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Abstract—Ensembles of Boolean networks using linear random
threshold functions with memory are considered. Such ensembles
have been studied previously by Szejka et al. [1]. They obtained
analytical results for the order parameter which can be used
to predict the expected behavior of a network randomly drawn
from the ensemble. Using numerical simulations of randomly
drawn networks, Szejka et al. [1] found marked deviations
from the predicted behavior. In this work improved analytical
results are provided that better match up the numerical results.
Furthermore, the critical point in their analysis is identified. In
the model studied, each node is not only dependent on the K
regular inputs, but also on the previous state of the node. The
results show that this feedback loop accounts for the low order
parameter and tolerance on random errors, even for networks
with high in-degree.

I. INTRODUCTION

A (synchronous) Boolean network (BN) can be viewed as
a collection of N nodes V = {v1, v2, . . . , vN} with memory.
The state of a node v denoted by sv(t) ∈ {0, 1} for t ∈ N
and is determined by

sv(t) = fv

(
sv1(t− 1), . . . , svkv

(t− 1)
)
. (1)

where {v1, . . . , vkv}, 1 ≤ kv ≤ N are the controlling nodes
and fv : {0, 1}kv → {0, 1} is a Boolean function. 1 Boolean
networks serve as an abstract model of interacting agents.
For example, BNs have been used to model (small scale)
genetic regulatory networks, see [3]–[5]. In the late 1960’s
Stuart Kauffman proposed to study Boolean networks cho-
sen at random from well defined ensembles of networks to
understand large scale genetic regulatory networks [6], [7].
He was interested in finding general properties that possibly
underlie all genetic networks and that could explain features
of living organisms. Such random Boolean networks (RBNs)
are constructed as follows: First for each node a function is
chosen according to a well defined probability distribution
from a predefined set of Boolean functions. Second for each
node, the controlling nodes are chosen from V according some
probability distribution. Finally, a random initial state is chosen
and the network is evolved according Equation (1).

Kauffman discovered that depending on the networks topol-
ogy and the choice of functions, a RBN operate in different

1It should be noted that the state of all nodes is computed in parallel
in each time step, hence the name synchronous Boolean network. In fact
other updating schemes are used, for example the updating schemes can be
parameters of the network by using different response times of nodes on
regulative actions [2].

dynamic regimes. In the so-called ordered regime, most of
its components are frozen, i.e. keep their state when being
updated. Further, single transient errors that change the state
of a randomly chosen node from 0 to 1 or vice versa tend to
vanish. Contrary, in the disordered regime, only a few frozen
nodes exist and single transient errors propagate to many other
nodes.

In this work random networks using linear threshold func-
tions are considered. Let 0 < K ∈ N and h ∈ R be fixed
parameters. To each node v, a function is assigned, defined by

fv(x1, . . . , xK , xK+1) =


1, if r > h

xK+1 if r = h

0, if r < h

(2)

where

r := r(x1, . . . , xK) =
K∑

i=1

wi · xi. (3)

The weights wi are chosen uniformly at random from {−1, 1},
which defines a probability distribution on the set of possible
functions. Then for 1 ≤ i ≤ K the controlling nodes vi

are chosen uniformly at random from V . The state sv(t) is
obtained by setting xi = svi(t − 1) for 1 ≤ i ≤ K and
xK+1 = sv(t − 1). In other words, K inputs are chosen
randomly, whereas the input K + 1 is always connected to
the function’s output. Hence the state of any node v at time t
depends on its own state at time t− 1. These networks were
studied by Szejka et al. [1], motivated by the fact that such
networks have successfully been used to study small scale gene
regulatory networks, see for example [3], [5] for modeling the
cell cycle in yeast.

Using the so-called annealed approximation Szejka et al. [1]
derived expressions in dependence of the parameters h and K,
for the time evolution of the proportion of nodes being 1, and
for the expected sensitivity of a random Boolean function.
The expected sensitivity can be used as an order parameter
for the ensemble to predict its dynamical regime. Szejka et
al. [1] found deviations between their analytical results for
integer valued thresholds and numerical simulations, which
they attributed to the annealed approximation. In this work
improved analytical results are given, that better match up the
numerical results. Further the critical point in their analysis is
identified.

The outline is as following: In Section II, a brief introduc-
tion in random Boolean networks and their order parameter



is given. In the following sections our main results are
derived. In Section III-A the so-called bias map is derived
for random threshold networks and some results that will be
needed for further calculations are given. In Section III-B the
order parameter is derived, by first calculating the average
sensitivity of threshold functions, where the distinctions is
made between integer and non integer thresholds. In section
III-C the average sensitivity of functions whose input xK+1

is randomly chosen is considered, instead of being set to the
output. In Section III-D, the previously derived results are used
to obtain the phase diagram. The phase diagram visualizes for
which combination of h and K, random threshold networks
operate in the chaotic regime. Furthermore random threshold
function with h = 0 are discussed in more detail.

II. RANDOM BOOLEAN NETWORKS AND THEIR ORDER
PARAMETERS

An important question for random Boolean networks is
their expected dynamical behavior and the expected robustness
against single transient errors. Let us concentrate on the last
point. If a random chosen node is disturbed, i.e. its state is
changed from one to zero or vice versa, one is interested in
the evolution of this disturbance. Will it tend to spread through
the whole network, possibly affecting all nodes? Or will the
disturbance die out, indicating the so-called ordered phase?
In some case, depending on the parameters of the random
construction process, there exists a single order parameter
that can be used to answer this question. Some well known
example are the so-called NK-networks studied by Kauffman
[6]. These functions are chosen uniformly at random from
the set of all Boolean functions with K arguments. The
controlling nodes are chosen uniformly at random from all(
N
K

)
possibilities. This ensemble can be described by the single

parameter K. It is well known that ordered behavior is only
found if and only if K ≤ 2.

Often the order parameter is obtained by the so-called
annealed approximation [8]. It provides the probabilistic
framework to determine the dynamical regime of a random
network. The annealed approximation is a mean-field theory
that neglects correlations between nodes. It is assumed that
at each time step the functions and the controlling nodes are
drawn at random again. If N is large, this procedure allows for
quite accurate predictions [8]. Also for ensembles like those
studied here the predictions for the annealed model coincides
the non-annealed model if N →∞ [9].

Suppose the network operates in a stationary state. Under
the assumptions of the annealed analysis we may assume that
a node chosen uniformly at random has probability b of being
in state 1. Let p(f) denote the probability of choosing the
function f . Then the order parameter is defined as

λ =
∑

f

p(f)
∑

x∈ΩK

s(f,x)b|x|(1− b)K−|x| (4)

where |·| denotes the Hamming weight and s(f,x) denotes
the sensitivity of f at x defined by

s(f,x) = #{y ∈ ΩK ||x⊕ y| = 1 and f(x) 6= f(y)}

where ⊕ denotes the component wise addition mod 2. It is
well know that if N →∞ and

λ ≤ 1 (5)

any single perturbation introduced at a randomly chosen node
will vanish with probability one [10]. The parameter b can
be obtained as follows (cnf. [11]). Suppose that at t the
probability of a random chosen node to be 1 is equal to bt.
Then the so-called bias map is defined by

bt+1 =
∑

f

p(f)
∑

x∈ΩK

f(x)b|x|t (1− bt)K−|x|. (6)

Let b0 = 0.5. The fix point of the bias map (if it exists),
denoted by b, is the expected number of nodes that are one in
the stationary state.

Some comments on (5) and (4) are necessary. For convience
let us introduce the average sensitivity with respect to b

as(f) =
∑

x∈ΩK

s(f,x)b|x|(1− b)K−|x|.

By x⊕i we denote a vector that is obtained from x by flipping
its ith position. Then

Pe := Pr [f(x) 6= f(x⊕ i)] =
as(f)

K

where i is chosen uniformly at random from {1, . . . ,K}.
Hence (4) may be written as

λ = E
f
[as(f)] = K · E

f
[Pe]

where the expectation is taken with respect to the whole
function ensemble. Now assume a random perturbation at the
input of some random function. We expect the state of the
node to be changed with E[Pe] = λ/K which in turn will
spread to K other nodes 2. Hence after t time steps λt nodes
are affected by the perturbation on average. Therefore if λ ≤ 1
the perturbation will vanish with high probability. A rigorous
treatment of this topic is given in [10].

III. RANDOM THRESHOLD NETWORKS

A. The bias map

In this section, we aim at deriving an expression for the
bias map in order to find fixed points b. Denote the number
of positive weights of a function f by

m = m(f) = #{i|i ≤ 1 ≤ K and wi = 1},

where #{·} denotes the cardinality of the set. For convinience
we write fm for a function with m = m(fm). The corresond-
ing function r(x1, . . . , xK) is denoted by rm.

Proposition 1: Consider a random threshold network where
all functions f = f(x1, . . . , xK , xK+1) depend on K + 1
variables. The threshold h is a fixed constant and P (wi =
1) = P (wi = −1) = 1/2 for all i independently. Any

2As the in-degree of any node is K, the average out-degree of any node is
also K.



function receives the previous state of the corresponding node
as argument yK+1. Then

b =
1

2K

K∑
m=0

(
K

m

)
bm, (7)

with
bm =

P (rm(b) > h)
1− P (rm(b) = h)

. (8)

Above

P (rm(b) = h) = Pr

[∑
i

wi · xi = h |m weights are +1

]
,

where P (xi = 1) = b independently for all i. Also

P (rm(b) > h) =
K∑

h+1

P (rm(b) = h).

For the proof, the following lemma is needed.
Lemma 1: Let f1 and f2 be threshold functions with r1 and

r2 respectively and m(f1) = m(f2) = m. Then

P (r1 = u) = P (r2 = u).

Proof: Lets consider the probability distribution for r, w,
P (r = u|w). As each xi follows the same distribution,

r =
∑

i∈{j|wj=1}

xi −
∑

i∈{j|wj=−1}

xi,

and the lemma follows.
Proof: First Equation 8 is proved. Let xt

i be the state of an
input variable at time t. f(xt

1, ..., x
t
K , xt

K+1) = 1 if r(xt) > 0.
Also f(xt

1, ..., x
t
K , xt

K+1) = 1 if r(xt = 0) and xt
K+1 = 1.

Then, from Lemma 1 and Equation 1 follows

bt+1
m = P (rm(bt) > h) + bt−1

m · P (rm(bt) = h). (9)

If a fixed point b is reached, also a fixed point for each bm is
reached. Then bt+1

m = bt−1
m = bm and Equation 8 follows from

9. From Lemma 1 and the fact that wi is uniform distributed,
Equation 7 follows.

Lemma 2:

P (rm > h) =
m∑

k=bhc

(
m

k

)
bk(1− b)m−k

·
k−1−bhc∑

l=0

(
K −m

l

)
bl(1− b)K−m−l.

Proof: For y ∈ {−1, 1} define the random variable

wm(y) = #{i|xi = 1, wi = y}.

Clearly

P (wm(1) = k) =
(

m

k

)
bk(1− b)m−k, (10)

and

P (wm(−1) = k) =
(

K −m

k

)
bk(1− b)K−m−k. (11)

P (rm > bhc) = P (rm > h) as rm is integer valued. rm >
h holds true, if at least bhc+1 more of the positive weighted
inputs are 1, than there are negative weighted inputs that are
1. Considering all possible constellations gives:

P (rm > h) =
m∑

k=max(bhc,0)

P (wm(1) = k)P (wm(−1) ≥ k+h−1).

Note that, if k − 1− h ≤ 0, the second sum in equation 2 is
0.

Lemma 3: Let the threshold h be integer valued, then

P (rm = h) =
m∑

k=0

(
K −m

k − h

)(
m

k

)
· b2k−h · (1− b)−2k+K+h

and let h be non integer valued, h ∈ R\N then P (rm = h) =
0.

Proof: The proof follows the notation of Lemma 2.
For integer valued h ∈ N, P (rm = h) can be calculated
as following. When k denotes the number of positive inputs
that are on, rm = h holds true, if there are also k − h of
the negative inputs on. Considering all possible constellations
gives:

P (rm = h) =
m∑

k=0

P (wm(1) = k) · P (wm(−1) = k − h).

The result follows from (10) and (11).
If h isn’t integer valued, then P (rm = h) = 0 because rm

is integer valued and h not.

1) Results for b: In order to find fixed points b, Equation 7
can be solved numerically. As mentioned in the introduction,
in the context of the annealed approximation, fixed points are
found and interpreted (stable or instable) with the bias map.
There, a fixed point is stable if the gradient is smaller then 0.
For threshold functions the mapping

bt+1 =
1

2K

K∑
m=0

(
K

m

)
P (rm(bt) > h)+bt−1

m ·P (rm(bt) = h),

is found, with the difference that bt+1 is not only dependent on
bt but also on bt−1

m . Fixed points can be found numerically, by
starting at b0 = 0.5 and b0

m = 0.5,m ∈ {1,K}. An example
iteration is shown in Figure 1.

The fixed points found by solving numerically Preposition
1 are discussed now.

The fixed point for h = 0, b = 0.5 is independent of K.
For each each negative threshold (−K ≤ h < 0), exactly one
stable fixed point between 0.5 and 1 could be found. For h = 1
and K ≤ 10 the b = 0. For K > 11, fixed points unequal to
zero are found. For larger positive thresholds h, K has to be
very large for the existence of fixed points unequal to 0.

To validate the results, random threshold networks of the
size N = 10000 with K inputs per function have been
generated and initialized with an bias of b0 = 0.5. The fixed
points for h ≤ 0 agree with less than 0.5% deviation with the
predicted ones. For a threshold of h = 1 the simulation doesn’t
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Fig. 1. The cobweb diagram for a threshold function with K = 3 and
h = 0. It can be seen how each bm evolve to its fixed point, when starting
with b0m = 0.5, m ∈ {1, K} and b0 = 0.5.

agree with the predicted results, e.g. for K = 10 a fixed point
of 0 is expected, whereas in the simulation, a average b of
0.23 is found.

B. Sensitivity and order parameter

Let us consider a threshold function f attached to some node
v at time t. Remember that f = f(x1, . . . , xK , xK+1) where
xK+1 = sv(t−1), i.e. it is set to previous state of the attached
node. To derive λ it is assumed that the network operates in
its stationary state. Hence for all 1 ≤ i ≤ K the arguments
xi are independently chosen at random with Pr [xi = 1] = b.
Furthermore it is assumed that xK+1 is chosen randomly with
Pr [xK+1 = 1] = E[f ] =: bf . As bf only depends on m(f),
bm is used 3. From Lemma 1 and P (wi = 1) = 1/2 it follows
that

λ = KE
f
[Pe] =

1
2K
·

K∑
m=0

(
K

m

)
·K E

f :w(f)=m
[Pe].

For convenience E
m

[Pe] is written instead of E
f :w(f)=m

[Pe].

Here Pe must be computed under the assumption mentioned
above, i.e. the first K arguments are binomial distributed with
parameter b whereas xK+1 is one with probability bm and
otherwise zero. It will be shown that if h is an integer then

K · E
m

[Pe] = pm(h) · {bm(2h− 2m + K)− h + m}, (12)

and if h is not integer valued

K ·E
m

[Pe] = pm(dhe)·(K−m+h)+pm(bhc)·(m−bhc). (13)

In both cases pm(k) = P (rm = k) as given by Lemma 3.
Proof of Equation (12): First let rm > h which implies

that f = 1. If rm would be lowered by one the function
will still output its previous state namely 1. Hence a flip of

3Follows from Lemma 1.

any argument will not affect the output. This is also true for
rm < h with the same type of arguments.

Hence consider rm =
∑m

i=1 xi·wi = h. For (a, b) ∈ (0, 1)×
(−1, 1) define the sets

A(a, b) = {xi|(xi, wi) = (a, b)}

Assume argument xi ∈ A(0, 1) is flipped from 0 to 1. The
function will change its output if and only if it was 0 before
the flip. But the later event has probability 1 − bm. Consider
all other cases and assume that an xi is chosen uniformly at
random yields

K · E
m

[Pe] = Pr [r = h] {|A(0, 1)| · (1− bm) + |A(0,−1)| · bm

+ |A(1, 1)| · bm + |A(1,−1)| · (1− bm)}.

Now by definition |A(0, 1)| = m−|A(1, 1)| and |A(1,−1)| =
|A[1, 1]| − h. Also the sum of the cardinalities of all sets
is equal to K. Substituting the constraints into the equation
completes the proof.

Proof of Equation (13): A threshold function with a non
integer threshold can only change its output by changing one
input when r is directly above rm = dhe or directly below
rm = bhc the threshold. Suppose rm = dhe, and j of the
positive inputs are 1. Then also j−dhe of the negative inputs
must be 1. The function’s output can change, by lowering rm

which can be done by changing one of the j positive inputs
that have value 1 to 0 and one of the K − m − (j − dhe)
negative inputs from 0 to 1. Suppose rm = bhc, and j is again
the number of positive inputs that have value 1. To change the
output of a function, rm has to be increased by one. This can
be done by changing one of the m− j positive inputs which
have value 0 to 1 or by changing one of the j − h negative
inputs that have the value 1 to 0. That gives the lemma.

Corollary 1: The average sensitivity is equal for all thresh-
old values in between two consecutive integers, i < h < i+1
where i is an integer. Further, the function’s output is unam-
biguously defined by the K regular inputs of the function, and
independent from the input xK+1 and therfore also from the
previous output.
This result is derived differently, but in accordance with [1].

C. A changed decision rule for rm = h

The dependency on the previous state is an important
property of the threshold functions discussed here, and it
is closely related to the functions low average sensitivity.
To demonstrate what impact this decision rule has on the
average sensitivity and order parameter, another decision rule
will be discussed: the input xK+1 is 1 with probability b,
P (xK+1 = 1) = b, instead of being set to the output. Deriving
an equation for fixed points b is analogous as in section ??
and skipped because of limited space.

Lemma 4: Let fm be a threshold function, where



P (xK+1 = 1) = b. If h is an integer then

K · E
m

[Pe] =P (rm = h− 1) · (m− h + 1) · b+

P (rm = h) · (m + h− 2bm− 2bh + bK)+
P (rm = h + 1) · (K −m + h + 1) · (b− 1),

(14)

and if h is non integer valued, 13 holds.
Proof: For the constellations rm = h − 1, rm = h and

rm = h + 1, the output can change by changing one input.
If rm = h− 1 the output changes if rm is increased by one

with probability b. Suppose j = #{i|xi = 1, wi = 1}, then
also j − (h − 1) = #{xi = 1, wi = −1} holds. rm can be
increased by 1 if one of the m − j positive inputs that are 0
changes, or if one of the j− (h−1) negative inputs that are 1
changes. The output changes with probability b because this
is the probability for the output to be 1 if rm = h.

Now the case rm = h is considered. Then P (fm = 1) = b
by definition. Suppose j = #{i|xi = 1, wi = 1} then j−h =
#{xi = 1, wi = −1}. If one of the j positive inputs that are
1, or one of the K−m−(j +h) negative that are 0 is flipped,
then the output is f t+1

m = 1, if f t
m = 0. Changing one of the

m− j positive inputs that are 0, or one of the i + h negative
inputs that are 1, changes the output, f t+1

m , if f t
m = 1.

If rm = h + 1 the output changes if r is decreased by one
with probability 1− b. Changing one of the j positive inputs
that are 1, or one of the K −m− (j−h) negative inputs that
are 0 will decrease h.

Putting all together and shortening j for each constellation
gives Equation 14. For non-integer thresholds, r = h is
not possible, and therefore the input xK+1 doesn’t have an
influence, which gives the rest of the Lemma.

D. Numerical results

In this section, the analytical results from the previous
sections are evaluated. After choosing parameters for an en-
semble, determining the order parameter is a two step process:
First a stable fixed point is calculated using the results from
Section III-A. Then the order parameter can be obtained with
the results from Section III-B.

1) Order parameter for h = 0: In Table I are some results
of the order parameter λ: λorg refers to the functions whose
input xK+1 is set to the output, and λrdd refers to the functions
whose input xK+1 is 1 with probability b. Further, λapprox

org and
λapprox

rdd are obtained by simulation and will be explained later.

K λorg λapprox
org λrdd λapprox

rdd

3 0.3375 0.3515 0.9375 0.9371

4 0.4270 0.4374 1.0937 1.0937

15 0.9789 0.9875 2.1670 2.1670

16 1.0155 1.0240 2.2391 2.2391

TABLE I
ANALYTICAL AND ESTIMATED RESULTS FOR THE ORDER PARAMETER λ

OF BOOLEAN THRESHOLD FUNCTIONS.

Random Boolean networks are expected to operate in the
chaotic regime for λ > 2. In contrast (see Table I), random
threshold networks with K regular inputs per function and
the argument xK+1 set to the function’s output are expected
to operate in the chaotic regime, for K ≥ 16. But if a random
decision is made for the case r = 0, instead of keeping the
previous state, the networks are expected to operate in the
chaotic regime already for K ≥ 4. Therefore if xK+1 is
set to the function’s previous output makes a huge difference
for the stability and spread or random transient errors, for a
system modeled as a threshold network. The dependency on
the previous output of the function results in a low average
sensitivity and has a highly stabilizing effect on the threshold
networks.

Szejka et. al. [1] where also deriving an expression for
λ, however, but they neglected that each function has its
own expectancy value. Substituting bm with b in equation 12
leads to the results of Szejka et. al. for λ. Consequently they
concluded that for h = 0 the networks are in the chaotic
regime for K > 12, obviously this results differs significantly
from the one derived here. By using simulations to validate
their results, Szejka et. al. found that in ”all simulations of
networks with connectivities up to K = 16, we find only fixed
point attractors, which means that these networks are in the
frozen phase”. Therefore their simulations are in accordance
with the result given here.

For a RBN the average sensitivity can be obtained by
simulation using the Derrida plot as it has been done e.g.
in [12]. This is not feasible here, due to the dependency of
the functions on their previous state. Therefore, to further
validate the results, Algorithm 1 has been used. Algorithm
1 estimates the average sensitivity for a given function, by
estimating K ·Pr [f(x) 6= f(x⊕ i)] and therefore also works
if a function has memory, e.g. when the function is dependent
on its previous state. To obtain λapprox

org and λapprox
rdd , for each

Algorithm 1: Average Sensitivity estimation for a Boolean
function with memory

Data: Boolean Threshold function f of order K, t trials
Result: estimated average sensitivity ˜as(f)
begin

˜as(f)←− 0
for i←− 1 to t do

generate a random x ∈ ΩK according to the
probability distribution of x
generate a random ei ∈ ΩK with wt(ei) = 1
fi → f(x)
f̂i → f(x⊕ ei)
if fi 6= f̂i then

˜as(f)←− ˜as(f) + 1

˜as(f)←− K ·
˜as(f)
t

end

function fm, Algorithm 1 has been used to estimate K ·E
m

[Pe].



Then K · E
m

[Pe] has been averaged over all functions. It can
be seen that the analytical results match very good with the
estimated ones.

2) The Phase diagram: In this part it is visualized in
the so-called phase diagram, for which combination of the
parameters K and h, threshold networks operate in the chaotic
regime (λ > 1).

To obtain Figure III-D2, for each pair of values K and h
first a stable fixed point b was calculated with the results from
section III-A, and then the order parameter λ was calculated
with the results from section III-B. It can be seen in Figure
III-D2 that threshold networks demonstrate how very different
behaviour for integer an non integer valued thresholds are.
This is because for non-integer thresholds the case r = h isn’t
possible, therefore the functions are not dependent on their
previous output.

In contrast to negative valued thresholds, where a fixed point
exists for each K, for positive valued thresholds, the fixed
point is b = 0 until K becomes large enough, to find a b 6= 0.
Then, λ > 1 for the considered values, therefore b determines
there the edge of chaos.
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Fig. 2. The Phase diagram for random threshold networks (RTNs), using
functions whose input xK+1 is set to its output. The bars indicate values
for K for which RTNs operate in the ordered regime. Thin bars refer to the
integer valued thresholds, whereas the solid ones refer to non integer valued
thresholds.

IV. DISCUSSION & CONCLUSION

Random threshold networks (RTNs) were considered. In the
model studied here each node is not only controlled by K other
nodes, but is also dependent on the previous state of the node,
i.e. possess a local feedback loop. The assumptions of the
annealed approximation [8] were used in order to determine

the dynamical regime of the RTNs. First the fixed points
of the biased map were obtained and solved numerically.
In order to obtain the order parameter λ, an expression for
the average sensitivity was derived. Evaluating the analytical
results, the focus was first on a threshold of h = 0. Due to
the low average sensitivity of the functions a RTN with h = 0
is expected to operate in the ordered regime for K < 16.
This is a very high degree compared to the so-called NK-
networks, that are expected to operate in the chaotic regime
already for K > 2. The stability even for networks with high
in-degree can be traced back to the local feedback. These
results are in agreement with simulations done here and in
[1]. To demonstrate the effect of the local feedback loop on
the network stability, it was shown that if the local feedback
is omitted the networks enter the chaotic regime already for
K ≥ 4. These results imply that, if a dynamical system
is modeled with a threshold network, assumptions about the
feedback are crucial. If the dependence on the previous state
is neglected, λ is increased significantly and random errors are
more likely to spread.

REFERENCES

[1] A. Szejka, T. Mihaljev, and B. Drossel, “The phase diagram of random
threshold networks,” New Journal of Physics, vol. 10, no. 6, p. 063009,
2008.

[2] R. Thomas, “Boolean formalization of genetic control circuits,” J Theor
Biol, vol. 42, no. 3, pp. 563–85, Dec. 1973, PMID: 4588055.

[3] M. I. Davidich and S. Bornholdt, “Boolean network model predicts cell
cycle sequence of fission yeast,” PLoS ONE, vol. 3, no. 2, p. e1672,
2008, PMID: 18301750.

[4] J. Saez-Rodriguez, L. Simeoni, J. A. Lindquist, R. Hemenway,
U. Bommhardt, B. Arndt, U. Haus, R. Weismantel, E. D. Gilles,
S. Klamt, and B. Schraven, “A logical model provides insights into
t cell receptor signaling,” PLoS Computational Biology, vol. 3, no. 8, p.
e163, Aug. 2007, PMC1950951.

[5] F. Li, T. Long, Y. Lu, Q. Ouyang, and C. Tang, “The yeast cell-cycle
network is robustly designed,” Proceedings of the National Academy of
Sciences of the United States of America, vol. 101, no. 14, p. 4781–4786,
Apr. 2004, PMC387325.

[6] S. A. Kauffman, “Metabolic stability and epigenesis in randomly con-
structed genetic nets,” Journal of Theoretical Biology, vol. 22, no. 3, pp.
437–467, Mar. 1969, PMID: 5803332.

[7] S. Kauffman, “Homeostasis and differentiation in random genetic control
networks,” Nature, vol. 224, no. 5215, pp. 177–178, Oct. 1969, PMID:
5343519.

[8] B. Derrida and Y. Pomeau, “Random networks of automata: A simple
annealed approximation,” EPL (Europhysics Letters), vol. 1, no. 2, pp.
49, 45, 1986.

[9] S. Schober and G. Schmidt, “Connections beetween random boolean
networks and their annealed model,” in Proc. of the European Confer-
ence of Complex Systems (ECCS 2007), Dresden, Germany, Oct. 2007.

[10] J. F. Lynch, “Dynamics of random boolean networks,” in Current
Developments in Mathematical Biology: Proceedings of the Conference
on Mathematical Biology and Dynamical Systems, R. C. K. Mahdavi and
J. Boucher, Eds. World Scientific Publishing Co., 2007, pp. 15–38.
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