
Divide-and-Conquer Matrix Inversion for Linear
MMSE Detection in SDR MIMO Receivers

Stefan Eberli∗, Davide Cescato†, and Wolfgang Fichtner∗
∗Integrated Systems Laboratory

ETH Zurich, Switzerland
e-mail: {eberli, fw}@iis.ee.ethz.ch

†Communication Technology Laboratory
ETH Zurich, Switzerland

e-mail: dcescato@nari.ee.ethz.ch

Abstract—Software-defined radio (SDR) platforms represent a
promising approach to facing the demands of the fast evolving
field of wireless communications. The flexibility of SDR solutions
is typically obtained at the cost of limited processing power,
which imposes the use of low-complexity algorithms. This task
is particularly challenging within multiple-input multiple-output
(MIMO) communication, which is inherently characterized by
heavy signal processing load. In this paper, we present a recursive
matrix inversion algorithm for Hermitian positive-definite (HPD)
matrices. The algorithm exhibits low computational complexity
and is thus particularly suited for the HPD matrix inversion
required in MIMO minimum mean squared error receivers. The
implementation on a design-time configurable VLIW processor,
configured with appropriate processing units and fabricated in
0.18 µm 1P/6M CMOS technology, demonstrates that real-time
operation in IEEE 802.11n-like MIMO-OFDM systems with up to
52 carriers and 3 antennas at the transmitter and at the receiver
is possible.

I. INTRODUCTION

Software-defined radio (SDR) platforms are emerging as
economic and flexible solutions for the heterogeneous and
rapidly changing scenario of wireless communications. By
offering the possibility of post-fabrication software enhance-
ments, SDR platforms are better suited to track the evolution of
wireless communication standards than dedicated VLSI radio
transceivers. The reverse of the medal is that the flexibility
inherent in SDR solutions comes at the expense of lower
efficiency in terms of area and power consumption. Thus,
dedicated VLSI implementations currently represent the pre-
ferred choice for most applications within the field of wireless
communications.

Multiple-input multiple-output (MIMO) communication
systems, characterized by the use of multiple antennas at both
ends of the wireless link, deliver significant performance gains
with respect to single-antenna systems. For transmission over
a wideband frequency-selective channel, MIMO is typically
combined with orthogonal frequency-division multiplexing
(OFDM), which divides the channel into a set of narrowband
frequency-flat parallel subchannels.

The heavy signal processing load inherent to MIMO com-
munication is amplified even further within MIMO-OFDM
systems, since a significant part of the processing effort has
to be carried out on every OFDM subchannel. For real-
time operation on SDR platforms, which typically have lim-
ited processing resources, only low-complexity MIMO-OFDM

transceivers with computationally efficient algorithms can be
considered.

The first SDR implementations of MIMO receivers have
recently appeared in the literature for 2× 2 MIMO systems.1

Specifically, the results reported lie in the domain of mobile
hand-held devices and in the domain of wireless local area
networks. Within the former, [1] and [2] focus their discussion
on the challenges and the architectural choices encountered
in the next generation of SDRs for mobile phones, including
MIMO-OFDM related signal processing. Within the latter,
[3] describes the implementation of a 2× 2 MIMO-OFDM
system for the upcoming IEEE 802.11n standard on the
ADRES processor core. In this paper, we address matrix
inversion as the hardest computational kernel performed in the
class of linear minimum mean squared error (MMSE) MIMO
detectors. Compared to detectors of other classes (e.g., sphere
detectors [4]), linear MMSE detectors have low computational
complexity, which potentially allows a real-time capable SDR
implementation.

Related Work: Matrix inversion for a generic MR×MT

linear MMSE MIMO-OFDM receiver, based on a series of
rank-1 updates, is detailed in [5]. The proposed architecture
efficiently reuses its resources and is composed of MT par-
allel processing units. Another approach, described in [6], is
particularly designed for 4× 4 linear MMSE MIMO-OFDM
receivers and implemented as unrolled, pipelined architecture.
The matrix inversion is performed by Banachiewicz inversion
formula [7]: The initial matrix is partitioned into four 2× 2
matrices involved in the steps leading to the inversion of
the initial 4× 4 matrix. Overall, this process reduces the
number of operations required for the inversion compared
to direct matrix inversion. Both [5] and [6] target dedicated
VLSI implementations. Finally, the implementation of matrix
inversion, again based on Banachiewicz inversion formula, for
a 4× 4 linear MIMO-OFDM SDR receiver is presented in [8],
then refined in [9] and [10].

Contributions: We derive a recursive matrix inversion
algorithm for Hermitian positive-definite (HPD) matrices. The
proposed method has low computational complexity and is
thus well suited for computing the matrix inversion required
by linear MMSE detectors. As a proof of concept, we consider
a 2× 2, a 3× 3, and a 4× 4 MIMO-OFDM receiver, for

1An MR×MT MIMO system has MT transmit and MR receive antennas.



which the linear MMSE estimator matrices are computed
on a design-time configurable very long instruction word
(VLIW) processor. We evaluate the resulting computational
effort and the achieved bit error rate (BER) performance of
corresponding MIMO receivers, and compare our results to
those achieved by similar work in the literature.

Outline: The reminder of this paper is structured as
follows. Section II introduces the mathematical model of the
linear MMSE MIMO receiver system. In Section III, the
recursive matrix inversion algorithm is derived, and formulated
for 2× 2, 3× 3, and 4× 4 HPD matrices. The design-time
configurable VLIW processor used for the implementation
of the MIMO-OFDM receivers is described in Section IV.
Section V presents the results of the implementation, whereas
the corresponding BER performance curves are shown in
Section VI. Section VII concludes the paper.

Notation: AH denotes the Hermitian transpose of a
matrix A. If A is quadratic, adj (A), and det(A) stand for its
adjoint and its determinant, respectively. For any scalar a ∈ C,
we define adj (a) = 1. The notation z ∼ CN (u,R) indicates
that the random vector z is characterized by a circularly-
symmetric complex-valued Gaussian distribution with mean u
and covariance matrix R.

II. LINEAR MMSE MIMO RECEIVER SYSTEM MODEL

We consider a MIMO system with MT transmit and MR ≥
MT receive antennas. The baseband-equivalent input-output
relation is given by

y = Hs + n. (1)

In (1), s ∈ CMT represents the transmitted symbol vector,
whose entries are picked from a set of QAM constella-
tion points with mean zero and average energy 1/MT . The
complex-valued vector y ∈ CMR denotes the signal observed
at the receiver, whereas the additive noise experienced at the
receiver is modeled by the random vector n ∼ CN (0, σ2IMR

).
The complex-valued entries of the matrix H ∈ CMR×MT

represent the channel gains between the transmit and the
receive antennas.

In packet-based transmission schemes, the receiver esti-
mates the channel matrix H from a set of training symbols at
the beginning of every packet. The resulting channel estimate
matrix Ĥ is then used to compute the linear MMSE estimator
matrix

G = (ĤHĤ +MTσ
2IMT

)−1ĤH . (2)

The MIMO MMSE receiver computes ŝ = Gy. For hard
detection, the entries of ŝ are mapped individually to the
nearest constellation points and the result is declared as the
transmitted signal vector. For soft detection, ŝ is further
processed to obtain appropriate soft information.

III. DIVIDE-AND-CONQUER MATRIX INVERSION

A. Algorithm

The computation of G as in (2) requires the inversion of
the MT ×MT matrix J , ĤHĤ + MTσ

2IMT
, which, by

construction, is HPD. A matrix F is Hermitian if it satisfies
FH = F and positive-definite if xHFx > 0 holds for all
x ∈ CM [11]. In the following, we discuss the problem of
matrix inversion for the entire class of HPD matrices by
considering a generic M ×M HPD matrix F.

The direct inversion formula

F−1 =
adj (F)
det(F)

(3)

is trivial for M = 1, since in this case F is a positive scalar.
For M = 2, (3) corresponds to[

a b
b∗ c

]−1

=
1

ac− bb∗

[
c −b
−b∗ a

]
. (4)

In the case M > 2, however, the high computational complex-
ity and the large dynamic range render the use of (3) imprac-
tical. An alternative approach is obtained by partitioning F as

F =
[

A B
BH C

]
(5)

where A ∈ Cp×p and C ∈ C(M−p)×(M−p), with 1 ≤ p < M .
Then, the inverse of F can be written, using the Banachiewicz
formula for the inverse of a partitioned matrix [7], as

F−1 =
[

A−1 + A−1BS−1BHA−1 −A−1BS−1

−S−1BHA−1 S−1

]
(6)

with S , C − BHA−1B being the Schur complement
of A in F. In order for (6) to hold, A and S must be
nonsingular. This is directly verified by noting that since A
is a principal submatrix of the HPD matrix F, both A and
its Schur complement S are HPD [11, chap. 7], and hence
nonsingular. As a result, the task of inverting the M × M
matrix F can be replaced by the simpler tasks of inverting the
p×p matrix A and the (M−p)×(M−p) matrix S, followed
by combining the resulting A−1 and S−1 according to (6).

The combination of all concepts illustrated above allows to
formulate the following algorithm for HPD matrix inversion:

Algorithm 1 HPD matrix inversion
Require: F is an M ×M HPD matrix

if M = 1 or M = 2 then
compute F−1 by direct inversion as in (3)

else
pick a suitable p satisfying 1 ≤ p < M
partition F as in (5)
compute A−1

compute S = C−BHA−1B
compute S−1

construct F−1 as in (6)
end if

In order to complete the definition of Algorithm 1, we need
to specify how A−1 and S−1 are computed and how p is
picked. We focus on the former issue first. Since, as discussed
above, A and S are HPD matrices, Algorithm 1 itself can be
applied to A and S for computing A−1 and S−1, respectively.



Thus, we obtain a recursive method for the computation of the
inverse of HPD matrices that we will, henceforth, call divide-
and-conquer (D&C) matrix inversion. Partitioning as in (5)
represents the divide step, whereas the conquer step results
from (6). We note that the recursion ends when the matrix
submitted to Algorithm 1 has dimension 2× 2 or is scalar.

Picking p = 1 or p = 2 implies that A−1 will be computed
by direct inversion, whereas picking p = M−1 or p = M−2
implies that S−1 will be computed by direct inversion. For
even M , another strategy is given by picking p = M/2, from
which follows that A and S have the same size.

B. Complexity Analysis

In order to assess the complexity of D&C matrix inver-
sion, we count the multiplications and divisions required by
Algorithm 1 (including the computation of A−1 and S−1).
Thereby, we do not distinguish between real-valued and
complex-valued multiplications, and by division we denote
the real-valued operation 1/x. Further, we do not consider
additions, subtractions, and sign changes, since, depending on
the implementation, these operations may be integrated within
the multiply operations. Finally, we assume that the Hermitian
symmetry in the matrices F, A, S, and their inverses is
exploited to minimize the number of operations.

We initially set the restriction that all 2× 2 matrices are
inverted by partitioning as in (6), and not by the direct inver-
sion foreseen by Algorithm 1. Under this restriction, it can be
verified by induction that D&C inversion of a M ×M HPD
matrix requires C̃D&C = (1/2)M3 + (1/2)M2 −M multipli-
cations and M divisions. This result is independent from the
strategy used to pick p.

We now remove the restriction and assume that the choices
of p across all levels of recursion lead to a total of K 2× 2
direct inversions (with 0 ≤ K ≤ M/2). Since a 2× 2
direct inversion costs one multiplication more and one division
less than 2× 2 partitioned inversion as in (6), the resulting
complexity of M ×M D&C matrix inversion amounts to

CD&C = C̃D&C +K

=
1
2
M3 +

1
2
M2 −M +K

multiplications and M −K divisions.
Finally, we discuss the cost of computing the MMSE

estimator matrix G from the estimated channel matrix Ĥ as
in (2), if D&C matrix inversion is used. Computing J from Ĥ
requires (M2

TMR +MTMR)/2 multiplications, whereas com-
puting G from J−1 requires M2

TMR multiplications. Thus,
the computation of G from Ĥ with D&C inversion of the
MT ×MT matrix J requires in total

CG,D&C =
3
2
M2

TMR +
1
2
MTMR

+
1
2
M3

T +
1
2
M2

T −MT +K

multiplications and MT−K divisions (with 0 ≤ K ≤MT /2).
In comparison, the use of the rank-1 update matrix inversion

described in [5] requires

CG,rank-1 =
5
2
M2

TMR +
5
2
MTMR −M2

T +MT

multiplications and MR divisions. We note that MR ≥ MT

implies that CG,D&C < CG,rank-1 holds for 0 ≤ K ≤ MT /2.
Hence, the computation of G with D&C matrix inversion
requires fewer multiplications and no more divisions than with
rank-1 update matrix inversion.

C. Algorithms for 2× 2, 3× 3, and 4× 4 Matrix Inversion

In the following, D&C matrix inversion is formulated for
the special cases of 2× 2, 3× 3 and 4× 4 matrix inversion,
using the notation of Section III-A. Again, the Hermitian
symmetries are exploited to minimize the number of required
operations. The symbols Ri, ri, and ri employed in the
algorithms indicate temporary storage locations of appropriate
dimensions.

For a 2× 2 HPD matrix F, D&C inversion coincides with
direct inversion and is performed as follows:

Algorithm 2 Implementation of 2× 2 direct inversion
r1 ← ac CMUL
r2 ← r1 − bb∗ CMAC
r3 ← r−1

2 DIV
x← r3c CMUL
y ← −r3b CMUL
z ← −r3a CMUL

F−1 =
[
x y
y∗ z

]
-

Algorithm 2 requires a total of 6 operations, split
into complex-valued multiplication (CMUL), complex-valued
multiply-and-accumulate (CMAC), and division (DIV).

In the 3× 3 case, we employ D&C inversion with p =
2. This leads to a partitioning of F where A has dimension
2× 2, B is 2×1, and C scalar. In the 4× 4 case, we employ
D&C inversion and set p = 2 again, partitioning F into four
2× 2 submatrices. This approach coincides with the solution
proposed in [10]. In both cases, F−1 is computed as follows:

Algorithm 3 Implementation of 3× 3 and 4× 4 D&C inver-
sion with corresponding number of operations

3× 3 4× 4
R1 ← A−1 Direct inversion 6 6
R2 ← BHR1 CMAC 4 8
R3 ← R2B CMAC 2 8
S← C−R3 CSUB 1 4
Z← S−1 Direct inversion 1 6
Y ← −RH

2 Z CMAC 2 8
R4 ← YR2 CMAC 4 8
X← R1 −R4 CSUB 4 4

F−1 =
[

X Y
YH Z

]
- - -

Total 24 52



Algorithm 3 requires the arithmetic operators already nec-
essary for Algorithm 2, supplemented by complex-valued
subtraction (CSUB). A total of 24 operations in the 3× 3 case
and 52 operations in the 4× 4 case is needed to compute F−1.

IV. PROCESSOR ARCHITECTURE

The VLIW-like processor considered in this paper for the
implementation of matrix inversion is part of the framework
for design-time configurable adaptive stream processing en-
gines (ASPEs) described in [12]. The framework permits the
designer to configure the ASPE’s datapath with functional
and storage units tailored to the application domain targeted.
The software is written in a dedicated assembly language. An
example of ASPE configuration for SDR is reported in [13],
where the baseband processing of a single-antenna OFDM
receiver is implemented.

Figure 1 depicts the block diagram of the ASPE con-
figuration selected for this paper, which, in the following,
is named ASPE B. The controlpath comprises the sequencer
(SEQ) which is responsible of controlling the program flow.
Dictionary-based code compression is supported thanks to
an index and a dictionary memory. The VLIWs are split
into 16 bit wide control words and fed to the corresponding
datapath units. The datapath is especially designed for 16 bit
complex-valued arithmetics. Thereby, memory access bottle-
necks are easily avoided by storing the real and imaginary
parts in the lower and upper half of the same 32 bit data word,
respectively.

In agreement with our analysis in Section III-C, the datapath
has been equipped with two complex-valued multiply-and-
accumulate units (CMAC0-1), one real-valued divider unit
(DIV), and one complex-valued arithmetic logic unit (CALU).
The storage requirements are covered by a small register-
file (REG) of eight registers, four 256-word storage units
(RAM0-3), an input buffer (I-BUF), and an output buffer
(O-BUF).

For an effective implementation, the number of pipeline
stages inside each unit was chosen to level the length of the
critical timing paths, across all units. In addition, the data-
level parallelism inherent to most signal processing algorithms
is exploited by designing all units, except the I-BUF and the
O-BUF, as two-way single-instruction multiple-data (SIMD)
units. By doing so, each unit performs the same operation on
two different sets of data, doubling the available processing
performance. The number of pipeline stages and the two-way
SIMD nature of the units are visible in Figure 1.

The data network (D-Net) connects functional and storage
units. It is controlled by the sequencer and can change its
interconnect configuration at run-time, at each clock cycle.
This reconfigurability allows the concurrent operation of up
to all datapath units, thus maximizing the available processing
power. The D-Net also permits to configure the datapath as a
processing chain containing both storage and functional units.
In this way, the demand for an expensive, high-bandwidth
register file for temporary data storage is avoided – with a

resulting advantage over conventional VLIW processors that
require such register files to operate.

Control
Words

C
on

tro
l N

et
w

or
k

D-Net

REG

D
at

a 
O

ut

D
at

a 
In

D
at

a 
A

ck

D
at

a 
R

eq

D
at

a 
R

eq

D
at

a 
A

ck

C
on

tro
lp

at
h

Datapath

V
LI

W
 p

ro
gr

am
 m

em
or

ie
s/

di
ct

io
na

ry

CMAC0 CMAC1 CALU

RAM0 RAM1 RAM2 RAM3 I-BUF

ASPE B

SEQ

O-BUF

Index
memory

DIV

Pipeline stage2-way SIMD unit

Fig. 1. Block diagram of ASPE B, with datapath configuration tailored for
matrix inversion.

V. IMPLEMENTATION RESULTS

In the following, the computation on ASPE B of the linear
MMSE estimator matrix G is discussed for an IEEE 802.11n-
like MIMO-OFDM system with 52 subcarriers. The latency
imposed by the computation of all 52 G matrices from
corresponding Ĥ matrices, which we denote as preprocessing
latency, infers a delay in the detection of the payload data.
For real-time operation, the receiver must process the received
payload data fast enough to compensate the inferred delay
before the end of the data packet. The duration of one
OFDM symbol is 4 µs. Assuming that the decoding of one
OFDM symbol requires 2.5 µs and that the shortest packets
contain at least 10 OFDM symbols, we obtain the maxi-
mum preprocessing latency allowed for real-time operation as
Tpp = 10(4 µs− 2.5 µs) = 15 µs.

Three different antenna configurations (2× 2, 3× 3, and
4× 4) are considered. The matrix inversions required to com-
pute G in the three distinct cases are performed according to
Algorithm 2 and Algorithm 3.

A. Silicon Realization

ASPE B, as detailed in Figure 1 and with a datapath word-
width of 16 bit, was fabricated on a 0.18 µm 1P/6M CMOS
technology. The post-route clock frequency reported by the
back-end design tool is 250 MHz, whereas the total silicon
area results in 3.7 mm2. Table I reveals the area breakdown of
the functional units of ASPE B. Note that the areas for all units
refer to complete two-way SIMD units. Thus, for instance, the
DIV unit area is the sum of the areas of the two real-valued
dividers operating in SIMD manner.

B. Operation in a 2× 2 MIMO-OFDM System

In the 2× 2 case, ASPE B is programmed to compute
blocks of four G matrices at a time. In this manner, the two-
way SIMD units and the integrated pipeline stages are fully
exploited, maximizing the matrix inversion throughput. The
computation of four 2× 2 G matrices from corresponding
2× 2 Ĥ matrices requires 44 clock cycles, 20 of which are
dedicated to 2× 2 direct inversion (as in Algorithm 2) of the



TABLE I
POST LAYOUT SILICON-AREA BREAKDOWN OF ASPE B IN 0.18 µm

1P/6M CMOS TECHNOLOGY

Unit Area [mm2] Complexitya [kGE]
DIV 0.40 41
CMAC0 0.37 38
CMAC1 0.38 39
CALU 0.10 11
RAM[0-3] 0.22 each 23 each
I-BUF 0.10 11
O-BUF 0.11 11
SEQ 0.78 81
other 0.58 59
ASPE B 3.7 383

aThe area of one gate equivalent (GE) corresponds to the silicon area
occupied by one low-drive 2 input NAND, which amounts to 9.67 µm2 on
the considered technology.

four J matrices. The resulting implementation allows real-time
operation for the considered IEEE 802.11n-like MIMO-OFDM
system, since the preprocessing latency for the computation of
all 52 G matrices amounts to 2.3 µs < Tpp.

C. Operation in a 3× 3 MIMO-OFDM System

The two-way SIMD units of ASPE B are exploited again
to compute two 3× 3 G matrices in parallel. Following
the steps of Algorithm 3 results in an implementation that
requires 118 clock cycles to compute two G matrices from
corresponding Ĥ matrices. For the considered IEEE 802.11n-
like system, this accounts for a preprocessing latency of
13 µs < Tpp, allowing real-time operation.

D. Operation in a 4× 4 MIMO-OFDM System

If D&C matrix inversion as in Algorithm 3 is used,
166 clock cycles are needed to compute two 4× 4 G matrices
from corresponding 4× 4 Ĥ matrices by exploiting the two-
way SIMD units of ASPE B. As a comparison, if the rank-1
update algorithm is used for matrix inversion on ASPE B,
the same task requires 400 clock cycles. The preprocessing
latency for the considered IEEE 802.11n-like system using
D&C matrix inversion is approximately 17.3 µs > Tpp. Thus,
our real-time constraint is not fulfilled.

E. Comparison with Similar Work

Table II presents the number of clock cycles and the
corresponding processing time necessary for the computation
of one G matrix, for the methods presented in this paper and
for methods proposed in related work.

When considering 4× 4 matrices, the most similar work
is represented by the 4× 4 linear MMSE estimator matrix
computation for MIMO SDRs presented in [10]. Although the
matrix inversion in [10] coincides with the 4× 4 D&C matrix
inversion presented in Algorithm 3, there is a substantial
difference that deserves special attention. Reference [10] is
restricted to the special case of Alamouti space-time block
coding (STBC) which leads to Hermitian matrices with null-
entries, whose inversion is significantly simpler than the matrix
inversion presented in this paper, which applies to the entire
class of HPD matrices. Nevertheless, D&C inversion is more

efficient in terms of required clock cycles – 83 versus 202
in [10]. This result is achieved by exploiting the Hermi-
tian symmetry of J, its submatrices, and the corresponding
inverses, and by leveraging on the SIMD architecture of
ASPE B.

The work described in [7] implements a dedicated,
pipelined, and completely unrolled architecture for the com-
putation of the 4× 4 linear MMSE matrix following the D&C
matrix inversion as in Algorithm 3. Clearly, this implementa-
tion is the most performing one in terms of processed 4× 4 G
matrices per unit of time. However, the achieved performance
comes at the cost of a very large area, between 6.23 and
8.81 mm2 depending on the selected word-width, in a 90 nm
CMOS process.

TABLE II
PROCESSING LATENCY FOR THE COMPUTATION OF ONE G MATRIX

Matrix size, Method Cycles Timea [ns]
2× 2 Direct (this work) 44/4 = 11 44 @ 250 MHz
3× 3 D&C (this work) 118/2 = 59 236 @ 250 MHz
4× 4 D&C (this work) 166/2 = 83 332 @ 250 MHz
4× 4 Rank-1 (this work) 400/2 = 200 800 @ 250 MHz
4× 4 D&C [10] 202 505 @ 400 MHz
4× 4 D&C [7] 1 6 @ 160 MHz
4× 4 Rank-1 [5] 102 579 @ 176 MHz

aProcessing time computed according to the clock frequency of the corre-
sponding work.

VI. BER PERFORMANCE

In this section, we present the BER performance of MIMO
MMSE soft-decision receivers (cascaded with a soft-input
Viterbi decoder [14]), when the matrix G is computed ac-
cording to the assembler code implementations of D&C matrix
inversion presented in Sections V-B, V-C, and V-D.

The BER performance is determined by Monte Carlo simu-
lations. In every simulation cycle, randomly generated bits are
sent through a rate 1/2 convolutional encoder (with generator
polynomials [133o 171o] and constraint length 7) and succes-
sively Gray-mapped onto points of a 64-QAM constellation.
The resulting complex-valued symbols are stacked to build the
vector s and are transmitted over the MIMO channel according
to (1). The entries of the channel matrix H are independent
and identically distributed according to CN (0, 1). The signal-
to-noise ratio (SNR) at the receiver is given by 1/σ2. We
assume that the receiver perfectly estimates the channel (i.e.,
that Ĥ = H), as well as the noise variance σ2.

Figure 2 presents the resulting BER performance for 2× 2,
3× 3, and 4× 4 MIMO systems. The curves corresponding
to ideal floating-point matrix inversion are provided as a
reference, whereas the curve corresponding to the ASPE B
implementation of the rank-1 update matrix inversion serves as
a comparison in the 64-QAM 4× 4 case. The dashed threshold
at BER = 2 · 10−7, visible in all plots, indicates the maximum
BER tolerated in order to achieve a packet error rate (PER) of
10% or less, with packets of length L = 219 bits. The threshold
has been derived by computing BER = 1− (1− PER)1/L,
which holds under the pessimistic assumption that the bit
errors are uniformly distributed over the received data.



Figure 2 shows that in the 2× 2 and the 3× 3 case, the
performance of the linear detector implemented on ASPE B
exhibits a small implementation loss compared to the ideal
detector using floating-point arithmetic, until reaching the
2 · 10−7 BER threshold. Thus, a PER of 10% can be obtained
without major SNR penalties.

The bottom left plot of Figure 2 reveals that, in the 4× 4
case with 64-QAM, the error floor of the rank-1 update
based MMSE receiver is significantly higher than the error
floor of the D&C based MMSE receiver. We also observe
that, both D&C and rank-1 update matrix inversion, lead to
a sensible implementation loss. At the 10% PER threshold,
the implementation loss amounts to 3 dB and 5 dB for the
D&C and the rank-1 update matrix inversion, respectively.
This suggests that a wordwidth of 16 bits is not enough for
an effective 4× 4 MIMO detection with 64-QAM. However,
for 16-QAM 4× 4 MIMO transmission, a significantly smaller
implementation loss is obtained (as the bottom right plot in
Figure 2 shows).

10 15 20 25 30

10
−6

10
−4

10
−2

10
0

2⋅ 10−7

SNR [dB]

B
E

R

3x3 MIMO System, 64−QAM

 

 
Floating−point
D&C ASPE B

10 15 20 25 30

10
−6

10
−4

10
−2

10
0

2⋅ 10−7

SNR [dB]

B
E

R

2x2 MIMO System, 64−QAM

 

 
Floating−point
D&C ASPE B

10 15 20 25 30 35

10
−8

10
−6

10
−4

10
−2

10
0

2⋅ 10−7

SNR [dB]

B
E

R

4x4 MIMO System, 64−QAM

 

 
Floating−point
D&C ASPE B
Rank−1 ASPE B

10 15 20 25 30 35

10
−8

10
−6

10
−4

10
−2

10
0

2⋅ 10−7

SNR [dB]

B
E

R

4x4 MIMO System, 16−QAM

 

 
Floating−point
D&C ASPE B

Fig. 2. BER performance curves for different matrix inversion implemen-
tations: reference floating-point, D&C on ASPE B, and rank-1 update on
ASPE B.

VII. CONCLUSIONS

In this paper, we presented D&C matrix inversion as a
recursive, low-complexity inversion algorithm for HPD matri-
ces. We employed D&C matrix inversion for the computation
of the linear MMSE estimator matrix for 2× 2, 3× 3, and
4× 4 MIMO-OFDM systems, and presented corresponding
implementation results on a design-time configurable VLIW
processor.

The proposed D&C matrix inversion method is well suited
for the implementation in SDR platforms. For the CMOS
technology considered in this work, the 2× 2 and 3× 3
solutions for IEEE 802.11n-like MIMO-OFDM systems are
real-time capable and deliver enough numerical precision to
be of practical interest. Nevertheless, for larger matrices,
inversion remains a demanding task, as testified by the 4× 4
implementation, and requires dedicated VLSI solutions.

VIII. ACKNOWLEDGEMENTS

This research was supported by the Swiss Innovation Pro-
motion Agency (CTI), project nr. KTI-8537. Many thanks go
to Matthias Braendli, Benjamin Dietrich, and Lukas Haas, who
were substantially involved in the design of ASPE B.

REFERENCES

[1] M. Woh, S. Seo, H. Lee, Y. Lin, S. Mahlke, T. Mudge,
C. Chakrabarti, and K. Flautner, Embedded Computer Systems:
Architectures, Modeling, and Simulation. Springer Berlin /
Heidelberg, 2007, vol. 4599/2007, ch. The Next Generation
Challenge for Software Defined Radio, pp. 343–354.

[2] U. Ramacher, “Software-defined radio prospects for multistan-
dard mobile phones,” Computer, vol. 40, no. 10, pp. 62–69, Oct.
2007.

[3] B. Bougard, B. De Sutter, S. Rabou, D. Novo, O. Allam,
S. Dupont, and L. Van der Perre, “A coarse-grained array based
baseband processor for 100mbps+ software defined radio,” in
Design, Automation and Test in Europe, 2008. DATE ’08,
Munich, Germany, Mar. 2008, pp. 716–721.

[4] J. Antikainen, P. Salmela, O. Silven, M. Juntti, J. Takala,
and M. Myllyla, “Application-specific instruction set processor
implementation of list sphere detector,” in Signals, Systems
and Computers, 2007. ACSSC 2007. Conference Record of the
Forty-First Asilomar Conference on, Pacific Grove, CA, Nov.
4–7, 2007, pp. 943–947.

[5] A. Burg, S. Haene, D. Perels, P. Luethi, N. Felber, and W. Ficht-
ner, “Algorithm and VLSI architecture for linear MMSE detec-
tion in MIMO-OFDM systems,” in Circuits and Systems, 2006.
ISCAS 2006. Proceedings. 2006 IEEE International Symposium
on, May 2006.

[6] S. Yoshizawa, Y. Yamauchi, and Y. Miyanaga, “A complete
pipelined MMSE detection architecture in a 4x4 MIMO-OFDM
receiver,” in Circuits and Systems, 2008. ISCAS 2008. IEEE
International Symposium on, Seattle, WA, USA, May 18–21,
2008, pp. 2486–2489.

[7] F. Zhang, Ed., The Schur Complement and Its Applications, ser.
Numerical Methods and Algorithms. Springer US, March 30
2006, vol. Volume 4.

[8] J. Eilert, D. Wu, and D. Liu, “Efficient complex matrix inversion
for MIMO software defined radio,” in Circuits and Systems,
2007. ISCAS 2007. IEEE International Symposium on, New
Orleans, LA, May 27–30, 2007, pp. 2610–2613.

[9] D. Wu, J. Eilert, D. Liu, D. Wang, N. Al-Dhahir, and H. Minn,
“Fast complex valued matrix inversion for multi-user STBC-
MIMO decoding,” in VLSI, 2007. ISVLSI ’07. IEEE Computer
Society Annual Symposium on, Porto Alegre, Mar. 9–11, 2007,
pp. 325–330.

[10] J. Eilert, D. Wu, and D. Liu, “Implementation of a pro-
grammable linear MMSE detector for MIMO-OFDM,” in
Acoustics, Speech and Signal Processing, 2008. ICASSP 2008.
IEEE International Conference on, Las Vegas, NV, Mar. 31–
Apr. 2008, 2008, pp. 5396–5399.

[11] R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge,
U.K., 1985.

[12] T. Boesch, “Adaptive stream processor for network multimedia
consumer electronic devices,” Ph.D. dissertation, ETH Zurich,
2004.

[13] S. Eberli, A. Burg, T. Boesch, and W. Fichtner, “An IEEE
802.11a baseband receiver implementation on an application
specific processor,” in Circuits and Systems, 2007. MWSCAS
2007. 50th Midwest Symposium on, Montreal, Que., Aug. 5–8,
2007, pp. 1324–1327.

[14] A. Viterbi, “Error bounds for convolutional codes and an asymp-
totically optimum decoding algorithm,” IEEE Transactions on
Information Theory, vol. 13, no. 2, pp. 260–269, Apr. 1967.


