the probability of error defined as

𝑝e(𝑨, 𝑩) = P[𝑔̂(𝑨, 𝑩, 𝑒(𝑨, 𝑩, X)) ≠ X] . (5.7)

We now show that 𝑝e(𝑨, 𝑩) = 0 for Lebesgue a.a. (𝑨, 𝑩). We have∫
𝑝e(𝑨, 𝑩) d𝜆(𝑨, 𝑩) (5.8)

= E
[
𝜆
({
(𝑨, 𝑩) : 𝑔

(
𝑨, 𝑩, 𝑒(𝑨, 𝑩, X)

)
≠ X

})
𝜒V (X)

]
(5.9)

≤ E
[
𝜆
({
(𝑨, 𝑩) : {𝑽 ∈ VX : 𝑒(𝑨, 𝑩,𝑽) = 0} ≠ {0}

})]
, (5.10)

3𝑨 and 𝑩 denote the matrices with 𝒂𝑖 and 𝒃𝑖 , respectively, in their 𝑖-th column.
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where (5.9) follows from Fubini’s theorem [26, Theorem 1.14] together with P[X ∈
V] = 1, and in (5.10), we set V𝑿 = {𝑽 − 𝑿 : 𝑽 ∈ V} and used the fact that, by (5.6),
𝑽 := 𝑔̂

(
𝑨, 𝑩, 𝑒(𝑨, 𝑩, 𝑿)

)
≠ 𝑿 with 𝑿 ∈ V implies that 𝑽 ∈ V\{𝑿} with

𝑒(𝑨, 𝑩, 𝑿) = 𝑒(𝑨, 𝑩,𝑽), (5.11)

i.e., 𝑒(𝑨,𝑩,𝑽 − 𝑿) = 0. Finally, sinceℋ𝑘 (V𝑿 ) =ℋ𝑘 (V) by the translation invariance
ofℋ𝑘 andℋ𝑘 (V) = 0 as a consequence ofV ⊆U and dimH(U) < 𝑘 , the expectation
in (5.10) is equal to zero owing to Proposition 2.1. Finally, for fixed 𝑨, 𝑩, set 𝑔 =

𝑔̂(𝑨, 𝑩, ·).

6. Proof of Proposition 2.1

For every 𝑗 ∈ N, set

A( 𝑗) = B𝑚(0, 𝑗) × · · · × B𝑚(0, 𝑗)︸                            ︷︷                            ︸
𝑘 times

and (6.1)

B( 𝑗) = B𝑛 (0, 𝑗) × · · · × B𝑛 (0, 𝑗)︸                           ︷︷                           ︸
𝑘 times

. (6.2)

By countable subadditivity of Lebesgue measure, it suffices to show that{
𝑿 ∈ U\{0} : (𝒂T

1𝑿𝒃1 . . . 𝒂
T
𝑘𝑿𝒃𝑘)T = 0

}
= ∅, (6.3)

for Lebesgue a.a. ((𝒂1 . . . 𝒂𝑘), (𝒃1 . . . 𝒃𝑘)) ∈ A( 𝑗) × B( 𝑗) and all 𝑗 ∈N. By Lemma 6.1
below, (6.3) then holds, for all 𝑗 ∈ N, with probability one if the deterministic matrices(
(𝒂1 . . . 𝒂𝑘), (𝒃1 . . . 𝒃𝑘)

)
∈ A( 𝑗) × B( 𝑗) are replaced by independent random matrices

with columns a𝑖 , 𝑖 = 1, . . . , 𝑘 , independent and uniformly distributed on B𝑚(0, 𝑗),
and columns b𝑖 , 𝑖 = 1, . . . , 𝑘 , independent and uniformly distributed on B𝑛 (0, 𝑗). By
countable subadditivity of Lebesgue measure, this finally implies that (2.4) can be
violated only on a set of Lebesgue measure zero, which concludes the proof.

Lemma 6.1. Let 𝑠 > 0 and take A = (a1 . . . a𝑘) and B = (b1 . . . b𝑘) to be independent
random matrices with columns a𝑖 , 𝑖 = 1, . . . , 𝑘 , independent and uniformly distributed
on B𝑚(0, 𝑠), and columns b𝑖 , 𝑖 = 1, . . . , 𝑘 , independent and uniformly distributed on
B𝑛 (0, 𝑠). Consider U ⊆ R𝑚×𝑛 with dimH(U) < 𝑘 . Then,

𝑃 := P
[
∃𝑿 ∈ U\{0} : (aT

1𝑿b1 . . . aT
𝑘𝑿b𝑘)T = 0

]
= 0. (6.4)

Proof. For every 𝐿 ∈ N, let

U𝐿 =

{
𝑿 ∈ U : 1

𝐿
< 𝜎1(𝑿) < 𝐿

}
(6.5)
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and set

𝑃𝐿 = P
[
∃𝑿 ∈ U𝐿 : (aT

1𝑿b1 . . . aT
𝑘𝑿b𝑘)T = 0

]
. (6.6)

By the union bound, we have

𝑃 ≤
∑︁
𝐿∈N

𝑃𝐿 . (6.7)

We now fix 𝐿 ∈ N arbitrarily and prove that 𝑃𝐿 = 0. Let 𝜅 = (𝑘 + dimH(U))/2. As
𝑘 > dimH(U) by assumption, it follows that dimH(U) < 𝜅 < 𝑘 . In particular, 𝜅 >
dimH(U) implies, by [15, Equation (3.11)], thatℋ𝜅 (U) = 0 and in turnℋ𝜅 (U𝐿) = 0
by monotonicity of ℋ𝜅 . Thus, ℳ𝜅 (U𝐿) = 0 by [15, Section 3.4], where the measure
ℳ

𝜅 is defined according to

ℳ
𝜅 (V) = lim

𝑑→0
ℳ

𝜅
𝑑 (V) (6.8)

with

ℳ
𝜅
𝑑 (V) = inf

{∑︁
𝑖∈N

𝜀𝜅𝑖 : V ⊆
⋃
𝑖∈N

B𝑚×𝑛
(
𝑿𝑖 ,

𝜀𝑖
2
)}
, for all 𝑑 > 0, (6.9)

where the infimum is taken over all possible ball centers 𝑿𝑖 ∈R𝑚×𝑛 and radii 𝜀𝑖 ∈ (0, 𝑑),
𝑖 ∈ N. Since ℳ

𝜅
𝑑
(U𝐿) is nonnegative and monotonically nondecreasing as 𝑑 → 0,

ℳ
𝜅 (U𝐿) = 0 impliesℳ𝜅

𝑑
(U𝐿) = 0, for all 𝑑 > 0. Now, fix 𝑑 > 0 and 𝜀 ∈ (0, (

√
𝑘𝐿)−𝜅 )

arbitrarily. As ℳ𝜅
𝑑
(U𝐿) = 0, there must exist ball centers 𝑿𝑖 ∈ R𝑚×𝑛, 𝑖 ∈ N, and radii

𝜀𝑖 , 𝑖 ∈ N, such that

U𝐿 ⊆
⋃
𝑖∈N

B𝑚×𝑛
(
𝑿𝑖 ,

𝜀𝑖
2
)

(6.10)

and ∑︁
𝑖∈N

𝜀𝜅𝑖 < 𝜀. (6.11)

As (6.10) and (6.11) continue to hold upon removal of all 𝑖 that satisfy

U𝐿 ∩ B𝑚×𝑛
(
𝑿𝑖 ,

𝜀𝑖
2
)
= ∅, (6.12)

we can assume, w.l.o.g., that

U𝐿 ∩ B𝑚×𝑛
(
𝑿𝑖 ,

𝜀𝑖
2
)
≠ ∅, for all 𝑖 ∈ N. (6.13)
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By doubling the radius, we can further construct a covering that has all its ball centers
in U. Concretely, by (6.13), for every 𝑖 ∈ N, there exists 𝒀 𝑖 ∈ U𝐿 ∩ B𝑚×𝑛 (𝑿𝑖 , 𝜀𝑖/2),
and we have B𝑚×𝑛 (𝑿𝑖 , 𝜀𝑖/2) ⊆ B𝑚×𝑛 (𝒀 𝑖 , 𝜀𝑖). Thus, by (6.10),

U𝐿 ⊆
⋃
𝑖∈N

B𝑚×𝑛 (𝒀 𝑖 , 𝜀𝑖). (6.14)

With the definition of U𝐿 in (6.5), we now obtain for the shifted ball centers
1
𝐿
< 𝜎1(𝒀 𝑖) < 𝐿, for all 𝑖 ∈ N. (6.15)

A union bound argument applied to (6.6) in combination with (6.14) yields

𝑃𝐿 ≤
∑︁
𝑖∈N

P
[
∃𝑿 ∈ B𝑚×𝑛 (𝒀 𝑖 , 𝜀𝑖) : (aT

1𝑿b1 . . . aT
𝑘𝑿b𝑘)T = 0

]
. (6.16)

To bound the individual probabilities on the right-hand side of (6.16), we proceed as
follows. Suppose that 𝑿 ∈ B𝑚×𝑛 (𝒀 𝑖 , 𝜀𝑖) for some 𝑖 ∈ N. Then, we have

∥(aT
1𝒀 𝑖b1 . . . aT

𝑘𝒀 𝑖b𝑘)T∥2 (6.17)
≤ ∥(aT

1 (𝑿 − 𝒀 𝑖)b1 . . . aT
𝑘 (𝑿 − 𝒀 𝑖)b𝑘)T∥2 + ∥(aT

1𝑿b1 . . . aT
𝑘𝑿b𝑘)T∥2 (6.18)

≤

√√√ 𝑘∑︁
𝑗=1

∥a 𝑗 ∥2
2∥𝑿 − 𝒀 𝑖 ∥2

2∥b 𝑗 ∥2
2 + ∥(aT

1𝑿b1 . . . aT
𝑘𝑿b𝑘)T∥2 (6.19)

≤ 𝑠2
√
𝑘𝜀𝑖 + ∥(aT

1𝑿b1 . . . aT
𝑘𝑿b𝑘)T∥2, (6.20)

where in (6.20) we used that a 𝑗 and b 𝑗 are uniformly distributed on B𝑚(0, 𝑠) and
B𝑛 (0, 𝑠), respectively, and 𝑿 ∈ B𝑚×𝑛 (𝒀 𝑖 , 𝜀𝑖) by assumption. Thus, the event that there
exists 𝑿 ∈ B𝑚×𝑛 (𝒀 𝑖 , 𝜀𝑖) satisfying

(aT
1𝑿b1 . . . aT

𝑘𝑿b𝑘)T = 0 (6.21)

implies that ∥(aT
1𝒀 𝑖b1 . . . aT

𝑘
𝒀 𝑖b𝑘)T∥2 ≤ 𝑠2

√
𝑘𝜀𝑖 . Hence, we can further upper-bound

𝑃𝐿 according to

𝑃𝐿 ≤
∑︁
𝑖∈N

P
[
∥(aT

1𝒀 𝑖b1 . . . aT
𝑘𝒀 𝑖b𝑘)T∥2 ≤ 𝑠2

√
𝑘𝜀𝑖

]
(6.22)

≤ 𝑘
𝑘
2
∑︁
𝑖∈N

𝜀𝑘𝑖
2

𝑘 (𝑚+𝑛)
2

𝜎1(𝒀 𝑖)𝑘

(
1 + log

(
𝜎1(𝒀 𝑖)√
𝑘𝜀𝑖

)) 𝑘
(6.23)

≤ 𝐶
∑︁
𝑖∈N

𝜀𝑘𝑖

(
1 + log

(
𝐿

√
𝑘𝜀𝑖

)) 𝑘
(6.24)

= 𝐶
∑︁
𝑖∈N

𝜀𝜅𝑖 𝜀
𝑘−𝜅
𝑖

(
1 + log

(
𝐿

√
𝑘𝜀𝑖

)) 𝑘
(6.25)
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with

𝐶 = 2
𝑘 (𝑚+𝑛)

2
(
𝐿
√
𝑘
) 𝑘
, (6.26)

where (6.23) is by Lemma 6.2 below for 𝛿 = 𝑠2
√
𝑘𝜀𝑖 and 𝑿 = 𝒀 𝑖 upon noting that

𝑠2
√
𝑘𝜀𝑖 < 𝑠

2√𝑘𝜀1/𝜅 (6.27)

<
𝑠2

𝐿
(6.28)

< 𝜎1(𝒀 𝑖)𝑠2, for all 𝑖 ∈ N. (6.29)

Here, (6.27) is by (6.11), in (6.28) we used 𝜀 < (
√
𝑘𝐿)−𝜅 which holds by assumption,

and (6.29) follows from (6.15). As the log-term in (6.25) is dominated by 𝜀𝑘−𝜅
𝑖

for
𝜀𝑖 → 0 thanks to 𝑘 > 𝜅, (6.25) tends to zero for 𝜀 → 0 by (6.11). We can therefore
conclude that 𝑃𝐿 = 0, which, as 𝐿 was arbitrary, by (6.7), implies 𝑃 = 0.

Lemma 6.2. Let A = (a1 . . . a𝑘) and B = (b1 . . .b𝑘) be independent random matrices,
with columns a𝑖 , 𝑖 = 1, . . . , 𝑘 , independent and uniformly distributed on B𝑚(0, 𝑠) and
columns b𝑖 , 𝑖 = 1, . . . , 𝑘 , independent and uniformly distributed on B𝑛 (0, 𝑠). Suppose
that 𝑿 ∈ R𝑚×𝑛\{0}. Then, we have

P
[

(aT

1𝑿b1 . . . aT
𝑘𝑿b𝑘)T



2 ≤ 𝛿
]
≤ 𝛿𝑘 2

𝑘 (𝑚+𝑛)
2

𝜎1(𝑿)𝑘𝑠2𝑘

(
1 + log

(
𝑠2𝜎1(𝑿)

𝛿

)) 𝑘
, (6.30)

for all 𝛿 ≤ 𝜎1(𝑿)𝑠2.

Proof. We have

P
[

(aT

1𝑿b1 . . . aT
𝑘𝑿b𝑘)T



2 ≤ 𝛿
]

(6.31)

= P
[ 𝑘∑︁
𝑖=1

(aT
𝑖 𝑿b𝑖)2 ≤ 𝛿2] (6.32)

≤ P
[
|aT
𝑖 𝑿b𝑖 | ≤ 𝛿, for 𝑖 = 1, . . . , 𝑘

]
(6.33)

= P
[
|aT𝑿b| ≤ 𝛿

] 𝑘 (6.34)

≤ 𝛿𝑘 2
𝑘 (𝑚+𝑛)

2

𝜎1(𝑿)𝑘𝑠2𝑘

(
1 + log

(
𝑠2𝜎1(𝑿)

𝛿

)) 𝑘
, (6.35)

where in (6.34) a and b are independent with a uniformly distributed on B𝑚(0, 𝑠) and
b uniformly distributed on B𝑛 (0, 𝑠) and, therefore, we can apply Lemma 6.3 below to
obtain (6.35).
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Lemma 6.3. [25, Lemma 17]4 Let a and b be independent random vectors, with a
uniformly distributed onB𝑚(0, 𝑠) and b uniformly distributed onB𝑛 (0, 𝑠), and suppose
that 𝑿 ∈ R𝑚×𝑛\{0}. Then, we have

P[|aT𝑿b| ≤ 𝛿] ≤ 𝛿
𝐷𝑚,𝑛

𝜎1(𝑿)𝑠2

(
1 + log

(
𝑠2𝜎1(𝑿)

𝛿

))
, for all 𝛿 ≤ 𝜎1(𝑿)𝑠2, (6.36)

where5

𝐷𝑚,𝑛 =
4𝑉 (𝑛 − 1, 1)𝑉 (𝑚 − 1, 1)

𝑉 (𝑚, 1)𝑉 (𝑛, 1) (6.37)

≤ 2
𝑚+𝑛

2 . (6.38)

Proof. We start by applying Fubini’s Theorem [26, Theorem 1.14] and rewriting

P[|aT𝑿b| ≤ 𝛿] = 1
𝑉 (𝑚, 𝑠)𝑉 (𝑛, 𝑠)

∫
B𝑚 (0,𝑠)

ℎ(𝒂) d𝜆(𝒂) (6.39)

with

ℎ(𝒂) =
∫
B𝑛 (0,𝑠)

𝜒{𝒃∈R𝑛: |𝒂T𝑿𝒃 | ≤ 𝛿} (𝒃) d𝜆(𝒃). (6.40)

Let 𝑿 =𝑼Σ𝑽 be a singular value decomposition of 𝑿, where𝑼 ∈ R𝑚×𝑚 and𝑽 ∈ R𝑛×𝑛
are orthogonal matrices, and

Σ =

(
𝑫 0
0 0

)
∈ R𝑚×𝑛 (6.41)

with 𝑫 = 𝑑𝑖𝑎𝑔(𝜎1(𝑿) . . . 𝜎𝑟 (𝑿)) and 𝑟 = 𝑟𝑎𝑛𝑘 (𝑿). Using the fact that Lebesgue
measure on B𝑚(0, 𝑠) and B𝑛 (0, 𝑠) is invariant under rotations, we can write

P[|aT𝑿b| ≤ 𝛿] = 1
𝑉 (𝑚, 𝑠)𝑉 (𝑛, 𝑠)

∫
B𝑚 (0,𝑠)

ℎ(𝑼𝒂) d𝜆(𝒂) (6.42)

and

ℎ(𝑼𝒂) =
∫
B𝑛 (0,𝑠)

𝜒{𝒃∈R𝑛: |𝒂TΣ𝒃 | ≤ 𝛿} (𝒃) d𝜆(𝒃). (6.43)

4Since the assumption 𝛿 ≤ 𝜎1 (𝑿)𝑠2 is missing in [25, Lemma 17] we present the proof of the
lemma for completeness. A slightly weaker form of this result was first presented in [30, Lemma
5].

5We use the convention 𝑉 (0, 𝑠) = 1, for all 𝑠 ∈ R+.
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We now make the dependence on the largest eigenvalue 𝜎1(𝑿) explicit according to

ℎ(𝑼𝒂) =
∫
B𝑛−1 (0,𝑠)

∫ 𝑠

−𝑠
𝜒{𝑏1∈R: |𝒂TΣ𝒃 | ≤ 𝛿, ∥𝒃∥≤𝑠} (𝑏1) d𝜆(𝑏1) d𝜆

(
(𝑏2 . . . 𝑏𝑛)T) (6.44)

≤
∫
B𝑛−1 (0,𝑠)

𝑔
(
(𝑏2 . . . 𝑏𝑛)T) d𝜆

(
(𝑏2 . . . 𝑏𝑛)T) (6.45)

with

𝑔
(
(𝑏2 . . . 𝑏𝑛)T) = min

{
2𝑠,

∫ ∞

−∞
𝜒{𝑏1∈R: | ∑𝑟

𝑖=1 𝜎𝑖 (𝑿 )𝑎𝑖𝑏𝑖 | ≤ 𝛿} (𝑏1) d𝜆(𝑏1)
}

(6.46)

= min

{
2𝑠,

∫ ∞

−∞
𝜒{𝑏1∈R: |𝜎1 (𝑿 )𝑎1𝑏1 | ≤ 𝛿} (𝑏1) d𝜆(𝑏1)

}
(6.47)

= 2 min

{
𝑠,

𝛿

𝜎1(𝑿) |𝑎1 |

}
. (6.48)

Using (6.45) and (6.46)–(6.48) in (6.42), we obtain

P[|aT𝑿b| ≤ 𝛿] ≤
𝐷𝑚,𝑛

𝑠2

∫ 𝑠

0
min

{
𝑠,

𝛿

𝜎1(𝑿)𝑎1

}
d𝜆(𝑎1) (6.49)

=
𝛿𝐷𝑚,𝑛

𝜎1(𝑿)𝑠2

(
1 + log

(
𝑠2𝜎1(𝑿)

𝛿

))
, (6.50)

for all 𝛿 ≤ 𝜎1(𝑿)𝑠2. The upper bound on 𝐷𝑚,𝑛 follows from 2𝑘/2 < 𝑉 (𝑘, 1) < 2𝑘 , for
all 𝑘 ∈ N.

7. Proof of Theorem 2.2

We first prove Item i). Consider the mapping

ℎ : U → ℎ(U) ⊆ R𝑘 (7.1)
𝑿 ↦→ (𝒂T

1𝑿𝒃1 . . . 𝒂
T
𝑘𝑿𝒃𝑘)T. (7.2)

Application of Proposition 2.2 to U −U establishes the existence of a 𝑐 > 0 such that

∥ℎ(𝑼 − 𝑽)∥2 ≥ 𝑐∥𝑼 − 𝑽∥1/𝛽
2 , for all 𝑼,𝑽 ∈ U, (7.3)

for Lebesgue a.a. ((𝒂1 . . . 𝒂𝑘), (𝒃1 . . . 𝒃𝑘)) ∈ R𝑚×𝑘 × R𝑛×𝑘 . Hence, by [33, Lemma
2], ℎ admits a 𝛽-Hölder continuous inverse ℎ−1 : ℎ(U) → U, which can be extended
to the desired 𝛽-Hölder continuous mapping 𝑔 on R𝑘 owing to [27, Theorem 1, Item
ii)].
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The proof of Item ii) follows along the same lines as that of [33, Theorem 2]. We
therefore present a proof sketch only. By [15, Proposition 2.6], we can assume, w.l.o.g.,
thatU is compact. Consider the setsA,A 𝑗 ⊆ R𝑚×𝑘 ×R𝑛×𝑘 ×R𝑚×𝑛 defined according
to

A =

{(
𝑨, 𝑩, 𝑿

)
: inf

{
∥(𝒂T

1𝑼𝒃1 . . . 𝒂
T
𝑘
𝑼𝒃𝑘)T∥2

∥𝑼∥1/𝛽
2

: 𝑼 ∈ U𝑿 \{0}
}
= 0

}
(7.4)

and

A 𝑗 =

{(
𝑨, 𝑩, 𝑿

)
: inf

{
∥(𝒂T

1𝑼𝒃1 . . . 𝒂
T
𝑘
𝑼𝒃𝑘)T∥2

∥𝑼∥1/𝛽
2

: 𝑼 ∈ U𝑿 \{0}
}
> 1

𝑗

}
, (7.5)

for all 𝑗 ∈ N, where

U𝑿 = {𝑼 − 𝑿 : 𝑼 ∈ U}, for all 𝑿 ∈ R𝑚×𝑛. (7.6)

By the same arguments as used in [33, Section VI], one can show thatA is a measurable
set. Application of Fubini’s Theorem [26, Theorem 1.14] therefore yields∫

P[(𝑨, 𝑩, X) ∈ A] d𝜆(𝑨, 𝑩) = E[𝜆{(𝑨, 𝑩) : (𝑨, 𝑩, X) ∈ A}] . (7.7)

As the right-hand side of (7.7) equals zero owing to Proposition 2.2, it follows that

P[(𝑨, 𝑩, X) ∈ A] = 0, for Lebesgue a.a. (𝑨, 𝑩). (7.8)

Since the complement of A, denoted by Ac, can be written as

Ac =
⋃
𝑗∈N

A 𝑗 , (7.9)

application of [4, Lemma 3.4, Item (a)] together with (7.8) yields

lim
𝑗→∞

P[(𝑨, 𝑩, X) ∈ A 𝑗] = 1, for Lebesgue a.a. (𝑨, 𝑩). (7.10)

Let C ⊆ R𝑚×𝑘 × R𝑛×𝑘 denote the set of matrices (𝑨, 𝑩) for which (7.10) holds, and
fix 𝜀 > 0 arbitrarily. Then, for every (𝑨, 𝑩) ∈ C, there must exist a 𝐽 (𝑨, 𝑩) ∈ N such
that

P[(𝑨, 𝑩, X) ∈ A𝐽 (𝑨,𝑩) ] ≥ 1 − 𝜀. (7.11)

Next, for every (𝑨, 𝑩) ∈ C, let

U𝑨,𝑩 = {𝑿 ∈ U : (𝑨, 𝑩, 𝑿) ∈ A𝐽 (𝑨,𝑩) }. (7.12)
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Since P[X ∈ U] = 1 by assumption, (7.11) yields

P[X ∈ U𝑨,𝑩] ≥ 1 − 𝜀, for all (𝑨, 𝑩) ∈ C. (7.13)

Now, consider (𝑨, 𝑩) ∈ C and fix𝑼,𝑽 ∈ U𝑨,𝑩 with𝑼 ≠ 𝑽 but arbitrary otherwise. It
follows that𝑼 −𝑽 ∈ U𝑽 \{0} and (𝑨, 𝑩,𝑽) ∈ A𝐽 (𝑨,𝑩) , and the definition of A𝐽 (𝑨,𝑩)
(see (7.5)) yields

∥𝑼 − 𝑽∥
1
𝛽

2 ≤ 𝐽 (𝑨, 𝑩)∥(𝒂T
1 (𝑼 − 𝑽)𝒃1 . . . 𝒂

T
𝑘 (𝑼 − 𝑽)𝒃𝑘)T∥2. (7.14)

By [33, Lemma 2], we can therefore conclude that, for every (𝑨, 𝑩) ∈ C, the mapping

𝑓𝑨,𝑩 : U𝑨,𝑩 → {(𝒂T
1𝑿𝒃1 . . . 𝒂

T
𝑘𝑿𝒃𝑘)T : 𝑿 ∈ U𝑨,𝑩} (7.15)

𝑿 ↦→ (𝒂T
1𝑿𝒃1 . . . 𝒂

T
𝑘𝑿𝒃𝑘)T (7.16)

is injective with 𝛽-Hölder continuous inverse 𝑓 −1
𝑨,𝑩. Finally, for every (𝑨, 𝑩) ∈ C, the

mapping 𝑓 −1
𝑨,𝑩 can be extended to the desired 𝛽-Hölder continuous mapping 𝑔 on R𝑘

by [27, Theorem 1, Item ii)].

8. Proof of Proposition 2.2

For every 𝑗 ∈ N, let A( 𝑗) and B( 𝑗) be as in (6.1) and (6.2), respectively. By countable
subadditivity of Lebesgue measure, it suffices to show that

inf

{
∥(𝒂T

1𝑿𝒃1 . . . 𝒂
T
𝑘
𝑿𝒃𝑘)T∥2

∥𝑿∥1/𝛽
2

: 𝑿 ∈ U\{0}
}
> 0, (8.1)

for Lebesgue a.a.
(
(𝒂1 . . . 𝒂𝑘), (𝒃1 . . . 𝒃𝑘)

)
∈ A( 𝑗) × B( 𝑗) and all 𝑗 ∈ N. Owing to

Lemma 8.1 below, (8.1) then holds, for all 𝑗 ∈ N, with probability 1 if the determin-
istic matrices

(
(𝒂1 . . . 𝒂𝑘), (𝒃1 . . . 𝒃𝑘)

)
∈ A( 𝑗) × B( 𝑗) are replaced by independent

random matrices with columns a𝑖 , 𝑖 = 1, . . . , 𝑘 , independent and uniformly distributed
on B𝑚(0, 𝑗), and columns b𝑖 , 𝑖 = 1, . . . , 𝑘 , independent and uniformly distributed on
B𝑛 (0, 𝑗). By countable subadditivity of Lebesgue measure, this finally implies that
(2.10) can be violated only on a set of Lebesgue measure zero, which finalizes the
proof.

Lemma 8.1. Let 𝑠 > 0 and take A = (a1 . . . a𝑘) and B = (b1 . . . b𝑘) to be independent
random matrices with columns a𝑖 , 𝑖 = 1, . . . , 𝑘 , independent and uniformly distributed
on B𝑚(0, 𝑠), and columns b𝑖 , 𝑖 = 1, . . . , 𝑘 , independent and uniformly distributed on
B𝑛 (0, 𝑠). Consider a nonempty and bounded set U ⊆ R𝑚×𝑛, and suppose that there
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exists a 𝛽 ∈ (0, 1) such that

dimB(U)
𝑘

< 1 − 𝛽. (8.2)

Then,

P

[
inf

{
∥(aT

1𝑿b1 . . . aT
𝑘
𝑿b𝑘)T∥2

∥𝑿∥1/𝛽
2

: 𝑿 ∈ U\{0}
}
> 0

]
= 1. (8.3)

Proof. Since U is bounded by assumption, there exists a 𝐾 > 0 such that

𝜎1(𝑿) ≤ 𝐾, for all 𝑿 ∈ U. (8.4)

For every 𝑗 ∈ N, set

U 𝑗 = U\B𝑚×𝑛
(
0, 2−𝛽 𝑗

)
. (8.5)

Then, (8.4) together with (8.5), upon using 𝜎1(𝑿) ≥ ∥𝑿∥2/𝑟𝑎𝑛𝑘 (𝑿), yields

2−𝛽 𝑗

√
𝑚

≤ 𝜎1(𝑿) ≤ 𝐾, for all 𝑿 ∈ U 𝑗 and 𝑗 ∈ N. (8.6)

By Lemma 8.2 below, it is sufficient to show that

P
[
∃𝐽 : ∥(aT

1𝑿b1 . . . aT
𝑘𝑿b𝑘)T∥2 ≥ 2− 𝑗 , for all 𝑿 ∈ U 𝑗 , 𝑗 ≥ 𝐽

]
= 1. (8.7)

This will be established by arguing as follows. Suppose we can prove that there exists
a 𝐽 ∈ N such that

∞∑︁
𝑗=𝐽

P
[
∃𝑿 ∈ U 𝑗 : ∥(aT

1𝑿b1 . . . aT
𝑘𝑿b𝑘)T∥2 < 2− 𝑗

]
< ∞. (8.8)

Then, the Borel-Cantelli Lemma [13, Theorem 2.3.1] implies

P
[
∃𝑿 ∈ U 𝑗 : ∥(aT

1𝑿b1 . . . aT
𝑘𝑿b𝑘)T∥2 < 2− 𝑗 , for infinitely many 𝑗 ∈ N

]
= 0,

(8.9)

which, in turn, implies (8.7).
It remains to establish (8.8), which will be effected through a covering argument.

For every 𝑗 ∈ N, consider the covering ball center 𝒀 ( 𝑗 )
𝑖

∈ U 𝑗 such that

U 𝑗 ⊆
𝑁U 𝑗

(2− 𝑗 )⋃
𝑖=1

B𝑚×𝑛
(
𝒀 ( 𝑗 )
𝑖
, 2− 𝑗

)
. (8.10)
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A union bound argument then yields

P
[
∃𝑿 ∈ U 𝑗 : ∥(aT

1𝑿b1 . . . aT
𝑘𝑿b𝑘)T∥2 < 2− 𝑗

]
(8.11)

≤
𝑁U 𝑗

(2− 𝑗 )∑︁
𝑖=1

P
[
∃𝑿 ∈ B𝑚×𝑛

(
𝒀 ( 𝑗 )
𝑖
, 2− 𝑗

)
: ∥(aT

1𝑿b1 . . . aT
𝑘𝑿b𝑘)T∥2 < 2− 𝑗

]
. (8.12)

Next, choose 𝐽1 ∈ N such that

2−𝐽1 (1−𝛽) ≤ 𝑠2

(1 + 𝑠2
√
𝑘)
√
𝑚
. (8.13)

This implies (1 + 𝑠2
√
𝑘)2− 𝑗 ≤ 2−𝛽 𝑗

√
𝑚
𝑠2, for all 𝑗 ≥ 𝐽1, and thus, by (8.6), (1 + 𝑠2

√
𝑘)2− 𝑗 ≤

𝜎1(𝑿)𝑠2, for all 𝑿 ∈ U 𝑗 . Hence, for all 𝑗 ≥ 𝐽1, we can bound each summand in (8.12)
according to

P
[
∃𝑿 ∈ B𝑚×𝑛

(
𝒀 ( 𝑗 )
𝑖
, 2− 𝑗

)
: ∥(aT

1𝑿b1 . . . aT
𝑘𝑿b𝑘)T∥2 < 2− 𝑗

]
(8.14)

≤ P

[




(aT
1𝒀

( 𝑗 )
𝑖

b1 . . . aT
𝑘𝒀

( 𝑗 )
𝑖

b𝑘

)T







2

< (1 + 𝑠2
√
𝑘)2− 𝑗

]
(8.15)

≤ (1 + 𝑠2
√
𝑘)𝑘2− 𝑗𝑘 2

𝑘 (𝑚+𝑛)
2

𝜎1
(
𝒀 ( 𝑗 )
𝑖

) 𝑘
𝑠2𝑘

(
1 + log

(
𝑠2𝜎1

(
𝒀 ( 𝑗 )
𝑖

)
(1 + 𝑠2

√
𝑘)2− 𝑗

)) 𝑘
(8.16)

≤ (𝑠−2 +
√
𝑘)𝑘𝑚 𝑘

2 2− 𝑗𝑘 (1−𝛽)2
𝑘 (𝑚+𝑛)

2

(
1 + log

(
𝑠2𝐾

1 + 𝑠2
√
𝑘

)
+ 𝑗 log 2

) 𝑘
, (8.17)

where (8.15) is by (6.17)–(6.20) for 𝜀𝑖 = 2− 𝑗 , in (8.16) we applied Lemma 6.2 with
𝛿 = (1 + 𝑠2

√
𝑘)2− 𝑗 and 𝑿 = 𝒀 ( 𝑗 )

𝑖
, and in (8.17) we used (8.6). Inserting (8.14)–(8.17)

into (8.11)–(8.12) results in

P
[
∃𝑿 ∈ U 𝑗 : ∥(aT

1𝑿b1 . . . aT
𝑘𝑿b𝑘)T∥2 < 2− 𝑗

]
(8.18)

≤ 𝐶𝑁U (2− 𝑗)2− 𝑗𝑘 (1−𝛽) (𝐷 + 𝑗 log 2)𝑘 , for all 𝑗 ≥ 𝐽1, (8.19)

with

𝐶 = (𝑠−2 +
√
𝑘)𝑘𝑚 𝑘

2 2
𝑘 (𝑚+𝑛)

2 (8.20)

and

𝐷 = 1 + log

(
𝑠2𝐾

1 + 𝑠2
√
𝑘

)
. (8.21)



Completion of Matrices with Low Description Complexity 31

Next, let

𝑑 =
dimB(U) + 𝑘 (1 − 𝛽)

2
, (8.22)

which implies dimB(U) < 𝑑 < 𝑘 (1 − 𝛽) (see (2.9)). By (1.4) we have

dimB(U) = inf
ℓ∈N

sup
𝑗≥ℓ

log 𝑁U
(
2− 𝑗

)
log

(
2 𝑗

) . (8.23)

Thus, as a consequence of 𝑑 > dimB(U), there exists a 𝐽2 ∈ N such that

𝑁U
(
2− 𝑗

)
≤ 2 𝑗𝑑 , for all 𝑗 ≥ 𝐽2. (8.24)

Now set 𝐽 = max(𝐽1, 𝐽2). Then, we have
∞∑︁
𝑗=𝐽

P
[
∃𝑿 ∈ U 𝑗 : ∥(aT

1𝑿b1 . . . aT
𝑘𝑿b𝑘)T∥2 < 2− 𝑗

]
(8.25)

≤ 𝐶
∞∑︁
𝑗=𝐽

𝑁U (2− 𝑗)2− 𝑗𝑘 (1−𝛽) (𝐷 + 𝑗 log 2)𝑘 (8.26)

≤ 𝐶
∞∑︁
𝑗=𝐽

2− 𝑗 (𝑘 (1−𝛽)−𝑑) (𝐷 + 𝑗 log 2)𝑘 (8.27)

< ∞, (8.28)

where in (8.26) we used (8.18)–(8.19), (8.27) is by (8.24), and (8.28) follows from
𝑑 < 𝑘 (1 − 𝛽).

Lemma 8.2. Consider a nonempty and bounded set U ⊆ R𝑚×𝑛 \ {0} and let 𝑓 : U →
R𝑘 . Fix 𝛽 ∈ (0, 1), and suppose that there exists a 𝐽 ∈ N such that

∥ 𝑓 (𝑿)∥2 ≥ 2− 𝑗 , for all 𝑿 ∈ U\B𝑚×𝑛
(
0, 2−𝛽 𝑗

)
and 𝑗 ≥ 𝐽. (8.29)

Then, we have

inf

{
∥ 𝑓 (𝑿)∥2

∥𝑿∥1/𝛽
2

: 𝑿 ∈ U
}
> 0. (8.30)

Proof. Follows from [33, Lemma 3] through vectorization.
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A. Proof of Lemma 3.1

Item i) follows from [1, Lemma III.1, Item i)] through vectorization.
In order to prove Item ii), we first note that the sets U𝑖 participating in U are all

𝑠-rectifiable by Item i). To see that a finite union of 𝑠-rectifiable sets is 𝑠-rectifiable,
we first prove the statement for two sets and then note that the generalization to finitely
many sets follows by induction. Let A and B be 𝑠-rectifiable. By the definition of
rectifiability, there exist compact setsC,D ⊆R𝑠 and Lipschitz mappings 𝜑: C→R𝑚×𝑛

and 𝜓 : D → R𝑚×𝑛 such that A = 𝜑(C) and B = 𝜓(D). As the sets C and D are
compact, there exists a constant 𝑅 > 0 such that C ∪D ⊆ B𝑠 (0, 𝑅). The set D + {3𝑅}
is thus disjoint from C. We now define the function

𝜑̃ : C ∪ (D + {3𝑅}) → R𝑚×𝑛

𝒙 ↦→
{
𝜑(𝒙), 𝒙 ∈ C
𝜓(𝒙 − 3𝑅), 𝒙 ∈ D + {3𝑅}

.

The set C ∪ (D + {3𝑅}) ⊆ R𝑠 is compact as the union of compact sets and 𝜑̃
(
C ∪ (D +

{3𝑅})
)
=A ∪B. It remains to establish that 𝜑̃ is Lipschitz. Indeed, for vectors 𝒙, 𝒚 ∈ C

the Lipschitz property follows from the Lipschitz property of 𝜑. Analogously, for 𝒙, 𝒚 ∈
D + {3𝑅} the Lipschitz property is inherited from that of 𝜓. For 𝒙 ∈ C and 𝒚 ∈ D +
{3𝑅}, we have that ∥𝒙 − 𝒚∥ ≥ 𝑅 and ∥𝜑̃(𝒙) − 𝜑̃(𝒚)∥ ≤ 2 max𝒛∈C∪(D+{3𝑅}) ∥𝜑̃(𝒛)∥ =:
𝑀 . Thus, ∥𝜑̃(𝒙) − 𝜑̃(𝒚)∥ ≤ 𝑀

𝑅
∥𝒙 − 𝒚∥ and we obtain Lipschitz continuity of 𝜑̃ with

Lipschitz constant given by the maximum of 𝑀
𝑅

and the Lipschitz constants of 𝜑 and
𝜓.

To prove Item iii), let U ∈ R𝑚1×𝑛1 be 𝑠-rectifiable and V ∈ R𝑚2×𝑛2 𝑡-rectifiable.
By the definition of rectifiability, there exist compact sets C ⊆ R𝑠 and D ⊆ R𝑡 and
Lipschitz mappings 𝜑 : C → R𝑚1×𝑛1 and 𝜓 : D → R𝑚2×𝑛2 such that U = 𝜑(C) and
V = 𝜓(D). We can therefore write U ×V = (𝜑 × 𝜓) (C × D) with C × D ⊆ R𝑠+𝑡
compact and 𝜑 × 𝜓 : C × D → R𝑚1×𝑛1 × R𝑚2×𝑛2 Lipschitz.

It remains to establish Item iv). Let K be a compact subset of an 𝑠-dimensional
𝐶1-submanifold M ⊆ R𝑚×𝑛. The statement is trivial if K = ∅. We hence assume that
K is nonempty. By [23, Definition 5.3.1], we can write

M =
⋃
𝑿∈M

𝜑𝑿 (U𝑿 ), (A.1)

where, for every 𝑿 ∈ M, U𝑿 ⊆ R𝑠 is open, and 𝜑𝑿 : U𝑿 → R𝑚×𝑛 is a one-to-one𝐶1-
map satisfying 𝑿 ∈ 𝜑𝑿 (U𝑿 ) and 𝜑𝑿 (U𝑿 ) = V𝑿 ∩M with V𝑿 ⊆ R𝑚×𝑛 open. Since
there exists a real analytic diffeomorphism between R𝑠 and B𝑠 (0, 1) [1, Lemma K.10],
we can assume, w.l.o.g., that the sets U𝑿 are all bounded. As K ⊆ M is compact by
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assumption, there must exist a finite set {𝑿𝑖 : 𝑖 = 1, . . . , 𝑁} ⊆ M such that

K ⊆
𝑁⋃
𝑖=1

𝜑𝑿 𝑖
(U𝑿 𝑖

) (A.2)

and V𝑿 𝑖
∩K ≠ ∅, for 𝑖 = 1, . . . , 𝑁 . With the set {𝑿𝑖 : 𝑖 = 1, . . . , 𝑁} ⊆ M, we can now

write

K =

𝑁⋃
𝑖=1

(𝜑𝑿 𝑖
(U𝑿 𝑖

) ∩ K) (A.3)

=

𝑁⋃
𝑖=1

𝜑𝑖 (U𝑖) (A.4)

=

𝑁⋃
𝑖=1

𝜑𝑖 (U𝑖), (A.5)

where in (A.4) we set 𝜑𝑖 = 𝜑𝑿 𝑖
and U𝑖 = U𝑿 𝑖

∩ 𝜑−1
𝑖
(K), and (A.5) is by K = K and

the continuity of 𝜑𝑖 . The claim now follows from Item ii) applied to A.5.
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