
Extracting Formulae in Many-Valued Logic from Deep
Neural Networks

Yani Zhang and Helmut Bölcskei
Chair for Mathematical Information Science, ETH Zürich

yanizhang@mins.ee.ethz.ch, hboelcskei@ethz.ch

Abstract
Wepropose a new perspective on deep ReLU networks, namely as circuit counterparts of Łukasiewicz
infinite-valued logic—amany-valued (MV) generalization of Boolean logic. An algorithm for extract-
ing formulae in MV logic from deep ReLU networks is presented1. As the algorithm applies to net-
works with general, in particular also real-valued, weights, it can be used to extract logical formulae
from deep ReLU networks trained on data.

1 Introduction
State-of-the-art deep neural networks exhibit impressive reasoning capabilities, e.g. in mathematical
tasks [1], program synthesis [2], and algorithmic reasoning [3]. This paper reports an attempt at
systematically connecting neural networkswithmathematical logic. Specifically, we shall be interested
in reading out logical formulae from (trained) deep neural networks.

Let us first take a step back. Consider a neural network that realizes amap f : [0, 1]n → [0, 1]. When
the input and output variables take on two possible values only, say 0 and 1, f reduces to a Boolean
function and can hence be studied by means of Boolean algebra, see e.g. [4]. Boolean functions can
be realized by Boolean circuits [5]. The idea of using Boolean algebra to analyze and design Boolean
circuits dates back to [6, 7] andmost prominently by Shannon in [8]. Specifically, this correspondence
works as follows. Given a Boolean circuit, one can deduce a Boolean algebraic expression that realizes
the circuit’s input-output relation. Conversely, for a given Boolean algebraic expression, it is possible
to specify a Boolean circuit whose input-output relation equals this expression.

The main aim of the present paper is to initiate the development of a generalization of this corre-
spondence from Boolean functions f : {0, 1}n → {0, 1} to general functions f : [0, 1]n → [0, 1]. This
immediately leads to the following two questions:

1. What is the logical system replacing Boolean logic?
2. What is the counterpart of Boolean circuits?

As to the first question, we shall show that the theory of infinite-valued Łukasiewicz logic [9] pro-
vides a suitable framework for characterizing general (nonbinary) functions f : [0, 1]n → [0, 1] from
a logical perspective. With slight abuse of terminology, we shall refer to infinite-valued Łukasiewicz
logic as many-valued (MV) logic throughout the paper. Based on a fundamental result [10], which
characterizes the class of truth functions in MV logic—also called McNaughton functions—as contin-
uous piecewise linear functions with integer coefficients, we show that neural networks employing
the ReLU nonlinearity ρ(x) = max{0, x} and integer weights2 naturally implement statements in MV
logic. This answers the second question above by identifying ReLU networks as the counterpart of
Boolean circuits.

In practice, trained neural networks will, however, not exhibit integer weights, unless this is explic-
itly enforced in the training process. Extensions of MV logic, namely Rational Łukasiewicz logic [11]
and RL [12], have truth functions that are again continuous piecewise linear, but with rational and

1A Python implementation is available at https://www.mins.ee.ethz.ch/research/downloads/NN2MV.html.
2By weights, we mean the entries of the weight matrices and bias vectors associated with the network.

1

https://www.mins.ee.ethz.ch/research/downloads/NN2MV.html

real-valued coefficients, respectively. Such functions are likewise naturally realized byReLUnetworks,
but correspondingly with rational and real-valued weights.

Besides the conceptual contribution residing in the systematic development of the connection be-
tween ReLU networks and MV logic along with its extensions, we also devise an algorithm for ex-
tracting logical formulae from (trained) ReLU networks with integer, rational, or real-valued weights.
For pedagogical reasons and to render the presentation more accessible, we first present the entire
framework for MV logic and ReLU networks with integer weights, and then provide extensions to the
rational and real case. In addition, we carry out a detailed comparison between our algorithm and
the only two constructive procedures for converting McNaughton functions to their associated MV
logical formulae available in the literature [13, 14].

The overall philosophy of viewing ReLU networks as the circuit counterpart of MV logic and its
extensions is inspired by [15, 16, 17]. Specifically, Amato et al. [15, 16] pointed out that neural net-
works, with the clipped ReLU (CReLU) nonlinearity σ(x) = min{1,max{0, x}} and rational weights,
realize truth functions in Rational Łukasiewicz logic. Di Nola et al. [17] proved that CReLU networks
with real weights realize truth functions in RL logic. The universal correspondence between ReLU
networks and MV logic as well as its extensions reported here along with the algorithm for extracting
logical formulae from ReLU networks appear to be new.

Finally, we refer to [18, 19, 20] for different frameworks that integrate neural learningwith symbolic
logic. Deep neural networks have been successfully applied to symbolic analysis through training on
numerical data [21] or by leveraging large scale pre-training [22].

We start with a brief review of the correspondence between Boolean logic and Boolean circuits as
described in [8, 23].

1.1 Boolean Logic and Boolean Circuits
Boolean algebra on the binary set {0, 1} consists of the application of the logical operations OR, AND,
NOT, denoted by⊕,⊙, and ¬, respectively, to propositional variables. The algebra is fully characterized
through the following identities:

x⊕ 0 = x x⊙ 1 = x

x⊕ ¬x = 1 x⊙ ¬x = 0

x⊕ y = y ⊕ x x⊙ y = y ⊙ x

(x⊕ y)⊕ z = x⊕ (y ⊕ z)

(x⊙ y)⊙ z = x⊙ (y ⊙ z)

x⊕ (y ⊙ z) = (x⊕ y)⊙ (x⊕ z)

x⊙ (y ⊕ z) = (x⊙ y)⊕ (x⊙ z)

(1)

Note that one can define the operation ⊙ in terms of ⊕ and ¬ according to x ⊙ y := ¬(¬x ⊕ ¬y) and
then rewrite all the identities in (1) involving ⊙ based on ⊕ and ¬ only.

Shannon developed a systematic approach to the analysis and synthesis of switching circuits using
Boolean algebra [8]. At the heart of Shannon’s theory is the following interpretation of Boolean logic
in terms of switching circuits. A propositional (Boolean) variable x is interpreted as a make contact
on a switch. The negation of x represents a break contact. The constants 0 and 1 signify open and
closed circuits, respectively. The Boolean operations⊕ and⊙ correspond to parallel and, respectively,
series connections of switches. With these correspondences, every switching circuit can be associated
with a Boolean formula, namely by identifying the switches in the circuit with Boolean variables, and
then connecting them by ⊕ and ⊙ operations according to the connections appearing in the circuit.
Conversely, following these correspondences, Boolean circuits are directly associated with Boolean
formulae. Exploiting these equivalences, the manipulation of Boolean circuits can be carried out on
their corresponding Boolean expressions and vice versa.

Boolean circuits are represented by directed acyclic graphswhose nodes are logic gates⊕,⊙, and¬.
For example, the circuit in Figure 1(a) computes the Boolean function

(x1 ⊙ x2)⊕ ((x2 ⊕ x3)⊙ (x2 ⊙ x3)). (2)

The expression in (2) can be manipulated using the identities listed in (1) to arrive at the functionally

2

⊕
⊙

⊙ ⊕ ⊙

x3x2x1

(a)

⊙

⊕

x2x3x1

(b)

Figure 1: Two equivalent Boolean circuits.

equivalent, but algebraically simpler, expression x2 ⊙ (x1 ⊕ x3), which corresponds to the smaller
(only 2 logic gates instead of 5) Boolean circuit depicted in Figure 1(b).

Shannon’s seminal paper [23] showed that the circuit complexity, in terms of the number of switches,
of n-ary Boolean functions is upper-bounded by O(2n/n) and that almost all Boolean functions have
circuit complexity close to this bound.

The motivation for studying Boolean circuits is that the time required to compute a given Boolean
function on a Turing machine is closely related to the function’s circuit complexity [24]. For exam-
ple, Pippenger and Fischer [25] proved that a language of time complexity T (n) has circuit complex-
ityO(T (n) log T (n)). Conversely, polynomial circuit complexity implies nonuniform polynomial time
complexity.

1.2 MV Logic
We now generalize from Boolean logic to many-valued logic [26], where propositional variables take
truth values in the interval [0, 1]. The corresponding algebraic counterpart is known as Chang’s MV
algebra [27]. MV logic consists of two logical operations, ⊕ and ¬, in analogy to the Boolean OR
and NOT; the operation ⊙, in analogy to the Boolean AND, is defined in terms of ⊕ and ¬ according
to x⊙ y := ¬(¬x⊕ ¬y). This leads us to the definition of the so-called standard MV algebra.

Definition 1.1. Consider the unit interval [0, 1], and define x⊕y = min{1, x+y} and ¬x = 1−x, for x, y ∈
[0, 1]. It can be verified that the structure I = ⟨[0, 1],⊕,¬, 0⟩ is an MV algebra [9]. In particular, I constitutes
the algebraic counterpart of Łukasiewicz infinite-valued logic [27]. We further define the operation x ⊙ y :=
¬(¬x⊕ ¬y) = max{0, x+ y − 1}.

It can be shown that the Boolean algebra B := {{0, 1}, OR, NOT, 0} is a special case of MV algebras.
The MV algebra I in 1.1 is referred to as standard because an equation holds in every MV algebra iff
it holds in I [27, 28]. Additional relevant material on MV algebras is provided in Appendix A.

2 ReLU Networks as Circuit Counterpart of MV Logic
MV terms are finite strings composed of propositional variables x1, x2, . . . connected by ⊕, ⊙, and ¬
operations and brackets (), such as (x1 ⊕ ¬x2) ⊙ x3. Term functions are the corresponding truth
functions obtained by interpreting the logical operations according to how they are specified in the
concreteMV algebra used, e.g. x⊕y = min{1, x+y} in the standardMV algebra I. See Definitions A.2
and A.3. In the Boolean algebra B, term functions are binary tables {{0, 1}n → {0, 1} : n ∈ N}. In
the standardMV algebra I, term functions are characterized by continuous piecewise linear functions
with integer coefficients as formalized by the McNaughton theorem [10].

Theorem 2.1. [10] Consider theMV algebra I in Definition 1.1. Let n ∈ N. For a function f : [0, 1]n → [0, 1]
to have a corresponding MV term τ such that the associated term function τI satisfies τI = f on [0, 1]n, it is
necessary and sufficient that f satisfy the following conditions:

1. f is continuous with respect to the natural topology on [0, 1]n,
2. there exist linear polynomials p1, . . . , pℓ with integer coefficients, i.e.,

pj(x1, . . . , xn) = mj1x1 + · · ·+mjnxn + bj ,

3

for j = 1, . . . , ℓ, with mj1, . . . ,mjn, bj ∈ Z, such that for every x ∈ [0, 1]n, there is a j ∈ {1, . . . , ℓ}
with f(x) = pj(x).

Functions satisfying these conditions are called McNaughton functions.

ReLU networks (see Definition B.1) are compositions of affine transformations and the ReLU non-
linearity ρ(x) = max{0, x} (applied element-wise) and as such realize continuous piecewise linear
functions. Specifically, the class of ReLU networks with integer weights is equivalent to the class of
formulae in MV logic. The corresponding formal statement is as follows.

Theorem 2.2. For n ∈ N, let τ(x1, . . . , xn) be an MV term in n variables with τI : [0, 1]n → [0, 1] the
associated term function in I. There exists a ReLU network Φ with integer weights, satisfying

Φ(x1, . . . , xn) = τI(x1, . . . , xn),

for all (x1, . . . , xn) ∈ [0, 1]n. Conversely, for every ReLU network Φ : [0, 1]n → [0, 1] with integer weights,
there exists an MV term τ(x1, . . . , xn) whose associated term function in I satisfies

τI(x1, . . . , xn) = Φ(x1, . . . , xn),

for all (x1, . . . , xn) ∈ [0, 1]n.

The remainder of this section is devoted to the proof of Theorem 2.2, along with the development
of an algorithm for extracting formulae in MV logic from ReLU networks with integer weights. First,
we show how, for a given MV term τ , a ReLU network with integer weights realizing the associated
term function τI can be constructed. We start by noting that the operation ¬x = 1 − x, by virtue of
being affine, is trivially realized by a ReLU network. Further, there exist ReLU networks Φ⊕ and Φ⊙,
with integer weights, realizing the ⊕ and ⊙ operations in I, i.e.,

Φ⊕(x, y) = min{1, x+ y}
Φ⊙(x, y) = max{0, x+ y − 1},

for all x, y ∈ [0, 1]. Detailed constructions of Φ⊕ and Φ⊙ are provided in Lemma B.3. According
to Lemma B.2 [29], compositions of ReLU networks are again ReLU networks. The ReLU network
realizing the term function associated with the MV term τ can hence be obtained by concatenating
ReLU networks implementing the operations⊕,⊙, and ¬ as they appear in the expression for τ . What
is more, inspection of the proof of Lemma B.2 reveals that the integer-valued nature of the weights is
preserved in the process of composition. Therefore, the resulting overall ReLU network has integer
weights.

For example, applying the procedure just outlined (see Appendix E for details) to the simple ex-
ample τ = (x⊕ x)⊙ ¬y yields the associated ReLU network

Φτ = W3 ◦ ρ ◦W2 ◦ ρ ◦W1, (3)

where

W1(x, y) =

−2 0
0 1
0 −1

(
x
y

)
+

1
0
0

, x, y ∈ R,

W2(x) =
(
−1 −1 1

)
x+ 1, x ∈ R3,

W3(x) = x, x ∈ R.

The proof of the converse statement in Theorem 2.2 will be effected in a constructive manner, in
the process developing an algorithm for extracting the MV logical formula corresponding to a given
ReLU network with integer weights. The algorithm consists of the following three steps.

Step 1: Transform the ReLU network (with integer weights) into an equivalent network with the
CReLU nonlinearity σ(x) = min{1,max{0, x}}. This is done by exploiting the fact that the domain
of the ReLU network is the unit cube [0, 1]n and, consequently, with finite-valued weights, the input
of each layer in the network is bounded. Concretely, we replace each ρ-neuron by one or multiple
σ-neurons, while retaining the integer-valued nature of the weights. For example, ρ(x) = σ(x), for
x ∈ [0, 1], and ρ(x) = σ(x) + σ(x− 1), for x ∈ [0, 2].

4

Step 2: Extract MV terms from individual σ-neurons, which are of the form

σ(m1x1 + · · ·+mnxn + b),

with m1, . . . ,mn, b ∈ Z. The following lemma provides an inductive way for accomplishing this.

Lemma 2.3. [30, 13] Consider the function f(x1, . . . , xn) = m1x1+ · · ·+mnxn+b, (x1, . . . , xn) ∈ [0, 1]n,
with m1, . . . ,mn, b ∈ Z. Without loss of generality, assume that maxni=1 |mi| = m1. Let f◦(x1, . . . , xn) =
(m1 − 1)x1 +m2x2 + · · ·+mnxn + b. Then,

σ(f) = (σ(f◦)⊕ x1)⊙ σ(f◦ + 1). (4)

Before proceeding to the next step, we demonstrate the application of Lemma 2.3 by way of the
simple example σ(x1 − x2 + x3 − 1). First, we eliminate the variable x1 according to

σ(x1 − x2 + x3 − 1) = (σ(−x2 + x3 − 1)⊕ x1)⊙ σ(−x2 + x3). (5)

Next, we remove the x3-terms inside σ(·),

σ(−x2 + x3 − 1) = (σ(−x2 − 1)⊕ x3)⊙ σ(−x2) (6)
σ(−x2 + x3) = (σ(−x2)⊕ x3)⊙ σ(−x2 + 1). (7)

We note that σ(−x2) = 0, for x2 ∈ [0, 1]. Owing to x⊙ 0 = 0, for x ∈ [0, 1], (6) reduces to σ(−x2+x3−
1) = 0. Likewise, in (7) σ(−x2)⊕ x3 = x3. We can then further simplify (7) according to

x3 ⊙ σ(−x2 + 1) = x3 ⊙ (1− σ(x2)) (8)
= x3 ⊙ ¬x2, (9)

where in (8) we used σ(x) = 1 − σ(−x + 1), for x ∈ R, and (9) is by σ(x) = x and ¬x = 1 − x, both
for x ∈ [0, 1]. Substituting the simplified results of (6) and (7) back into (5), we obtain the MV term
corresponding to σ(x1 − x2 + x3 − 1) as x1 ⊙ (x3 ⊙ ¬x2).

Step 3: Compose theMV terms corresponding to the individual σ-neurons according to the layered
structure of the CReLU network to get the MV term associated with the ReLU network. To illustrate
this step, suppose that the neurons σ(1)(·) and σ(2)(·) have associated MV terms τ (1) and τ (2), respec-
tively, and a third neuron σ(3)(m1x1 +m2x2 + b) has associated MV term τ (3)(x1, x2). The MV term
corresponding to the CReLUnetwork σ(3)(m1σ

(1)+m2σ
(2)+b) is obtained by replacing all occurrences

of x1 in τ (3) by τ (1) and all occurrences of x2 by τ (2). This finalizes the proof of Theorem 2.2.
The essence of the proof of Theorem 2.2 resides in a strong algebraic property shared by the stan-

dard MV algebra I and ReLU networks. Concretely, compositions of ReLU networks with integer
weights again yield ReLU networks with integer weights, and compositions of formulae in MV logic
result in formulae in MV logic. As we shall see in Section 4, the parallelism between logical formulae
and ReLU networks identified here extends to the cases of ReLU networks with rational weights and
Rational Łukasiewicz logic as well as ReLU networks with real weights and RL.

We hasten to add that the extracted formula associated with a given McNaughton function is not
unique. Different algebraic expressions can exist, but they must be functionally equivalent as they all
represent the same truth function in I.

3 Aspects of Our Algorithm
Recalling that ReLU networks (with integer weights) realize continuous piecewise linear functions
(with integer coefficients), the algorithm devised in the previous section can equivalently be seen as
extracting an MV formula from a given McNaughton function f . We are aware of two other construc-
tive extraction procedures, namely the Schauder hat method [13] and the hyperplane method [14].
The purpose of this section is to briefly review these two procedures and to compare them to our
algorithm.

We start with the Schauder hat method and note that Schauder hats are functions of pyramidal
shape supported on unions of simplices. This method starts with the construction of a simplicial
complex over [0, 1]n obtained by splitting the unit cube according to different permutations of the

5

0 0.5 1
0

1

0 0.25 0.5 0.75 1
0

1

Figure 2: Left: the function g, right: the function g2.

linear pieces of f . The resulting simplicial complex is further subdivided into a unimodular simplicial
complex. Thanks to unimodularity, each Schauder hat can then be expressed in terms of “min” and
“max” operations, which are realizable by the operations ⊕,⊙, and ¬ according to

min{x, y} = ¬(¬x⊙ y)⊙ y := x ∧ y

max{x, y} = ¬(¬x⊕ y)⊕ y := x ∨ y.
(10)

The overallMV term is finally constructed by combining theMV terms corresponding to the individual
Schauder hats through the ⊕ operation. The reader is referred to [13] for a detailed account of the
algorithm.

The hyperplane method [14] expresses f , with linear pieces p1, . . . , pℓ, in terms of the truncated
linear polynomials σ(p1), . . . , σ(pℓ), where σ(x) = min{1,max{0, x}}, for x ∈ R, according to

f = min
I

max
J

σ(pi), (11)

where I, J ⊂ {1, . . . , ℓ} are index sets. Next, MV terms corresponding to σ(p1), . . . , σ(pℓ) are deter-
mined by repeated application of Lemma 2.3. These expressions are finally combined into anMV term
based on (11) and (10).

The first difference between our algorithm and the two existing ones resides in the fact that we
workwith a ReLUnetworkΦ that realizes theMcNaughton function f , instead of starting from f itself.
While this aspect might seem innocuous, it has important ramifications as discussed next. First, it is
simple to describe a McNaughton function on the unit interval [0, 1], but rather complicated to specify
McNaughton functions on themulti-dimensional unit cube [0, 1]n, forn ≥ 2. Specifically,Mundici [13]
showed that f : [0, 1]n → [0, 1] can be specified by listing all its linear pieces p1, . . . , pℓ along with
the indices of the linear pieces that f falls on at the rational points (c1/d1, . . . , cn/dn) ∈ [0, 1]n with
0 < d1, . . . , dn ≤ (n + 1)(2na)n and c1, . . . , cn ∈ Z. Here, a is the maximum absolute value of all
coefficients of p1, . . . , pℓ. In comparison, it is much easier to specify a ReLU network, namely by simply
providing the associated affine maps. In particular, our approach also provides a parametrization of
all valid McNaughton functions, simply by varying the integer weights across all ReLU networks that
map [0, 1]n to [0, 1]. Note that this, of course, also entails varying network architectures, i.e., depth and
the number of nodes in the individual layers (save for the input and output layers).

The second difference lies in the algebraic expressions obtained by these algorithms, notably in
their complexity, as measured by the length of the formulae. We illustrate this aspect by way of exam-
ples, limiting ourselves to one-dimensional functions, for ease of exposition. Consider the hat function
g : [0, 1] → [0, 1] in Figure 2,

g(x) = ρ(2x)− 2ρ(2x− 1) + ρ(2x− 2)

=

{
2x, 0 ≤ x ≤ 1

2

2− 2x, 1
2 < x ≤ 1.

The Schauder hat method. The unimodular simplicial complex delivered by the algorithm has vertices
{0, 1/2, 1}. There is only one Schauder hat, which is centered at x = 1/2 and given by

h 1
2
(x) =

{
x, 0 ≤ x ≤ 1

2

1− x, 1
2 < x ≤ 1.

6

The MV term corresponding to h 1
2
(x) = min{x, 1 − x}, for x ∈ [0, 1], is given by x ∧ ¬x. As g(x) =

2h 1
2
(x), for x ∈ [0, 1], the MV term associated with g is

(x ∧ ¬x)⊕ (x ∧ ¬x). (12)

The hyperplane method. Denote the two linear pieces of g by p1 : x 7→ 2x and p2 : x 7→ 2−2x. Iterative
application of Lemma 2.3 produces the MV term corresponding to σ(p1) as x⊕ x, and that associated
with σ(p2) as ¬x⊕¬x. Direct inspection of Figure 2 shows that g(x) = min{p1(x), p2(x)}, for x ∈ [0, 1].
Therefore, the overall MV term corresponding to g is given by

(x⊕ x) ∧ (¬x⊕ ¬x). (13)

Our algorithm. We first note that g can be realized by a ReLU network Φg according to Φg = W2 ◦ ρ ◦
W1 = g with

W1(x) =

2
2
2

x −

0
1
2

, W2(x) =
(
1 −2 1

)x1

x2

x3

.

Next, we run our algorithm described in Steps 1-3 in the proof of Theorem 2.2 on Φg . First, Φg is
converted into the equivalent CReLU network Ψg = W ∗

2 ◦ σ ◦W ∗
1 = Φg with

W ∗
1 (x) =

(
2
2

)
x−

(
0
1

)
, W ∗

2 (x) =
(
1 −1

)(x1

x2

)
,

where the individual σ-neurons have associated MV terms as follows:

σ(2x) : x⊕ x (14)
σ(2x− 1) : x⊙ x (15)
σ(x1 − x2) : x1 ⊙ ¬x2. (16)

Replacing x1 in (16) by (14) and x2 by (15), the MV term corresponding to the function g is given by

(x⊕ x)⊙ ¬(x⊙ x). (17)

Interestingly, the three algorithms produce differentMV terms for the sameMcNaughton function.
As one would expect, these terms can be shown to all be equivalent by manipulating their algebraic
expressions using identities of MV algebras (listed in Definition A.1). We finally note that the com-
plexity of the MV terms does not differ much. However, this changes fundamentally in the second
example we consider, namely the composition of g with itself g2 := g ◦ g.
The Schauder hat method. Permutations of the linear pieces of g2 divide the interval [0, 1] into four
simplices, namely {[0, 1

4], [
1
4 ,

1
2], [

1
2 ,

3
4], [

3
4 , 1]}. Here the simplices happen to coincide with the linear

regions of g2, but this is not generally the case. To get unimodularity, the simplices are further sub-
divided into a simplicial complex with the vertex set {0, 1

4 ,
1
3 ,

1
2 ,

2
3 ,

3
4 , 1}. Four Schauder hats are ob-

tained, as depicted in Figure 3, and each of these hats has an associated MV term. For example, the
term corresponding to the hat in the top left of Figure 3 is given by (¬(x ⊕ x ⊕ x)) ∧ x. The over-
all MV term associated with g2 is obtained by linking the MV terms corresponding to the individual
Schauder hats through the⊕ operation. The resulting algebraic expression is quite long, so we refrain
from displaying it.
The hyperplane method. Denote the four linear pieces of g2 by p1 : x 7→ 4x, p2 : x 7→ −4x+2, p3 : x 7→
4x− 2, and p4 : x 7→ −4x+ 4. The hyperplane method starts by ordering the linear pieces over every
linear region of g2:

x ∈ [0, 1/4] : p3(x) ≤ p1(x) ≤ p2(x) ≤ p4(x)

x ∈ [1/4, 1/2] : p3(x) ≤ p2(x) ≤ p1(x) ≤ p4(x)

x ∈ [1/2, 3/4] : p2(x) ≤ p3(x) ≤ p4(x) ≤ p1(x)

x ∈ [3/4, 1] : p2(x) ≤ p4(x) ≤ p3(x) ≤ p1(x),

where the bold symbols indicate the linear piece that equals g2 on the corresponding interval, e.g.,
g2(x) = p1(x), for x ∈ [0, 1

4]. Following [14], g2 is then expressed in terms of the truncated linear
pieces connected by ∧ and ∨ according to

g2 = (σ(p3) ∨ σ(p1)) ∧ (σ(p3) ∨ σ(p2)) ∧ (σ(p2) ∨ σ(p3)) ∧ (σ(p2) ∨ σ(p4)). (18)

7

0 1
4

1
3

1
0

1
4

0 1
4

1
3

1
2

1
0

1
3

0 1
3

1
2

3
4

1
0

1
2

0 1
2

3
4

1
0

1
4

Figure 3: Schauder hats at vertices { 1
4 ,

1
3 ,

1
2 ,

3
4} associated with the function g2.

Repeated application of Lemma 2.3 produces MV terms associated with each of the truncated linear
pieces:

σ(p1) : x⊕ x⊕ x⊕ x

σ(p2) : ¬(((((x⊙ x)⊕ x)⊙ (x⊕ x))⊕ x)⊙ (x⊕ x⊕ x))

σ(p3) : ((x⊙ x⊙ x)⊕ x)⊙ (((x⊙ x)⊕ x)⊙ (x⊕ x))

σ(p4) : ¬(x⊙ x⊙ x⊙ x).

(19)

Substituting (19) back into (18) yields the overall MV term associated with g2, which, again, is too
long to be shown here.
Our algorithm. As g2 = g ◦g, the ReLU network realizing g2 is simply Φg ◦Φg . The resulting MV term
for g2 is consequently given by the composition of (17) with itself, i.e., one replaces every occurrence
of x in (17) by (x⊕ x)⊙ ¬(x⊙ x). The final result is

(((x⊕ x)⊙¬(x⊙ x))⊕ ((x⊕ x)⊙¬(x⊙ x)))⊙¬(((x⊕ x)⊙¬(x⊙ x))⊙ ((x⊕ x)⊙¬(x⊙ x))), (20)

which, while still somewhat unwieldy, is significantly shorter than the expressions obtained by the
other two methods. Finally, we note that one can mix the results obtained by the different algorithms,
e.g., for g2 = g◦g, we can also replace every occurrence of x in (17) by (12) or by (13), to obtain a valid
MV term for g2. We observe that our method delivers a shorter MV term as it exploits the composi-
tional structure of g2 = g ◦ g, a property that is naturally present in deep ReLU network realizations
of McNaughton functions. It is hence sensible to expect that our approach leads to shorter formu-
lae whenever a “deep” ReLU network realization of the McNaughton function under consideration is
available.

The next example serves to illustrate this aspect in a broader context. Specifically, we want to show
how the nonuniqueness in ReLU network realizations, i.e., for a given function there are infinitely
many ReLU networks that realize it, can be exploited by our algorithm to derive different algebraic ex-
pressions for the same truth function inMV logic. Considering a “shallow” realization of the function
g2 above according to

Φ2
g(x) = ρ(4x)− 2ρ(4x− 1) + 2ρ(4x− 2)− 2ρ(4x− 3) + ρ(4x− 4), (21)

we first transform (21) into the equivalent CReLU network

Ψ2
g = W2 ◦ σ ◦W1,

8

with

W1(x) =

4
4
4
4

x+

0
−1
−2
−3

, x ∈ R,

W2(x) =
(
1 −1 1 −1

)
x, x ∈ R4.

The MV term associated with the σ-neuron in the second layer of Ψ2
g is given by

σ(x1 − x2 + x3 − x4) : ((x3 ⊙ ¬(x2 ⊕ x4))⊕ x1)⊙ ((¬(x2 ⊕ x4)⊕ x3)⊙ (¬x2 ⊕ ¬x4)), (22)

and in the first layer we have
σ(4x) : x⊕ x⊕ x⊕ x (23)

σ(4x− 1) : ((((x⊙ x)⊕ x)⊙ (x⊕ x))⊕ x)⊙ (x⊕ x⊕ x) (24)

σ(4x− 2) : ((x⊙ x⊙ x)⊕ x)⊙ (((x⊙ x)⊕ x)⊙ (x⊕ x)) (25)

σ(4x− 3) : x⊙ x⊙ x⊙ x. (26)

Now, substituting (23) for x1, (24) for x2, (25) for x3, and (26) for x4 in (22), we obtain the MV
term associated with Φ2

g , which is too long to be displayed here, but formally has to be equivalent
to (20). This illustrates that the deep network realization of g2 = g ◦ g according to Φg ◦ Φg leads
to an MV formula, namely (20), that is shorter than the one obtained here starting from the shallow
realization (21).

The final example we consider is meant to illustrate how identifying redundant elements in ReLU
network realizations can lead to shorter, yet formally equivalent, MV formulae. We shall approach
this matter backwards, augmenting a given ReLU network realization by using the identity x = ρ(x)−
ρ(−x), x ∈ R. Specifically, consider the 2-dimensional function f realized by a ReLU networkwith two
layers according to

f(x, y) = ρ(x+ y)− ρ(y − x)− ρ(x+ y − 1). (27)

The associated MV term, obtained by running our algorithm, is

(x⊕ y)⊙ ¬(y ⊙ ¬x).

Now, making use of x = ρ(x)− ρ(−x), x ∈ R, as announced, we augment (27) to an equivalent ReLU
network with three layers:

f(x, y) = ρ(ρ(x+ y)− ρ(y − x)− ρ(x+ y − 1))− ρ(−ρ(x+ y) + ρ(y − x) + ρ(x+ y − 1)),

which, by running our algorithm, results in the longer, but formally equivalent, MV term

((x⊕ y)⊙ ¬(¬x⊙ y))⊙ ¬(¬(x⊕ y)⊙ (¬x⊙ y)).

The last two examples show how one can effectively manipulate formulae in MV logic by manip-
ulating their associated ReLU network realizations, extending the philosophy put forward by Shan-
non [8, 23] for the Boolean case to MV logic.

4 Extensions to the Rational and Real Cases
Extensions of MV logic, namely Rational Łukasiewicz logic and RL logic, as mentioned in the intro-
duction, have truth functions that are continuous piecewise linear, but with rational and, respectively,
real coefficients.

9

4.1 The Rational Case
Rational Łukasiewicz logic extends MV logic by adding a division (by integers) operation. The alge-
braic counterpart is given by the so-called divisible many-valued (DMV) algebras [11].

Definition 4.1. Consider the MV algebra I in Definition 1.1. Define the unary operations δix = 1
i x, x ∈

[0, 1], for all i ∈ N. The structure Id = ⟨[0, 1],⊕,¬, {δi}i∈N, 0⟩ is a DMV algebra [11].

The class of term functions in Id is the class of continuous piecewise linear functions whose linear
pieces have rational coefficients [11, 31]. In analogy to Theorem 2.1, such functions are called rational
McNaughton functions. We next extend Theorem 2.2 to the rational case.

Theorem 4.2. For n ∈ N, let τ(x1, . . . , xn) be a DMV term in n variables and τId : [0, 1]n → [0, 1] the
associated term function in Id. There exists a ReLU network Φ with rational weights, satisfying

Φ(x1, . . . , xn) = τId(x1, . . . , xn),

for all (x1, . . . , xn) ∈ [0, 1]n. Conversely, for every ReLU network Φ : [0, 1]n → [0, 1] with rational weights,
there exists a DMV term τ(x1, . . . , xn) whose associated term function in Id satisfies

τId(x1, . . . , xn) = Φ(x1, . . . , xn),

for all (x1, . . . , xn) ∈ [0, 1]n.

Proof. We already know how to realize the operations ⊕,⊙, and ¬ by ReLU networks, see Section 2.
The division operation δi : x → 1

i x, for i ∈ N, by virtue of being affine, is trivially realized by a
single-layer ReLU network. Following Lemma B.2, ReLU network realizations of formulae in Rational
Łukasiewicz logic are obtained by concatenating ReLUnetworks implementing the operations⊕,⊙,¬,
and {δi}i∈N. Again, inspection of the proof of Lemma B.2 reveals that the resulting ReLU network has
rational weights. We recover the algebraic property observed already for MV logic, namely compo-
sitions of ReLU networks with rational weights result in ReLU networks with rational weights, and
compositions of DMV formulae again yield DMV formulae.

Next, we extend our algorithm, described in Section 2, to extract DMV terms from ReLU networks
with rational weights. Steps 1 and 3 remain unaltered. We only need to modify Step 2 because the
σ-neurons are now of the form

h = σ(m1x1 + · · ·+mnxn + b), (28)

withm1, . . . ,mn, b ∈ Q, renderingLemma2.3 no longer applicable. Instead,we employ an idea by [31]
to transform (28) into multiple copies of h which all have arguments with integer coefficients. Con-
cretely, let s ∈ N be the least common multiple of the denominators of m1, . . . ,mn, b. Recognizing
that

sσ(x) = σ(sx) + σ(sx− 1) + · · ·+ σ(sx− (s− 1)),

for x ∈ R, and setting hi = σ(s(m1x1 + · · · + mnxn + b) − i), it follows that h =
∑s−1

i=0
1
shi. As

h =
∑s−1

i=0
1
shi ≤ 1, the DMV term associated with h is finally obtained according to ⊕s−1

i=0 δsτi.

The Schauder hat and the hyperplanemethodswere extended toRational Łukasiewicz logic in [11].

4.2 The Real Case
We finally turn to the case of ReLU networks with real coefficients, which is of particular practical
interest as it allows to extract formulae from trained ReLU networks. The Riesz many-valued algebra
(RMV) [12] extends theMValgebra inDefinition 1.1 by adding themultiplication operation {∆r : x →
rx, for x ∈ [0, 1]}r∈[0,1]. The term functions of the corresponding logical system RL are continuous
piecewise linear functions with real coefficients [12], which can be realized by ReLU networks with
real weights. Moreover, one gets ReLU networks realizing truth functions inRL in the samemanner as
in the integer and rational cases, namely by composing ReLU networks realizing the logical operations
appearing in the RMV formuale under consideration. Again, we have the algebraic property of the
compositions of ReLU networks resulting in ReLU networks, while retaining the real-valued nature of
the network weights, and compositions of RMV formulae yielding RMV formulae.

10

Wenow generalize our algorithm to extract RMV formulae fromReLU networks with real weights.
Concretely, Steps 1 and 3 in Section 2 again remain unaltered. In Step 2, with each σ-neuron of the
form

σ(m1x1 + · · ·+mnxn + b),

wherem1, . . . ,mn, b ∈ R, instead of Lemma 2.3, one applies the following result.

Lemma 4.3. [12] Consider the function f(x1, . . . , xn) = m1x1+· · ·+mnxn+b, (x1, . . . , xn) ∈ [0, 1]n, with
m1, . . . ,mn, b ∈ R. For all m ∈ (0, 1] and i ∈ {1, . . . , n}, with f◦(x1, . . . , xn) = m1x1 + · · ·+mi−1xi−1 +
(mi −m)xi +mi+1xi+1 + · · ·+mnxn + b, it holds that

σ(f) = (σ(f◦)⊕ (mxi))⊙ σ(f◦ + 1). (29)

We demonstrate the application of Lemma 4.3 through a simple example. Consider the σ-neuron
σ
(

1√
2
x1 − 2x2

)
. First apply Lemma 4.3 with m = 1√

2
and i = 1 to get

σ

(
1√
2
x1 − 2x2

)
=

(
σ(−2x2)⊕

(
1√
2
x1

))
⊙ σ(−2x2 + 1), (30)

thereby eliminating x1. As σ(−2x2) = 0 and 0⊕x = x, (30) reduces to (1√
2
x1)⊙σ(−2x2+1). Next, by

applying Lemma 4.3 twice and using σ(x) = 1− σ(1− x), x ∈ R, we obtain the RMV term associated
with σ(−2x2 +1) as ¬(x2 ⊕ x2). The RMV term corresponding to 1√

2
x1 is given by∆ 1√

2
x1. Therefore,

the overall RMV term associated with σ
(

1√
2
x1 − 2x2

)
is ∆ 1√

2
x1 ⊙ ¬(x2 ⊕ x2).

The hyperplane method was extented to the real case in [12]. An extension of the Schauder hat
method to the real case does not seem to be available in the literature, but can easily be devised. We
will report it elsewhere.

We finally note that the conclusions on the differences between our algorithm and the other two
algorithms as summarized in Section 2 carry over to the rational and real cases.

5 Acknowledgment
The authors are deeply grateful to Prof. Olivia Caramello for drawing their attention to the Mc-
Naughton theorem and, more generally, to MV logic.

References
[1] G. Lample and F. Charton, Deep learning for symbolic mathematics, arXiv preprint

arXiv:1912.01412 (2019).

[2] S. Bubeck, V. Chandrasekaran, R. Eldan, et al., Sparks of artificial general intelligence: Early
experiments with GPT-4, arXiv preprint arXiv:2303.12712 (2023).

[3] B. Liu, J. T. Ash, S. Goel, A. Krishnamurthy, and C. Zhang, Transformers learn shortcuts to
automata, arXiv preprint arXiv:2210.10749 (2022).

[4] S. Skyum and L. G. Valiant, A complexity theory based on Boolean algebra, Journal of the ACM
(JACM) 32 (1985) 484–502.

[5] R. B. Boppana andM. Sipser, The complexity of finite functions, in: Algorithms and Complexity,
Elsevier, 1990, pp. 757–804.

[6] A. Nakashima, The theory of relay circuit composition, The Journal of the Institute of Telegraph
and Telephone Engineers of Japan 38 (1935) 461–489.

[7] V. I. Shestakov, Some Mathematical Methods for the Construction and Simplification of Two-
Terminal Electrical Networks of Class A, Phd thesis, The Lomonosov State University, Moscow,
Russia, 1938.

11

[8] C. E. Shannon, A symbolic analysis of relay and switching circuits, Electrical Engineering 57
(1938) 713–723.

[9] R. Cignoli, I. d’Ottaviano, and D. Mundici, Algebraic Foundations of Many-Valued Reasoning,
Springer, 2000.

[10] R.McNaughton, A theorem about infinite-valued sentential logic, The Journal of Symbolic Logic
16 (1951) 1–13.

[11] B. Gerla, Rational Łukasiewicz logic and DMV-algebras, Neural Network World 6 (2001).

[12] A. Di Nola and I. Leuştean, Łukasiewicz logic and Riesz spaces, Soft Computing 18 (2014)
2349–2363.

[13] D.Mundici, A constructive proof of McNaughton’s theorem in infinite-valued logic, The Journal
of Symbolic Logic 59 (1994) 596–602.

[14] S. Aguzzoli, Geometrical and Proof Theoretical Issues in Łukasiewicz Propositional Logics, Phd
thesis, University of Siena, Italy, 1998.

[15] P. Amato, A. Di Nola, and B. Gerla, Neural networks and rational Łukasiewicz logic, in: Annual
Meeting of the North American Fuzzy Information Processing Society Proceedings, 2002, pp.
506–510.

[16] P. Amato, A. Di Nola, and B. Gerla, Neural networks and rational McNaughton Functions, Jour-
nal of Multiple-Valued Logic and Soft Computing 11 (2005) 95–110.

[17] A. Di Nola, B. Gerla, and I. Leuştean, Adding real coefficients to Łukasiewicz logic: An appli-
cation to neural networks, Fuzzy Logic and Applications: 10th International Workshop (2013)
77–85.

[18] G. G. Towell and J.W. Shavlik, Knowledge-based artificial neural networks, Artificial intelligence
70 (1994) 119–165.

[19] A. S. Avila Garcez and G. Zaverucha, The connectionist inductive learning and logic program-
ming system, Applied Intelligence 11 (1999) 59–77.

[20] R. Riegel, A. Gray, F. Luus, et al., Logical neural networks, arXiv preprint arXiv:2006.13155
(2020).

[21] L. Biggio, T. Bendinelli, A. Lucchi, and G. Parascandolo, A seq2seq approach to symbolic regres-
sion, Learning Meets Combinatorial Algorithms at NeurIPS2020 (2020).

[22] L. Biggio, T. Bendinelli, A. Neitz, A. Lucchi, and G. Parascandolo, Neural symbolic regression
that scales, in: International Conference on Machine Learning, 2021, pp. 936–945.

[23] C. E. Shannon, The synthesis of two-terminal switching circuits, The Bell System Technical
Journal 28 (1949) 59–98.

[24] J. E. Savage, Computational work and time on finite machines, Journal of the ACM 19 (1972)
660–674.

[25] N. Pippenger and M. J. Fischer, Relations among complexity measures, Journal of the ACM 26
(1979) 361–381.

[26] A. Tarski, Logic, semantics, metamathematics: Papers from 1923 to 1938, Hackett Publishing,
1983.

[27] C. C. Chang, Algebraic analysis of many-valued logics, Transactions of the American Mathe-
matical Society 88 (1958) 467–490.

[28] C. C. Chang, A new proof of the completeness of the Łukasiewicz axioms, Transactions of the
American Mathematical Society 93 (1959) 74–80.

12

[29] D. Elbrächter, D. Perekrestenko, P. Grohs, and H. Bölcskei, Deep neural network approximation
theory, IEEE Transactions on Information Theory 67 (2021) 2581–2623.

[30] A. Rose and J. B. Rosser, Fragments of many-valued statement calculi, Transactions of the Amer-
ican Mathematical Society 87 (1958) 1–53.

[31] M. Baaz and H. Veith, Interpolation in fuzzy logic, Archive for Mathematical Logic 38 (1999)
461–489.

13

A MV algebras
Definition A.1. [9] A many-valued algebra is a structureA = ⟨A,⊕,¬, 0⟩ consisting of a nonempty set A, a
constant 0 ∈ A, a binary operation ⊕, and a unary operation ¬ satisfying the following axioms:

x⊕ (y ⊕ z) = (x⊕ y)⊕ z (31.1)
x⊕ y = y ⊕ x

x⊕ 0 = x (31.2)
¬¬x = x

x⊕ ¬0 = ¬0
¬(¬x⊕ y)⊕ y = ¬(¬y ⊕ x)⊕ x.

Specifically, (31.1)-(31.2) state that the structure ⟨A,⊕, 0⟩ is an abelian monoid. An MV algebra
⟨A,⊕,¬, 0⟩ is said to be nontrivial iff A contains more than one element. In each MV algebra we can
define a constant 1 and a binary operation ⊙ as follows:

1 := ¬0 (32)
x⊙ y := ¬(¬x⊕ ¬y). (33)

The ensuing identities are then direct consequences of Definition A.1:

x⊙ (y ⊙ z) = (x⊙ y)⊙ z

x⊙ y = y ⊙ x

x⊙ 1 = x

x⊙ 0 = 0.

We will frequently use the notions of MV terms and term functions formalized as follows.

Definition A.2. [9] Let n ∈ N and Sn = {(,), 0,¬,⊕, x1, . . . , xn}. An MV term in the variables x1, . . . , xn

is a finite string over Sn arising from a finite number of applications of the operations ¬ and ⊕ as follows. The
elements 0 and xi, for i = 1, . . . , n, considered as one-element strings, are MV terms.

1. If the string τ is an MV term, then ¬τ is also an MV term.
2. If the strings τ and γ are MV terms, then (τ ⊕ γ) is also an MV term.

We write τ(x1, . . . , xn) to emphasize that τ is an MV term in the variables x1, . . . , xn.

For instance, the following finite strings over S2 = {(,), 0,¬,⊕, x1, x2} are MV terms in the vari-
ables x1 and x2:

0, x1, x2,¬0,¬x2, (x1 ⊕ ¬x2).

We shall always omit the outermost pair of brackets for conciseness, i.e., we write x1 ⊕ ¬x2 instead
of (x1 ⊕ ¬x2). Besides, for brevity we use the symbols ⊙ and 1 as abbreviations according to (32)
and (33) when writing MV terms.

MV terms are actually logical formulae without operational meaning. To endow themwith mean-
ing, an MV algebra must be specified. The associated truth functions, a.k.a. term functions which we
define presently, are then obtained by interpreting the operations ⊕ and ¬ according to how they are
specified in the MV algebra.

Definition A.3. [9] Let τ(x1, . . . , xn) be an MV term in the variables x1, . . . , xn. Let A = ⟨A,⊕,¬, 0⟩ be
an MV algebra. The term function τA : An → A associated with τ in A is defined as follows. For every input
(a1, . . . , an) ∈ An, first substitute ai for all occurrences of the variable xi in τ :

1. xA
i : (a1, . . . , an) 7→ ai, for i = 1, . . . , n.

Then, proceed by induction on the number of operation symbols, i.e., ⊕ and ¬, occurring in τ by applying the
following rules:

2. (¬τ)A = ¬τA, for MV term τ ,
3. (τ ⊕ γ)A = τA ⊕ γA, for MV terms τ and γ.

14

B ReLU networks
Definition B.1. [29] Let L ∈ N andN0, N1, . . . , NL ∈ N. A ReLU network is a map Φ : RN0 → RNL given
by

Φ =

W1, L = 1

W2 ◦ ρ ◦W1, L = 2

WL ◦ ρ ◦WL−1 ◦ ρ ◦ · · · ◦ ρ ◦W1, L ≥ 3

,

where, for ℓ ∈ {1, 2, . . . , L}, Wℓ : RNℓ−1 → RNℓ ,Wℓ(x) := Aℓx + bℓ are affine transformations with weight
matrices Aℓ = RNℓ×Nℓ−1 and bias vectors bℓ ∈ RNℓ , and the ReLU activation function ρ : R → R, ρ(x) :=
max{0, x} acts component-wise. Moreover, we denote byNd,d′ the set of ReLU networks with input dimension
N0 = d and output dimensionNL = d′. Moreover, we define the number of layers of the network Φ, denoted by
L(Φ), to be equal to L.

The next result formalizes properties of ReLU network compositions.

Lemma B.2. [29] Let d1, d2, d3 ∈ N, Φ1 ∈ Nd1,d2
, and Φ2 ∈ Nd2,d3

. There exists a network Ψ ∈ Nd1,d3

with L(Ψ) = L(Φ1) + L(Φ2), and satisfying

Ψ(x) = (Φ2 ◦ Φ1)(x), for all x ∈ Rd1 .

Proof. The proof is based on the identity x = ρ(x) − ρ(−x). First, note that by Definition B.1, we can
write

Φ1 = W 1
L1

◦ ρ ◦W 1
L1−1 ◦ · · · ◦ ρ ◦W 1

1

and
Φ2 = W 2

L2
◦ ρ ◦W 2

L2−1 ◦ · · · ◦ ρ ◦W 2
1 .

Next, let N1
L1−1 denote the width of layer L1 − 1 in Φ1 and N2

1 the width of layer 1 in Φ2. We define
the affine transformations W̃ 1

L1
: RN1

L1−1 → R2d2 and W̃ 2
1 : R2d2 → RN2

1 according to

W̃ 1
L1
(x) : =

(
Id2

−Id2

)
W 1

L1
(x)

W̃ 2
1 (x) : = W 2

1

((
Id2

−Id2

)
x
)
.

The proof is completed by noting that the network

Ψ := W 2
L2

◦ · · · ◦W 2
2 ◦ ρ ◦ W̃ 2

1 ◦ ρ ◦ W̃ 1
L1

◦ ρ ◦W 1
L1−1 ◦ · · · ◦W 1

1

satisfies the claimed properties.

Lemma B.3. There exist ReLU networks Φ⊕ ∈ N2,1 and Φ⊙ ∈ N2,1 satisfying

Φ⊕(x, y) = min{1, x+ y}
Φ⊙(x, y) = max{0, x+ y − 1},

for all x, y ∈ [0, 1].

Proof. First, to realize the operation x⊕ y = min{1, x+ y}, we note that addition can be implemented
by a single-layer ReLU network according to

x+ y =
(
1 1

)(x
y

)
.

It remains to realize the “min” operation with a ReLU network. To this end, we observe that

min{1, x} = 1− ρ(1− x) = (W2 ◦ ρ ◦W1)(x),

for x ∈ [0, 1], where
W1(x) = −x+ 1, W2(x) = −x+ 1.

15

Now, applying Definition B.2 to concatenate the networks Φ1(x, y) =
(
1 1

)(x
y

)
and Φ2(x) = (W2 ◦

ρ ◦W1)(x) yields the desired ReLU network realization of x⊕ y according to

x⊕ y = (W⊕
2 ◦ ρ ◦W⊕

1)(x, y),

for x, y ∈ [0, 1], where

W⊕
1 (x, y) =

(
−1 −1

)(x
y

)
+ 1, W⊕

2 (x) = −x+ 1.

For the operation x⊙ y = max{0, x+ y − 1}, we simply note that

max{0, x+ y − 1} = ρ

((
1 1

)(x
y

)
− 1

)
= (W⊙

2 ◦ ρ ◦W⊙
1)(x, y),

for x, y ∈ [0, 1], where

W⊙
1 (x, y) =

(
1 1

)(x
y

)
− 1, W⊙

2 (x) = x.

C Proof of Lemma 2.3
Proof. We follow the line of arguments in [13] and consider four different cases.
Case 1: f◦(x) ≥ 1, for all x ∈ [0, 1]n. In this case, the LHS of (4) is

σ(f) = 1.

The RHS becomes
(σ(f◦)⊕ x1)⊙ σ(f◦ + 1) = (1⊕ x1)⊙ 1 = 1.

Case 2: f◦(x) ≤ −1, for all x ∈ [0, 1]n. In this case, the LHS of (4) is

σ(f) = 0

and the RHS satisfies
(σ(f◦)⊕ x1)⊙ σ(f◦ + 1) = (0⊕ x1)⊙ 0 = 0.

Case 3: −1 < f◦(x) ≤ 0, for all x ∈ [0, 1]n. In this case, f ∈ (−1, 1] as x1 ∈ [0, 1]. The RHS of (4)
becomes

(σ(f◦)⊕ x1)⊙ σ(f◦ + 1)

= (0⊕ x1)⊙ (f◦ + 1)

= x1 ⊙ (f◦ + 1)

= max{0, x1 + f◦ + 1− 1}
= max{0, f}
= σ(f).

Case 4: 0 < f◦(x) < 1, for all x ∈ [0, 1]n. In this case, f ∈ (0, 2). The RHS of (4) becomes

(σ(f◦)⊕ x1)⊙ σ(f◦ + 1)

= (f◦ ⊕ x1)⊙ 1

= f◦ ⊕ x1

= min{1, f◦ + x1}
= min{1, f}
= σ(f).

16

D Proof of Lemma 4.3
We can follow the line of arguments in the proof of Lemma 2.3 and consider four different cases.
Case 1: f◦(x) ≥ 1, for all x ∈ [0, 1]n. In this case, the LHS of (29) is

σ(f) = 1.

The RHS becomes
(σ(f◦)⊕ (mxi))⊙ σ(f◦ + 1) = (1⊕ (mxi))⊙ 1 = 1.

Case 2: f◦(x) ≤ −1, for all x ∈ [0, 1]n. In this case, the LHS of (29) is

σ(f) = 0

and the RHS is given by

(σ(f◦)⊕ (mxi))⊙ σ(f◦ + 1) = (0⊕ (mxi))⊙ 0 = 0.

Case 3: −1 < f◦(x) ≤ 0, for all x ∈ [0, 1]n. In this case, f ∈ (−1, 1] as mxi ∈ [0, 1]. The RHS of (4)
becomes

(σ(f◦)⊕ (mxi))⊙ σ(f◦ + 1)

= (0⊕ (mxi))⊙ (f◦ + 1)

= (mxi)⊙ (f◦ + 1)

= max{0,mxi + f◦ + 1− 1}
= max{0, f}
= σ(f).

Case 4: 0 < f◦(x) < 1, for all x ∈ [0, 1]n. In this case, f ∈ (0, 2). The RHS of (29) becomes

(σ(f◦)⊕ (mxi))⊙ σ(f◦ + 1)

= (f◦ ⊕ (mxi))⊙ 1

= f◦ ⊕ (mxi)

= min{1, f◦ +mxi}
= min{1, f}
= σ(f).

E Construction of the network Φτ in Section 2
By Lemma B.3, we have the ReLU network associated with x⊕ x according to

W⊕
2 ◦ ρ ◦

((
−1 −1

)(x
x

)
+ 1

)
,

which can be rewritten as
W⊕

2 ◦ ρ ◦ (−2x+ 1). (35)

As y = ρ(y) − ρ(−y), for y ∈ R, and ¬y = 1 − y, for y ∈ [0, 1], we obtain the 2-layer ReLU network
associated with ¬y according to

−ρ(y) + ρ(−y) + 1. (36)

The ReLU network realizing the term function associated with τ = (x ⊕ x) ⊙ ¬y is obtained by com-
posing the network Φ⊙ in Lemma B.3 with (35) and (36) according to

W⊙
2 ◦ ρ ◦W⊙

1 ◦
(
W⊕

2 ◦ ρ ◦ (−2x+ 1)
−ρ(y) + ρ(−y) + 1

)
,

which yields the network Φτ in (3).

17

	Introduction
	Boolean Logic and Boolean Circuits
	MV Logic

	ReLU Networks as Circuit Counterpart of MV Logic
	Aspects of Our Algorithm
	Extensions to the Rational and Real Cases
	The Rational Case
	The Real Case

	Acknowledgment
	MV algebras
	ReLU networks
	Proof of Lemma 2.3
	Proof of Lemma 4.3
	alte

