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Abstract

The amount of data that can be reliably transmitted per second
over a given channel, called the channel capacity, depends on the
received power and on the number of degrees of freedom (DOFs) per
second that the combination of transmitter, channel, and receiver
allows for. An increase in either power or DOFs increases channel
capacity, everything else being equal. Bandwidth and time are the
main sources of DOFs in wireline as well as wireless communication
systems; directional transmission and reception, i.e., the use of space,
can offer additional DOFs in wireless systems. While the radiated power
is strictly regulated for most applications of wireless communications,
DOFs abound in so-called ultrawideband (UWB) channels of several
gigahertz bandwidth, the license-free use of which has been permitted
recently in the United States of America. Similar regulations for the
use of UWB communications are expected for many other countries
in the near future. Therefore, the focus of this thesis is on wireless
channels with many DOFs and the performance of communication
systems that operate over such channels.

Wireless channels change over time, space, and frequency in a seem-
ingly random manner; therefore, each DOF in a wireless channel is
commonly described by random coefficient. To communicate reliably,
the receiver not only needs to resolve the uncertainty caused by the
noise of all electronic components but also the uncertainty introduced
by the random channel. We quantify the latter uncertainty through
the number of degrees of uncertainty (DOUs)—effectively the number
of DOFs with uncorrelated coefficients. Resolution of channel uncer-
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tainty requires DOFs and power, which are then no longer available
for communication. For example, we can send known pilot symbols
over some DOFs to estimate the channel. It is not guaranteed that
channel uncertainty can always be resolved. If the number of DOUs
increases at the same rate as we add DOFs, e.g., by enlarging the
bandwidth, adding more bandwidth might actually be detrimental
after some point.
While the capacity under channel uncertainty is an information-

theoretic problem, the relation between the number of DOFs and DOUs
depends on the physical channel and its mathematical model. In the
first part of this thesis, we review standard channel models and
their physical foundation, all with special emphasis on channels of
wide bandwidth. Of particular importance for information-theoretic
analysis is a suitable stochastic channel model, i.e., a joint distribution
for the time-variant channel impulse response that is accurate yet
mathematically tractable.

As common modeling assumptions for channels of small bandwidth
might no longer hold for UWB channels, we complement the theoretical
modeling considerations in Part I with statistical analysis of measured
wideband channels in Part II. We describe two channel measurement
campaigns in the band from 2GHz to 5GHz conducted in a public
space; in the first campaign we moved the transmit antenna on a
regular grid and kept the environment static, and in the second
campaign we fixed the antennas while people were moving about the
environment. On the basis of the measured channel impulse responses,
we select marginal amplitude distributions from the Rayleigh, Rice,
Nakagami, lognormal, and Weibull families by means of information
criteria and use tools from multivariate statistical analysis to obtain
a stochastic channel description of second order. While the channel
with moving terminals can be sensibly modeled as zero-mean jointly
proper Gaussian (JPG) distributed, measurement data for the channel
with static terminals does not seem to contain sufficient evidence to
unequivocally select a single stochastic channel model. But physical
considerations, like a strong mean component in every channel tap,
and the need for a parsimonious mathematical model prompt us to
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advocate the JPG distribution with nonzero mean to describe the
latter type of channel. An analysis of channel correlation matrices
for the second measurement campaign shows that their number of
significant eigenvalues scales linearly with increasing bandwidth. We
interpret this scaling behavior as an indication that the number
of DOUs increases linearly with the number of DOFs over the measured
frequency band.
The modeling considerations in Part I and Part II indicate that

a JPG linear time-variant description might be adequate for channels
with several gigahertz bandwidth. Hence, we use a discretized version
of the standard proper Gaussian wide-sense stationary uncorrelated
scattering (WSSUS) channel model for the information-theoretic anal-
ysis in Part III. We extend said model to the spatially correlated
multiantenna setting and use it to derive bounds on channel capacity
under a constraint on the transmit signal’s peak power and under the
assumption that neither the transmitter nor the receiver know the
instantaneous channel realization but both know the channel law. The
bounds are useful for a large range of bandwidth and allow to coarsely
identify the capacity-optimal combination of bandwidth and number
of transmit antennas. We also obtain a closed-form expression for the
first-order Taylor series expansion of capacity in the limit of large
bandwidth. From this expression, we conclude that in the wideband
regime: (i) it is optimal to use only one transmit antenna when the
channel is spatially white; (ii) one should transmit along the strongest
channel eigenmode if the channel is spatially correlated; (iii) spatial
correlation is beneficial.
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Kurzfassung

Die Datenmenge welche pro Sekunde zuverlässig über einen gegebe-
nen Kanal übertragen werden kann, Kanalkapazität genannt, hängt
ab von der empfangenen Leistung sowie von der Anzahl der Frei-
heitsgrade pro Sekunde des effektiven Kanals, bestehend aus Sender,
physikalischem Kanal und Empfänger. Eine Erhöhung der empfan-
genen Leistung oder der Anzahl Freiheitsgrade führt zu einer Ka-
pazitätssteigerung, vorausgesetzt dass alle anderen Systemparameter
konstant gehalten werden. Bandbreite und Zeit sind ursächlich für
Freiheitsgrade in drahtgebundenen sowie drahtlosen Kommunikation-
ssystemen; zusätzliche Freiheitsgrade in drahtlosen Systemen können
durch richtungsgebundene Übertragung, also durch die Nutzung des
Raumes, erzielt werden. Während die abgestrahlte Leistung in den
meisten drahtlosen Kommunikationssystemen streng beschränkt ist,
stehen Freiheitsgrade in so genannten ultra-breitband (UWB) Kanälen
mit mehreren Gigahertz Bandbreite im Überfluss zur Verfügung. Die
lizenzgebührenfreie Nutzung solcher Kanäle wurde vor kurzem in
den Vereinigten Staaten von Amerika zugelassen; ähnliche Betriebs-
genehmigungen sind in der nahen Zukunft in vielen anderen Ländern
zu erwarten. Aus diesem Grund liegt das Schwerpunkt der vorliegen-
den Dissertation auf Funkkanälen mit vielen Freiheitsgraden sowie auf
der Leistungsfähigkeit von Kommunikationssystemen die ebendiese
Kanäle verwenden.
Funkkanäle ändern sich in scheinbar zufälliger Weise im Lauf der

Zeit, mit der räumlichen Position der Antennen, sowie mit der Fre-
quenz. Daher wird gewöhnlich jeder Freiheitsgrad durch einen Ko-
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effizienten in form einer Zufallsvariable modelliert. Um zuverlässige
Kommunikation zu ermöglichen muss der Empfänger nicht nur die
Unsicherheit bezüglich der empfangenen Nachricht in Folge des addi-
tiven thermischen Rauschens beseitigen, sondern auch die Kanalun-
sicherheit. Wir beschreiben letzter durch die Anzahl statistischer
Freiheitsgrade—die Anzahl der regulären Freiheitsgrade mit unkorre-
lierten Koeffizienten. Um die Kanalunsicherheit zu beseitigen, müssen
Sendeleistung und Freiheitsgrade aufgewendet werden, die letztendlich
nicht mehr für die Datenübertragung zur Verfügung stehen. Wir kön-
nen zum Beispiel einige Freiheitsgrade reservieren um dem Empfänger
bekannte Symbole zu senden, mit deren Hilfe dann eine Schätzung
aller Freiheitsgrade möglich ist. Wächst nun die Anzahl statistischer
Freiheitsgrade zu schnell mit steigender Anzahl regulärer Freiheits-
grade das Kanals, so besteht die Gefahr dass die Wahl einer größeren
Bandbreite oder mehrerer Sende- und Empfangsantennen die zuver-
lässig erzielbare Datenrate reduziert anstatt sie zu erhöhen.
Die Frage nach der Kapazität unbekannter Schwundkanäle ist

informationstheoretischer Natur; der Zusammenhang zwischen reg-
ulären und stochastischen Freiheitsgraden ist jedoch eine Funktion
des physikalischen Funkkanals und des verwendeten mathematischen
Modells. Im ersten Teil der vorliegenden Dissertation geben wir daher
einen Überblick über oft benutzte Kanalmodelle und deren physikalis-
che Grundlagen unter besonderer Beachtung von Kanälen großer
Bandbreite. Für informationstheoretische Betrachtungen sind ins-
besondere stochastische Kanalmodelle von großer Bedeutung, d.h.,
die Beschreibung der zeitvarianten Kanalimpulsantwort durch eine
möglichst getreue, gleichzeitig jedoch mathematisch gut handhabbare
Zufallsverteilung.

Viele gebräuchliche Annahmen zur Modellierung von Funkkanälen
mit einigen Megahertz Bandbreite erscheinen zweifelhaft für die Mod-
ellierung von UWB Kanälen. Daher ergänzen wir die theoretischen
Betrachtungen in Teil I dieser Arbeit durch die statistische Analyse
gemessener Breitbandkanäle in Teil II. Wir erläutern zwei Messkam-
pagnen, welche wir in einem öffentlichen Raum durchgeführt haben. In
der ersten Kampagne nahmen wir Kanalstichproben an verschiedenen
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räumlich versetzend Messpunkten auf während keine Bewegung in
der Umgebung zu verzeichnen war. In der zweiten Messkampagne
sorgten sich bewegenden Menschen für eine Änderung des Kanals
während wir Sende- und Empfangsantennen an Ort und Stelle be-
ließen. Die so gewonnenen Kanalimpulsantworten benutzen wir um
Randverteilungen der Kanalamplitude mittels so genannter Informa-
tionskriterien zu bestimmen und um eine stochastische Beschreibung
zweiter Ordnung mittels konventioneller multivariater statistischer
Methoden zu erhalten. Es zeigt sich, dass der Kanal mit räumlich
variierender Antennenposition durch eine mittelwertfreie ordentliche
multivariate Normalverteilung beschrieben werden kann, wohingegen
unsere Messdaten nicht genügend Anhaltspunkte für eine eindeutige
statistische Charakterisierung des Kanals mit stationären Antennen
bieten. Auf Grund physikalischer Überlegungen, wie zum Beispiel eines
starken Mittelwerts in jedem Wert der diskreten Kanalimpulsantwort,
sowie der Notwendigkeit eines mathematisch handhabbaren Models
empfehlen wir auch für letzteren Typ von Funkkanal die Beschreibung
mittels einer ordentlichen multivariaten Normalverteilung, jedoch
mit positivem Mittelwert für jeden Kanalwert. Eine Analyse der
Kanalkorrelationsmatrizen, berechnet aus den Messdaten der zweiten
Messkampagne, ergibt dass deren Anzahl signifikanter Eigenwerte
linear mit der Kanalbandbreite zunimmt. Wir interpretieren dieses
Resultat dahingehend, dass die Anzahl stochastischer Freiheitsgrade
des Kanals linear mit der Anzahl regulärer Freiheitsgrade wächst.

Die Überlegungen zur Kanalmodellierung in Teil I und II sind Indiz
dafür dass eine ordentliche reguläre Normalverteilung UWB Kanäle in
angemessener Weise beschreiben kann. Folglich greifen wir für unsere
informationstheoretischen Studien in Teil III auf die diskretisierte
Version eines weit verbreiteten Kanalmodels auf der Grundlage einer
ordentlichen Normalverteilung mit stationärer Zeit- und Frequenz-
variation zurück, das so genannte WSSUS Model, und erweitern dieses
Model zur Beschreibung von Mehrantennensystemen mit räumlicher
Korrelation. Für dieses erweiterte WSSUS Model entwickeln wir obere
und untere Schranken auf die Kanalkapazität unter der Annahme, dass
die maximale Amplitude des gesendeten Signals streng beschränkt
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ist, und dass weder Sender noch Empfänger die augenblickliche Real-
isierung des Kanals, hingegen jedoch die stochastische Kanalbeschrei-
bung kennen. Die Schranken sind nützlich für eine große Spanne von
Bandbreiten; sie erlauben, in groben Zügen die kapazitätsoptimale
Kombination aus Bandbreite und Anzahl der Sendeantennen zu bes-
timmen. Des weiteren berechnen wir einen Ausdruck für das Glied
erster Ordnung der Reihenentwicklung nach Taylor der Kapazität für
den Grenzübergang zu unendlicher Bandbreite. Besagter Ausdruck
ermöglicht folgende Schlussfolgerungen für Kanäle mit sehr großer
Bandbreite: (i) Im Falle eines räumlich unkorrelierten Kanals ist es op-
timal, nur eine einzige Sendeantenne zu verwenden; andernfalls sollte
nur entlang der Eigenmode des Kanals übertragen werden welche
zum stärksten Eigenwert gehört. (ii) Räumliche Korrelation erhöht
die Kanalkapazität.
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CHAPTER 1

Wideband Channels

Power and degrees of freedom are the two fundamental re-
sources in communications engineering. The ratio of received
power to the number of degrees of freedom (DOFs) is propor-

tional to the signal-to-noise ratio (SNR) at the receiver, the single most
important figure of merit in the design of a communication system.
Bandwidth and time are the premier sources of DOFs; a channel of
bandwidth B offers approximately 2B DOFs per second to commu-
nicate over. In the classical additive white Gaussian noise (AWGN)
channel studied by Shannon (1948), receive power and the number of
DOFs completely determine the maximum rate of reliable transmis-
sion, called the capacity of the channel. If the SNR is low, the channel
is said to be operated in the power-limited regime, also called the
wideband regime. Here, an increase in received power results in an
almost linear increase of channel capacity, while the marginal return
of each additional DOF approaches zero. Conversely, if the SNR is
high—the channel is said to be operated in the bandwidth-limited
regime—additional DOFs lead to an almost linear capacity increase
while an increase in received power only increases capacity logarith-
mically.
An additional source of DOFs in wireless communications is space.

Multiple antennas at the transmitter and the receiver enable direc-
tional transmission and reception, so that a multiple input multiple
output (MIMO) system can sustain several spatially separated data
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1 WIDEBAND CHANNELS

streams in a common frequency band.
Compared with the AWGN channel, the major difference of most

wireless channels is channel variation. The attenuation and phase
associated with each DOF varies as the transmitting and receiving
antennas are displaced or if the propagation environment changes. As
the propagation environment and its variation over time is unknown
upon system design, the resulting propagation channel is best treated
as random. Hence, the attenuation and phase of each DOF is best
modeled as a random variable. We refer to a set of DOFs whose associ-
ated random coefficients are fully correlated as a degree of uncertainty
(DOU). To ascertain the transmitted message, the receiver of a wire-
less communication system needs to jointly resolve the uncertainty
introduced by the additive noise and by the DOUs.

1.1 . PROBLEM FORMULATION AND OVERVIEW

A widely used simplification when designing a wireless communication
system is to assume that the receiver does not suffer from channel
uncertainty, i.e., that it knows the realization of each DOU perfectly.
This so-called coherent setting is well understood, and, despite its
obvious simplification, provides correct design guidelines, as evinced
by the many wireless communication systems in use today. However,
most of these systems operate over small or moderate bandwidth,
from several kilohertz up to about 40MHz, and the SNR at the receiver
required for satisfactory operation is high. In the present work, we
are interested in systems that operate over larger bandwidth, i.e.,
over channels with many DOFs and low effective SNR. If the number
of DOUs grows if we increase the number of DOFs, i.e., increase chan-
nel bandwidth or use additional transmit and receive antennas, the
coherent assumption might no longer be suitable because resolution
of channel uncertainty becomes challenging, so much that the rate
gain afforded by the additional DOFs might be completely negated.
To study this effect, we need to understand how channel uncertainty
is linked to physical channel parameters, and we need to devise a
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model to analyze the behavior of channel capacity as a function of
the DOFs and DOUs.

Models for wireless channels abound for all imaginable application
scenarios and propagation environments. As our focus is on funda-
mental aspects of wideband channels, we need to use a model that
captures those fundamental aspects but that is at the same time
mathematically tractable. Part I of this thesis is devoted to modeling
wideband wireless channels. It is mainly tutorial in nature and sets
the stage for the core results in subsequent chapters.
Many of the standard modeling assumptions are questionable for

channels of very wide bandwidth and, therefore, require empirical
scrutiny. Although results of several measurement campaigns aimed
at the characterization of so-called ultrawideband (UWB) channels are
available, almost all of these measurement campaigns were designed
to devise channel models suitable for simulation, but not to answer
fundamental modeling questions, like “What is a suitable distribution
to stochastically model UWB channels?”, or “How are DOFs and DOUs
related?” Therefore, we conducted our own channel measurements,
the results of which are reported in Part II.
In Part III, we combine the theoretical modeling considerations

from Part I and the empirical findings from Part II and analyze the
capacity of wideband systems under a set of realistic constraints. We
obtain capacity bounds that depend on the number of DOFs provided
by both bandwidth and space.

1.2. MODELS FOR WIDEBAND CHANNELS

All modeling is an approximation of reality; the key is to discern those
aspects of reality that are fundamental for a given application, i.e.,
that significantly influence the predictions of the model. As we are
mainly interested in communication-theoretic analysis of wideband
channels—as opposed to cell planning and coverage analysis—we
restrict our attention to channel variations over short time scales
and small spatial displacements of transmit and receive antennas,
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commonly referred to as small-scale fading.
Our modeling efforts in Chapter 2 follow the standard approach

in wireless channel modeling to decompose the electrodynamic field
emitted by the transmitting antenna into waves that propagate along
a number of paths and to stochastically describe the resulting superpo-
sition of many individual propagation paths at the receiver. However,
this approach becomes questionable if the bandwidth under study
is very large, on the order of several gigahertz, as then objects in
the environment might be much larger than the smallest wavelength
under consideration but of similar extent as the largest wavelength.
Furthermore, it becomes questionable if time variation of the channel
can still be described by Doppler shifts or if the more complicated
scale representation needs to be used. Because there does not seem
to be much evidence to date that the more general but also less
tractable time-scale model is indeed more accurate and leads to better
predictions, we maintain the standard delay-Doppler formulation of
channel variability.

Wireless channels are, in general, time-selective, i.e., they change in
a correlated way as time progresses, and frequency selective—channel
attenuation is different for different frequencies of the transmitted
signal, where adjacent frequencies might be correlated. Time and
frequency selectivity can be captured mathematically by modeling
wireless channels as linear time-variant (LTV) systems. In a stochastic
LTV channel model of the form we review in Chapter 2, a second-order
description is quite complex, as all correlation functions depend on four
parameters in general. A standard modeling assumption is to describe
time variations of the channel as wide-sense stationary (WSS) and
individual propagation paths as uncorrelated (uncorrelated scattering,
US), which leads to the widely used wide-sense stationary uncorre-
lated scattering (WSSUS) channel model. Of particular importance
is that a US model predicts a linear scaling of the number of DOUs
with bandwidth. However, for channels of very wide bandwidth, the
US assumption becomes questionable. An individual propagation path
might experience frequency-selective propagation mechanisms that
result in dispersion and subsequent temporal overlapping and correla-
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tion of several paths. We attempt to empirically evaluate in Part II if
the latter effect is strong enough to invalidate the US assumption for
practical purposes.
All the models reviewed and devised in Chapter 2 are time con-

tinuous. But for channel measurements, statistical analysis, and
information-theoretic studies, a discretized channel model is more
suitable, i.e., a model that depends on a countable or even a fi-
nite set of parameters. We review several such discretized channel
models in Chapter 3, like Turin’s specular block-fading model, the
clustered impulse response model by Saleh and Valenzuela, or the
standard discrete-time block-fading model. As these models are of
block-fading type, they are simplifications of the general stochastic
LTV model and do not account for channel correlation between blocks.
All mentioned models are widely used. In particular, the discrete-time
block-fading model plays an important role in Part II, because we
take our measured data to be discrete-time channel impulse responses
of a block-fading channel.
As channel correlation in both time and frequency might be prof-

itably used by a wireless system to combat channel uncertainty, we also
review a discretization and approximate diagonalization of the more
general WSSUS LTV channel model. This discretization, devised by
Kozek, builds on the important observation that all wireless channels
of interest are underspread, i.e., that their product of maximum delay
and maximum Doppler shift is small. Underspread WSSUS channels
have a highly structured set of approximate eigenfunctions that do not
depend on the channel realization and are well concentrated in time
and frequency. We can construct a canonical signaling scheme that
closely resembles orthogonal frequency division multiplexing (OFDM)
by projecting the transmitted signal onto these eigenfunctions. The
received signal can be similarly decomposed to obtain a set of scalar
input-output (IO) relations. The resulting channel description forms
the basis for our capacity analysis in Part III.
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1.3. WIDEBAND CHANNEL MEASUREMENTS

Many UWB channel measurement campaigns are devised to parameter-
ize channel models used to simulate communication systems. As our
focus is on channel models for theoretical analysis and on fundamental
modeling aspects, we take a somewhat different approach to both
measurements and statistical analysis of the resulting data than in
most reported measurement campaigns.
One main problem with channel measurements is technical: how

to obtain data of high fidelity in a form that is easy to handle and
to interpret. We were fortunate to have measurement devices of high
quality at our disposal, which allowed us to record channel samples
at high SNR even over distances between transmitting and receiving
antenna of about 27m. A second problem is of more philosophical
nature: the question what one actually measures and what assump-
tions are implicit in any statistical analysis of the measured data.
This problem shows up when designing the measurement system,
upon postprocessing the measured data, and during statistical analy-
sis. For example, our measurement setup only allows to characterize
block-fading models even if the channel was time variant.
We conducted two measurement campaigns in the entrance lobby

of the main electrical engineering building at ETH Zurich, a typical
public open space environment with large windows and a tiled floor.
Both campaigns are described in detail in Chapter 4. In measurement
campaign I (MCI), we fixed the position of the receive antenna, kept
the environment static, and automatically positioned the transmit
antenna at 90 different locations on a rectangular grid. For each
location of the transmit antenna, we recorded the transfer function of
the channel with a vector network analyzer (VNA). Such a measure-
ment setup represents applications like wireless access point scenarios,
where the terminals move with respect to the environment.

In wireless personal area networks and wireless sensor networks,
e.g., for building automation or industrial applications, the termi-
nals are typically static, and variations in the channel are mainly
caused by moving scatterers, like moving persons. To characterize
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the resulting channel, we fixed both the transmit and the receive
antenna in measurement campaign II (MCII), sounded the channel
with a pseudonoise sequence of chip rate 10GHz, and recorded the
received signal in real time with a digital sampling oscilloscope (DSO).
In both MCI and MCII, we obtain, after postprocessing, channel im-
pulse response vectors for the band from 2GHz to 5GHz, which we
subsequently use for statistical analysis as described in Chapter 5 and
Chapter 6.

Because the measured impulse responses are quite long, with over
1000 channel taps, a complete characterization of their joint dis-
tribution is impossible. Instead, we characterize the marginal tap
distributions in Chapter 5 and attempt to obtain a second-order
description in Chapter 6.
In Chapter 5, we set out to select, from a set of candidate distri-

butions, a suitable stochastic description for the tap amplitudes of
both MCI and MCII impulse responses. Our candidate set contains
the parametric families of Rayleigh, Rice, Nakagami, lognormal, and
Weibull distributions. The goal in statistical model selection is to
choose a distribution that approximates as closely as possible the
operating model, defined as the nearest representation of the true
situation that can be constructed by means of a probability model. A
good model should be based on physical insight, be mathematically
tractable, it should be general, and lead to consistent predictions.
A measure of approximation quality between a candidate distribution
and the distribution of the operating model is called a discrepancy.
For reasons detailed in Chapter 5, we do not follow the standard
approach in the channel modeling literature to assess the approx-
imation quality of a distribution family by means of goodness of
fit (GOF) tests. Instead, we use Akaike’s Information Criterion (AIC),
which is based on the Kullback-Leibler (KL) relative entropy as a
measure for the similarity between distributions. AIC explicitly takes
into account the number of samples available for statistical analy-
sis and the complexity of the candidate families. We find that the
Rayleigh distribution is still adequate to model the amplitude of
UWB channel taps if channel variations result from motion of the
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antennas, i.e., in MCI; an exemption are taps that belong to clusters
in the impulse response, most probably caused by strong reflections
from walls and windows. The Ricean distribution provides the best
fit for UWB channel tap amplitudes when transmitter and receiver
are static and channel variations are caused by movements of objects
in the environment, i.e., in MCII. From the Rayleigh, respectively
Rice amplitude distribution it is only a small step to hypothesize that
the corresponding complex-valued channel taps are proper Gaussian
distributed, i.e., circularly symmetric Gaussian around a possibly
nonzero mean component. A Kolmogorov-Smirnov test shows that for
MCI the proper Gaussian tap distribution is indeed a viable stochastic
model. The picture is not that clear for MCII data, where the same
test is inconclusive when viewed globally for all taps of a given impulse
response. As a strong mean component seems to be present in most
taps, we nevertheless opt for a proper Gaussian model of the MCII

taps.
A second-order characterization of the joint impulse response dis-

tribution is the main theme of Chapter 6. An attempt to estimate
the complete channel correlation matrix of size 700×700 is hampered
by a lack of samples. Even though we only use MCII data, where we
have up to 2722 samples from a single measurement set, the resulting
correlation matrices are difficult to interpret. Intertap correlation is
low in general, yet the eigenvalues of the estimated channel correla-
tion matrices seem to be significantly impacted by correlation when
compared with a hypothetical uncorrelated channel. However, we find
that the number of significant eigenvalues of the channel covariance
matrices, which we take as a measure for the number of DOUs, scales
approximately linearly with bandwidth.

1. 4 . CAPACITY OF WIDEBAND CHANNELS

Channel models are not an end in themselves but tools for analysis
and design of communication systems. Contrary to claims in the
literature, our empirical analysis in Part II does not provide sufficient
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evidence to warrant a complete renunciation of the standard WSSUS

model discussed in Part I. The finding of marginally Rayleigh, respec-
tively Rice distributed tap amplitudes agrees with the jointly proper
Gaussian (JPG) tap distribution in the WSSUS model, as does our
finding of a linear increase of the number of DOUs with bandwidth.
Some experimental findings, like the Ricean component in MCII or
the specular reflections in MCI, are not well captured by the WSSUS

model although they might be profitably exploited in system design.
However, our goal is not to analyze particular channel features in
isolation but the overall effect of fading channels with many DOFs
and DOUs. Therefore, we take as our starting point Kozek’s discretized
and approximately diagonalized WSSUS model from Chapter 3, well
aware of the provision that our channel measurements do not allow
for characterization of time variation, and that some of our empirical
findings have no direct counterpart in this discretized model. Yet, we
believe that this model provides a suitable compromise between math-
ematical tractability, accuracy, and generality, so that our capacity
results, if parameterized appropriately, are useful for a wide range of
application scenarios.
In accord with the main theme of this thesis—to analyze funda-

mental effects of practical importance—we consider the noncoherent
setting where neither transmitter nor receiver know the channel real-
ization but both are aware of the channel law. We impose a constraint
on the average transmitted power to model aspects like limited battery
resources, and we constrain the radiated peak power in a given time
interval and frequency band. The latter constraint models typical
regulatory limitations for UWB systems. A closed-form expression
for the capacity of noncoherent channels is not known to date, not
even for the simple flat fading memoryless channel model. Therefore,
we resort to derive upper and lower bounds on capacity as a func-
tion of the DOFs, which in the WSSUS setting are linearly related to
the DOUs. Although we were not able to measure MIMO UWB channels,
we extend our analysis to the MIMO setting to include the impact
of spatial DOFs. In particular, we consider a point-to-point MIMO

link where the component channels between individual transmit and
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receive antennas are all discretized in the same way. This extension
is a formal one so far, as we do not back it up by physical model-
ing considerations; a detailed treatment of spatial wideband channel
modeling remains as an interesting open problem. However, as we
allow for spatial correlation, chances are that future findings about
wideband multiantenna channels can be mapped to our generic results
simply by choosing appropriate spatial correlation matrices.
Our upper and lower bounds hold for a wide range of band-

widths, not just in the limit for bandwidth approaching infinity.
While the bounds are loose for very high SNR—and correspondingly
low bandwidth—they are reasonably good for many bandwidths of
practical interest and become very tight for large bandwidth. The
bounds allow to coarsely determine the number of DOFs, bandwidth
and the number of antennas above which capacity starts to decrease.
Because our channel model is fairly general, we can study the impact
of channel correlation in time, frequency, and space. In particular, the
larger the channel’s spread, i.e., the less memory in the channel, the
lower are our capacity bounds. For spatially white channels and at
large bandwidth, using a single transmit antenna is optimal, while
multiple receive antennas are always beneficial. Spatial correlation
can both increase or decrease capacity, depending on the receive SNR

per DOF. Differently from the coherent setting, both transmit and
receive correlation are beneficial at low SNR.
Research on the capacity of wideband channels during the past

decade revealed that for a channel whose number of DOUs increases
linearly with the number of DOFs the capacity starts to diminish from
a certain critical number of DOFs on if the channel input is subject to
some kind of peak limitation. From numerical evaluation of our upper
and lower bounds, we find that current wideband systems and even
many envisioned UWB systems operate over channels whose number
of DOUs is small enough to avoid the problem of diminishing capacity
with increasing DOFs. In fact, the critical number of DOFs above which
our bounds predict a decrease in channel capacity is so high that our
channel model probably breaks down before this critical number is
reached.
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We evaluate the bounds only for very simple channel parameters;
yet, the direct link to the underlying WSSUS model allows for a more
fine-grained analysis of wireless channels, because the bounds are
explicit in the channels scattering function.
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CHAPTER 2

Channel Modeling Foundations

The first step in the solution of any engineering problem is
to suitably model it, to find a mathematical approximation
of the physical world we want to manipulate, because any

quantitative analysis can only be performed on the basis of a model.
A mathematical model comprises

• a set of controls: all determinants of physical features that are
important for the application at hand,

• a set of observables: all aspects that we can measure to learn
about the state of the physical reality,

• a mathematical description of the relation between controls and
observables.

All three aspects depend not only on the physical reality under study
but at least to the same extent on the intended application of the
model.

2.1. MODELING PHILOSOPHY

A model is always an approximation of the physical world; it has to
satisfy a conflicting set of requirements:

• Accuracy: a model needs to faithfully describe, reproduce, and
predict the interrelation of a comprehensive set of controls and
observables.
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• Low complexity: we would like the number of controls and ob-
servables of a model to be low and its mathematical description
to be tractable.

• Generality: a model should be adaptable to many similar physical
situations.

All three requirements are not absolute but depend on the intended
application of the model.

Accuracy

Accuracy has two aspects that are equally important: predictions
of a model should be close to observations of the physical reality,
and the variation across multiple predictions should be small. In
statistical language, a model should have small bias and low variance,
respectively. Inherent in the latter formulation is the notion that
perfect accuracy does not exist and all modeling efforts are ultimately
stochastic. The loss function, or error criterion, according to which
we judge model accuracy depends on the application at hand, and
the ultimate assessment of modeling accuracy is empirical—we need
to actually measure those aspects of reality that we want to model
and compare the measurements with the prediction of the model by
means of our loss function. Because measurements are never perfect,
this empirical approach implies that increasing the model complexity
does not always increase model accuracy: it is not sensible to model
aspects that exceed measurement accuracy or that are not accessible
to measurements at all, for we would mistake measurement noise as
features of reality (Forster and Sober, 1994). Measurement aspects
are treated in detail in Part II.

Complexity

The admissible complexity of a model greatly depends on its intended
application. A simulation model can contain thousands of controls
and observables, and its mathematical description can be implicit,
e.g., the solution of a fixed-point problem. On the other hand, a model
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for mathematical analysis needs to be tractable, which most often
means that its controls and observables need to be highly structured
and that the relation between them should be available in closed form.
We are mainly interested in the latter type of model.

Generality

Aspects that are not modeled do not exist for the purpose of analysis
and design, although these aspects may very well influence the oper-
ation of the resulting implementation. As a device designed on the
basis of a model will be faced with the real world, not the model used
to design it, Murphy’s law (Spark, 2003) predicts that the aspects not
modeled will influence the operation of the device in a negative way
with probability 1 (w.p.1). This suggests to model many aspects of the
physical world, i.e., to keep the model general. On the other hand,
if too many aspects are modeled, chances are that the engineering
problem cannot be solved at all because the model is too complex to
be tractable. Hence, we need to find the fundamental set of controls
and observables, those that have the largest influence for the intended
application of the model, and we need to choose them parsimoniously.
The later principle is known as Occam’s Razor: “Entities should not
be multiplied beyond necessity.”

A Model for Information-Theoretic Analysis

The three requirements just stated are often conflicting. For a given
accuracy requirement, large generality means that the model should
be able to cover many special cases. This often comes at the price of
large complexity because the model needs to comprise many controls
and observables that are only relevant in certain special situations.
For fixed complexity, the model can be made more general if we relax
the accuracy requirement: such a model covers a larger number of
cases, but with larger modeling error in most of them compared with
the error of a comparably complex but less general model.
Our main interest in this thesis is to gain fundamental insights
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into wideband communications, i.e., to identify ultimate performance
limits and design criteria. Thus, our models need to be mathemati-
cally tractable, which sharply limits model complexity. The following
sections attempt to identify the distinctive and fundamental features
of wireless channels so as to obtain parsimonious models.

2.2. PHYSICAL CHANNEL MODELS

Our starting point is the propagation of electromagnetic waves as
modeled by Maxwell’s equations. This model is far too complex; hence,
we use the intuitively appealing multipath approximation to describe
the electromagnetic field at the receiver and the resulting received
signal, analyze the effect of frequency-dependent propagation mech-
anisms and temporal variation of the channel, and further simplify
the channel model by means of a stochastic characterization of its
IO relation.
The arguments presented in the following are not novel; most of

them can be found in the books by Plonsey and Collin (1961) and
McNamara et al. (1990) for the main physical developments, and
the books by Parsons (2000), Rappaport (2002), Vaughan and Bach
Andersen (2003) and Tse and Viswanath (2005) for the engineering
arguments. What might set our presentation apart from other discus-
sions of wireless channels is the focus on parsimonious models of low
complexity for information-theoretic analysis, like the ones we nee
in Part III. On the basis of the general physical and mathematical
modeling considerations in the present chapter, we discuss several
more specific models for wireless channels in Chapter 3. A second
distinctive element of our modeling approach is the focus on chan-
nels of large bandwidth. We use the term UWB loosely to refer to
wireless channels whose bandwidth is significantly wider than in most
commercial wireless systems today, i.e., hundreds of megahertz up to
several gigahertz instead of tens of megahertz. Many widely accepted
modeling assumptions become questionable for UWB channels. The
only way to figure out which assumptions are still valid and which
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need to be modified or abandoned altogether is to measure wideband
channels and to analyze the resulting data. This is the theme of
Part II.

2.2.1. Electrodynamic Foundations
Maxwell’s equations provide for a very general and extremely elegant
model for the time-variant electromagnetic field in a given volume of
space (Plonsey and Collin, 1961). If all materials in the environment
are linear, then the corresponding solution of Maxwell’s equations
is linear as well. Nevertheless, to compute such a solution for a
real-world environment, we would require an enormous amount of
information to specify all boundary conditions. Thus, to obtain a
tractable engineering model, we need to reduce model complexity at
the expense of modeling accuracy.

A fairly intuitive and successful approach to simplify the description
of the electrodynamic field in a given environment is the multipath
approximation: the description of the electromagnetic field at all
points in space and time is replaced by individual partial waves, each
of which travels along a specific geometric propagation path from the
transmitting antenna to the receiving antenna and undergoes one
or several propagation effects along its way. A great many different
effects can be distinguished, but this defies the goal to arrive at a
simple model; hence, we restrict ourselves to the, in our view, most
important ones. The following paragraphs summarize these effects
on the basis of the texts by McNamara et al. (1990), Parsons (2000),
and Rappaport (2002).
The theoretical foundation of the multipath approximation is the

so-called high-frequency approximation of electromagnetic wave prop-
agation (McNamara et al., 1990). In its simplest form, this approx-
imation describes propagation in purely geometrical terms as rays
emanating from a source that are reflected and refracted from sur-
faces in the environment. Only the rays that arrive at the receiving
antenna need to be considered. The main reason why this so-called
geometrical optics (GO) model often yields accurate results is that
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many objects can be treated as electrically large, i.e., their extent is
large compared with the wavelengths under study, and their electrical
properties do not change appreciably over this extent. Frequencies
of interest for wireless communications range from about 1GHz up
to 60GHz, which corresponds to wavelengths from around 0.3m down
to 5mm, respectively; hence, the GO approximation is less accurate
than, say, for light waves, whose wavelengths measure several hundred
nanometers. Nevertheless, the interaction of radio waves with large
objects, like floors, ceilings, walls, and windows, can be very well
modeled by GO techniques, as experimentally supported by Dersch
and Zollinger (1994).

Free Space Propagation

The simplest propagation mechanism is the radiation of a monochro-
matic electromagnetic wave in free space. In the so-called far field
region, or Fraunhofer region, the total field along a ray emanating
from the source can be approximated by the radiated field alone; its
strength decays proportional to the inverse radial distance from the
transmitting antenna; the constant of proportionality depends on the
frequency of the signal.∗ For typical indoor applications with small
terminals and operating frequencies well above 2GHz, the far field
approximation is in general a good one.

Antenna Effects

An ideal point source that radiates isotropically in all directions is
physically not possible. Even the simplest antenna geometry, the
Hertzian dipole, has a radiation pattern that is not uniform in space.
Although all practical antennas show some directivity, it is sensible
to assume a uniform antenna pattern, as such a pattern best models
our ignorance of the antenna placement and orientation in typical
wireless application scenarios, where terminal placement is beyond
the control of the designer.

∗ See, for example, Fig. 1.2 in the book by Parsons (2000).
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Diffraction

The GO approximation is not valid at object corners, wedges, cur-
vatures, and other surface irregularities, even if the object under
consideration is electrically large. Similarly, creeping waves along
curved surfaces cannot be treated in purely geometrical terms. Both
problems are addressed by the geometrical theory of diffraction (GTD)
and its extension, the uniform theory of diffraction (UTD) (McNamara
et al., 1990). The important feature of these theories for our purposes
is that we may continue to use the abstraction of propagation along
rays, but the interaction of rays with objects needs to be described
by diffraction coefficients that are, in general, frequency dependent.

Scattering

If a radio wave that propagates along the direction of a ray in the above
geometric approximation interacts with an object whose dimension is
comparable to the wavelength, the UTD approximation is no longer
applicable. Such interactions are commonly called scattering.∗ The
scattering object is taken as the source of a new elementary wave
by Huygen’s principle. Exact computation of the resulting field is
virtually impossible, as it requires exact knowledge of the surface
geometry and material properties. What can be computed, however,
is the power of the resulting scattered field at different points in space.
Thus, a sensible simplification is to model the scattered field as a
random quantity and to relate the parameters of its distribution to
physical quantities like the overall dimension of the scattering object.
A simplification along these lines for objects that are electrically
small, i.e., with physical dimensions that are much smaller than
the wavelengths of interest, is to treat them as point scatterers. A
point scatterer does not disturb the field of the impinging wave and
generates another elementary wave that radiates isotropically in all

∗ In many texts, scattering is also used to mean any type of interaction of
radio waves with objects in the propagation environment, and every such object
is called a scatterer.
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directions, with amplitude and phase taken as random according to a
distribution that depends on the effective size and surface properties
of the object to be modeled as point scatterer. These properties are
commonly measured by a single parameter called the radar cross
section of the scatterer.

Reflections from Rough Surfaces

Another important propagation effect for which the UTD is not ap-
plicable is the reflection of a radio wave from a rough surface. The
object of which the surface is part might be electrically large, but if
surface protuberances are large as well,∗ the reflected field cannot be
described analytically without perfect knowledge of the exact surface
geometry. A viable approximation is to treat the rough surface as
an infinite collection of point scatterers and to describe the resulting
field stochastically.

2.2.2. Channel Variation
The GO and UTD approximations we use to dissect wave propagation
as the propagation of partial waves along individual paths and the
interaction of these partial waves with objects in the environment are
vital to get an intuitive understanding of the electromagnetic field at
different points in space. In particular, the following picture emerges:

The transmitting antenna illuminates a certain area, determined
by its radiation pattern. [..] The incident wave also interacts
with surface irregularities via diffraction, scattering, reflection,
and absorption, creating a continuum of scattered partial waves.
The amplitudes and phases of these partial waves depend on the
physical properties of the surface structure such as geometrical
proportions and electromagnetic reflection properties. At every

∗ Surfaces are often classified as rough if the difference between maximum and
minimum protuberance is larger than the Rayleigh number λ/(8 sin θ), where λ
denotes the wavelength and θ the incidence angle of the impinging wavefront with
respect to the surface normal vector.
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point in space, scattered partial waves interfere with each other
and, possibly with the direct wave, building up an irregular
electromagnetic field. (Braun and Dersch, 1991)

As the terminals of wireless systems are often mobile and objects in the
environment may be mobile as well, it is important to understand how
the interference pattern of all the reflected, diffracted, and scattered
partial waves changes over space. Similarly, because some propagation
mechanisms are frequency dependent, it is important to understand
how the aggregate electromagnetic field depends on frequency.

A. Spatial Variation

The irregular pattern of constructively and destructively interfering
partial waves is a spatial phenomenon. Displacements of either the
transmitter or the receiver by half a wavelength changes the phases of
the interfering partial waves by up to 180 degrees, which can result in
a drastic amplitude change of the electromagnetic field. At operating
frequencies of several gigahertz, half a wavelength corresponds to
several centimeters; significant changes in the received field strength
may thus happen over very short distances. Therefore, the resulting
phenomenon is aptly called small scale fading.

If we average the received field strength over a local area, i.e., over
several wavelengths, the resulting mean field strength will still vary
over space, yet changes will be more gradual and occur over longer
distances. Propagation effects such as the decay of the field strength
with distance, shadowing of the transmitted field by large obstacles,
or transmission through walls are the main reason for this so-called
large scale fading.
Large scale fading is of major concern for the design of cellular

systems, as the attenuation of the field with distance determines the
spatial coverage a single cell is able to provide (Lee, 1993; Rappaport,
2002). For this reason, much research effort is spend to characterize
the path loss, i.e., the average power attenuation from the source to
the sink, as a function of distance and environment characteristics like
the number of walls or the type of buildings in a given area. For many
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applications where terminal placement is beyond the control of the
system designer, like in a consumer wireless local area network (WLAN),
a wireless personal area network (WPAN), or in ad-hoc networks, large
scale fading needs to be accounted for in the link budget and mitigated
by high-level power control. The fundamental issue at the physical
layer is the small scale fading, which necessitates modulation and
coding schemes, power allocation, channel estimation, and cooperative
schemes that are much different from their counterparts in wireline
communications. Therefore, we are mainly concerned with small-scale
fading in this thesis; fading in the following always refers to small
scale fading, unless explicitly noted otherwise.

B. Temporal Variation

The pattern of constructive and destructive interference is spatial in
nature; hence, if transmitter, receiver, and the environment are static,
the field distribution over space will not change in time. Enter mobility.
Motion of the receiver can be visualized as successively probing the
wave field at different points in space. Hence, the receiver experiences
constructive and destructive interference in quick succession, so that
the received field strength and phase vary rapidly—the more rapid the
faster the receiver moves. By reciprocity, the same picture holds true
if the transmitter is in motion. Alternatively, we can imagine both
transmitter and receiver being fixed and objects in the environment
moving. This leads to less severe channel variation in general, as
typically not all of the environment is in motion relative to the
terminals in such a scenario; e.g., walls and ceilings remain fixed, but
people or machines might move about.

C. Variation with Frequency

Many of the approximations of radio wave propagation used so far
are valid only if the considered wavelengths are either small or large
compared with the dimension of objects in the environment. As
wideband channels are the main focus in this thesis, the description
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of propagation effects with respect to a single frequency needs to
be expanded upon. Several physical effects may lead to frequency-
dependence of individual propagation paths.

• The free space loss depends on the absorption of the atmosphere,
which is frequency dependent. Attenuation in general increases
with frequency, albeit slowly in the band below 10GHz. Therefore,
we neglect this effect.

• Specular reflections and refractions, as described by the GO ap-
proximation, do not depend on frequency as long as the material
properties of the reflecting and refracting surfaces are not fre-
quency dependent. However, the assumption that the surfaces
are electrically large might not be satisfied at all frequencies: e.g.,
below a certain frequency, a specular reflection might very well
be more suitably modeled as scattering.

• A surface that is considered as smooth at low frequencies, leading
to a specular reflection, might no longer be smooth at high
frequencies and corresponding short wavelength.

• Diffraction is a frequency dependent phenomenon. Hence, diffrac-
tion coefficients vary with frequency; the exact behavior depends
on the geometry of the diffracting object (McNamara et al.,
1990).

2.3. INPUT-OUTPUT DESCRIPTION OF
WIRELESS CHANNELS

The model of the electromagnetic field as the superposition of partial
waves that result from simplified propagation mechanisms is a global
one; it allows to describe the electromagnetic field at almost every
point in space, and it enables differentiation between large-scale and
small-scale variations of the received field strength. However, the
resulting model complexity is still only manageable in a simulation
model, as evinced, e.g., by Seidel and Rappaport (1994).
The focus of this thesis is on communication- and information-

theoretic analysis of a single point-to-point wireless link. Consequently,
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we only need to model the transformation a signal undergoes between
transmitter and receiver. In this sense, a model for wireless channels
is an IO description, it relates output signals to corresponding input
signals. This section deals with the question of how to translate the
physical channel description into a mathematical IO relation.

2.3.1. Types of Input-Output Relations
Wireless transmitters and receivers consist of several functional blocks
that transform the communication signal in various ways. Therefore,
we are at liberty to consider different points in the signal path at the
transmitter as channel input and at the receiver as channel output.
To simplify the following discussion, we adapt a classification from
Vaughan and Bach Andersen (2003):

• The propagation channel describes solely the effect of electromag-
netic wave propagation between a transmitting point source and
a receiving point sink.

• The radio channel takes into account the effect of transmitting
and receiving antennas in addition to all effects of the propagation
channel.

• The radio frequency (RF) channel consists of the radio channel
and the effect of all filters, duplexers, amplifiers, and other analog
hardware that operates at RF, i.e., up to the frequency conversion
stages.

• The baseband channel takes as its input and output continuous-
time complex-valued signals, i.e., the signal before frequency
up-conversion and after down-conversion, respectively.

Virtually all contemporary communication theory uses the baseband
channel IO relation, as then all signals and systems can be represented
economically in complex baseband notation (Zhang and Miller, 1992;
Wilson, 1996; Proakis, 2001).

As we are interested primarily in communications aspects, we ne-
glect most impairments in the baseband channel, like power amplifier
compression, I-Q imbalance, DC-offset (Razavi, 1998; Yee, 2001), and
oscillator phase noise (Kouznetsov and Meyer, 2000; Demir, 2002),
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and only retain the two most fundamental impairments:

• The receiver effectively limits the duration and the bandwidth of
the received signal.

• All resistive elements in the receive circuitry introduce thermal
noise.

2.3.2. Multipath Input-Output Relations

In Section 2.2, we presented physical approximations for the propa-
gation of electromagnetic waves mostly on intuitive grounds. In the
present subsection, we try to express these approximations mathe-
matically.

The wavefront impinging at the receiving antenna can be modeled
as the superposition of many partial waves; and these partial waves
can in turn be characterized by the various propagation effects they
experience on their way along the different paths from the transmitting
antenna to the receiving antenna. In the following, we first analyze
the signal received over a single propagation path and assume that the
only propagation mechanism on this path is a reflection off a smooth
surface. The overall received signal can then be obtained by linearity
as the superposition of many such contributions; this is essentially
the approach taken by Kennedy (1969). In a second step, we include
frequency dependent propagation behavior along the individual paths.

A. Specular Multipath Models

The signal received via a propagation path that only undergoes a
specular reflection can be characterized by an amplitude coefficient ρ(t)
that models the path loss and the reflection loss, a phase shift ϕ(t)
that results from the material properties of the reflector, and by
the overall delay τ(t) between transmission and reception along the
selected path. In general, all three parameters may depend on time.
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The signal received over the radio channel can then be written as

Re
{
r(t)ei2πfct

}
= Re

{
ρ(t)ei2πϕ(t)x

(
t− τ(t)

)
ei2πfc

(
t−τ(t)

)}
, (2.1)

where x(t) and r(t) are the baseband input and output signals, respec-
tively, and fc denotes the carrier frequency. The variation in delay
over time is caused by the motion of the transmitter, the receiver,
and the reflecting object. In typical indoor environments, motion is
slow and there are no abrupt changes; therefore, we approximate τ(t)
by its first-order Taylor series, τ(t) ≈ τ + τ̇ t, where τ̇ stands for the
time derivative of the arrival delay τ(t). Furthermore, we neglect the
time variation of the complex-valued reflection coefficient, i.e., we
set ρ(t) ≈ ρ and ϕ(t) ≈ ϕ; these latter approximations are admissible
as long as we are only interested in small-scale effects, because reflec-
tion and attenuation change significantly only upon large variations
of the total propagation distance along the path under considera-
tion, and the reflection phase shift varies only with large changes
in the angle of arrival (AOA) and the angle of departure (AOD) of a
path. Furthermore, we absorb the phase shift caused by the specular
reflection into the delay coefficient, i.e., ρei2πϕ → ρ. Consequently,

Re
{
r(t)ei2πfct

}
= Re

{
ρx
(
[1− τ̇ ]t− τ

)
e−i2πfc(τ+τ̇ t)︸ ︷︷ ︸

r(t)

ei2πfct
}
. (2.2)

The change in delay, which results from a change in path length,
has two effects. First, the transmitted signal x(t) is compressed in
time by a factor (1− τ̇); this effect is called time dilation or scaling
(Cohen, 1993). Second, the transmitted signal x(t) is delayed by τ .
Define a , 1− τ̇ and b , τ/(1− τ̇); then, (2.2) can be rewritten as

Re
{
r(t)ei2πfct

}
= Re

{
ρei2πfca(t−b)

√
|a|x

(
a(t− b)

)}
. (2.3)

To obtain the corresponding IO relation of the wireless channel, we
use the modeling assumption discussed previously: the total electro-
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magnetic field at the receiver can be expressed as the linear super-
position of many partial waves, each of which can be described by
the propagation effects along a specific propagation path from the
transmitter to the receiver. It follows from (2.3) that each path can
be characterized by a corresponding parameter pair (a, b). With high
probability, no two paths have exactly the same parameter combi-
nation (a, b), so that we can index the attenuation coefficient for a
particular path (a, b) as ρ(a, b). To simplify notation, we aggregate the
path coefficients of (2.3) into a function cS(a, b) , ρ(a, b)ei2πfca(t−b),
the so-called wideband spreading function.∗ If there are many prop-
agation paths, by linearity we can express the aggregated received
signal in integral form as

Re
{
r(t)ei2πfct

}
= Re

{∫∫
a b

cS(a, b)
√
|a|x

(
a(t− b)

)
dbda

}
, (2.4)

i.e., the received signal is a superposition of delayed and scaled repli-
cas of the transmitted signal, weighted by the wideband spreading
function cS(a, b).
If x(t) varies slowly enough, we can simplify the IO relation (2.4).

Let D denote the effective duration and B the effective bandwidth†

of x(t); then, we can approximate

x([1− τ̇ ]t− τ) ≈ x(t− τ) (2.5)

as long as

DB � 1
|τ̇ |
. (2.6)

A more intuitive condition results if we relate the rate of change in
delay τ̇ to the joint radial velocity vr of transmitter, reflector, and

∗ The subscript S indicates that we consider a channel S in which propagation
is affected only by specular reflections.
† See Definition 3.2 to follow.

29



2 CHANNEL MODELING FOUNDATIONS

receiver as∗ τ̇ = −vr/c, where c stands for the speed of light in air.
This allows us to define the Doppler shift ν , −fcτ̇ = fcvr/c, and to
express the condition (2.6) as

DB � fc
|ν|
, (2.7)

i.e., the approximation (2.5) is valid if the time-bandwidth product DB
of the transmitted signal is appreciably less than the ratio fc/ |ν|
between carrier frequency and Doppler shift, or—stated differently—if
the fractional bandwidth B/fc is significantly smaller than 1/(|ν|D).
This assumption is commonly referred to as the narrowband assump-
tion (Weiss, 1996), although it should be more appropriately called the
small fractional bandwidth assumption. Effectively, we approximate
scaling of the received signal by Doppler shifts. Typical communication
signals have duration D well below one second,† and the maximum
Doppler shift encountered in indoor channels is often less than 10Hz.
Therefore, many communication signals are of small fractional band-
width although their absolute bandwidth might be quite large. The
narrowband assumption leads to the following simplification of the
one-path IO relation (2.2) in baseband notation:

r(t) = ρx(t− τ)e−i2πfc(τ+τ̇ t)

= ρe−i2πfcτx(t− τ)ei2πνt. (2.8)

Thus, under the assumption of small fractional bandwidth, the re-
ceived signal along an individual propagation path subject to specular
reflection is a time-delayed and frequency-shifted version of the trans-
mitted signal.
The superposition of partial received signals via multiple propa-

gation paths can be handled as before: We denote the attenuation
coefficient of the path with Doppler shift ν and delay τ as ρ(ν, τ),

∗ We choose the sign of the radial velocity to be negative merely for notational
convenience.
† The duration here refers to the duration of the entire codeword, not just to

the duration of a single transmitted symbol.
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and aggregate the coefficients of all propagation paths as sS(ν, τ) ,
ρ(ν, τ)e−i2πfcτ . This function was termed the delay-Doppler spreading
function by Bello (1963); we simply refer to it as the spreading func-
tion. The superposition of all received time- and frequency-shifted
copies of the transmitted signal can now be expressed as

r(t) =
∫∫
ν τ

sS(ν, τ)x(t− τ)ei2πνtdτdν. (2.9)

B. Delay-Scale or Delay-Doppler Modeling?

Which of the two IO relations (2.4) or (2.9) is more suited to model
wireless channels? On the basis of the physical intuition developed
so far, the delay-scale IO relation (2.4) is more accurate because it
does not rely on the small fractional bandwidth assumption; but it is
also mathematically more involved. Most conventional communica-
tion systems satisfy the small fractional bandwidth condition (2.7);
consequently, analysis and empirical characterization of communica-
tion channels that follow the delay-scale IO relation did not receive
much research attention in the past, except in the radar and sonar
literature (Blahut et al., 1991). The possibility to commercially deploy
UWB communication systems has led to novel research activities to
characterize and analyze communication channels of large fractional
bandwidth. Yet, there are still very few publications that do use the
delay-scale channel characterization (2.4) for communication applica-
tions (Margetts and Schniter, 2004; Margetts et al., 2005; Jiang and
Papandreou-Suppappola, 2006).
Hampering the development might also be a lack of empirical ev-

idence that the more complicated delay-scale model (2.4) is indeed
more appropriate than the delay-Doppler model (2.9) to describe wire-
less channels of large fractional bandwidth. It is not known starting
at what fractional bandwidth a system designed on the basis of the
delay-scale model might outperform a system designed on the basis
of the delay-Doppler model, if at all. An empirical comparison of
the delay-scale and the delay-Doppler approach requires time-variant
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channel measurements of large enough bandwidth for the theoreti-
cal difference to become apparent. Such measurements are not yet
technically feasible, as will be discussed in greater detail in Chapter 4.

The assumption of small fractional bandwidth is much more readily
violated for underwater acoustic communication channels, as these
channels are characterized by a much lower velocity of wave propaga-
tion compared with wireless channels (Stojanovic, 1996; Sibul et al.,
1994). Yet, it seems that even in underwater acoustic communication,
the delay-Doppler channel description (2.9) can be successfully used
for system design (Eggen et al., 2000).
To conclude, the case for the delay-scale model (2.4) seems to be

rather weak to date. We did not find compelling empirical evidence
to suggest that the performance of a wireless system designed on the
basis of a delay-Doppler model instead of a delay-scale model will
carry a significant performance penalty, so that the mathematical
difficulties analyzing (2.4) seem to outweigh its potential benefits.
Therefore, we opt to use a delay-Doppler formulation along the lines
of (2.9) in the following. This decision is not meant to devaluate a
delay-scale approach for the analysis of wideband wireless channels,
though. On the contrary, it shows that research effort should be
increased to provide empirical comparison of the two models and to
translate the mathematical tools from harmonic analysis and group
representation theory that are needed to analyze the delay-scale model
(Auslander and Tolimieri, 1985; Heil and Walnut, 1989; Weiss, 1996;
Gröchenig, 2001) into a form that is suitable for engineering analysis
of delay-scale channels.

C. Path-Wise Frequency Dependence

We derived the preceding IO relations under the assumption that the
only propagation mechanism along each path is a specular reflection.
This is a gross simplification in the light of the discussion in Sec-
tion 2.2. Propagation mechanisms such as diffraction and scattering
are frequency dependent in general; furthermore, the type of propaga-
tion mechanism that is appropriate to model a certain interaction of a
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partial wave with an object might not be the same for all frequencies.
Although the range of propagation mechanisms that may lead to

frequency-dependent behavior of individual propagation paths is quite
diverse, we make the simplifying assumption that each path acts as a
linear time-invariant (LTI) filter whose impulse response γ(τ ′) captures
the frequency dependence of the propagation mechanisms that affect
this particular path. The LTI approximation can be motivated in that
the frequency dependence of each path does not change significantly
over time as long as we only consider small-scale fading. Our modeling
approach is similar to the one used by Qiu and Lu (1996) to derive
a wideband extension of the classical specular multipath model by
Turin (1972). Cramer et al. (2002) provide empirical evidence for the
frequency dependence of individual propagation paths.
For the reasons already discussed, we assume that the path delay

varies linearly with time as τ(t) = τ + τ̇ t, and we approximate
x([1− τ̇ ]t− τ) by x(t− τ). Then, the IO relation of a path with given
delay τ and Doppler shift ν can be derived analogously to (2.8) and
expressed in complex baseband notation as the convolution

r(t) = ei2πνte−i2πfcτ
∫
τ ′

γ(τ ′)x(t− τ ′)dτ ′. (2.10)

As in the preceding subsection, we index each propagation path by
its Doppler-delay pair (ν, τ), i.e., set γ(τ ′) = γ(ν, τ, τ ′), and express
the received signal as a superposition of a large number of paths:

r(t) =
∫∫∫
ν τ τ ′

γ(ν, τ, τ ′)e−i2πfcτx(t− τ − τ ′)ei2πνtdτ ′dτdν

=
∫∫∫
ν τ ζ

γ(ν, τ, ζ − τ)e−i2πfcτx(t− ζ)ei2πνtdζdτdν, (2.11)

where the second equality follows from the substitution ζ , τ + τ ′.
Next, we exchange the order of integration, define the spreading
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function∗ as

sH(ν, ζ) ,
∫
τ

γ(ν, τ, ζ − τ)e−i2πfcτdτ, (2.12)

and perform another change of variables, this time purely cosmetic,
to obtain the IO relation

r(t) =
∫∫
ν τ

sH(ν, τ)x(t− τ)ei2πνtdτdν. (2.13)

This IO relation has the same structure as (2.9): the channel output
is a weighted superposition of time- and frequency-shifted copies of
the input signal. The fundamental difference between the two delay-
Doppler IO relations (2.9) and (2.13) is the physical interpretation of
the delay variable. While in sS(ν, τ) each τ signifies the contribution
of a distinct propagation path, multiple paths can contribute to the
value of sH(ν, τ) for any given delay.

It is physically sensible to require that both sS(ν, τ) and sH(ν, τ)
are energy limited, which means for sH(ν, τ) that∫∫

ν τ

|sH(ν, τ)|2 dτdν <∞, (2.14)

i.e., the spreading functions need to be square integrable.

2.4 . MATHEMATICAL STRUCTURE

At this point in the modeling process, we have reduced to the IO re-
lation (2.13) the complicated initial model that was the solution of
Maxwell’s equations for a detailed description of all objects in the
environment. In most modeling steps so far we put intuition above
mathematical rigor; this approach seems well justified because an

∗ The subscript H stands for the channel operator. We provide a precise defini-
tion in 2.4.2.
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engineering model that critically depended on some mathematical
pathology certainly would not be a very robust one. Yet, the main
purpose of a mathematical model is to expose the fundamental struc-
ture of the physical reality under consideration, as it is this structure
that can be exploited for analysis and design. Therefore, we now take
a closer look at the IO relation (2.13) and try to discern its structural
properties. In particular, we use two equivalent but complementary
approaches to this end. The engineering approach is to view the chan-
nel as an LTV system that is characterized by its system functions,
while the mathematical approach is to describe the channel as a linear
operator on a Hilbert space.

2.4.1. Linear Time-Variant Systems
The spreading function sH(ν, τ) can be interpreted as a specific system
function of an LTV system. Equivalent descriptions of the same LTV sys-
tem are given by Fourier transforms of sH(ν, τ), as shown by Zadeh
(1950, 1961), Kailath (1959), and Bello (1963). The most commonly
used system function is the time-variant impulse response hH(t, τ),
which is related to the spreading function by the Fourier transform

sH(ν, τ) ,
∫
t

hH(t, τ)e−i2πνtdt. (2.15)

The time-variant impulse response characterizes the response of the
channel at time t to a Dirac impulse τ seconds earlier. The corre-
sponding IO relation, which is equivalent to (2.13), is given by:

r(t) =
∫
τ

hH(t, τ)x(t− τ)dτ. (2.16)

Another useful system function is the time-variant transfer function

lH(t, f) ,
∫
τ

hH(t, τ)e−i2πfτdτ. (2.17)
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For completeness, we also mention the bifrequency function

bH(ν, f) ,
∫∫
τ t

hH(t, τ)e−i2π(νt+fτ)dtdτ, (2.18)

although we doe not need it in the thesis. The above Fourier relations
are compactly summarized in the following diagram:

hH(t, τ)
Ft→ν

yysssssssss Fτ→f

%%JJJJJJJJJ

sH(ν, τ)

Fτ→f %%KKKKKKKKK
lH(t, f)

Ft→νyyttttttttt

bH(ν, f)

(2.19)

As the Fourier transform is a unitary operation, the energy limitation
on sH(ν, τ) in (2.14) carries over to the other system functions: they
are all square integrable.

2.4.2. The Channel as a Linear Operator
The key structural property of the transformation between input
signal x(t) and output signal r(t) in (2.13) is linearity, as a consequence
of the solution to Maxwell’s equations being linear as long as all
materials are linear. Linearity is extremely important as it allows
us to abstract all input and output signals as vectors in a Hilbert
space, the so-called signal space popularized by Wozencraft and Jacobs
(1965) for communications engineering.

Physically realizable signals s(t), expressed as a univariate function
of the time parameter t ∈ R, have finite energy content, i.e.,∫

t

|s(t)|2 dt <∞. (2.20)

Thus, they can be taken as elements of the Hilbert space L2 of square-
integrable functions over the real line R (Naylor and Sell, 1982).
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We use the term signal to refer to square-integrable functions of
time s(t) ∈ L2 throughout.
The signal space is a powerful model because many important

results from functional analysis can be used directly (Naylor and
Sell, 1982; Kreyszig, 1989). In particular, we can model the effect of
the channel as a linear operator H : L2 → RH that maps an input
signal x ∈ L2 into an output signal r ∈ RH, where RH denotes the
range space of H; to aid intuition, we call RH the channel’s output
space in the following. The set of input signals x(t) that result in a
zero output, i.e., for which Hx = 0, span the null-space NH of H. The
signals in NH are useless for communication purposes. Conversely, we
denote as the channel’s input space IH the linear space of all those
signals that do result in a nonzero output, i.e., IH , span(L2 −NH).
Conservation of energy implies that the channel cannot have infi-

nite gain. Thus, H is a bounded linear operator, which means that
it is continuous—a physically very reasonable assumption. The cor-
responding IO relation between a given input signal x ∈ L2 and the
corresponding noise-free output signal r ∈ RH can now be written as

r = Hx. (2.21)

The square integrability condition (2.14) on the system functions
means that the channel operator is energy limited. From Section 2.3,
this condition can be motivated in that the channel is nonzero only over
a finite, albeit large, amount of time and over a finite frequency band.
In mathematical terms, H is a Hilbert-Schmidt (HS) operator: Let {ei}
be an arbitrary orthonormal basis for L2; then, a HS operator H is
defined as a linear operator that satisfies (Dunford and Schwarz, 1963,
Section XI.6)

∞∑
i=0

‖H ei‖2 <∞. (2.22)

Mathematically, this assumption is rather strong: it implies that H can
be expressed as the limit∗ of an operator sequence where each operator

∗ Convergence is with respect to HS norm.
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has a finite-dimensional range space. An important implication is that
the IO relation (2.21) can be written in integral form as (Dunford and
Schwarz, 1963, p. 1083)

r(t) =
(
Hx
)
(t) =

∫
t′

kH(t, t′)x(t′)dt′, (2.23)

where kH(t, t′) is called the kernel of the HS operator H. The kernel
of every HS operator is square integrable, i.e.,∫∫

t′ t

|kH(t, t′)|2 dtdt′ <∞. (2.24)

2.4.3. System Functions
The channel operator H with kernel kH(t, t′) and the system functions
of an LTV system can be formally related through the identity∗

kH(t, t′) = hH(t, t− t′), (2.25)

which means that every HS operator can be represented as an LTV sys-
tem and vice versa.
Yet, it is not the formal equivalence of HS operators and LTV sys-

tems that is of importance here but the physical interpretation we
can now give to the effect of the channel operator H, on the basis
of the developments in Sections 2.2 and 2.3. Two different system
functions might correspond to the same HS operator, but the physical

∗ The identity (2.25) shows that the time-variant impulse response results from
a particular coordinate transform between absolute time and delay. Many other
transforms are possible, where each one leads to a different set of system functions.
A generalized formulation that takes into account all possible ways to define
the time-delay coordinate system was devised by Kozek (1992) on the basis of
the generalized Wigner distribution (Hlawatsch and Boudreaux-Bartels, 1992).
Artés et al. (1998) provide a comprehensive summary of these generalized system
functions and their corresponding IO relations. We do not need the generalized
system functions in the following.
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interpretation of each system function might be completely differ-
ent. For example, the spreading function sH(ν, τ) and the wideband
spreading function cS(a, b) are mathematically equivalent, as recently
shown by Rickard et al. (2005); i.e., they may correspond to the same
HS operator H. Yet, their physical interpretations differ.
Two important special cases of LTV systems are (i) LTI systems,

characterized by an impulse response h(τ) that depends only on
delay τ but not on absolute time t, so that hH(t, τ) = h(τ), and
(ii) linear frequency-invariant (LFI) systems, characterized by a mod-
ulation function g(t) that depends only on absolute time but not on
delay τ , so that hH(t, τ) = g(t)δ(τ). Both LTI and LFI system cannot
be represented as a HS operator because the corresponding kernels are
not square integrable. Yet, they can be seen as limiting cases (Naylor
and Sell, 1982).

2.4.4. Discretization of the System Functions

We have not yet specified sH(ν, τ), or any of the equivalent system
functions. They must all be square integrable, and we have the physical
intuition from Sections 2.2 and 2.3 to guide us in the choice of their
exact shape. But the specification of a continuous function in two
variables is still a formidable task. Especially if we want to use
measured data to characterize the channel, we can at best hope to
obtain a finite number of parameters. Therefore, it is advantageous to
discretize the system functions, i.e., to describe them by a countable
or, even better, a finite set of parameters.

One particular discretization follows directly from the HS property
of H: the representation of the kernel kH(t, t′) by means of a singular
value decomposition (SVD). For a given HS operator H there exist an
orthonormal sequence of signals {vi}, called right singular functions,
that span the channel’s input space IH, and an orthonormal sequence
of signals {ui}, called left singular functions, that span the channel’s
output space RH. Furthermore, there exists a sequence of positive
real numbers {σi}, called singular values, such that (Naylor and Sell,
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1982, Theorem 6.14.1)

kH(t, t′) =
∞∑
i=0

σiui(t)vi(t′). (2.26)

Every signal x in the input space IH is uniquely characterized by its
projection onto the right singular functions,

x =
∞∑
i=0

〈x, vi〉 vi (2.27)

and every signal r in the output space RH can similarly be expressed
by its projection onto the left singular functions. Because the singular
functions are orthonormal, we can write the projection of the out-
put r(t) in (2.21) onto a left singular function uj(t) for all j = 0, 1, . . .
as

〈r, uj〉 = 〈Hx, uj〉

(a)
=
∞∑
i=0

〈x, vi〉 〈H vi, uj〉

(b)
=
∞∑
i=0

〈x, vi〉

〈 ∞∑
n=0

σnun 〈vn, vi〉 , uj

〉

=
∞∑
i=0

σi 〈x, vi〉 〈ui, uj〉

= σj 〈x, vj〉 . (2.28)

Here, (a) follows upon insertion of (2.27) and from the linearity of
the inner product in its first operand (Kreyszig, 1989), equality (b)
results from the integral IO relation (2.23) and the SVD of the kernel
in (2.26), and the remaining equalities follow because the singular
functions are orthonormal. Hence, the discretization (2.28) on the
basis of the SVD (2.26) diagonalizes the IO relation (2.23), i.e., it
decomposes it into a set of parallel scalar IO relations.
The set of parallel IO relations (2.28) constitutes an elegant and

simple description of the channel H; it appears to be the perfect repre-
sentation to analyze communication over LTV channels. Unfortunately,
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there are some important practical problems with the diagonaliza-
tion (2.28) that result because the left and right eigenfunctions of H
depend on the channel operator H in general.

• As the SVD is a nonredundant representation of H, the diago-
nalization (2.28) is in general not robust; i.e., a small change
in H might lead to a large change in the singular functions
(Christensen, 2003; Kovačević and Chebira, 2007). Channel mea-
surements, treated in Part II, always contain measurement errors,
which might completely change the set of left and right singular
functions. Hence, the diagonalized representation (2.28) is not
suitable for the description of measured channels.

• The transmitter and receiver in any real world wireless commu-
nication system do not know H. Therefore, they cannot use the
right and left singular functions for transmission and reception,
respectively.

• Estimation of the ui and vi is impossible while the system is
operated because at any given point in time knowledge of H
implies anticausal knowledge of its singular functions, which may
have infinite duration.

Despite these conceptual difficulties diagonalizing LTV channels by
means of the SVD, an approximate diagonalization that is structurally
similar to (2.28) is possible if H is underspread (Kozek, 1997a). We
discuss this approximate diagonalization in more detail later on, in
Section 3.2.

The SVD of the HS kernel kH(t, t′) is a matched expansion, matched
to the structure of the operator under study. In contrast, mismatched
discretizations do not cater for the structure of a specific realization
of H, but rely on certain more general properties. The most widely used
class of mismatched discretizations are sampling expansions; they are
based on the assumption that a specific combination of the duration
and the bandwidth of the input and the output signal is limited.
Possible assumptions are an input band limitation in combination with
an output time limitation, or an input time limitation in combination
with an output band limitation. A joint limitation of the duration
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and the bandwidth of either the input signal or the output signal is
mathematically not possible; but these mathematical difficulties are
not physically fundamental and can be dealt with (Slepian, 1976).
The various types of discretized IO relations that can be obtained by
sampling the input or output signals (or both), are described in detail
by Kailath (1959), Bello (1963), and Artés et al. (1998). The resulting
models are used, among others, by Médard (2000) and Goldsmith
and Médard (2007).

Band limitations can also be placed directly on the system functions
instead of on the input and output signals. Physically the most
sensible assumption seems to ba a joint limitation of the Doppler
shift ν and the delay τ . As discussed in Section 2.3.2, the maximum
Doppler shift is determined by the velocity of the transmitter, the
receiver, and objects in the environment, all of which can readily be
assumed finite. The maximum delay is determined by the time it
takes for the transmitted energy of a single pulse to be absorbed by
materials. Thus, we can limit the essential support of the spreading
function sH(ν, τ) to lie in the rectangle [−ν0/2, ν0/2]× [−τ0/2, τ0/2],
where, without loss of generality, we removed an overall Doppler
shift and introduced a negative delay to render the support rectangle
symmetric around the origin. Because the support of sH(ν, τ) is limited
as above, the time-variant transfer function lH(t, f) can be sampled
in time t at rate ν0 and in frequency f at rate τ0. The corresponding
IO relation was derived by Kailath (1959, Section 3.13) and Bello
(1963, Section IV.A.2).

2.5 . STOCHASTIC MODELS

Most indoor wireless systems are commodity products, standardized
and manufactured in large quantities for operation in a multitude
of different environments. It is virtually impossible to characterize
spreading functions for even a small subset of the different channels
these systems might operate over, let alone to design a system for each
specific spreading function. A pragmatic solution is to explicitly take
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into account the ignorance about the channel a specific deployment of
a wireless system will face; hence, a stochastic channel model describes
our ignorance about the actual propagation environment a system
will operate in, so that a design for the average case can be robust
enough to operate under a wide range of conditions.

2.5.1. Structure of a Stochastic Model
In Section 2.2.2 we distinguished between the variation of the mean
received signal strength and the fluctuation of the magnitude and
phase of the received signal. This distinction between large-scale
fading and small-scale fading is useful also to build stochastic models
of wireless channels.

Large-scale variations in general happen over times that are much
longer than the duration of a typical transmitted codeword. Therefore,
the main purpose of a stochastic model for large-scale variations is
to aid the design of the power and rate control algorithms, feedback
schemes, admission control, and other functions in the upper layers of
the standard network stack (Bertsekas and Gallager, 1996; Tanenbaum,
2003).

Small scale variations of the channel, on the other hand, may
happen over the course of a couple of transmitted symbols during the
transmission of a single codeword. Therefore, small-scale fading often
cannot be easily mitigated by closed-loop control schemes, and is often
best modeled as an integral part of the wireless channel. A stochastic
description of small-scale fading is an approach well suited to model
many types of fading channels in the sense that it correctly predicts
the significant difference between the rates achievable over a fading
channel in comparison with the capacity of a channel that is only
affected by AWGN, From a mathematical perspective, a stochastic
model for small-scale fading is appropriate as the models commonly
used for both information sources and receiver noise are stochastic
in nature. As already pointed out, we are mainly concerned with the
mathematical communication problem in this thesis; therefore, we
will exclusively use a stochastic small-scale fading model and exclude
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from consideration all large-scale effects.
Formally, the change from the deterministic IO relation (2.13) to its

stochastic counterpart amounts to replacing the deterministic spread-
ing function sH(ν, τ) with a random process sH(ν, τ). To complete
the model, we also include the additive noise w(t) introduced by the
receiver. At the frequencies of interest, this noise is mostly thermal in
nature; therefore, it can be very well modeled as a white JPG process.
For convenience, we normalize its power spectral density (PSD) to
unity, i.e., E[w(t)w(t′)] = δ(t− t′). Furthermore, we incorporate into
our model that information-bearing signals are best described as
random processes as well. Hence, a stochastic model that relates the
random output signal y(t) of a small-scale fading wireless channel H
with additive noise w(t) to the random input signal x(t) is

y(t) =
∫∫
ν τ

sH(ν, τ)x(t− τ)ei2πνtdτdν +w(t). (2.29)

Barring certain technical conditions on the nature of the stochastic
process sH(ν, τ), all other system functions can be defined as in
Section 2.4.1 by means of the appropriate Fourier transforms:

hH(t, τ)
Ft→ν

yyssssssssss Fτ→f

%%KKKKKKKKK

sH(ν, τ)
F−1
ν→t Fτ→f

// lH(t, f)

(2.30)

Hence, the IO relation on the basis of the random time-variant impulse
response hH(t, τ) is

y(t) =
∫
τ

hH(t, τ)x(t− τ)dτ +w(t), (2.31)

and the kernel representation follows as before from a coordinate trans-
form kH(t, t′) = hH(t, t− t′). Consequently, the channel operator H
is now an operator-valued random variable.
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A complete stochastic description of the channel requires speci-
fication of the distribution followed by the two-dimensional chan-
nel process kH(t, t′), or equivalently by any of the stochastic pro-
cesses hH(t, τ), lH(t, f), or sH(ν, τ). Adapting terminology from Lin-
hart and Zucchini (1986), we call this complete stochastic description
the operating distribution—the closest possible stochastic represen-
tation of a given physical situation. The operating distribution is a
conceptual modeling assumption, there is in general no “true” stochas-
tic process according to which channel realizations are generated. As
in the deterministic modeling steps in the preceding sections, we need
to balance tractability with accuracy and approximate the operating
distribution by a stochastic description with reasonable complexity.
We also need to keep in mind that the transition between a determin-
istic, site-specific description and a generic, stochastic description of
wireless channels is gradual—the more detailed the stochastic model,
the more do we tie the model to a specific environment that fits the
selected set of parameters. This is a manifestation of the trade-off
between accuracy and generality discussed in Section 2.1.
A suitable compromise between accuracy, generality, and mathe-

matical and experimental tractability is often to describe the process
under study only up to second order, i.e., to specify its marginal
distribution and its correlation function. We adopt this approach here
and discuss marginal distributions and second-order characterization
in the following two subsections.

2.5.2. Marginal Distributions
Many statistical models rely on the central limit theorem (CLT): if a
quantity to be modeled stochastically results from the superposition
of many unknown physical effects, chances are that the quantity can
be very well modeled as a Gaussian random variable. However, if only
a small number of unknown effects contribute to the quantity under
study, this Gaussian approximation may not be a good one.
In a baseband equivalent channel description, it is common to

model both the real and the imaginary part of the spreading func-
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tion sH(ν, τ) as Gaussian for each (ν, τ) (Bello, 1963; Proakis, 2001;
Tse and Viswanath, 2005). If the two parts are i.i.d., the complex
random variable sH(ν, τ) is proper Gaussian distributed (Wooding,
1956; Miller, 1969; Neeser and Massey, 1993). A proper Gaussian
random variable of zero mean has a uniformly distributed phase and
its magnitude follows a Rayleigh distribution. If the mean is not zero,
the magnitude of the corresponding random variable follows a Rice
distribution (Rice, 1944).
Though, when we recapitulate the derivation of the nonrandom

IO relations in Section 2.3 it seems questionable if the CLT can in-
deed be invoked to justify this Gaussian assumption. Only a single
propagation path contributes to the value of the specular spreading
function sS(ν, τ) for each (ν, τ), so that in this particular case the CLT

is certainly not applicable. It might be applicable in the more realistic
propagation scenario with frequency dependence of individual propa-
gation paths because of the aggregation of contributions from different
paths for each fixed delay value according to (2.12). An even stronger
argument in favor of the CLT and the resulting Gaussian marginal
distribution of sH(ν, τ) is an indirect one: All communication systems
use effectively band-limited signals, so that the effective channel they
see is band limited as well. A band limitation reduces the temporal
resolution. Therefore, propagation paths whose delay difference is less
than the inverse bandwidth cannot be resolved at the receiver; conse-
quently, only the aggregate effect of these paths needs to be modeled
(Tse and Viswanath, 2005). And as a small change in delay can lead
to a large change in the phase term in (2.8), a uniform distribution
for the aggregated phase of these paths seems sensible as well. From
this point of view, to model the not band-limited spreading func-
tion sH(ν, τ) as proper Gaussian is similar to the engineering model of
white Gaussian noise—both models are physically questionable and
mathematically ill defined, but a band-limited version of the noise, or
in our case the channel’s spreading function, is often a sensible model.
But if sH(ν, τ) has operational significance only if band limited

with respect to τ , it is important to ask how large the bandwidth
of a communication system can be for the proper Gaussian model
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of sH(ν, τ) to remain valid. For if the bandwidth is large and the
corresponding temporal resolution is high, there might not be enough
paths averaging to justify the Gaussian assumption via the CLT.
Several researchers have questioned the validity of the Gaussian
model on these grounds, especially for UWB channels with several
gigahertz of bandwidth (Zhang et al., 2002; Cassioli et al., 2002;
Molisch et al., 2003a). As an alternative for the Rayleigh or Rice
amplitude distributions that correspond to a proper Gaussian random
variable with zero or nonzero mean, respectively, Cassioli et al. (2002)
proposed to use the Nakagami distribution (Nakagami, 1960), Foerster
(2003), Buehrer et al. (2003), and Li and Wong (2003) advocate
the lognormal distribution, and Chong and Yong (2005) use the
Weibull distribution to model small-scale amplitude variations in
UWB channels. All of these different amplitude distributions are
proposed on the basis of UWB channel measurements. However, the
measurement methodology and the statistical procedure used to assess
the suitability of different distributions differs widely among the cited
references, so that it is not clear if the variety of proposed amplitude
distributions results from the different measured environments or if it
is an artifact of the different statistical methods used. We take up this
question in Part II, where we systematically compare the suitability
of the above-listed distributions to model amplitude variations of
measured UWB channels.

2.5.3. Second-Order Characterization and the WSSUS
Assumption

A stochastic process is completely specified by its joint distribution
at any finite number of epochs. Because the complexity of such a
description is prohibitive, we restrict our attention to the moments
of second order, i.e., we partially characterize the joint distribution
of the random system functions in that we specify the corresponding
correlation functions, following Bello (1963). The natural extension
of the proper Gaussian marginal distribution to the entire stochastic
processes is a jointly proper Gaussian distribution for any finite num-
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ber of epochs (Neeser and Massey, 1993). Bello (1963) and Kennedy
(1969) model sH(ν, τ) as a JPG process in both ν and τ . This implies
that all other system functions as well as the kernel kH(t, t′) are also
two-dimensional JPG processes. For JPG processes, a second-order
characterization is indeed a complete specification of the correspond-
ing stochastic processes. Without loss of generality, we assume that all
system functions are of zero mean. This assumption is not restrictive,
as a mean component can always be added.
As the system functions are two-dimensional, their correlation

functions depend on four parameters in general.
• For the time-variant impulse response hH(t, τ):

rh(t, t′, τ, τ ′) , E
[
hH(t, τ)hH(t′, τ ′)

]
. (2.32)

• For the spreading function sH(ν, τ):

rs(ν, ν′, τ, τ ′) , E[sH(ν, τ)sH(ν′, τ ′)] . (2.33)

• For the time-variant transfer function lH(t, f):

rl(t, t′, f, f ′) , E
[
lH(t, f)lH(t′, f ′)

]
. (2.34)

These four-dimensional correlation functions are still quite complex
to work with. Therefore, Bello (1963) introduced two additional
assumptions to simplify the correlation structure. Expressed in terms
of the spreading function, these assumptions state that the channel is
uncorrelated for different Doppler shifts and for different delays, i.e.,

E[sH(ν, τ)sH(ν′, τ ′)] = cs(ν, τ)δ(ν − ν′)δ(τ − τ ′), (2.35)

where cs(ν, τ) is called the channel’s scattering function. Expressed
in terms of the time-variant transfer function, a symplectic Fourier
transform shows that

E
[
lH(t, f)lH(t′, f ′)

]
= cl(t− t′︸ ︷︷ ︸

,∆t

, f − f ′︸ ︷︷ ︸
,∆f

). (2.36)
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Consequently, the spreading function being uncorrelated in both
Doppler and delay implies that the time-variant transfer function
is WSS in both time and frequency. Furthermore, the correlation
function of the time-variant impulse response hH(t, τ) is WSS in time
and uncorrelated in delay:

E
[
hH(t, τ)hH(t′, τ ′)

]
= ch(∆t, τ)δ(τ − τ ′). (2.37)

It is this last representation from which the assumption derives its
name: the channel is assumed to be WSS in time and scatterers that
correspond to paths of different delays are assumed to be uncorrelated;
thus, the channel is said to be WSSUS. The Fourier transform relation
between the three simplified correlation functions is summarized in
the following diagram.

ch(∆t, τ)
Fτ→∆f

xxqqqqqqqqqqq
F∆t→ν

%%LLLLLLLLLL

cl(∆t,∆f)
F−1

∆t→ν F∆f→τ

// cs(ν, τ)

(2.38)

As our focus is on small-scale fading, we can take care of the over-
all channel attenuation by appropriate scaling of the transmitted
signal power; hence, we normalize the channel attenuation to unity
throughout, ∫∫

ν τ

cs(ν, τ)dτdν = 1. (2.39)

By Parseval’s theorem, the other correlation functions are normalized
accordingly. For convenience, we define a related quantity that is often
used to characterize wireless channels: the power-delay profile (PDP)
is

ps(τ) ,
∫
ν

cs(ν, τ)dν. (2.40)
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That the channel evolves in a stationary way in time is a sensible
assumption only with respect to the small-scale fading effects we
consider here. Changes in path loss, for example, are certainly not
stationary; thus, if we violate the small-scale fading assumption, we
also violate the WSS assumption in t and vice versa.
There are two main problems with the physical motivation of the

US part in the WSSUS assumption for the types of channel under
consideration here. (i) The stochastic system functions have no oper-
ational relevance if not properly band limited in f , as discussed in
the previous subsection. But the resulting function would no longer
be WSS in frequency, i.e., its time-domain dual would no longer be
uncorrelated in delay. Thus, the US assumption is an assumption on
the physically meaningless infinite-bandwidth stochastic system func-
tions. (ii) For channels with per-path frequency dependence, different
delays do not necessarily correspond to different physical propagation
paths; it follows from (2.12) that several paths can contribute to the
channel output at the same delay. Hence, the motivation that US

results because different uncorrelated physical scatterers contribute
to the channel output only at different and distinct delays does not
hold true. However, it is not clear a priori how strong the correlation
between different paths is. Therefore, we analyze the correlation of
measured channel impulse responses in Part II.
Finally, we need to point out a fundamental mathematical incom-

patibility between the WSSUS assumption and the channel description
as a random HS operator. The HS property implies square integrability
of each realization of the kernel kH(t, t′), which physically means that
the channel gain vanishes with increasing time and frequency. But the
WSSUS assumption necessitates that the channel correlation functions
depend only on the time and frequency difference but not on absolute
time and frequency. Serious as this incompatibility may sound, it is
not relevant for engineering applications, for which the model needs
to hold only for a finite time duration and bandwidth. Physically,
the WSSUS assumption only makes sense over a limited time and
bandwidth, so that outside of this range we can safely assume the
channel to decay so as to satisfy the square-integrability condition.
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Hence, all we need is a quasi-WSSUS description, valid over long but
finite time duration and bandwidth (Bello, 1963).

The WSSUS correlation functions cs(ν, τ), ch(∆t, τ), and cl(∆t,∆f)
describe the variation of the channel over time and over frequency;
therefore, they are at the core of the stochastic model, and their
specification is a delicate task. The two main approaches how to ob-
tain correlation functions are by measurements and from theoretical
considerations. A reliable estimate of, say, cs(ν, τ) requires a great
many independent measurements to average over; this is challenging
but can be done for channels of small bandwidth, as demonstrated
by Cox (1972, 1973b,a), Bajwa and Parsons (1978), and others. The-
oretical derivations of the correlation functions often start from a
simplified geometry of the environment and some basic assumptions
on the dynamics of the terminals and on the individual scattering
parameters; these assumptions are then used in a multipath model
along the lines of the derivation in Section 2.3. The most prominent
such model is probably the one-ring scatterer model by Clarke (1968),
with its modified formulation in terms of the fading process’s PSD

by Gans (1972) and Jakes (1974), the generalization of said model
to three spatial dimensions by Aulin (1979), and a modification to
include frequency-dependent behavior by Lauritzen and Bach Ander-
sen (1990). A more generic geometry, namely a spatial Poisson field
of scatterers is considered by Sadowsky and Kafedziski (1998). The
advantage of a second-order description obtained from theoretical
considerations is that the resulting correlation functions only depend
on a small number of parameters, like the mobile velocity or the scat-
terer density. However, even such extremely simplified models might
be too cumbersome to work with. Therefore, even simpler models
are often used in theoretical analyses where mainly the qualitative
behavior is of importance. One such simplification, discussed in the
following chapter, is the well-known block-fading model, probably the
simplest channel model to still yield nontrivial and insightful results.
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CHAPTER 3

Discretized Models

In Chapter 2, we set out to simplify the description of a wireless
channel from a solution of Maxwell’s equations to a description
that is mathematically tractable, general enough to cover many

different scenarios, but yet accurate in the sense that it captures the
fundamental effects of the channel. The canonical stochastic IO rela-
tion (2.29) together with its second-order stochastic characterization
satisfies these requirements. Yet, there is still one open issue we need
to address before we can empirically characterize wideband channels
in Part II and analyze their capacity in Part III: the stochastic system
functions, as specified in Section 2.5, depend on an infinite number of
parameters, and so does their stochastic characterization.
We already mentioned in Section 2.4.4 that a discretization of

the channel’s system functions is necessary if we are to characterize
them by channel measurements. But an appropriate discretization is
equally important for theoretical analysis of communication systems.
A key abstraction in information theory is a channel use; virtually
all coding theorems are stated for a countable set of channel uses
(Cover and Thomas, 1991). The counterpart to one channel use in
the continuous-time physical world is one dimension in signal space,
one DOF. Although real-world signals cannot be strictly limited in
bandwidth and in time simultaneously, Slepian and Pollak (1961) and
Landau and Pollak (1961, 1962) showed that the space of signals
with essential duration D and essential bandwidth B is of dimension
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2DB + 1, i.e., there are (2DB + 1)/D real DOFs per second available
for communication.
In this chapter, we introduce several discretized models that are

described by a countably infinite or even finite number of parameters.
Some of these models are concisely described in standard textbooks
and widely used, so that we only comment briefly on them, while
another model, the matched discretization of underspread WSSUS

channels on which we base our information theoretic analysis in
Part III, is not yet as pervasively used, and the description of this
model is distributed over several publications (Kozek, 1997b; Kozek
and Molisch, 1997; Kozek, 1997a; Matz and Hlawatsch, 1998; Matz,
2000; Bölcskei et al., 2002b; Matz and Hlawatsch, 2003a,b; Matz et al.,
2007). Therefore, we consolidate results from the mentioned sources
and give a, hopefully complete, description of this channel model.

3.1. BLOCK FADING MODELS

A simple model for the time variation of a wireless channel is to
take the channel as constant over a given time interval, also called a
block, and as independently changing from one such block to the next.
This model is arguably the simplest possible that still captures the
essential features of wireless channels—namely, channel variability
and randomness—and that at the same time leads to fundamental
observations like the role of diversity and the dependence of capacity
on the channel’s DOFs. Several variations of this model are widely used
for analysis and design of wireless communication systems (Hashemi,
1993b; Biglieri et al., 1998; Tse and Viswanath, 2005).

3.1.1. Modeling Assumptions
Channel variation over time is caused by the relative motion of
transmitter, receiver, and objects in the environment. As discussed in
Chapter 2, a measure for how fast the channel changes over time is the
maximum Doppler shift ν0/2. It depends on the relative speed of the
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terminals and objects in the environment and on the carrier frequency.
Typical Doppler shifts are rather small, in the range from a few hertz
up to about 100Hz; i.e., many channels change very slowly compared
with the duration of one transmitted symbol. Therefore, the first
simplifying assumption of the block-fading model is to approximate the
channel as constant over a block of duration Tc, called the coherence
time of the channel. Consequently, during one such block the channel
can be modeled as a random LTI system hH(τ) instead of as a random
LTV system hH(t, τ). The coherence time is often related to ν0 as
Tc = α/ν0, where α varies between 1 and 50 among different authors.
There is no agreement about the best value for α (Clarke, 1968; Lee,
1993; Rappaport, 2002; Tse and Viswanath, 2005).

The second assumption of the block-fading model concerns channel
variation across blocks: the individual blocks are modeled as i.i.d..
This assumption is more difficult to justify than modeling the channel
to be constant over the duration of a block; why should the channel
change to a completely independent realization from one block to the
next although it was assumed to not vary at all during a single block?
Indeed, if the physical channel consists of a contiguous frequency band
that is permanently used to transmit data from a single transmitter to
a single receiver, the independence assumption is quite weak. But if we
expand the notion of a channel model to include system aspects, the
resulting effective channel might very well be modeled as independent
across blocks. For example:

• If several users access the same channel by means of time division
multiple access (TDMA), it might very well be that transmis-
sions of a single user are separated far enough in time for the
assumption of independent blocks to become viable.

• Successive point-to-point transmissions over changing frequency
bands that are widely separated, e.g., in a frequency hopping (FH)
system, can often be modeled as uses of independently fading
blocks.

• If the data stream to be transmitted is heavily interleaved, or if
the receiver only processes one block at a time, channel memory
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between successive blocks is effectively useless, and there is no
need to model this memory in the first place. Consequently, blocks
can be treated as independent.

Thus, block-fading in time is difficult to justify for physical channels,
but might be a good model for certain effective channels. We sum-
marize the main features of three widely used block-fading models in
the following.

3.1.2. The Specular Block-Fading Model
Analysis of electromagnetic wave propagation in terms of the propa-
gation effects listed in Section 2.2 already entails a significant sim-
plification of the physical reality. An even more basic description of
radio wave propagation is to consider only specular reflections. If the
reflection coefficients ρl and path delays τl for all significant specular
paths l = 0, 1, . . . , L− 1 are modeled as random, constant over blocks
of length Tc and independently changing from block to block, the
corresponding random channel impulse response can be expressed as

hH(τ) ,
L−1∑
l=0

ρlδ(τ − τl). (3.1)

This type of block-fading model is often attributed to Turin (1972),
who performed an extensive measurement campaign to characterize
the probabilistic structure of the ρl and τl.
An apparent problem of the impulse response (3.1) is its infinite

bandwidth. As it stands, this model is physically impossible and
cannot be characterized from measurements. However, in combination
with a transmitted signal x(t) of finite bandwidth, the resulting
IO relation

y(t) =
L−1∑
l=0

ρlx(t− τl) +w(t) (3.2)

is physically sensible. Similarly, the statistical characterization of
the amplitude parameters {ρl} is only viable for a lowpass-filtered
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version of the impulse response (3.1), because only then can each ρl
be interpreted as resulting from the superposition of many partial
waves arriving in a given time interval. Unfortunately, this statistical
characterization contradicts the original physical motivation that
each Dirac impulse in (3.1) describes the contribution of a single
propagation path.

Several models exist to describe the excess delays τl, i.e., the path
arrival times measured with respect to the first path. The simplest
model is to take the τl as nonrandom integer multiples of a basic
delay quantum, most often the inverse bandwidth of the system under
study. Although seemingly popular, there does not appear to be an
advantage of such a description over a discrete-time block-fading model
described below in Section 3.1.4. Stochastic descriptions for the delays
are a Poisson process or a modified Poisson process (Turin, 1972).
As virtually all wideband channel measurements indicate that the
impulse response power decays with increasing delay, the distribution
of the channel gains ρl need to depend on the corresponding delay
value τl. Consequently, a suitable joint description of the channel
gains and delays is by means of a marked Poisson process (Kingman,
1993).

3.1.3. The Model of Saleh and Valenzuela

A result of virtually all wideband measurement campaigns of suf-
ficient time resolution is that individual impulse responses show a
clustered structure, as illustrated in Figure 3.1. The clusters can often
be attributed to specular reflections of large smooth objects in the
environment. Saleh and Valenzuela (1987) proposed a model that
describes the clustering phenomenon. It is an extension of Turin’s
specular continuous-time block-fading model (3.1) with impulse re-
sponse

hH(τ) =
L−1∑
l=0

Nl−1∑
i=0

ρliδ(τ − τl − κli) (3.3)
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Fig. 3.1: Shape of the impulse response magnitude according to the SV model.

that consists of L clusters characterized by their cluster excess delay τl;
the lth cluster in turn is made up of Nl rays, each of which models
a specular propagation path that arrives at a ray excess delay κli,
measured relative to the corresponding cluster start. Cluster and ray
excess delays are modeled as arrival process. The path coefficients ρli
are assumed to follow a common parameterized distribution with
parameters that depend on the corresponding cluster and ray arrival
times. As a direct extension of the Turin model, the SV model is
physically sensible only if appropriately band limited.

3.1.4. The Standard Discrete-Time Block-Fading Model
As discussed in Section 2.5.2, the random channel description only has
an operational meaning when appropriately band limited. Thus, we
assume that the communication system we wish to analyze uses signals
that are strictly limited to a bandwidth of B hertz. Without loss of
generality, we can now assume that hH(τ) is band limited to B as well,
so that we can discretize time at rate B. The resulting discrete-time
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3.1 BLOCK FADING MODELS

values∗ h[l] , hH(l/B) of the impulse response hH(τ) are commonly
called channel taps because they can be interpreted as the values of a
tapped delay line filter. We similarly discretize the input signal x(t),
the output signal y(t), and the additive noise process w(t) to ob-
tain the corresponding discrete-time input sequence {x[k]}, output
sequence {y[k]}, and noise sequence {w[k]}. Then, the discretized
IO relation for all k is

y[k] =
∞∑

l=−∞

h[l]x[k − l] +w[k], (3.4)

where the discretized noise process is white and of unit variance, i.e.,
E[w[k]w[k′]] = δ[k − k′].

The sequence of channel taps {h[l]} is of infinite extent in general;
yet, it is convenient to truncate it to, say, L taps. If L > dτ0Be,
the approximation error will be small. We assemble the L taps in a
random vector,

h ,
[
h[0] h[1] . . . h[L− 1]

]T (3.5)

and define its covariance matrix

Rh , E
[
hh†

]
. (3.6)

Similarly to the continuous-time setting in (2.39), we normalize the
channel attenuation according to

tr Rh = 1. (3.7)

It is common in many theoretical studies of wireless channels to
assume that the entries h[l] of the channel vector h are uncorrelated so
that Rh is a diagonal matrix (Tse and Viswanath, 2005). We call this

∗ A word on notation: we use the letter h in several flavors—with and without
indices, with different types of arguments, and as a vector h. The channel model
to which it pertains is different in different parts of the thesis, i.e., we do not use
a unique notation for channel quantities of different channel models, but hope
that the model used is always clear from the context.
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assumption the discrete-time US hypothesis. Though mathematically
convenient, it is difficult to justify. Even if we model the infinite-
bandwidth continuous-time impulse response hH(τ) as US, the band-
limited version hH(τ) is correlated across τ and the taps h[l] are
correlated as well. Whether this correlation is indeed significant is
difficult to assess on theoretical grounds; we try to answer this question
empirically in Part II.

3.2. A MODEL FOR UNDERSPREAD CHANNELS

The strength of the discrete-time block-fading model is its analytical
simplicity. However, because long-term memory in the channel is
neglected and short-term memory is modeled to be perfect, analyses
of the long-term channel behavior might lead to overly optimistic
results (Lapidoth, 2003). Therefore, we now present a more general
discretized channel model, which enables us to model continuous
channel variation in time and frequency.

3.2.1. Underspread Channels
Because the velocity of the transmitter, of the receiver, and of the
objects in the environment is limited, so is the maximum Doppler
shift ν0/2 experienced by the transmitted signal. We also assume that
the maximum delay is strictly smaller than τ0. For simplicity and
without loss of generality, we consider scattering functions that are
centered at τ = 0 and ν = 0, i.e., we remove any overall fixed delay
and Doppler shift. The assumptions of limited Doppler shift and delay
then imply that the scattering function is supported on a rectangle
of spread ∆H , ν0τ0,

cs(ν, τ) = 0 for (ν, τ) /∈ [−ν0/2, ν0/2]× [−τ0/2, τ0/2]. (3.8)

This support condition in turn implies that the spreading func-
tion sH(ν, τ) is also supported on the same rectangle w.p.1. If ∆H < 1,
the channel is said to be underspread (Bello, 1963; Kennedy, 1969;
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Kozek, 1997a). Virtually all wireless communication channels are
highly underspread, with ∆H ≈ 10−3 for typical land-mobile channels
and as low as ∆H ≈ 10−7 for some indoor channels with restricted
mobility of the terminals (Hashemi, 1993b; Parsons, 2000; Rappaport,
2002).

The underspread property of typical wireless channels is very im-
portant for two reasons: (i) A realization of a random LTV channel can
be identified if and only if it is underspread. More precisely, only for
underspread channels is it possible to find an input signal that allows
to perfectly reconstruct the channel realization from a noise-free ob-
servation of the channel’s output signal. This identifiability property
was discovered by Kailath (1963) for deterministic underspread chan-
nels with rectangular support of their spreading function, and later
extended to channels with arbitrarily shaped support of the spreading
function by Bello (1969) and Pfander and Walnut (2006). Identifiabil-
ity in the latter case is guaranteed if the area of the support is less than
one.∗ (ii) Underspread operators H have much more structure than
general HS operators; in particular, they have a well-structured set of
approximate eigenfunctions that do not depend on the particular real-
ization of H (Kozek, 1997a). We use these approximate eigenfunctions
to discretize and approximately diagonalize underspread channels in
a way that circumvents the problems discussed in Section 2.4.4.

3.2.2. Approximate Diagonalization of Underspread
Channels

The underspread property is of central importance, as it allows to
construct a discretization of the kernel of any underspread operator H
in a way similar to the SVD in (2.26), but by means of a generic set of
functions instead of particular singular functions that depend on the
exact realization of H (Kozek, 1997a). These generic functions used in
the discretization of underspread operators need to be well localized
in time and frequency, as measured by their time-bandwidth product.

∗ The area of the support set is measured by its Jordan content (Pfander and
Walnut, 2006).
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A. Time- and Frequency Localization

Let the Fourier transform of the unit-norm signal g(t) be denoted as
G(f) , Ft→f g(t).

Definition 3.1. The time location of a unit-norm signal g(t) is
defined as

ťg ,
∫
t

t |g(t)|2 dt. (3.9)

Similarly, the frequency location is

f̌g ,
∫
f

f |G(f)|2 df. (3.10)

Definition 3.2. The effective duration of a unit-norm signal g(t) is
defined as

dg ,

(
4π
∫
t

(t− ťg)2 |g(t)|2 dt

)1
2

. (3.11)

Similarly, the effective bandwidth is

bg ,

(
4π
∫
f

(f − f̌g)2 |G(f)|2 df

)1
2

. (3.12)

Hence, d2
g is the second central moment of |g(t)|2, and b2g is the

second central moment of |G(f)|2. The time-bandwidth product of
a unit-norm signal g(t) is thus given as dgbg. As any unit-norm
signal g(t) satisfies the Heisenberg uncertainty principle, dgbg ≥ 1
(Gröchenig, 2001, Theorem 2.2.1), we say that g is well localized in
time and frequency if its time-bandwidth product is not much larger
than 1.
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B. Properties of Underspread Operators

An underspread random operator H has the following properties
(Kozek, 1997a):
U1: All realizations of the underspread operator H are approximately

normal. This implies that for each realization kH(t, t′) of the
random kernel kH(t, t′), the SVD (2.26) can be replaced by a
spectral decomposition.

U2: Any deterministic unit-norm signal g(t) that is well localized in
time and frequency is an approximate eigenfunction of H in the
mean square sense: the mean squared error E

[
‖〈H g, g〉 g −H g‖2

]
is small if H is underspread. This error can be further reduced
by an appropriate choice of g(t), where the choice depends on
the scattering function cs(ν, τ).

U3: If g(t) is an approximate eigenfunction, as just defined, then so
is g(α,β)(t) , g(t − α)ei2πβt for any time shift α ∈ R and any
frequency shift β ∈ R.

U4: For any (α, β), the time-variant transfer function lH(α, β) is an
approximate eigenvalue of H that corresponds to the approxi-
mate eigenfunction g(α,β)(t) in the sense that the mean squared
error E

[
|
〈
H g(α,β), g(α,β)

〉
− lH(α, β)|2

]
is small.

C. Approximate Diagonalization

We use the above properties of underspread operators to construct an
approximation of the random channel H that has a well-structured
set of deterministic eigenfunctions and subsequently discuss the errors
incurred by this approximation in Section 3.2.3. To synthesize the
approximating operator, we use Property U1, the approximate nor-
mality of H, together with Property U2 to construct an approximating
kernel as

∞∑
l=−∞

λlzl(t)zl(t′) (3.13)

where, differently from (2.26), the λl are now random eigenvalues
instead of random singular values, and the zl(t) constitute a set of
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3 DISCRETIZED MODELS

deterministic orthonormal eigenfunctions instead of random singular
functions. Given that the approximating operator is normal, its input
and output spaces are equivalent.
Property U2 means that we are at liberty to choose the approxi-

mate eigenfunctions zl(t) among all signals that are well localized in
time and frequency. In particular, we would like the resulting approx-
imating kernel to be convenient to work with; therefore, we choose
the set of approximate eigenfunctions to be highly structured. By
Property U3, it is possible to use time- and frequency-shifted versions
of a single well-localized prototype function g(t) as eigenfunctions.
Furthermore, because the support of sH(ν, τ) is strictly limited in
Doppler ν and delay τ , it follows from the Nyquist theorem and
the Fourier relation (2.19) between the spreading function sH(ν, τ)
and the time-variant transfer function lH(t, f) that the discrete-time
discrete-frequency values lH(kT, nF ), taken on a rectangular grid with

T ≤ 1
ν0
, (3.14a)

F ≤ 1
τ0
, (3.14b)

are sufficient to characterize the channel. The Nyquist condition (3.14)
on the grid parameters T and F can be readily satisfied for all
underspread channels. Hence, we take as our set of approximate
eigenfunctions the so-called Weyl-Heisenberg set {gk,n(t)}, where

gk,n(t) , g(t− kT )ei2πnFt (3.15)

are orthonormal signals. The requirement that the gk,n(t) be or-
thonormal and at the same time well localized in time and frequency
implies TF > 1 (Christensen, 2003), as a consequence of the Balian-
Low Theorem (Gröchenig, 2001, Chapter 8). Large values of the
product TF allow for better time-frequency (TF) localization of g(t),
but result in a loss of dimensions of the space spanned by the {gk,n(t)}
with the case TF = 1, i.e., a loss of DOFs.

The values lH(kT, nF ) are approximate eigenvalues of H by Prop-
erty U4; hence, our choice of approximate eigenfunctions results in
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the following approximating spectral decomposition of the random
kernel kH(t, t′)

kH(t, t′) ≈
∞∑

k=−∞

∞∑
n=−∞

lH(kT, nF )gk,n(t)gk,n(t′). (3.16)

For TF > 1, the Weyl-Heisenberg set {gk,n(t)} is not total in L2

(Christensen, 2003, Theorem 8.3.1). Therefore, the null-space of the
approximating operator with kernel on the right-hand side of (3.16)
is nonempty. This null-space might differ from NH, the null space
of the original channel operator H, because the kernel only approx-
imates kH(t, t′). Similarly, the output space of the approximating
operator in (3.16) might differ from the original output space RH.
The characterization of the difference between these spaces is an
important open problem.

3.2.3. Approximate Eigenfunctions and Eigenvalues

The construction of the approximating channel operator in the preced-
ing section relies on Property U1 through Property U4 of underspread
WSSUS channels, in particular on the existence of approximate eigen-
functions and eigenvalues with small approximation error. In this
subsection, we give bounds on the mean square approximation error
for both approximate eigenfunctions and eigenvalues. The results
we present here were first derived by Kozek (1997a) and Kozek and
Molisch (1998) and later generalized by Matz and Hlawatsch (1998,
2003a). Our goal here is to provide a self-contained and unified expo-
sition.

A. Ambiguity Function

The matching rules for g(t) can be expressed in terms of the ambiguity
function Ag(ν, τ) of the prototype pulse g(t), which is defined as
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(Woodward, 1953)

Ag(ν, τ) ,
∫
t

g(t)g(t− τ)e−i2πνtdt. (3.17)

Without loss of generality we can assume that g(t) is normalized,
so that Ag(0, 0) = ‖g‖2 = 1. For two signals g(t) and f(t), the
cross-ambiguity function is defined as

Ag,f (ν, τ) ,
∫
t

g(t)f(t− τ)e−i2πνtdt (3.18)

For the derivations below, we need the following properties of the
ambiguity and cross-ambiguity functions (Wilcox, 1991):
A1: The volume under the so-called ambiguity surface |Ag|2 is con-

stant. In particular, if g(t) is normalized such that Ag(0, 0) = 1,
then ∫∫

ν τ

|Ag(ν, τ)|2 dτdν = 1. (3.19)

A2: The ambiguity surface attains its maximum magnitude at the
origin: |Ag(ν, τ)|2 ≤ |Ag(0, 0)|2 = 1 for all ν and τ .

A3: The cross-ambiguity function of the time- and frequency-shifted
signals g(α,β)(t) , g(t−α)ei2πβt and g(α′,β′)(t) = g(t−α′)ei2πβ′t
is given by

Ag(α,β),g(α′,β′)(ν, τ)

=
∫
t

g(t− α)ei2πβtg(t− α′ − τ)e−i2πβ
′(t−τ)e−i2πνtdt

(a)
= ei2πβ

′τe−i2π(ν+β′−β)α

×
∫
t′

g(t′)g(t′ − (α′ − α)− τ)e−i2π(ν+β′−β)t′dt′

= Ag(ν + β′ − β, τ + α′ − α)e−i2π(να−τβ′)e−i2π(β′−β)α

(3.20)
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where (a) follows from the change of variables t′ = t− α. As a
direct consequence of (3.20),

Ag(α,β)(ν, τ) = Ag(ν, τ)e−i2π(να−τβ). (3.21)

A4: The second partial derivatives of the ambiguity function are
related to the effective duration dg and the effective bandwidth bg
of g(t) as

∂2Ag(ν, τ)
∂ν2

= −π(d2
g + 4πť2g), (3.22)

∂2Ag(ν, τ)
∂τ2

= −π(b2g + 4πf̌2
g ). (3.23)

A5: This last property pertains to both the ambiguity function
Ag(ν, τ) and any HS operator H.

〈H g, f〉 (a)
=
∫∫∫
t ν τ

sH(ν, τ)g(t− τ)ei2πtνf(t)dτdνdt

=
∫∫
ν τ

sH(ν, τ)
∫
t

fg(t− τ)ei2πtνdtdτdν

=
∫∫
ν τ

sH(ν, τ)Ag,f (ν, τ)dτdν = 〈sH, Ag,f 〉 , (3.24)

where (a) follows from the IO relation (2.13).
Property A1 and Property A2 constitute the so-called radar uncer-
tainty principle, a manifestation of the classical Heisenberg uncertainty
principle. These properties imply that it is not possible to find a sig-
nal g(t) with a corresponding ambiguity function Ag(ν, τ) that is
arbitrarily well concentrated in ν and τ (Wilcox, 1991). When g(t)
has effective duration dg and effective bandwidth bg, the correspond-
ing ambiguity function Ag(ν, τ) is highly concentrated on a rectangle
of area dgbg/π, but this area cannot be made arbitrarily small.

B. Approximate Eigenfunctions

Lemma 3.1. Let H be an underspread random HS operator with scat-
tering function cs(ν, τ). Then, any unit-norm signal g(t) that is well
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concentrated in time and frequency is an approximate eigenfunction
of H in mean square, and the approximation error is given by

ε1 , E
[
‖〈H g, g〉 g −H g‖2

]
=
∫∫
ν τ

cs(ν, τ)
(

1− |Ag(ν, τ)|2
)
dτdν. (3.25 )

Proof. As g(t) has unit norm by assumption,

E
[
‖〈H g, g〉 g −H g‖2

]
= E

[
‖〈H g, g〉 g‖2

]
+ E

[
‖H g‖2

]
− 2 E

[
|〈H g, g〉|2

]
= E

[
‖H g‖2

]
− E

[
|〈H g, g〉|2

]
. (3.26)

We now evaluate the two terms in (3.26) separately. The first one is

E
[
‖H g‖2

] (a)
= E

∫
t

∣∣∣∣∣∣
∫∫
ν τ

sH(ν, τ)g(t− τ)ei2πtνdτdν

∣∣∣∣∣∣
2

dt


(b)
=
∫∫
ν τ

cs(ν, τ)
∫
t

g(t− τ)g(t− τ)dtdτdν

(c)
=
∫∫
ν τ

cs(ν, τ)dτdν (3.27)

where (a) follows from the noise-free version of (2.29), (b) from the
WSSUS property, and (c) from the normalization of g(t). For the second
term we have

E
[
|〈H g, g〉|2

]
(a)
= E

[
|〈sH, Ag〉|2

]
= E


∣∣∣∣∣∣
∫∫
ν τ

sH(ν, τ)Ag(ν, τ)dτdν

∣∣∣∣∣∣
2


(b)
=
∫∫
ν τ

cs(ν, τ) |Ag(ν, τ)|2 dτdν. (3.28)
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Here, (a) follows from Property A5 and (b) follows from the WSSUS as-
sumption. To conclude the derivation of (3.25), we substitute (3.27)
and (3.28) into (3.26).
To minimize the error ε1 in (3.25), we need to chose g(t) such

that Ag(ν, τ) ≈ Ag(0, 0) = 1 over the support of the scattering
function. If the channel is highly underspread, we can replace Ag(ν, τ)
on the right-hand side of (3.25) with its second-order Taylor series
expansion around the point (ν, τ) = (0, 0); Property A4 now shows
that good time and frequency localization of g(t) is necessary for ε1 to
be small. If g(t) is taken to be real and even, the second-order Taylor
series expansion of Ag(ν, τ) around the point (ν, τ) = (0, 0) takes
on an especially simple form because (i) the first-order term is zero,
(ii) we can approximate Ag(ν, τ) around (0, 0) as follows (Wilcox,
1991):

Ag(ν, τ) ≈ 1−
[
d2
gν

2 + b2gτ
2 − iντ

]
/2. (3.29)

Hence, when g(t) is real and even, good time and frequency localization
of g(t) is also sufficient for ε1 to be small.

The time- and frequency-shifted version g(α,β)(t) of the prototype
pulse is an approximate eigenfunction of H for all α, β ∈ R when-
ever g(t) is an approximate eigenfunction because the ambiguity
surface is invariant under time and frequency translates of g(t) by
Property A3.

C. Approximate Eigenvalues

Lemma 3.2. Let H be an underspread random HS operator with time-
variant transfer function lH(t, f) and scattering function cs(ν, τ), and
let g(α,β)(t) be any unit-norm approximate eigenfunction of H. Then,
lH(α, β) is an approximate eigenvalue of H associated with g(α,β)(t),
and the approximation error in mean square,

ε2 , E
[∣∣〈H g(α,β)(t), g(α,β)

〉
− lH(α, β)

∣∣2] , (3.30 )
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is given by

ε2 =
∫∫
ν τ

cs(ν, τ) |1−Ag(ν, τ)|2 dτdν. (3.31 )

Proof. The proof follows from arguments by Matz and Hlawatsch
(2003a, Section 9.5.3) and a theorem by the same authors (Matz and
Hlawatsch, 1998, Theorem III.6): We use Property A5 and the Fourier
relation (2.30) to write ε2 as

ε2 = E


∣∣∣∣∣∣
∫∫
ν τ

sH(ν, τ)
[
Ag(α,β)(ν, τ)− ei2π(να−τβ)

]
dτdν

∣∣∣∣∣∣
2


(a)
= E


∣∣∣∣∣∣
∫∫
ν τ

sH(ν, τ)ei2π(να−τβ)
[
Ag(ν, τ)− 1

]
dτdν

∣∣∣∣∣∣
2


(b)
=
∫∫
ν τ

cs(ν, τ) |1−Ag(ν, τ)|2 dτdν. (3.32)

Here, (a) follows form (3.21) and (b) is a consequence of the WSSUS as-
sumption.

As before, the error ε2 is minimized if the ambiguity function
satisfies Ag(ν, τ) = Ag(0, 0) = 1 over the support of the scattering
function. This is facilitated if the support of cs(ν, τ) is small, or,
equivalently, if the channel is underspread. In this case, g(t) can be
chosen such that Ag(ν, τ) ≈ Ag(0, 0) for all ν ∈ [−ν0/2, ν0/2] and
all τ ∈ [−τ0/2, τ0/2].

3.2.4. Discretized Input-Output Relation
The approximating random channel operator in (3.16) has a highly
structured set of deterministic orthonormal eigenfunctions. Hence,
we can diagonalize the corresponding IO relation without the need
for perfect channel knowledge at both transmitter and receiver. Any
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input signal x(t) that lies in the input space of the approximating
operator is uniquely characterized by its projection onto the gk,n(t).
Although the signals in the input space of both the original and

the approximating operators can be of infinite bandwidth and time
duration, we need to model the fact that all physically realizable
transmit signals are effectively band and time limited. Because the
prototype function g(t) is well concentrated in time and frequency by
construction, this effective limitation can be modeled very elegantly
by constraining the TF slots used by a given input signal to lie in
a K × N -dimensional rectangle in the time-frequency plane. The
resulting input signal

x(t) =
K−1∑
k=0

N−1∑
n=0

〈x, gk,n〉︸ ︷︷ ︸
,x[k,n]

g(t), (3.33)

though not perfectly limited neither in time nor in frequency, has
most of its energy concentrated in a finite TF rectangle of effective
duration D = KT and effective bandwidth B = NF . We call the
coefficient x[k, n] the transmit symbol in the TF slot (k, n).
The received signal can be expanded in the orthonormal basis
{gk,n(t)}. To compute the resulting projection coefficients, we sub-
stitute the approximating kernel (3.16) and the canonical input sig-
nal (3.33) into the integral IO relation (2.23), add white Gaussian
noise w(t), and project the resulting noisy received signal y(t) onto
the basis functions gk,n(t). In TF slot (k, n), this yields the received
symbol

y[k, n] , 〈y, gk,n〉
= 〈Hx, gk,n〉+ 〈w, gk,n〉

=
∑
k′,n′

x[k′, n′] 〈H gk′,n′ , gk,n〉+w[k, n]

= lH(kT, nF )︸ ︷︷ ︸
,h[k,n]

x[k, n] +w[k, n]

= h[k, n]x[k, n] +w[k, n], (3.34)
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where we defined the channel coefficients h[k, n] , lH(kT, nF ). Or-
thonormality of the set {gk,n(t)} implies that the discrete-time noise
signal w[k, n] is JPG, i.i.d. over time k and frequency n; for conve-
nience, we normalize the noise variance so that w[k, n] ∼ CN (0, 1) for
all k and n. The diagonalized IO relation (3.34) is completely generic,
i.e., it is not limited to a specific signaling scheme.
The discrete-time discrete-frequency channel coefficients h[k, n]

constitute a two-dimensional discrete-parameter random process that
is stationary in both k and n, and JPG with zero mean and correlation
function

cl[∆k,∆n] , E
[
h[k + ∆k, n+ ∆n]h[k, n]

]
= E

[
lH
(
(k + ∆k)T, (n+ ∆n)F

)
lH(kT, nF )

]
= cl(∆k T,∆nF ). (3.35)

We assume that its two-dimensional power spectral density is well-
defined for all |ϕ| , |ζ| ≤ 1/2; it is given as

ψ(ϕ, ζ) ,
∞∑

∆k=−∞

∞∑
∆n=−∞

cl[∆k,∆n]e−i2π(∆kϕ−∆nζ). (3.36)

The approximation (3.16), on which the discretization h[k, n] of the
channel H is based, allows us to express the spectrum ψ(ϕ, ζ) of h[k, n]
in terms of the original channel’s scattering function cs(ν, τ). This
is a very useful property of the discretization (3.34), because the
scattering function of H is operationally meaningful, it can be directly
obtained from measurements.

ψ(ϕ, ζ)
(a)
=

∞∑
∆k=−∞

∞∑
∆n=−∞

e−i2π(∆kϕ−∆nζ)

×
∫∫
ν τ

cs(ν, τ)ei2π(∆kTν−∆nFτ)dτdν
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=
∫∫
ν τ

cs(ν, τ)
∞∑

∆k=−∞

ei2π∆kT(ν− ϕT )

×
∞∑

∆n=−∞
e−i2π∆nF(τ− ζ

F )dνdτ

(b)
=

1
TF

∫∫
ν τ

cs(ν, τ)
∞∑

∆k=−∞

δ

(
ν − ϕ+ ∆k

T

)

×
∞∑

∆n=−∞
δ

(
τ − ζ + ∆n

F

)
dνdτ

=
1
TF

∞∑
∆k=−∞

∞∑
∆n=−∞

cs

(
ϕ+ ∆k
T

,
ζ + ∆n
F

)
(3.37)

where (a) follows from the Fourier relation (2.38), and (b) results
from Poisson’s summation formula. For underspread channels and if
the TF grid parameters T and F are chosen to satisfy the Nyquist
condition (3.14), it follows that

ψ(ϕ, ζ) =
1
TF

cs

(
ϕ

T
,
ζ

F

)
, |ϕ| , |ζ| ≤ 1/2. (3.38)

Under the same conditions, the variance of each channel coefficient is

E
[
|h[k, n]|2

]
=

1/2∫
−1/2

1/2∫
−1/2

ψ(ϕ, ζ)dϕdζ

(a)
=

1
TF

∞∑
∆k=−∞

∞∑
∆n=−∞

×
1/2∫
−1/2

1/2∫
−1/2

cs

(
ϕ+ ∆k
T

,
ζ + ∆n
F

)
dϕdζ
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=
1
TF

1/2∫
−1/2

1/2∫
−1/2

cs

(
ϕ

T
,
ζ

F

)
dϕdζ

(b)
=
∫∫
ν τ

cs(ν, τ)dτdν, (3.39)

where (a) follows from (3.37) and (b) results from a change of vari-
ables: ζ/F → τ and ϕ/T → ν. Consistent with (2.39), we normalize
the variance of all channel coefficients, i.e., we set

E
[
|h[k, n]|2

]
=
∫∫
ν τ

cs(ν, τ)dτdν = 1. (3.40)

3.2.5. OFDM Interpretation of the Approximating Channel
Model

The canonical signaling scheme (3.33) and the corresponding diag-
onalized IO relation (3.34) can be interpreted in several different
ways.

• The set of orthonormal basis functions {gk,n(t)} spans the input
and output spaces of the approximating channel operator. Hence,
every conceivable transmitted signal, independent of the modula-
tion scheme used, can be described in our framework. Therefore,
the diagonalized IO relation (3.34) is well suited to analyze the
capacity of WSSUS underspread channels. Our capacity analysis
in Chapter 7 builds on this interpretation.

• The IO relation (3.34) also describes a practical transmission
system. The decomposition of the input signal (3.33) can be inter-
preted as pulse-shaped orthogonal frequency division multiplexing
(PS-OFDM) (Kozek and Molisch, 1998), where discrete data sym-
bols x[k, n] are modulated onto a set of orthogonal subcarriers,
indexed by n, and OFDM symbols, indexed by k. From this point
of view, the capacity results in Chapter 7 can be interpreted
as results on the achievable rates of PS-OFDM over a random
LTV channel H (Matz et al., 2007).
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The latter system perspective leads to an operational interpretation of
the error incurred when approximating kH(t, t′) as in (3.16). The time-
and frequency-dispersive nature of LTV channels leads to intersymbol
interference (ISI) and intercarrier interference (ICI) in the received
PS-OFDM signal. This is apparent if we project the noiseless received
signal r(t) , (Hx)(t) onto an arbitrary basis function gk,n(t):

〈r, gk,n〉 = 〈Hx, gk,n〉 =
∞∑

k′=−∞

N−1∑
n′=0

x[k′, n′] 〈H gk′,n′ , gk,n〉

= 〈H gk,n, gk,n〉x[k, n] +
∞∑

k′=−∞

N−1∑
n′=0

(k′,n′)6=(k,n)

x[k′, n′] 〈H gk′,n′ , gk,n〉 . (3.41)

The second term on the right-hand side of (3.41) corresponds to ISI

and ICI, while the first term is the desired signal; we approximate
it as lH(kT, nF )x[k, n] by Property U4 in Section 3.2.2. Hence, the
IO relation (3.34), which results from the approximation (3.16), can
be interpreted as PS-OFDM transmission over the original channel H
if we neglect all ISI and ICI terms.
With proper design of the pulse shape g(t) and choice of the grid

parameters T and F , both ISI and ICI can be mitigated (Kozek and
Molisch, 1998; Liu et al., 2004). The larger the TF grid product TF , the
more effective the reduction in ISI and ICI, but the larger also the loss
of dimensions of the input space. Heuristically, a useful compromise
between loss of dimensions in signal space and reduction of the
interference terms seems to result for TF ≈ 1.2 (Kozek and Molisch,
1998; Matz et al., 2007). The cyclic prefix (CP) in a conventional
CP-OFDM system, like an IEEE 802.11.a/g/n WLAN, incurs a similar
dimension loss. We provide an upper bound on the mean squared
value of the interference term in (3.41) and show how this upper
bound can be minimized by careful choice of the pulse g(t) and the
grid parameters T and F in the next subsection.
To summarize, the conceptual difference between the interpreta-

tion of the diagonalized IO relation (3.34) as an approximation of

75



3 DISCRETIZED MODELS

the original IO relation (2.31) on the one hand and PS-OFDM with-
out ISI and ICI on the other hand is that the former allows us to
make statements of an approximate nature about the capacity of
the continuous-time LTV channel H, while the latter yields results on
the achievable rates of a specific signaling scheme, namely, PS-OFDM

modulation. As the choice of the Weyl-Heisenberg set {gk,n(t)} as
an approximate eigenbasis for H is motivated by the fundamental
Property U3 of underspread channels, we believe that PS-OFDM is a
suitable modulation scheme for such channels.

3.2.6. OFDM Pulse Design for Minimum ISI and ICI

Let r(t) = (Hx)(t) denote the noise-free channel output signal when
the input signal x(t) is PS-OFDM. For mathematical convenience, we
consider the case of an infinite time and frequency horizon, assume
that the input symbols x[k, n] are i.i.d., and further assume that
they have zero mean and that their variance is upper-bounded as
E[|x[k, n]|2] ≤ 1.
We want to quantify the error incurred if we assume that the

projection of the received signal r(t) onto any one basis function gk,n(t)
equals 〈r, gk,n〉 = x[k, n]lH(kT, nF ), i.e., if we neglect the interference
terms in (3.41) and use that the transmit signal is an approximate
eigenfunction by Property U4. This error is given in the mean-square
sense by

ε3 , E
[
|〈r, gk,n〉 − x[k, n]lH(kT, nF )|2

]
, (3.42)

where the expectation is over the channel realizations and the input
symbols. We bound ε3 as follows:

ε3 = E
[
|〈r, gk,n〉 − x[k, n] 〈H gk,n, gk,n〉

+ x[k, n]
(
〈H gk,n, gk,n〉 − lH(kT, nF )

)
|2
]
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(a)

≤ 2 E
[
|〈r, gk,n〉 − x[k, n] 〈H gk,n, gk,n〉|2

]
︸ ︷︷ ︸

,ε4

+ 2 E
[∣∣x[k, n]

(
〈H gk,n, gk,n〉 − lH(kT, nF )

)∣∣2]
= 2ε4 + 2 E

[
|x[k, n]|2

]
E
[
|〈H gk,n, gk,n〉 − lH(kT, nF )|2

]
︸ ︷︷ ︸

ε2

≤ 2ε4 + 2ε2. (3.43)

where (a) holds because for any two complex numbers u and v we
have that |u+ v|2 ≤ 2 |v|2 +2 |u|2. The error ε2 is the same as the one
computed in Lemma 3.2. It quantifies the approximation error that
arises when we treat gk,n(t) as an eigenfunction of H and lH(kT, nF )
as the corresponding eigenvalue. The error ε4 results because we
neglect ISI and ICI. Under the assumption that the x[k, n] are i.i.d.
and the variance is bounded as E[|x[k, n]|2] ≤ 1 for all k and n, the
error ε4 can be bounded as follows (Kozek, 1997a; Matz et al., 2007):

ε4 = E
[
|〈r, gk,n〉|2

]
+ E

[
|x[k, n]|2

]
E
[
|〈H gk,n, gk,n〉|2

]
− 2<

{
E
[
x[k, n] 〈r, gk,n〉 〈H gk,n, gk,n〉

]}
(a)
=

∞∑
k′=−∞

∞∑
n′=−∞

(k′,n′) 6=(k,n)

E
[
|x[k′, n′]|2

]
E
[
|〈H gk′,n′ , gk,n〉|2

]
(b)

≤
∞∑

k′=−∞

∞∑
n′=−∞

(k′,n′)6=(k,n)

E
[
|〈H gk′,n′ , gk,n〉|2

]
. (3.44)

Here, (a) follows (3.41) and because x[k, n] are i.i.d. and zero mean,
and (b) results because E[|x[k, n]|2] ≤ 1. Next, we evaluate the last
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expectation on the right-hand side in (3.44):

E
[
|〈H gk′,n′ , gk,n〉|2

]
(a)
= E

[∣∣∣〈sH, Agk,n,gk′,n′

〉∣∣∣2]
(b)
=
∫∫
ν τ

cs(ν, τ)
∣∣∣Agk,n,gk′,n′ (ν, τ)

∣∣∣2 dτdν
(c)
=
∫∫
ν τ

cs(ν, τ) |Ag(ν + (n′ − n)F, τ + (k′ − k)T )|2 dτdν

=
∫∫
ν τ

cs(ν − (n′ − n)F, τ − (k′ − k)T ) |Ag(ν, τ)|2 dτdν. (3.45)

Equality in (a) follows from Property A5, (b) is again a consequence of
the WSSUS assumption, and (c) results from Property A3. We finally
substitute (3.45) into (3.44) and obtain the following bound on the
approximation error ε4:

ε4 ≤

≤
∞∑

k′=−∞

∞∑
n′=−∞

(k′,n′)6=(k,n)

∫∫
ν τ

cs(ν − (n′ − n)F, τ − (k′ − k)T ) |Ag(ν, τ)|2 dτdν

=
∞∑

k=−∞

∞∑
n=−∞

(k,n)6=(0,0)

∫∫
ν τ

cs(ν − nF, τ − kT ) |Ag(ν, τ)|2 dτdν. (3.46)

Hence, the error ε4 is small if the ambiguity surface |Ag(ν, τ)|2 of g(t)
takes on small values on the periodically repeated rectangles [−ν0/2 +
nF, ν0/2 + nF ] × [−τ0/2 + kT, τ0/2 + kT ], except for the rectangle
centered at the origin, i.e., the hatched rectangles in Figure 3.2. This
condition can be satisfied if the channel is highly underspread and if
the grid parameters T and F are chosen such that the gray region in
Figure 3.2 is large enough to allow the ambiguity surface |Ag(ν, τ)|2 to
decay. If g(t) has effective duration dg and effective bandwidth bg, the
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ν0

ν
τ0

τ

F

T

–F

–T

0 ν0

τ0

Fig. 3.2: The support set of the periodized scattering function in (3.46) are the
hatched rectangles, while the area on which the ambiguity functionAg(ν, τ)
should be concentrated to minimize ε4 is shaded in gray.

latter condition requires that 2T ≥ τ0 +dg/
√
π and 2F ≥ ν0 + bg/

√
π.

Given a constraint on the product TF , good localization of g(t), both
in time and frequency, is necessary for these two inequalities to hold.
The minimization of ε4 in (3.46) over the set of all orthonormal

Weyl-Heisenberg bases {gk,n(t)} does not admit a solution in closed
form (Matz et al., 2007), but numerical methods to minimize ε4 are
available in the radar literature (Wilcox, 1991). However, we can
provide some guidelines on how to choose the grid parameters T
and F . For known maximum delay τ0 and maximum Doppler shift ν0,
and for a fixed product TF , the area (2T − τ0)(2F − ν0) of the
rectangle in gray in Figure 3.2 is maximized if (Kozek, 1997a; Kozek
and Molisch, 1998)

T

F
=
τ0
ν0
. (3.47)

This choice of T and F is also appropriate to minimize ε2: the larger
the gray rectangle in Figure 3.2, the simpler it is to find a pulse g(t)
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with ambiguity function almost equal to 1 on the support of the
scattering function, i.e., the dashed rectangle centered at the origin
in Figure 3.2.
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PART II

EMPIRICAL
CHARACTERIZATION OF
WIDEBAND CHANNELS
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CHAPTER 4

Wideband Channel Measurements

We developed the channel models in Part I on the basis
of physical insight and engineering intuition, stressed the
point that all models only approximate physical reality,

and cautioned that measurements are needed to assess the approxima-
tion quality of a specific model. Consequently, this second part of the
thesis is devoted to an empirical characterization of wideband chan-
nels. We present results of two measurement campaigns we conducted
in 2004 at ETH Zurich (Schuster and Bölcskei, 2005a; Schuster et al.,
2005; Schuster and Bölcskei, 2007) and discuss their implication for
some of the modeling questions raised in Part I.

4 .1. MEASUREMENT PRINCIPLES

4.1.1. General Considerations
Measuring the channel and devising a mathematical model for it are
interdependent tasks, as

1. The measurement system itself needs to be designed on the basis
of a model, and thus may not be able to correctly reproduce
certain features not accounted for in its design.

2. The physical reality we are interested in is often only accessible
through measurements, so that the measurement apparatus is
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part of the reality we wish to model.
3. Measurements are never perfect but always contain errors, which

might be mistaken as features of the measured reality and
incorporated into the model.

It is in general not possible to disentangle these dependencies; the
perfect measurement apparatus does not exist nor does the perfect
model, as discussed in Chapter 2.
As we would like to statistically characterize wireless channels for

communication purposes, the first point might not be as crucial as
if we wanted to establish a deterministic channel model. Because
the intention of a stochastic model is precisely to account for our
ignorance about the physical reality under investigation, we may
expect that channel characteristics we did not envision upon design
of the measurement system will be reflected in the same way as
in a communication system that is not designed to make use of
these features. Hence, the model will most likely be robust, but
a corresponding system design might not use the channel to its fullest
potential.

As the measurement system is part of the measured channel, a sen-
sible design choice is to render its impact similar to the impact an
actual wireless transceiver chain exerts on the propagation channel,
so that we directly measure the baseband channel.
Finally, the third point reflects our discussion in Section 2.1, that

the complexity of a model needs to be adapted to the amount of data
available to avoid fitting the model to measurement noise.

4.1.2. Measurement Techniques
Although we are interested in a stochastic characterization of wireless
channels, we first need to measure a series of channel realizations,
called channel samples∗ in statistical terminology. These samples can

∗ We have an unfortunate collision of terms here. Sampling in the context
of measurement and instrumentation commonly means to record the value of
a continuous-time signal at regular time instants, while in statistics a sample
means the random selection of a single entity out of a population. Because we
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subsequently be used for statistical analysis. Measuring the channel
means to send a deterministic probing signal x(t) and record the
resulting realization of the output signal y(t), which in the scope of
our LTV model from Chapter 2 is

y(t) =
∫
τ

hH(t, τ)x(t− τ)dτ + w(t). (4.1)

From the output signal y(t) we wish to infer the channel hH(t, τ).
This is a standard system identification problem. Not all LTV systems
can be identified, even in the absence of noise. Fortunately, the class
of underspread LTV systems, i.e., LTV systems whose spreading func-
tion sH(ν, τ) is compactly supported on a rectangle [−ν0/2, ν0/2]×
[−τ0/2, τ0/2] of spread ∆H , ν0τ0 < 1, are identifiable, as discussed
in Section 3.2. Because the limitation of Doppler shift ν and delay τ
is a physical one, we can assume that it holds reasonably well for all
channel realizations.

As the time-variant impulse response hH(t, τ), the spreading func-
tion sH(ν, τ), and the time-variant transfer function lH(t, f) are related
by unitary transforms, it is a matter of convenience upon which of
these channel representations we base a measurement procedure.∗ To
perform time-domain measurements, i.e., to directly measure hH(t, τ),
the measurement apparatus transmits pulses and records the out-
put signal y(t) in the time domain. In contrast, a frequency domain
measurement device sends sinusoidal signals and measures the cor-
responding spectrum of the received signal. We describe both mea-
surement approaches in the following two subsections. No matter
if measurements are taken in the frequency domain or in the time
domain, any practical measurement apparatus transmits effectively

deal with both measurements and statistical analysis, we need to use both flavors
of the term. Whenever possible, we attempt to use sample and sampling in its
statistical context, e.g., a channel sample refers to a specific realization of a random
channel impulse response. On some occasions, however, we are forced to use also
the instrumentation and measurement meaning of the term for lack of a better
alternative; we hope that the meaning is clear from the context.
∗ Note that we use a specific channel model to devise a measurement procedure.

This illustrates the mentioned interlinking between model and measurement.
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time- and band-limited signals and observes the output signal over
an interval that is effectively limited in time and frequency; yet, for
mathematical analysis it is often more convenient to assume either
an infinite time and frequency horizon or a circulant sounding signal
and channel response. We follow the later approach.

4.1.3. Time-Domain Measurements
The following is a summary of common time-domain measurement
techniques. A more comprehensive account is given by Parsons et al.
(1991), Fannin et al. (1991), Cullen et al. (1993), Lehne et al. (1998),
and Parsons (2000). Conceptually the simplest way to measure the
time-variant impulse response hH(t, τ) of an underspread LTV sys-
tem with maximum Doppler shift ν0/2 and maximum delay τ0 is to
transmit a train of Dirac impulses,

x(t) =
∞∑

k=−∞

δ(t− kT ). (4.2)

In absence of noise and any other imperfections in the measurement
system, the received signal is

r(t) =
∞∑

k=−∞

∫
τ

hH(t, τ)δ(t− kT − τ)dτ

=
∞∑

k=−∞

hH(t, t− kT ). (4.3)

If the pulse repetition time T is chosen such that T ≥ τ0, the output
signal r(t) consists of a train of nonoverlapping impulse responses. If
furthermore T ≤ 1/ν0, i.e., if the pulse repetition rate satisfies the
Nyquist theorem with respect to the band limitation in the Doppler
domain, the train of measured impulse responses (4.3) allows to
perfectly reconstruct hH(t, τ). Taken together, the two conditions
on T are τ0 ≤ T ≤ 1/ν0, which can only be satisfied if ν0τ0 ≤ 1, i.e.,
if the channel is underspread.
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It is challenging with current circuit techniques to generate an
extremely well-defined sub-nanosecond pulse as required for channel
measurements of several gigahertz bandwidth. Even more difficult is
the design of wideband power amplifiers that offer high enough peak
power to attain a sufficiently high SNR. The resulting SNR limitation is
indeed the main reason that the direct pulse measurement technique
is hardly ever used. However, this technique is only necessary if the
channel’s spread ∆H = ν0τ0 is close to 1, which is virtually never
the case for wireless channels. If ∆H � 1, the transmit signal can be
spread over a longer time interval, so that more energy can be send
for a given peak-power constraint.
Measurement systems that spread the input signal in time and

de-spread the received signal are commonly referred to as pulse-
compression systems. Instead of an impulse train, as in (4.2), an ideal
pulse compression system transmits a periodic repetition of a sound-
ing signal m(t) that is spread out in time and whose autocorrelation
function is an impulse:

(
m?m

)
(t) = δ(t). Practical sounding signals

that approximate this ideal autocorrelation property are, for example,
so-called pseudonoise (PN) sequences, which can be efficiently gener-
ated with maximum-length shift registers. The receiver correlates r(t)
with the sounding signal to obtain

(
r ?m

)
(t) =

( ∞∑
k=−∞

∫
τ

hH(t, τ)m(t− kT − τ)dτ

)
?m(t)

=
∞∑

k=−∞

∫∫
t′ τ

hH(t− t′, τ)

×m(t− t′ − kT − τ)m(t′)dτdt′. (4.4)

Because hH(t, τ) is time variant, correlation with the sounding signal
at the receiver does not lead to a signal of the form (4.3); however,
if hH(t, τ) varies slowly enough so that it can be approximated as
constant over the duration of m(t), the correlated received signal
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becomes(
r ?m

)
(t) ≈

∞∑
k=−∞

∫∫
t′ τ

hH(t, τ)m(t− t′ − kT − τ)m(t′)dτdt′

=
∞∑

k=−∞

∫
τ

hH(t, τ)δ(t− kT − τ)dτ

=
∞∑

k=−∞

hH(t, t− kT ), (4.5)

which is the same as (4.3). The requirement that hH(t, τ) does not
vary appreciably for the duration of m(t) needs to be ensured by
proper choice of the sounding signal m(t).

The factor that limits the maximum measurable channel bandwidth
in most measurement systems is the rate at which measured data can
be processed and stored. Older measurement systems used a storage
oscilloscope or a measurement tape recorder (Cox, 1972; Parsons
and Bajwa, 1982), which offered only limited bandwidth. Offline
processing of the recorded signals was severely limited, so that the
important correlation step (4.5) was usually performed in real time
by the measurement system. Two popular implementations were the
swept-time delay crosscorrelator (Cox, 1972) and the convolution
matched filter technique (Bajwa and Parsons, 1978). However, any
analog implementation of the correlation operation is limited by
the precision of the necessary filters and by synchronization errors.
Therefore, most current time-domain channel sounders directly digitize
the received signal, i.e., discretize it in time and quantize its amplitude.
Subsequently, the measured data points need to be stored for further
processing. As all processing, like the correlation with the PN sequence,
is done offline, more sophisticated algorithms can be used (Cullen
et al., 1993).
This fully digital approach is common practice for channel mea-

surements of some hundred megahertz, but it is still quite challenging
to measure channels with several gigahertz bandwidth. The Nyquist
theorem requires the sampling rate to be at least twice the highest
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frequency component in the signal to be digitized, but practical DSOs
with filters of finite decay, sampling jitter, and other impairments
should be operated at a sampling rate around four times the maximum
desired frequency of the input signal. DSOs that provide the sampling
rates required to measure channels of several gigahertz bandwidth
became available only very recently. The technical limitation, though,
has shifted from actually digitizing the received signal to storing the re-
sulting data stream: to date, there does not exist a system that allows
to continuously record the data stream of a multi-gigahertz analog-
to-digital converter (ADC). The ultra high-speed acquisition memory
used in current DSOs is fairly small; short measurement sequences can
be recorded, but the transfer of these measurements to permanent
storage takes quite long, up to a second on some devices. But a mea-
surement of the channel impulse response every second is not sufficient
to accurately characterize channel time variability; therefore, the data
sets recorded in most of the published time-domain UWB channel
measurement campaigns to date are suitable only to characterize
a block-fading channel model, where the channel is assumed to take
on independent realizations over successive blocks.

4.1.4. Frequency-Domain Measurements
To directly characterize the time-variant transfer function lH(t, f) of
a channel, we need to start from an expression dual to (4.2): instead of
impulses in time, the measurement system needs to transmit impulses
in frequency, i.e., the transmit signal needs to consist of a number
of pure sinusoids at preferably equidistant points across the band
of interest. If only a discrete number of points in frequency are
measured, the corresponding time-domain signal is periodic; thus, the
number of frequency points needs to be chosen large enough to avoid
aliasing in the time domain, i.e., the duration of a fundamental period
needs to be larger than the largest expected delay of the channel.
Fortunately, the number of frequency points needed does not exceed
several thousand for typical indoor channels with delays up to several
hundred nanoseconds; this is a relatively small number of points to be
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stored compared with the billions of data points a multi-gigahertz DSO

produces every second. Therefore, wideband channel measurements in
the frequency domain were preferred over time-domain measurements
in the past decade (see the summary in Section 4.2).
A VNA is typically used for frequency-domain measurements. Be-

cause a VNA houses transmitter and receiver in the same enclosure,
a common clock is used for both of them so transmission and reception
are always synchronized. Furthermore, the tight integration of trans-
mitter and receiver enables calibration routines to be built into the
system. On the negative side, co-location of transmitter and receiver
necessitates long cables if transmit and receive antennas are to be
separated in space. Because VNAs generate the stimulus sinusoids
at different frequencies in succession rather than in parallel (Street
et al., 2001), the most severe drawback of VNAs is the substantial
amount of time necessary to measure a single transfer function. The
two main reasons for the slow measurement speed is the necessity to
tune and stabilize the internal oscillators for each frequency point,
and the desire to transmit as pure a sinusoid as possible, which in turn
requires the sounding signal to be of long enough duration so that
the time limitation does not appreciably broaden its spectrum. The
time necessary for a single transfer function measurement might easily
be on the order of seconds, clearly too long to assume that lH(t, f)
remains constant. Hence, VNA measurements normally need to be
conducted in a controlled environment where any motion has to be
stopped during a measurement. Consequently, the resulting set of
measured transfer functions does not allow to infer channel time
variability, but can only be used to characterize a block-fading model.

4.1.5. Calibration
The above description of both time-domain and frequency-domain
channel measurements assumes an ideal measurement system response.
In reality, any measurement apparatus can only deal with effectively
band-limited signals, so that the autocorrelation function of the sound-
ing signal m in a time-domain sounding system can only approximate
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an ideal impulse δ(t), i.e., its spectrum is not flat in general. Similarly,
the sinusoids used to measure the transfer function in the frequency-
domain approach are time limited and, therefore, not mathematically
perfect sinusoids; hence, the corresponding measured complex phasors
are not ideal discrete-frequency values of the channel’s transfer func-
tion. Furthermore, cables, transmit and receive filters, and antennas
all further distort the channel transfer function. To some extent this
distortion can be controlled for by means of calibration: The mea-
surement system is connected back-to-back, i.e., without the wireless
channel; the system’s transfer function is measured, and this transfer
function is used later on to equalize channel samples. Calibration is
a standard procedure with most VNAs and requires little additional
effort, while calibration of a time-domain measurement system is often
more involved because it needs to be performed manually.

A measurement system that is operated in its linear regime has an
almost flat calibrated transfer function, yet the noise level is raised
at some frequencies. Nonlinear distortions cannot be removed by
calibration and, therefore, need to be avoided as well as possible
already during the design of the measurement system.

4 .2. A SURVEY OF WIDEBAND CHANNEL
MEASUREMENTS AND MODELS

4.2.1. Measurements
As the hardware necessary to perform wideband channel measure-
ments became available only about ten years ago, most of the reported
measurement results are fairly recent. The number of published results
steadily increased over the last years, so that a significant number of
results appeared in print only after we performed our measurement
campaign in mid-2004. Table 4.1 on page 93 provides a fairly compre-
hensive overview of published wideband measurement campaigns as
of fall 2007. When a single measurement campaign is the subject of
several publications, i.e., a conference paper and a journal paper, we
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only list the one with the most comprehensive description.
Saleh and Valenzuela (1987) conducted one of the first measurement

campaigns to characterize indoor channels with large fractional band-
width. Several years later, Scholtz (1993) and Win and Scholtz (1997,
1998a, 2000) conducted wideband measurement campaigns to comple-
ment their research on impulse radio (IR). This research illustrated
the potential benefits of UWB communications and spurred increased
research interest in wideband channels. Win et al. (1995) measured
indoor and outdoor UWB channels with a bandwidth of about 1GHz.
First results were published in 1997 (Win et al., 1997a,b); several
different channel models and various studies of specific communication
techniques for wideband channels are based on their original set of
indoor measurements (Win and Scholtz, 1998b; Scholtz et al., 1998;
Cramer et al., 1999, 2002; Cassioli et al., 2002; Win and Scholtz,
2002). The results of several other measurement campaigns were re-
ported at the first conference dedicated solely to UWB communications
in 2002 (Kunisch and Pamp, 2002; Turin et al., 2002; Ghassemzadeh
et al., 2002; Keignart and Daniele, 2002; Prettie et al., 2002; Hovi-
nen et al., 2002). Most of the measured channel impulse responses
in these references show the characteristic clustering structure, as
illustrated in Figure 3.1, with either a single cluster for indoor non
line of sight (NLOS) measurements or multiple clusters, depending
on the measurement environment. Many other observations are not
shared by all references, which resulted in a plurality of UWB channel
models.

A particularly interesting observation by Kunisch and Pamp (2002)
is that the channel attenuation over the measured band is frequency
dependent. If the system bandwidth is large, the antennas may signif-
icantly shape the spectrum of the LTI radio channel. By the classical
free-space propagation formula of Friis (1946), the amplitude of the
received signal decays inversely proportional with frequency if both
the transmitting and the receiving antenna have constant gain. If,
however, the antenna gain changes with frequency, the frequency
dependence of the free-space attenuation will be frequency-dependent
as well.
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Table 4.1: Wideband Channel Measurements

Reference Band [GHz] Type Environment

Saleh and Valenzuela (1987) 1.4–1.6 DSO office
Win et al. (1997a) 0–1.3 DSO outdoor
Win et al. (1997b) 0–1.3 DSO office
Yano (2002) 1.25–2.75 DSO office
Kunisch and Pamp (2002) 1–11 VNA office
Prettie et al. (2002) 2–8 VNA town houses
Hovinen et al. (2002) 2–8 VNA office
Welch et al. (2002) 1–11 VNA body
Poon and Ho (2003) 2–8 VNA town houses
Keignart and Daniele (2003) 2–6 VNA office
Zasowski et al. (2003) 3–6 VNA body
Dabin et al. (2003) 2–6 VNA classroom
Kovács et al. (2004) 3–6 VNA body
Pagani and Pajusco (2004) 3.1–11 VNA office
Ghassemzadeh et al. (2004) 4.37–5.63 VNA town houses
Karedal et al. (2004b) 3.1–10.6 VNA industrial
Menouni Hayar et al. (2005) 3–9 VNA laboratory
Ciccognani et al. (2005) 3.6–6 DSO office
Chong and Yong (2005) 3–10 VNA apartments
Hentilä et al. (2005) 3.1–6 VNA hospital
Kunisch and Pamp (2005) 3–11 VNA industrial
Geng et al. (2005) 3–6.5 VNA hall, office
Irahhauten et al. (2005) 3.1–10.6 DSO office
Muqaibel et al. (2006) 0.1–12 DSO office
Zasowski et al. (2006) 1.5–8 VNA human head
Fort et al. (2006) 3–6 VNA body
Jämsä et al. (2006) 1–11 VNA classroom
Keignart et al. (2006) 3.1–4.5 DSO laboratory
Kobayashi (2006) 3.1–10.6 VNA car
Irahhauten et al. (2006) 3.1–10.6 DSO ind., office
Geng and Vainikainen (2006) 3–10 VNA office
Pagani and Pajusco (2006) 4–5 DSO hallway
Chehri et al. (2006) 2–5 VNA mine
Haneda et al. (2006) 3.1–10.6 VNA wood house
Chuang et al. (2007) 3–10.6 VNA aircraft
Schuster and Bölcskei (2007) 2–5 both public space
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The first applications of UWB communication were perceived to be
WPANs; therefore, most of the early measurements were taken in offices
and residential environments. Increased interest in other application
scenarios lead to channel measurements of industrial environments
(Karedal et al., 2004b; Kunisch and Pamp, 2005), UWB propagation
at the human body (Zasowski et al., 2003; Fort et al., 2006), in
cars (Kobayashi, 2006), and even aircraft (Chuang et al., 2007) and
underground mines (Chehri et al., 2006).
A range of reported measurement campaigns are dedicated to

specific aspects of UWB channels, like antenna directivity (Hoff et al.,
2003; Dabin et al., 2003), frequency dependence of various channel
parameters (Jämsä et al., 2006; Geng and Vainikainen, 2006), and
material properties (Lao et al., 2003; Jaturatussanai et al., 2006).
Because of the high time resolution, spatial properties of UWB

channels are markedly different from those of narrowband channels.
The clustering observed in the impulse response directly corresponds
to clustering in the angular domain, as the AOD and AOA of waves
traveling via major scattering clusters can be resolved at least partially.
Wideband channel measurements that specifically investigate spatial
properties were reported by Prettie et al. (2002), Poon and Ho (2003),
Keignart et al. (2006) and Haneda et al. (2006).
Most of the aforementioned measurements results are for time-

invariant channels, for the reasons outlined in Sections 4.1.3 and 4.1.4.
The first generation of channel measurement equipment that offers
the continuously high sampling rates and data throughput necessary
to measure time-variant channels became available recently (Kmec
et al., 2005; Pagani and Pajusco, 2006), so that the characterization
of truly time-variant UWB channels might become possible soon.

4.2.2. Models

A. Discrete-Time Block Fading

In several UWB measurement and modeling articles, sampled output
sequences from a pulse-compression measurement system are directly
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used to compute the PDP or parameters like the path loss, delay spread,
and mean delay (Win et al., 1997a; Ghassemzadeh et al., 2004). These
statistics are sufficient to describe a discrete-time US JPG block-fading
channel, and can hence be considered as an implicit channel modeling
step: the covariance matrix of such a channel is diagonal with the
PDP on its main diagonal. Specification of delay spread and mean
delay alone is not sufficient to completely specify a discrete-time
block-fading model unless further assumptions on the shape of the
PDP are made.
Another way to specify the covariance matrix of the channel vec-

tor, though by a smaller number of parameters, is to devise an
autoregressive (AR) description of the channel frequency response
(Howard and Pahlavan, 1992); implicit in such an approach is the JPG

assumption on the channel vector. Ghassemzadeh et al. (2004) de-
vised an AR model to characterize the frequency response of wideband
indoor channels and found that two poles are sufficient to accurately
specify the correlation structure.

Kunisch and Pamp (2002) modeled the frequency-dependent attenu-
ation of the entire channel impulse response by an additional LTI filter
with transfer function proportional to fβ , where β characterizes the
effects of the combination of frequency-dependent antenna gain and
all other large-scale frequency-dependent mechanisms in the channel,
e.g., frequency-dependent absorption coefficients of materials.

B. Specular Block Fading

Instead of estimating the parameters of a discrete-time block-fading
model from measured data, some researchers assume that the channel
can be described by a block fading model with specular reflections,
as proposed by Turin (1972) (see also the summary in Section 3.1.2).
Because the Turin model is of infinite bandwidth, any analysis or
simulation needs to band limit the corresponding channel impulse
response, either implicitly by means of a band-limited input signal,
or explicitly. Conversely, because any measurement system is band
limited, some sort of deconvolution is necessary to estimate the model
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parameters of the infinite-bandwidth Turin model from measured
data of finite bandwidth. This is either done by inspection, i.e., visu-
ally identifying path arrivals in all measured discrete-time impulse
responses, by direct estimation of the delay parameters (Win and
Scholtz, 2002), or by means of superresolution algorithms. Cramer
et al. (2002) adapted the CLEAN algorithm to separate the individ-
ual path arrivals in measured channel impulse responses under the
assumption of a particular received pulse shape. The same method
was later also used by Yano (2002) and Irahhauten et al. (2006).
A double-directional extension of the specular block-fading model
to account for the AOD and AOA of an individual path was used by
Poon and Ho (2003), in conjunction with a corresponding extension of
the CLEAN algorithm to estimate the model parameters path delay
and AOA. Other superresolution algorithms, like space alternating
generalized expectation maximization (SAGE) (Fessler and Hero, 1994;
Fleury et al., 1999) or multiple signal classification (MUSIC) rely on
the assumption that the bandwidth of the signal under analysis is
much smaller than its center frequency; therefore, it is not clear if
these algorithms can be applied directly to UWB channel measure-
ment data. Haneda et al. (2004, 2006) use an extension of the SAGE

algorithm (Haneda and Takada, 2003) to estimate parameters of
an extended directional model that also accounts for the AOA and
frequency dependence of individual propagation paths.

C. Modifications of the Model by Saleh & Valenzuela

Measured UWB channel impulse responses in many different envi-
ronments exhibit the characteristic clustered structure depicted in
Figure 3.1. This observation suggests a model of the type proposed by
Saleh and Valenzuela (1987), as described in Section 3.1.3. Indeed, the
two influential UWB channel models that where originally developed
to support the standardization activities in the IEEE 802.15.3a and
IEEE 802.15.4a Task Groups∗ are derivatives of the original SV model.

∗ The goal of the IEEE 802.15.3a Task Group was to standardize an alterna-
tive physical layer for 802.15.3 WPANs. Because of political and technological
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The IEEE 802.15.3a model is described in a report by Foerster (2003)
and later detailed in a paper by Molisch et al. (2003a). It deviates
from the original SV model in that it is a model for the radio channel
with fc = 0 so that the ray coefficients ρli in (3.3) are real-valued;
furthermore, the coefficient magnitudes are lognormally instead of
Gaussian distributed, with shape parameters that depend on both the
cluster and the ray index, and the polarity of each coefficient is either
positive or negative with equal probability. The UWB portion of the
IEEE 802.15.4a channel model is specified at complex baseband, like
the original SV model; however, the magnitude of the path weights ρli
are modeled to follow a Nakagami distribution, while the phases are
uniformly distributed. The ray arrival process is a Poisson process in
the original SV model; in the IEEE 802.15.4a model, it is a mixture of
two different Poisson processes, and the parameters of this mixture
process for each cluster depend on the corresponding cluster arrival
time. Two additional modifications are a weighting function for the
entire impulse response that attenuates the early rays in NLOS settings,
and a linear filter to model the frequency-dependence of the overall
attenuation. Molisch et al. (2006b) describe the IEEE 802.15.4a chan-
nel model in detail. Many measurement campaigns listed in Table 4.1
on page 93 were conducted specifically to extract parameters for use
in the definition of the above two models.

D. Space-Variant Models

One of the few models that takes into account temporal variation
in the channel is the space-variant multipath model by Kunisch
and Pamp (2003, 2006). This model is a derivative of the so-called

differences among group members, the task group never achieved this goal and
disbanded itself. The IEEE 802.15.4a Task Group was chartered to standardize an
alternative physical layer for industrial, sensing, monitoring, location-tracking, and
safety applications on the basis of the IEEE 802.15.4 standard. The IEEE 802.15.4a
standard was approved in March 2007. The role of channel models in both task
groups was to aid in the selection of competing physical layer proposals for both
standards; especially the IEEE 802.15.3a model was never envisioned as a compre-
hensive model for various types of scientific investigations. Nevertheless, it has
been used to this end quite often.

97



4 WIDEBAND CHANNEL MEASUREMENTS

geometry-based stochastic channel model (GSCM) that is used, for
example, in the COST259 directional channel model described by
Molisch et al. (2006a, 2003b). A GSCM describes propagation paths
impinging at the receiver as emanating from a set of virtual sources,
whose locations are random variables. This allows to adapt the model
to specific environments. Furthermore, the virtual sources can move
over time, which results in a truly time-variant channel instead of a
block-fading description. The UWB extension by Kunisch and Pamp
(2003) uses the GSCM approach to describe the arrival and the power of
impulse response clusters, while individual channel taps are modeled
stochastically, with uncorrelated proper Gaussian taps whose variance
depends on the corresponding GSCM cluster energy. Furthermore,
their model takes into account the frequency-dependent attenuation
discussed previously. As the location of clusters in the generated
impulse responses is determined by the location of virtual sources,
and these locations can be made to vary in a physically sensible way
over time, the variation in cluster location in the resulting impulse
response is physically sensible as well. In fact, the source variation
can be tuned to match a measured Doppler spectrum. The price for
the high accuracy, however, is model complexity, so that the model is
only suitable for simulation.

4 .3. THE ETH MEASUREMENT CAMPAIGNS

The space-variant multipath model or the various extensions of the
SV model are mainly developed to generate realizations of UWB chan-
nel impulse responses for use in simulators (Jeruchim et al., 2000);
their utility in information- and communication-theoretic analysis
of wireless communication systems is rather limited as their com-
plexity is high. In contrast, the discrete-time block-fading model is
suitable for theoretical studies, as evinced by its pervasive use (Tse
and Viswanath, 2005; Biglieri, 2005). The virtue of such theoretical
studies lies in the insight they provide into the fundamental mech-
anisms that determine the performance of wireless systems and the
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high-level design guidelines they offer.
Powerful analytical results require powerful models, yet powerful

results also depend on models that are simple enough to derive these
results in the first place. Hence, the models need to retain those
features of the real world that are of fundamental importance. The
developments in Chapter 2 illustrated that a great many modeling
approximations are necessary to arrive at a mathematical channel
model that is analytically tractable. In particular, we found that some
of the approximations made are questionable for channels of large
bandwidth. Yet, most of the measurement campaigns and modeling
efforts surveyed in the previous section do not address these impor-
tant modeling questions. Therefore, we conducted a set of wideband
channel measurements on the premises of ETH Zurich and assembled
statistical tools to specifically scrutinize these modeling assumptions.

4.3.1. Objectives
Our main interest is the analysis of communication over wideband
channels, in particular the impact of small scale fading. Therefore,
our measurements were designed to provide empirical evidence about
some of the basic assumptions that underly the stochastic channel
models used in information- and communication-theoretic analysis of
wideband wireless communication systems, as described in Chapter 2
and Chapter 3.

1. We argue in Section 2.5.2 that a stochastic channel model with
JPG taps is only sensible for band-limited channels, as only in
this case we can hope to have enough averaging for the JPG

distribution to be justified by the CLT. If bandwidth becomes
large, one could suspect that less and less paths contribute
to each channel tap, which renders the assumption of proper
Gaussian tap distributions questionable (Zhang et al., 2002;
Cassioli et al., 2002; Molisch et al., 2003a). Therefore, one
objective of the measurement campaign is to assess the validity
of the assumption that channel taps are marginally proper
Gaussian distributed.
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2. The US assumption is particularly convenient for the analy-
sis of wideband wireless channels, especially in the form of the
discrete-time US assumption. As discussed in Section 3.1, this as-
sumption is questionable because any band limitation necessarily
introduces correlation. Furthermore, the frequency dependence
of individual propagation paths discussed in Section 2.3.2 and
evidenced in (2.12) also contradicts the US assumption.

3. The US assumption on the continuous-time channel predicts that
the number of DOUs in a band-limited discrete-time representa-
tion of the channel scales linearly with bandwidth. Such a linear
scaling is assumed in many theoretical analyses of wideband
channels; it is fundamental in the sense that the achievable
rates over such channels in the limit for infinite bandwidth and
under a constraint on the peak transmitted power are limited
to values less than the capacity of the corresponding AWGN

channel (Viterbi, 1967; Abou-Faycal et al., 2001; Verdú, 2002);
under certain types of peak constraints, the achievable rates
may even vanish at large bandwidth (Telatar and Tse, 2000;
Médard and Gallager, 2002; Subramanian and Hajek, 2002). As
the continuous-time US model is conceptual only and always
needs to be band limited for the model to have operational
significance, it is important to ask over what range the linear
relation between bandwidth and DOUs holds. A sublinear scaling
would indicate either that the small fractional bandwidth as-
sumption (2.7) becomes invalid starting at a certain bandwidth
or that the number of uncorrelated scatterers in the environ-
ment is limited. In the latter case, we would also expect that
the Gaussian assumption discussed previously does not hold
because of limited averaging at large bandwidth.

In addition to these primary objectives, several secondary consider-
ations also influenced the design of the measurement campaign. (i) As
apparent in Table 4.1 on page 93, most measurement campaigns
before 2005 focussed on residential and office environments, mainly
because these environments were the envisioned deployment sites
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for UWB systems conforming to the IEEE 802.15.3a standard then
under discussion, i.e., for high-rate short-range WPANs like wireless
universal serial bus (USB) or wireless media distribution. But UWB

communications might turn out to be even better suited for other
applications, notably in sensor networks for building management and
automation like air conditioning and lightning, where extremely low
power consumption and low cost are key factors (Rabaey et al., 2002).
Thus, we decided to leave the standard office setting and perform
measurements in a public space. (ii) At the time we took the measure-
ments, all reported results were for distances between transmitting
and receiving antennas of less than 20m, often significantly less. We
aimed at an antenna separation between 21m and 27m to provide
a hopefully welcome addition to the body of available measurements.

4.3.2. Measurements
With the outlined objectives in mind, we conducted two different
measurement campaigns, both in the frequency band from 2GHz to
5GHz in the same indoor public space, the lobby of the ETZ building
at ETH Zurich.

• In measurement campaign I (MCI), the channel was static and
we used a VNA to sample it spatially. This type of measurement
setting is similar to, e.g., a wireless access point scenario or
a peer-to-peer setting where one of the terminals moves with
respect to the static environment. Hence, MCI allows us to assess
the impact of the corresponding spatial variations of the channel.

• In measurement campaign II (MCII), the transmitting and receiv-
ing antennas were fixed, and channel variation was induced by
people moving in the environment. This type of antenna place-
ment might represent the situation in a WPAN or a wireless sensor
network, where terminals are typically immobile, like for building
automation. We excited the channel with a PN sounding signal
and used a DSO to record the channel output.

For completeness, we briefly mention some external circumstances
that might have influenced the two measurements and subsequent sta-
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tistical analysis. We took actual measurements for MCI in June 2004.
At this time, it was not foreseen to conduct an additional measurement
campaign. Only during postprocessing and statistical evaluation it be-
came apparent that the number of channel samples was not sufficient
to compute certain statistics,∗ and that a sufficient number of samples
could not be obtained by spatially sampling the channel. Temporal
sampling seemed to be much better suited for this task; to this end,
we devised MCII. Naturally, experience gained during MCI is reflected
in MCII. By chance, we had access to a very advanced DSO for a brief
period of time; this external circumstance determined the timing
of MCII, which was conducted over three days in December 2004.

4.3.3. Limitations
The design of a channel measurement campaign is contingent on
a channel model; conversely, the type of channel model that can be
characterized from measurement data depends on what can actually
be measured. We presuppose a linear channel with an IO relation
that is identifiable; consequently, we use the measurement techniques
described in Section 4.1.2. As already discussed in the same place,
these measurement techniques are subject to technical constraints,
which in turn limit the type of channel model we can characterize.

• The VNA we had available for our measurements required a sig-
nificant amount of time to measure a single transfer function;
this precluded any meaningful time variability in the channel.
With such a setup, the large number of channel realizations that
are necessary for a statistical channel characterization can only
be obtained over space, i.e., from local displacements of either
the transmitting or the receiving antenna, while the environ-
ment needs to be kept static. Consequently, only a model of the
block-fading type can be characterized with such a setup.

∗ Ideally, such a problem should be detected before any measurements are taken.
Yet, many of the statistical methods described in Chapter 5 and Chapter 6 have
not been used before to analyze channel measurement data, so that there was no
past experience on the basis of which to decide on certain parameters of MCI.
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• The DSO used for the time-domain measurements allowed for time
variability of the channel while measurements were in progress.
Yet, its high-speed acquisition memory could only store up to
four consecutive repetitions of the PN sequence used to probe
the channel, and the transfer of the recorded output signal to
secondary storage took about one second each time. But a one
second delay is way too long for the channel to remain constant,
so that consecutive recordings could not be used to characterize
channel variation over time but only for statistical purposes.
Again, the resulting channel model is confined to be block fading.

• Measurements taken with a VNA are discrete in frequency; hence,
the corresponding impulse responses are periodic in time, with
the period determined by the maximum number of points that
can be measured in a given frequency band. This places a hard
limit on the maximum delay in the channel, i.e., we have to
make the a priori assumption that delay is limited. Similarly, the
repetition rate of the transmitted PN sequence in the time-domain
setup strictly limits the maximum delay that can be measured.

• Both measurement setups used a single transmit antenna and
a single receive antenna. Although the spatial displacement of
one antenna in the frequency-domain measurement system yields
transfer functions that contain spatial information about the
channel, they can either be used to characterize spatial properties
or for statistical purposes, but not for both; i.e., our measurement
setup does not allow us to obtain a statistical characterization of
a multiantenna channel.

To summarize: our measurement setups, both for frequency-domain
measurements and for time-domain measurements, only allow us to
characterize a single input single output (SISO) block-fading channel
model with a finite number of channel taps, i.e., a channel with
IO relation

y[k] =
L−1∑
l=0

h[l]x[k − l] +w[k]. (4.6)
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Fig. 4.1: The measurement system used in MC I.

Consequently, we are mainly concerned in the following chapters with
measurement and statistical analysis of the L-dimensional channel
vector

h ,
[
h[0] h[1] . . . h[L− 1]

]T . (4.7)

4 .4 . MEASUREMENT SETUP AND EQUIPMENT

4.4.1. Measurement Campaign I
The frequency-domain measurement system used in MCI is shown
schematically in Figure 4.1. The goals in the design of this mea-
surement system were to achieve sufficient dynamic range up to the
maximum antenna separation of about 27m, to automate most of
the measurement tasks, to guarantee reproducibility of the results,
and to aim for the highest possible fidelity of the recorded channel
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transfer functions.∗ Our measurements spanned the frequency band
from 2GHz to 8GHz, limited by several components in the mea-
surement setup. Unfortunately, the channel bandwidth that could
be measured in the time-domain MCII turned out to be smaller,
only 2GHz–5GHz. To allow a direct comparison of measurements
from both campaigns, we decided to use MCI data only for the band
from 2GHz to 5GHz. The following subsections provide a detailed
description of the measurement setup in Figure 4.1.

A. Vector Network Analyzer

The VNA used in MCI was a HP 8722D with firmware version 6.04,
dated 07/29/1996. This VNA is capable of measuring S-parameters
from 50MHz to 40GHz. Of interest for our purposes is the parameter
vector S12, the transfer function of the channel at discrete frequency
points. A maximum of 1601 points can be recorded in any given
frequency band. The option 012, “Direct Sampler Access,” allows to
bypass the input and output couplers to directly access the sampling
circuits; this configuration significantly increases the dynamic range
of the measurements compared with the standard setup. In this
configuration, the sampling circuits are no longer protected from
overvoltage and DC offset; hence, special care must be taken when
handling RF components. As a protective measure, we inserted a 3dB
attenuator and a blocking capacitor at the return port, as shown in
Figure 4.2. In the configuration for increased dynamic range, crosstalk
from the internal reference channel of the VNA becomes a problem.
Therefore, we attenuated this reference channel by 23dB. All MCI

measurements used the following configuration of the VNA:
• We measured the band from 2GHz to 5GHz and additionally

the band from 5GHz to 8GHz. For each band we obtained 1601
equispaced points in frequency at a point spacing of 1.875MHz.

∗ The measurement system was designed in cooperation with H.-R. Benedickter
form the Laboratory for Electromagnetic Fields and Microwave Electronics at
ETH Zurich. We greatly appreciate his expertise and experience with RF mea-
surement and instrumentation.
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Fig. 4.2: Configuration of the HP 8722D VNA for direct sampler access.

However, we only used the lower band from 2GHz to 5GHz in
all subsequent analyses.

• Output power was set to -5dBm.
• All transfer functions were measured in stepped frequency mode.
This means that the stimulus signal was synthesized separately
for each discrete frequency point instead of being continuously
swept over the whole band. Operation in stepped frequency mode
was necessary to avoid phase errors that may result because of
the long delay introduced by the propagation channel (Street
et al., 2001).

• We set the intermediate frequency (IF) bandwidth to 300Hz
to minimize the noise floor while maintaining and acceptable
measurement duration. The IF bandwidth determines the SNR—
the smaller the IF bandwidth, the less noise is present in the
measured signal. But a small IF bandwidth also means that the
duration of the measurement signal needs to be long. We did
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not use the averaging functionality of the VNA, only one transfer
function was measured for every spatial location of the transmit
antenna; every such individual measurement, comprising 1601
points in frequency, took 9.5 s.

To capture all significant multipath components in the channel,
the frequency domain sampling rate should be set to at least twice
the coherence bandwidth. Worst-case delay spreads previously re-
ported for UWB indoor measurements were around 30ns, so that
the estimated coherence bandwidth of the corresponding channels is
larger than 3.5MHz. Hence, we deemed 1601 points with a result-
ing point spacing in frequency of 1.875MHz sufficient for the lobby
measurements.
The VNA has built-in calibration routines that require a set of

calibration measurements. We performed these measurements approx-
imately 45 minutes after powering up the whole measurement system
to ensure that all components had reached thermal equilibrium. The
calibration data was saved together with the instrument state. Cali-
bration included all cables, amplifiers and antenna feeds. The effect
of the antennas, however, was not calibrated because the antenna
frequency response was not equal for all azimuth and elevation angles,
as evident from Figure 4.4.

B. Virtual Antenna Array

The channel has to remain constant during measurement of each
transfer function; but for meaningful statistical analysis of small-scale
fading effects we need the channel to change—i.e., we need to measure
several realizations of the small scale fading that can be regarded as
independent. The fading phenomenon is a spatial effect, caused by
constructive and destructive interference of the reflected, diffracted,
and scattered partial waves; hence, different channel realizations can
be obtained from spatial sampling of the corresponding wave field: we
leave the receiving antenna fixed and measure the channel for different
positions of the transmit antenna within a confined area. If the points
are taken as the nodes of a rectangular grid, such a setup is often
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referred to as a virtual array. The area of the array needs to be small
enough so that changes in large-scale channel parameters like path loss
are insignificant across the array. At the same time, the spacing of the
individual grid points needs to be large enough for the resulting spatial
samples to appear independent. This independence over space is not
a property of the physical channel, it is a modeling assumption we
make, like the stochastic description of wireless channels is a modeling
assumption (see Section 2.5). By proper design and placement of
the virtual array, we have to ensure that the assumption of spatially
independent channel samples describes the measured data sufficiently
well. As a rule of thumb, the different transfer functions should result
from the superposition of waves whose phases differ by more than π
between neighboring grid points. Hence, grid spacing should be at
least as large as half a wavelength at the lowest measured frequency.
We chose a grid spacing of 7 cm in both dimensions; although slightly
smaller than half a wavelength at 2GHz, this spacing allowed us to
maximize the number of spatial samples, as described next.
After a transfer function is recorded, the transmitting antenna

needs to be moved to the next grid point before another measure-
ment can take place. This was done by a positioning table whose
two jackscrews could independently position the antenna in the two
horizontal dimensions. The same apparatus was already used in the
ECHO24 channel sounder (Truffer and Leuthold, 2001). Our cus-
tom control software achieved a worst-case positioning accuracy of
about 2mm independently in both directions, which is sufficient for
our purposes. With a grid spacing of 7 cm, the positioning table
allowed for a 9×5 grid, 45 points in total. For statistical analysis,
the largest possible number of samples is always just good enough.
Therefore, we measured two times 45 spatial positions for a given
distance d between transmitter virtual array and receiver by man-
ually displacing the positioning table by about 50 cm after the first
45 samples were recorded. We term the 90 channel samples recorded
this way a measurement set. The exact location of the two virtual
arrays that make up one measurement set are shown in Figure 4.7;
we describe the measurement environment in more detail later on.
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Fig. 4.3: Prototype of the Skycross SMT-3TO10M antenna. This antenna was
used in all MC I and MC II measurements.

The cart could not be positioned with high accuracy, but as we are
only interested in spatial samples for statistical analysis and not for
estimating directional parameters, this does not incur any penalty.
The transmitting antenna was attached to the positioning apparatus
at a height of 1.9m above the floor. To prevent mechanical oscillations
of the antenna during repositioning, we enclosed the antenna feed in
a stabilization and damping construction made of plastic and foam.

C. Antennas

Both transmitter and receiver were equipped with a prototype version
of the Skycross SMT-3TO10M meander-line antenna shown in Fig-
ure 4.3. The SMT-3TO10M is a commercially available off-the-shelf
antenna of small size and low cost, like it might be used in many
envisioned UWB transceivers. We used this application-grade antenna
instead of a high-precision measurement device because we are mainly
interested in modeling the baseband channel, which includes the an-
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Fig. 4.4: Azimuth response of the Skycross SMT-3TO10M antenna prototype.
Measurements courtesy of T. Zasowski and H.-R. Benedickter.

tenna effects. The radiation pattern∗ of the selected antenna in the
horizontal plane is not perfectly omnidirectional, but still reasonably
good over the band of interest, as can be seen in Figure 4.4. All
antennas were fed through a custom-made 20 cm semirigid feed with

∗ All antenna measurements were performed by H.-R. Benedickter and T. Za-
sowski in the anechoic chamber of the Laboratory for Electromagnetic Fields and
Microwave Electronics at ETH Zurich. The reference antenna was a Watkins John-
son 2 horn. We did not remove the effect of the reference antenna.
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almost perfectly flat frequency response over the band of interest.

D. Amplifiers

The output power of the VNA was insufficient to obtain an SNR at
the receiver that was high enough for sensible statistical analysis.
Therefore, we used two different external amplifiers: (i) We placed a
Minicircuits ZVE-8G wideband power amplifier that provides 30dB
gain in the band from 2GHz to 8GHz right before the transmit an-
tenna to boost the power of the transmitted signal. (ii) At the receiver
side, we followed the receive antenna with a custom RF amplifier with
bandwidth of over 10GHz and a noise figure of less than 6dB over
the whole band.

E. Cables and Connectors

All cables used in the measurement chain were H&S Sucoflex 104
assemblies in different length. The long cable from the receiving
antenna back to the VNA was composed of several shorter pieces.∗

In particular, we used the following composition: 7m + 3m + 3m +
3m + 2m + 3m + 7m.

Cables are a crucial part of every measurement setup because bend-
ing and torsion can lead to degradation of their frequency response.
The H&S cables used are certified up to 24GHz and have low loss.
During the measurements, the cables experienced all sorts of mechani-
cal stress while moving the antennas, especially during the calibration
procedure where the far end of the long cable needed to be moved all
the way back to the VNA for the back-to-back calibration measure-
ment. Tests showed that this mechanical stress had some impact on
the measured frequency responses, depending on the way the cables
were bend and laid out on the floor. In addition, there was an observ-
able effect due to surface waves traveling along the outer shielding
of the cables. Hence, although great care was exercised to achieve

∗ This composition was necessary as we did not have longer single-piece high-
quality assemblies in our laboratory stock.
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the lowest possible distortion in the overall measurement setup, the
cables constituted the weakest part of the presented channel sounding
system.

F. Measurement Control and Automation

All measurement functions were controlled from a laptop computer,
which was connected to the VNA via an IEEE 488.2 interface and
to the positioning table via the IEEE 1284 parallel port. Control
and data acquisition routines were written in Matlab, using the
Data Acquisition and Instrument Control Toolboxes. The measured
frequency responses were saved as three-dimensional Matlab arrays.

4.4.2. Measurement Campaign II
We adopted the pulse compression measurement principle described in
Section 4.1.3; our sounding signal was a PN sequence. A DSO directly
acquired the output signal, i.e., without prior downconversion of the
received signal. A schematic of the measurement setup used in MCII is
shown in Figure 4.5; we describe its core components in the following
subsections.
Whereas the VNA in MCI handles synthesis of the transmit sig-

nal, amplification, sampling and digitization of the received signal,
calibration, and various control tasks, several of these tasks have to
be carried out by separate devices in MCII because no integrated
time-domain measurement system for channels of several gigahertz
bandwidth is yet available. A major challenge in MCII was to establish
a common time reference at the transmitter and the receiver side. This
problem did not arise in MCI because the VNA houses transmitter
and receiver, and both use the same clock signal. To extract accurate
timing information also in the time-domain measurement setup, we
recorded the output signal of a dedicated wireline reference channel
in addition to the output signals of the wireless channel under study.
The reference channel conveyed the same signal used to sound the
wireless channel, but over a cable instead of “over the air.”
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Fig. 4.5: The measurement system used in MC II.

A. Signal Generation

The ideal sounding signal in a pulse-compression measurement system
has a Dirac impulse as autocorrelation function and a correspondingly
flat spectrum. Any realizable signal can only approximate this ideal,
though. We used a PN sequence as sounding signal, generated by
a Centellax TG1P1A pseudorandom bit sequence generator. This
device converts a clock input signal into a periodically repeated
PN sequence, generated by a maximum-length shift register. Out
of the choices of maximum-length shift register sequences offered
by the device, we opted for the one of length 215 − 1 = 32 767 with
generator polynomial x15 +x+1. The sounding signal was transmitted
continuously at a clock rate of 10GHz. This resulted in a repetition
period of the PN sequence of 3.2767 µs, equivalent to a repetition rate
of 305 185 kHz. The duration of the chosen sequence is such that it
can comfortably fit the available acquisition memory of the DSO, as
described below. We used a HP 83640B signal generator as source for
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Fig. 4.6: DFT power spectrum estimate of the PN sequence with generator
polynomial x15 + x+ 1, clocked at 10 GHz.

the 10GHz clock input; its clock signal is extremely stable and has
very low phase noise. The PN sequence generator itself is specified to
have root mean square (RMS) jitter of 0.9ps at 10GHz clock frequency.
A discrete Fourier transform (DFT) estimate of the sequence’s power
spectrum is shown in Figure 4.6. Clearly visible is the deviation from
an ideally flat spectrum. The drop in magnitude with increasing
frequency prompted us to limit the analysis of all MCII measurement
data to frequencies below 5GHz.
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B. Digital Sampling Oscilloscope

The core component of the receiver in MCII was an Agilent Technolo-
gies DSO81204A DSO.∗ This device can simultaneously acquire two
channels of 12GHz analog bandwidth at a sampling rate of 40GHz
and 8bit resolution. The signal received “over the air” was fed to
the first DSO channel, which we call the measurement channel in
the following; the second channel of the DSO, termed the reference
channel, was used to acquire samples of the reference signal for timing
recovery; this signal was the transmitted PN sequence, but conducted
over a long cable rather than received over the wireless channel.
Two million samples can be acquired and stored in real time in

the DSO’s acquisition memory. After every successful acquisition, the
data in the acquisition memory need to be transferred to the DSO’s
internal hard drive before another acquisition can take place. Data
transfer is rather slow, which severely limits the acquisition rate and
prevents characterization of any meaningful time-variation in the
channel. For a sustained acquisition rate of about one measurement
and one reference snapshot per second, we had to limit acquisition
to 400 000 samples per channel, i.e., to 10 µs of output signal per
acquisition. We call the 400 000 points of an individual measurement
channel acquisition a channel snapshot, and the corresponding points
from the reference channel a reference snapshot.

C. Other Components

Although the measurement methodology in MCII was different from
the one in MCI, we used the same antennas and amplifiers as already
described in the previous section. A modification to the antenna
feeds was to enclose them in clamp-on ferrite beads; this prevents
reflections from the antenna to travel along the cable and radiate.†

∗ We greatly acknowledge the support of Agilent Technologies to provide us with
a DSO for MCII that, at the time of the measurement campaign, was probably
one of a few DSOs worldwide with the stated capabilities.
† Unfortunately, we were too late to realize the problem of parasitic transmission

from cables in MCI and used the ferrite beads only in MCII.
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The cable used to conduct the reference signal from the signal source
to the DSO was the same as the cable used in MCI. For accurate
timing, we used phase-stable semirigid H&S Sucoform 86 cables to
connect the antennas to the transmit and receive amplifiers. The DSO

was controlled over an IEEE 488.2 interface from a laptop computer
running Matlab, as in MCI.

4.4.3. Measurement Environment

We conducted both channel measurement campaigns in the lobby of
the ETZ building at ETH Zurich. The building itself is a typical early-
1980s multistory office building, with the lobby located on the ground
floor of the building. A floor plan of the relevant part of this floor
is shown in Figure 4.7. The lobby stretches from a conference room
at the bottom in Figure 4.7 to an office in the top right corner. On
the right, the whole length of the lobby is enclosed by large windows;
on the left are four concrete structures. The bottom-most one houses
service rooms; its walls facing the lobby are plated with metal sheets.
The second structure, counted from the bottom of Figure 4.7, is a
concrete staircase; it is partially enclosed behind a row of vertical
metal bars, The third structure houses elevators pits and service
rooms; its concrete walls are again plated with metal sheets. The
topmost structure, next to the entrance doors, is an office enclosed
behind concrete walls, with a counter facing downward. Further to
the left of the four structures just described are hallways that lead
to classrooms and offices. A row of reenforced concrete pillars runs
through the whole lobby in parallel to the windows, about two thirds
between windows and walls. The floor of the lobby is tiled with
large natural stones, the ceiling is of poured concrete; a rectangular
structure that carries neon lights is suspended from it. Furniture in
the lobby comprises mainly tables and chairs, some vending machines,
and decorative plants, as shown on the photograph in Figure 4.8.
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Fig. 4.7: Floor plan of the lobby in the ETZ building, ETH Zurich.
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A. Measurement Campaign I Locations

Frequency-domain measurements are contingent on a static channel
because of the time required by the VNA to record a single transfer
function, as discussed in Section 4.1.4. To ensure that the channel
did not change during acquisition, we performed all measurements
at times when there were no people present in the lobby, i.e., during
two successive nights on a weekend. Nevertheless, some nocturnal
graduate students interrupted the measurement process at times, so
that we had to repeat the affected measurements. Other sources of
channel variation, like fluorescent lights (Truffer and Leuthold, 2001,
Section V) and IEEE 802.11b base stations, were switched off.

We placed transmitter and receiver at different locations throughout
the lobby. The transmitting antenna was mounted atop the positioning
table to form a virtual array, as detailed in Section 4.4.1.b; the
receiving antenna was placed on a tripod. Antenna heights above the
floor were 1.9m for the transmitter and 1.75m for the receiver.

Conforming with well-established channel measurement terminology,
we distinguish between three different measurement settings.

• In a line of sight setting, the line of sight (LOS) between trans-
mitter and receiver is not blocked by any object. In the MCI LOS

setting, we took several measurement sets of N = 90 transfer
functions each, along the length of the lobby. Each measurement
set is characterized by the distance d between the transmitter
virtual array and the receiving antenna. The virtual array re-
mained in the same location in the upper part of the lobby for all
LOS measurement sets, while we placed the receiving antenna at
d = 15.4 m, d = 18.4 m, d = 21.2 m, d = 24.3 m, and d = 27.2 m
distance as indicated in Figure 4.7. Thus, we took five LOS mea-
surement sets of N = 90 spatial channel samples each, for a total
of 5× 90 = 450 LOS transfer functions in MCI.

• Obstructed line of sight (OLOS) means that the LOS between
transmitter and receiver is partially shadowed by objects, in our
case by the row of concrete pillars in the lobby. These pillars
are small enough for the transmitted waves to be diffract around
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them instead of being shadowed. Hence, channel variation over
the extent of the virtual array can be seen as small-scale fading.
While we displaced the transmitting array with respect to its
LOS position to create the OLOS setup, we used three of the five
receiver positions from the LOS measurements also for the OLOS

measurements; hence, we recorded three OLOS measurement sets
of N = 90 spatial channel samples each. The resulting distances d
between transmitter array and receiver antenna in the OLOS

measurement setting are d = 21.7 m, d = 24.6 m, and d = 27.5 m.
• Non-line of sight (NLOS) characterizes measurement settings
where the LOS between transmitting and receiving antenna is
completely blocked by a large object. In MCI, this large object was
the concrete staircase behind which we positioned the receiving
antenna at two different spots for a total two measurement sets
and correspondingly 180 measured transfer functions. We left the
transmitter array in the same spot as for the OLOS measurements;
the distances to the receiving antennas were approximately d =
22.2 m and d = 22.7 m. Unfortunately, we only realized upon
postprocessing that not all NLOS impulse responses are alike, but
that probably shadowing and diffraction around the corner of the
elevator pit resulted in some quite strong and other rather weak
impulse responses, depending on the location of the transmit
antenna on the virtual array. Such large-scale variations of channel
samples in a single measurement set are not suitable for statistical
analysis of small-scale fading; therefore, we use MCI NLOS data
only in Section 4.6 for exploratory purposes but not in the
statistical analysis in Chapter 5 and Chapter 6.

B. Measurement Campaign II Locations

As we kept both the transmitting and the receiving antenna fixed
during a sequence of channel acquisitions in MCII, variation in the en-
vironment was solely due to people moving about. The lobby connects
classrooms on the left-hand side in Figure 4.7, a cafeteria reachable
via the doors at the top, and a patio and further classrooms behind
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the door to the right; because we conducted MCII at daytime during
a normal week of lectures, many people passed through the lobby in
the course of our measurements. A rather annoying source of channel
variation was introduced by operational IEEE 802.11b base stations,
which, unfortunately, we could not deactivate during the day. The
impact of the resulting narrowband interference is discussed in detail
in Section 4.5.2.

For ease of comparison, we chose similar measurement locations as
in MCII, although we reduced the distance between transmitter and
receiver to obtain a higher SNR in anticipation of the more complicated
postprocessing steps necessary for the time-domain measurement
data. Compared with MCI, we also had to interchange the position of
transmitter and receiver, as indicated in Figure 4.7. Both antennas
were mounted on tripods, approximately 1.6m above the floor.

The main objective in MCII was to record a sufficient number
of channel samples for sophisticated statistical analysis. As the ac-
quisition rate was limited by the data transfer between the DSO’s
acquisition memory and its hard disk, we elected to reduce the number
of measurement sets to only one set for each measurement setting,
LOS, OLOS, and NLOS; at the same time, we greatly extend the number
N of channel samples in each measurement set compared with MCI.
Hence, in MCII a measurement set is synonymous with a measurement
setting.

• In the LOS setting, we recordedN = 1011 snapshots. The distance
between the transmitting and receiving antenna was d ≈ 20 m.

• The distance between the antennas in the OLOS setting was
also d ≈ 20 m. In this setting, we recorded N = 2722 snapshots.

• Compared with MCI, we placed the receiver in a different spot
in the NLOS setting, right behind the concrete staircase next
to the elevators, The reason for this change was the expected
intense pedestrian traffic between stairs and elevators, and thus
high channel variation. The distance between the two antennas
of d ≈ 13 m was smaller than in the LOS and OLOS settings. We
recorded N = 1256 channel snapshots.
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Fig. 4.8: Impression of the lobby from the position of the MC II transmitter in
the LOS and OLOS setting.

Figure 4.8 shows the lobby from the vantage point of the MCII trans-
mitter in the LOS and OLOS setting. The line of vision is in the direction
of the office in the top right corner in Figure 4.7.

4 .5 . POSTPROCESSING

The raw data generated by the measurement devices in MCI and MCII

are not suited for direct analysis, they need to be processed first. This is
a delicate task as it is contingent on several modeling assumptions. It is
a subjective task as well, because the investigator can easily introduce
significant bias without any intention to malevolently manipulate the
data (Gould, 1981). As such experimenter bias seems to be unavoidable
to a certain extent, we can only try to explain all postprocessing steps
in detail, so that any omissions, additions, or erroneous manipulation
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can be detected easily. Furthermore, we make the raw measurement
data available for third parties to analyze and compare with our
findings (Schuster and Bölcskei, 2005b).

Although the raw measurement data from MCI and MCII are quite
different, our goal is to use the same statistical methods for both data
sets, as only then a valid comparison between the two types of channels
might eventually be possible. Thus, the goal of the postprocessing
steps described in the following is to transform the measured transfer
functions of MCI and the measured channel snapshots from MCII

into a common format: a set of complex-valued baseband impulse
response vectors as defined in (4.7), that describe the channel in the
band from 2GHz to 5GHz.

4.5.1. Measurement Campaign I
Raw measurement data in MCI consists of transfer functions that
are discrete in frequency. For each individual measurement, the VNA

records a vector of 1601 complex-valued entries; the entry at posi-
tion n represents the magnitude and the phase of the channel transfer
function at frequency 2 GHz+n·1.875 GHz, for n = 0, 1, . . . , 1600. The
raw transfer functions are not completely “raw”, as the VNA already
applies its calibration routines described in Section 4.1.5. Because
of the two amplifiers in the signal path, we had to insert 50dB of
attenuation during the calibration measurements to compensate for
the absent channel path loss. Starting from the calibrated frequency-
domain vectors recorded by the VNA, we apply the signal processing
steps described in the following.

A. Inverse Discrete Fourier Transform

The impulse response vectors we are interested in are time domain
quantities, yet the measured transfer functions are frequency-domain
quantities. Because these transfer functions are discrete in frequency
and band limited, the corresponding impulse responses are periodic
and discrete in time; both representations are linked by the DFT.
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The original continuous-time channel impulse responses are not pe-
riodic; thus, discretizing a transfer function might introduce alias-
ing in the corresponding impulse responses. With a point spacing
of 3 GHz/1600 = 1.875 MHz, the impulse response vector obtained
via the inverse discrete Fourier transform (IDFT) is 533ns long, which
corresponds to about 160m propagation distance of electromagnetic
waves in air. Contributions from propagation paths longer than this
distance lead to aliasing in the corresponding impulse response vector.
In view of the distances indicated in Figure 4.7, such long propagation
paths can only result from multiple reflections or scattering; we can
thus expect that they convey only a very small amount of the total
received energy, at a level well below the measurement noise floor.
The impulse response vectors obtained via the IDFT are already

in complex baseband form because the discrete-frequency transfer
functions are band limited and centered at 3.5GHz instead of occu-
pying the whole band from 0Hz up to 5GHz. Figure 4.9 shows the
magnitude of three impulse response vectors for a randomly chosen
position on the virtual array in one of the LOS, OLOS, and NLOS

measurement sets each. Displayed is the IDFT log-magnitude of the
VNA output vector without any further processing.∗

The measured channel impulse responses are band limited, i.e., they
are impulse responses of the baseband channel defined in Section 2.3.1.
If the goal of the channel measurement campaign is to parameterize
a channel model that is inherently of infinite bandwidth, like Turin’s
specular block fading model discussed in Section 3.1.2, the measured
transfer functions are commonly multiplied by a window function
before computing the IDFT (Dabin et al., 2003; Chong and Yong,
2005; Jämsä et al., 2006). This windowing is supposed to mitigate
the spectral broadening of the Dirac impulses in Turin’s model that
results from the strict band limitation of the measurement system.
As we do not assume that the channel can be accurately modeled by

∗ Because we did not yet subtract the 50 dB attenuation used in the calibration
process but show the raw measurement data in these plots, the scale on the
ordinate does not represent the actual attenuation of the channel.
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(a) MC I LOS, d = 27.2m.
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(b) MC I OLOS, d = 27.5m.
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(c) MC I NLOS, d = 22.1m.

Fig. 4.9: Measured MC I impulse response magnitudes.
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a Turin-type specular model, we do not apply any window function
and consider the band limitation of the measurement system as part
of the channel instead.

B. Time Normalization

Displacement of the transmit antenna on the virtual array changes
its distance d to the receiving antenna. This change can be sufficient
to move a significant portion of the energy conveyed over a given
specular path from one tap in the discrete-time impulse response to
an adjacent earlier or later tap because the effective time resolution
of a UWB signal is very high. For example, if the transmit antenna
is displaced in LOS direction over the full length of the array, i.e., by
5×7 cm = 45 cm, the distance change equals a change in delay of 1.5ns,
a duration equivalent to 4.5 taps at a channel bandwidth of 3GHz.
This shifting of specular paths from on tap to another may create
problems during statistical analysis. Most statistical methods rest on
the assumption that the samples they operate on are independent and
equally distributed, so that ensemble averages can be replaced with
spatial averages in our case; i.e., we would like to treat the N = 90
spatial samples measured in a given measurement set as different
realizations of the same random channel vector. But the transition of
specular reflections from one tap to the next over the size of the array
violates the modeling assumption of independent channel realizations.
Yet, the problem of the specular paths transitioning from tap to tap
is not a mathematical problem because there is no “true” underlying
stochastic process according to which channel realizations are drawn
(see also the discussion in Section 2.5). It is a modeling problem: we
are faced with the question if the resulting channel impulse responses
can be reasonably well modeled as spatially independent or not. By
the present observation, this does not seem to be the case.
However, we can transform the data to alleviate this problem

to some extent and make the modeling assumption of spatial inde-
pendence at least partially viable. The channel we are ultimately
interested in is not the propagation channel but the channel as experi-
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enced by a communication system. But virtually every communication
system synchronizes the receiver clock to the transmitter clock, i.e.,
it synchronizes the received signal with respect to the signal arrival
time, which is in turn dictated by the arrival of the first path. Hence,
a suitable transformation of our measured data is to align all impulse
responses in a given measurement set with respect to the first arrival.
This results in a set of channel samples as a receiver synchronized to
the transmitter would see them. With this alignment, the problem of
delay shifts of the LOS path disappears.∗

Typical synchronizers align the receiver clock and the first path
quite accurately, to within a fraction of the tap duration (Meyr et al.,
1998), because operation at Nyquist rate is not sufficient to achieve
good synchronization accuracy as the following example demonstrates.
Consider time samples of a sine wave taken at Nyquist rate. The
sample time that corresponds to the maximum sample value within
one period of the sine wave might differ from the continuous-time
instant at which the sine wave indeed reaches its maximum by up
to a quarter period in both positive and negative time direction.
Alignment of several taps with maximum magnitude might thus
yield a phase error of the corresponding continuous-time signals of
up to 180 degrees. To ameliorate this problem without excessive
computation, we interpolate the measured impulse responses before
the alignment step. In particular,

1. We transform the complex baseband impulse responses recorded
by the VNA to passband, i.e., we shift each discrete-frequency
transfer function to a center frequency of 3.5GHz, which yields
an analytic signal, and then add a conjugated and reversed
copy of this frequency vector to obtain a Hermitian symmetric
passband transfer function.

2. We zero-pad the measured transfer functions to eight times
their original length and subsequently compute the IDFT of

∗ However, specular reflections different from the LOS path may still show up
in several different impulse response taps, especially if they arrive at different
angles than the LOS path. We discuss this effect in more detail in Section 5.5.
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the zero-padded vectors. This amounts to eight-fold circulant
interpolation.

3. We manually inspect each interpolated passband impulse re-
sponse and note the index of the first tap whose magnitude
significantly exceeds the noise floor.

4. We circularly shift all impulse responses to align the so identified
taps.

5. We plot a superposition of all 90 interpolated and shifted im-
pulse responses and, upon visual inspection, make some more
adjustments as indicated, e.g., not just by the first maximum,
but also by the rising edge of the first arrival.

6. We extract the discrete-time impulse responses in the band
from 2GHz to 5GHz by a brick-wall filter and transform the
resulting signals to complex baseband representation.

7. We cut off all but 20 taps before the identified start of the
impulse response.

8. Finally, we decimate all aligned impulse responses by a factor
of eight.

The resulting vectors are now in the form (4.7), as required for
statistical analysis described in Chapter 5.

4.5.2. Measurement Campaign II

It takes more involved postprocessing steps to bring MCII snapshots
into the desired form of complex baseband impulse response vec-
tors (4.7) than for MCI transfer functions. First, the snapshots need
to be correlated with the PN sequence to recover an estimate of the
channel impulse response. Then, all impulse responses in a measure-
ment set need to be aligned in time. The lack of a common clock
reference at transmitter and receiver means that we need to extract
a clock signal from the reference channel. Furthermore, all impulse
responses need to be calibrated and converted to complex baseband
form.
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Fig. 4.10: Typical arrangement of the received PN sequences in a channel snap-
shot.

A. Correlation

Each channel snapshot contains the response of the channel to the
periodically repeated PN sequence; hence, we need to correlate the
snapshot with the PN sequence like in (4.5) to extract an estimate of
the actual channel impulse response. The transmitter broadcast the
PN sequence continuously at a repetition rate of over 300 kHz, a rate
orders of magnitude higher than the worst-case Doppler frequency of
the channel. Therefore, we can safely assume that the channel did
not vary significantly over several periods of the PN sequence and the
approximation (4.5) to hold.
Recorded at 40 gigasamples per second, each channel snapshot

contains 400 000 points, or roughly three PN sequences. Because
transmitter and receiver were not synchronized, in general only two
PN sequences are recorded completely while the PN sequences at the
beginning and the end of the snapshot are truncated, as illustrated
in Figure 4.10. Linear correlation of the snapshot with one period
of the PN sequence thus yields three distinct correlation peaks, of
which only the two in the middle part of the snapshot result from
a complete correlation over the entire length of the PN sequence.

B. Alignment in Time

As with the data from MCI, we assume for the purpose of statistical
analysis that all snapshots in a given measurement set are realizations
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of the same random channel vector. Therefore, the corresponding
impulse responses need to be aligned in time. As in MCI, we interpolate
all correlated snapshots for better alignment accuracy, i.e., we compute
the DFT of each correlated channel and reference snapshot, pad
the resulting vectors with zeros to eight times their original length,
and subsequently take the IDFT. Hence, the effective sampling rate
after interpolation is 320GHz, for an oversampling ratio of 32 with
respect to the maximum desired frequency component at 5GHz; the
resulting worst-case phase ambiguity after interpolation and alignment
is 180◦/32 ≈ 5.6◦. We denote the correlated and interpolated channel
snapshot a raw channel sample; similarly, we refer to the correlated
and interpolated reference snapshot as a reference sample.
Different from MCI, there is no conceptual difficulty aligning the

measured impulse responses because the transmitting and receiving
antennas were fixed in each measurement set. In practice, though,
alignment of all raw channel samples is a difficult task because it was
not possible to synchronize transmitter and receiver. Visual alignment
as used in MCI is infeasible given the large number of raw channel
samples we need to process, and automatic extraction of a reliable time
reference from the raw channel samples alone is not possible either,
as we expect the channel to vary between different snapshots. But the
reference channel—the PN sequence transmitted over a long cable—
does not vary significantly during the whole sequence of measurements
and can thus be used to extract a time reference. As illustrated in
Figure 4.11, the first complete impulse response in a raw reference
sample starts at some index a, and the first complete impulse response
in the raw channel sample is offset from said reference impulse response
by b taps. Both a and b are measured in impulse response taps
at 320GHz sampling rate. Because the propagation distance from
transmit to receive antenna is fixed throughout a given measurement
set and because the reference channel is static, the offset b stays
constant for all samples in a given measurement set; we determine b
visually from the first measured raw channel and reference samples.
The index a, on the other hand, changes from sample to sample,
because the exact start time of each channel acquisition could not be
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snapshot length

time

raw channel sample

raw reference sample

Fig. 4.11: Timing relation between raw channel and measurement samples.

synchronized to the PN sequence clock. This is where the reference
channel comes in. Each impulse response in every raw reference sample
is well accentuated and time invariant, because the reference channel
is a wireline channel. Hence, a can be extracted automatically for each
raw reference sample. With b known, we can now automatically extract
and align all impulse responses in the raw measurement samples of
a given measurement set.

That is, we could do so in theory. In practice, unfortunately, we are
confronted with an additional impairment that we detected only dur-
ing processing: a seemingly random selection of raw reference samples
in each measurement set was not offset by b from the corresponding
raw measurement samples, but by b+ 16. With high probability, this
extra offset is not caused by instabilities in the reference channel,
as the offset does not appear in bursts of subsequent snapshots, nor
does the offset error vary—it is either 16 taps (at 320GHz) or not
present at all. The only remotely plausible explanation seems to be an
internal timing problem between the two channels of the DSO. Luckily,
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Fig. 4.12: AllN = 1011 LOS measurements of the fourth impulse response tap in
complex baseband form after alignment but without interpolation and offset
correction. The lower cluster results from the timing offset error; the spread
of each cluster shows the alignment error without interpolation. The average
energy of the taps is normalized.

because the offset was a binary phenomenon—present or absent—we
are able to correct for it automatically.
In summary, we automatically extract the index a + b at which

the first complete impulse response starts for each of the interpolated
raw channel samples and use this index to align the interpolated
impulse responses. The impact of the interpolation step and the offset
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Fig. 4.13: All N = 1011 LOS measurements of the fourth impulse response
tap in complex baseband form after alignment with interpolation and offset
correction. The average energy of the taps is normalized.

correction on the alignment accuracy can be observed by comparing
Figure 4.12 with Figure 4.13. Both figures show allN = 1011 measured
realizations of the fourth tap in the LOS impulse response, after
conversion to complex baseband. Alignment without interpolation
is used in Figure 4.12, and the offset error just described is not
compensated for, while eight-fold oversampling is used to increase
alignment accuracy in Figure 4.13, and the offset error is corrected.
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C. Averaging and Downsampling

Each raw channel sample contains two complete impulse responses
in succession, as shown schematically in Figure 4.11. Because of the
high repetition rate of the PN sequence, we can safely assume that the
channel does not change significantly between these two sequences,
so that we can average them to increase the measurement SNR.

Another benefit of the high PN sequence repetition rate is that we
can regard the output signal as quasi-periodic, so that again the DFT

is the appropriate transform between time and frequency domain for
all processing steps. To obtain the desired complex baseband impulse
responses, we convert each averaged interpolated impulse response to
the frequency domain, extract the frequency points that correspond
to the band from 2GHz to 5GHz, and convert the resulting frequency-
domain vector back to the time domain. Although now in complex
baseband representation, the resulting impulse response vectors are
still sampled at 320GHz; therefore, we decimate them to the required
sampling rate of 3GHz and truncate the length of each impulse
response vector to 2001 taps.

D. Calibration

The measurement system itself has a transfer function that is not
perfectly flat over the frequency band of interest. We estimate this
transfer function from 100 snapshots of the measurement system
connected back to back, including all amplifiers and cables but without
the antennas, and use the estimate to equalize the measured data,
i.e., to remove the linear distortion of the measurement system.
A second impairment we have to deal with did not result from

the measurement system itself but from the measurement environ-
ment. We conducted MCII during daytime on a weekday; hence, the
IEEE 802.11b base stations located at several places in the lobby
could not be deactivated, and we could not prevent people in the
lobby from using laptops that were equipped with IEEE 802.11b trans-
mitters, either. The signals from these transmitters lie right in our
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measurement band and result in significant interference. To suppress
the effect of this interference on subsequent statistical analysis, we
nulled all frequency points that correspond to the band from 2.4GHz
to 2.485GHz.
At the end of all postprocessing steps, the resulting time-domain

complex baseband impulse response vectors are now in the form (4.7).
Three such vectors, randomly chosen from the LOS, OLOS, and NLOS

measurement set, are shown in Figure 4.14. The absolute values on
the ordinates are incommensurate with the actual received power
levels,∗ but their relative scale shows the dynamic range of the MCII

measurement setup.

4 .6. DATA EXPLORATION

Before proceeding to statistically analyze the measurement data,
we take a phenomenological approach to obtain some feeling for
the measurement results. This data exploration is important as the
resulting understanding of the data sets provides a link between the
physical channel and its abstract representation in the form of impulse
response vectors.

The first observation from the individual MCI impulse responses in
Figure 4.9 and MCII impulse responses in Figure 4.14 is that both
measurement systems provide for a sufficiently high SNR, between
30dB and 40dB in MCI for a separation of up to 27.5m between
transmitting and receiving antennas, and an SNR in the same range
for MCII, though for smaller separation between transmitter and
receiver of only up to 20m. These numbers are rough estimates only;
for more accurate SNR estimates we need to average over the individual
impulse responses that correspond to a given measurement set.

∗ We did not normalize power in the postprocessing steps because the absolute
magnitude is irrelevant for the following statistical analysis.
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(a) MC II LOS, d = 20m.
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(b) MC II OLOS, d = 20m.
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(c) MC II NLOS, d = 13m.

Fig. 4.14: Measured MC II impulse response magnitudes.
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4.6.1. Power-Delay Profiles
Let the nth measured complex baseband impulse response vector in
a given measurement set be denoted hn , [hn[0] hn[1] · · · hn[L−1]]T ,
where hn[l] is the lth tap of this complex baseband impulse response.
The PDP for a given measurement set is defined as

p ,
[
p[0] p[1] · · · p[L− 1]

]T (4.8a)

with

p[l] ,
1
N

N−1∑
n=0

|hn[l]|2 . (4.8b)

The PDP averaged over all N = 90 impulse response samples in
the MCI LOS set for d = 27.2 m is shown in Figure 4.15.∗ For con-
venience, the abscissa is indexed in terms of propagation distance
instead of delay, i.e., it reads measured delay divided by the speed of
light. Figure 4.15 shows the distinct structure commonly encountered
in PDPs from UWB measurements: several clusters protrude from the
otherwise linearly (in dB) decaying PDP. The effect of the LOS path is
clearly visible, and the propagation distance that corresponds to its
arrival time is congruent with the physical distance d by which we sep-
arated transmitting array and receiving antenna in this measurement
set.

Many clusters can be attributed to specular reflections. For a spec-
ular reflection to occur, the reflecting surface must be smooth and its
dimension much larger than a wavelength. The propagation distance
of 47m that corresponds to the second cluster peak can be linked
to a path that is reflected from the large window pane separating
the office in the top right corner in Figure 4.7 from the lobby. The
third cluster peak, with a propagation distance of 59.9m, probably
stems from a reflection at the outside window of the same office; the
corresponding propagation path would have been refracted by the

∗ Compared with Figure 4.9, the ordinate is now correctly calibrated, i.e., the
50 dB line attenuation during the calibration measurements is taken into account.
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Fig. 4.15: PDP of the MC I LOS setting with measurement distance d = 27.2 m;
averaged overN = 90 samples.

window between lobby and office, reflected by the outside window
pane, and refracted again on its way back toward the receiver.
The later clusters in the tail of the PDP in Figure 4.15 are more

difficult to associate with specular propagation paths in the floor plan
because they probably result from multiple reflections, maybe from
the wall at the bottom of the lobby in Figure 4.7 and from either the
inside or the outside window of the conference room at the top. The
propagation distances of these cluster peaks do match the physical
lengths of the indicated paths. What is surprising, though, is the lack
of a strong first reflection from said wall at the bottom in Figure 4.7.
This casts some doubt on the interpretation of the late clusters to
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Fig. 4.16: PDP of the MC I OLOS setting with measurement distance d = 27.5 m;
averaged overN = 90 samples.

be the result of multiple reflections. Another possible cause for these
clusters could be crosstalk in the measurement system or the effect
of surface waves traveling along the cables. Yet, both explanations
are unlikely because no such strong late clusters do appear neither in
the OLOS PDP shown in Figure 4.16 nor in the NLOS PDP shown in
Figure 4.17, although all MCI measurements were taken with the same
measurement system. On the other hand, similar late clusters can be
observed in the LOS PDP computed from MCII data in Figure 4.19.

The PDP for the MCI OLOS measurement set at d = 27.5 m is shown
in Figure 4.16. Different from the LOS PDP, there are three peaks
at the start of the impulse response but no clearly distinguishable
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Fig. 4.17: PDP of the MC I NLOS setting with measurement distance d = 22.2 m;
averaged overN = 90 samples.

clusters later on. The propagation distances that correspond to the
three initial peaks can be linked to the LOS path and to reflections
from the large window front on the right-hand side of the lobby in
Figure 4.7. The LOS path does not seem to convey the most energy,
probably because it was partially blocked by the row of concrete
columns. This effect is even more pronounced in the PDP computed
from NLOS data shown in Figure 4.17.

We would expect the PDPs from MCII to look more smooth than the
corresponding PDPs from MCI because we have many more samples to
average over in each MCII measurement set. Interestingly, though, all
three PDPs, for the LOS, OLOS, and NLOS settings in MCII appear to
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Fig. 4.18: PDP of the MC II LOS setting with measurement distance d = 20 m,
computed fromN = 1011 samples.

be much less smooth than the ones from MCI. Exemplarily, we plot in
Figure 4.18 the PDP for the MCII LOS measurement set, with a distance
between transmitter and receiver of d = 20 m and N = 1011 to average
over. Because of the temporal alignment procedure described in the
previous section, the precursor signal before the PDP onset is not
shown in this figure. Without any absolute delay reference, it is
not possible to translate the delay values into propagation distances.
Therefore, we refer all time values to the arrival of the first path, i.e.,
we index the ordinate in terms of excess delays. The PDP in Figure 4.18
looks very noise-like, despite the large number of N = 1011 averaged
impulse responses. In direct comparison with the corresponding PDP

from MCI, we can notice the same clusters at similar excess delays,
yet these clusters are partially hidden in the noise-like structure of
the PDP in Figure 4.18.

Both antennas in MCII were fixed for the duration of the measure-
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Fig. 4.19: PDP of the MC II LOS data, computed from N = 1011 samples after
subtracting the mean of each tap.

ments; thus, one conclusion from Figure 4.18 might be that the PDP in
such a setting is indeed much less smooth because we cannot average
the channel realizations over space and hence see essentially a single
spatial channel realization, only slightly perturbed by moving people
in the environment. This hypothesis is supported by the following
observation: Figure 4.19 shows again a PDP computed from N = 1011
MCII LOS samples, but for its computation we first subtract the em-
pirical mean in each tap, i.e., Figure 4.19 shows a PDP vector with
elements

p0[l] ,
1
N

N−1∑
n=0

|hn[l]− µ̂[l]|2 , (4.9a)
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Table 4.2: MC I LOS mean delay and delay spread

Distance d Mean delay µτ [ ns ] Delay spread στ [ ns ]

27.2m 26.2 41.5
24.3m 26.3 41.1
21.2m 30.1 43.2
18.4m 29.2 42.5
15.4m 26.9 40.5

where

µ̂[l] ,
1
N

N−1∑
n=0

hn[l]. (4.9b)

This zero-mean PDP is much more smooth than the one computed
according to (4.8), which indicates that it might indeed be the mean
value in each tap that leads to the ragged appearance of the PDP in
Figure 4.18. Thus, there seems to be a fundamental difference between
wireless channels whose variation is induced by displacement of the
terminals in space, and channels where the main source of channel
variation is the mobility of objects, in our particular case people, in
the environment.

Another important observation are the late clusters in Figure 4.19,
which indicate that similar findings in MCI are not merely measure-
ment artifacts.

4.6.2. Mean Delay and Delay Spread
Two channel parameters quoted in every publication on channel
measurements are the mean delay and the delay spread (Hashemi,
1993b). The mean delay is the first moment of the PDP p[l] defined
in (4.8), i.e.,

µτ ,

∑L−1
l=0

l
B p[l]∑L−1

l=0 p[l]
, (4.10)
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Table 4.3: MC I OLOS mean delay and delay spread

Distance d Mean delay µτ [ ns ] Delay spread στ [ ns ]

27.5m 47.0 52.5
24.6m 44.0 38.6
21.7m 42.8 40.0

and the delay spread is the square root of the PDP’s second central
moment,

στ ,

(∑L−1
l=0 (l/B − µτ )2p[l]∑L−1

l=0 p[l]

)1/2

. (4.11)

Together with the channel bandwidth B, these parameters allow for
a back-of-the-envelope estimation of the coherence bandwidth, and
hence, the diversity order of the channel (Tse and Viswanath, 2005).
They are easy to use, easy to measure, and widely available for many
types of channels.
The mean delay and delay spread for the MCI LOS measurement

sets is given in Table 4.2 on the preceding page. The numbers are in
line with the ones reported in other UWB measurement campaigns
in Table 4.1 on page 93. An interesting observation is that both
mean delay and delay spread do not vary much across measurement
locations. The walls and windows in the lobby reflect much of the
overall transmitted power, which arrives mainly in the clusters al-
ready observed in Figure 4.15. Because of the geometry of the LOS

measurement setup, moving the receiving antenna away from the
transmitter increases the propagation distance of the direct path but
reduces the propagation distance of reflected paths. The net effect is
that delay spread is insensitive to variations in d.
The MCI OLOS measurements are different in this respect; mean

delay and delay spread given in Table 4.3 do change significantly with
a change in distance d between transmitting and receiving antenna. It
seems as if the mean delay decreases with distance; but with only three
OLOS measurement sets, any statistical analysis of this phenomenon
is futile.

143



4 WIDEBAND CHANNEL MEASUREMENTS

Table 4.4: MC II mean delay and delay spread

Setting Mean delay µτ [ ns ] Delay spread στ [ ns ]

LOS 28.4 46.7
OLOS 45.4 45.1
NLOS 61.6 48.0

The values for mean delay and delay spread for the three MCII

measurement sets listed in Table 4.4 are consistent with the corre-
sponding parameters from MCI. The mean delay seems to increases
with a decreasing number of visible clusters in the corresponding PDPs.
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CHAPTER 5

Marginal Tap Distributions

Measurements are only useful if analyzed and interpreted.
The exploration of the recorded impulse responses de-
scribed in Section 4.6 provides a general feeling for the

measured channels, but our goal in the present and the next chap-
ter is somewhat more ambitious: to build a stochastic model for
UWB channels that is accurate yet simple enough for theoretical anal-
ysis of wideband communication systems, and to answer some of the
fundamental modeling questions raised in Section 2.5.

5.1. PRELIMINARIES

A stochastic model requires three main ingredients:
1. The overall structure of the model, as discussed in Chapter 2

and Chapter 3. Many aspects of the model structure are similar
for deterministic and stochastic models.

2. The structure of the probability law that jointly describes all
quantities that are modeled as random.

3. A parameterization of the parametric distribution families used.
Both the stochastic description and a suitable parameterization can
either be derived from first principles and basic assumptions, e.g.,
like the fading model of Clarke (1968) and Gans (1972), or directly
obtained from measurements. We combine both approaches and rely
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on our measurement data and on physical principles to select a suitable
probabilistic model structure and to characterize it statistically.
The available number of measurement sets and the number of

samples per set as well as the technical limitations of our measurement
systems outlined in Section 4.3.3 restrict the type of models we
can statistically characterize to block-fading models discussed in
Section 3.1. These models have a discrete-time IO relation

y[k] =
L−1∑
l=0

h[l]x[k − l] +w[k] (5.1)

with random channel vector

h ,
[
h[0] h[1] . . . h[L− 1]

]T . (5.2)

The noise vector w = [w[0] w[1] · · · w[L−1]]T describes the thermal
noise introduced by all resistive components in the signal path. Ther-
mal noise dominates other noise sources at the frequencies of interest
(Rappaport, 2002); it can be very well modeled as i.i.d. JPG. Hence,
statistical modeling of the IO relation (5.1) chiefly means to find a
stochastic model for the random channel vector h on the basis of our
measurements. The most general such model is a joint distribution
for h.
Most statistical methods rely on the concept of a random sam-

ple, where individual measurements are treated as independent ran-
dom variables that all follow the same distribution. Each small-scale
measurement set {hn}N−1

n=0 of a given measurement campaign (MCI

or MCII), large-scale setting (LOS, OLOS, or NLOS), and distance d
between transmitting and receiving antenna comprises a fixed num-
ber N of complex baseband channel impulse response vectors hn. To
use the data from a specific measurement set as a random sample, we
need to assume that all individual measurements in this set are i.i.d.
random vectors of the same distribution. We make this assumption
explicit and say that the channel vector h for a given measurement set
is distributed according to F(h), the operating distribution introduced
in Section 2.5. The operating distribution is the closest approximation
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of the physical situation by means of a stochastic description (Linhart
and Zucchini, 1986). Both the assumption of a random sample and
the operating distribution itself are modeling assumptions and not a
trait of the physical reality we want to analyze, in the same way as
the statistical modeling approach in general is a modeling assumption
rather than reflecting physical reality.
So far we used the terms “statistical model” and “distribution”

rather carelessly. For the following analysis, we need to be more
precise. Unfortunately, researchers in wireless channel modeling and
various branches of statistics do not always use a common terminology
when discussing statistical models. We deem the following terms most
suitable for the tasks at hand.

• A univariate cumulative distribution function (CDF) F(x) of
a random variable x, also called distribution function, or sim-
ply a distribution, is a right-continuous nondecreasing function
with limx→−∞ F(x) = 0 and limx→∞ F(x) = 1 (Feller, 1971).
Multivariate distributions are defined analogously.

• We denote the set of all univariate distributions byM.
• If it exists, we denote by f(x) the probability density function
(PDF) that corresponds to a given distribution F(x).

• A parametric family of distributions, or simply a family, is a
set F , {Fq : q ∈ T } of distributions Fq where each dis-
tribution is parameterized by a D-dimensional parameter vec-
tor q , [q1 q2 . . . qD]T that takes values in some set T ⊂ RD.

• A distribution Fq̂(x) that is parameterized by a parameter vec-
tor q̂ estimated from measurements on the basis of said distribu-
tion’s family is called a fitted distribution.

In the model selection literature, a different terminology is commonly
used. The term (fitted) model is substituted for fitted distribution, a
family of distributions is referred to as a family of models (Linhart
and Zucchini, 1986). In the present work, a “model” has a broader
meaning that also encompasses the overall structure of the channel
IO relation. Therefore, we prefer the terms distribution and family
when discussing stochastic channel modeling aspects.
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5.2. THE STATISTICAL MODELING PROBLEM

The operating distribution F(h) is the closest possible stochastic rep-
resentation of the given discrete-time block-fading channel. It is only
conceptual, though; a complete specification of F(h) is not possible
in general as it would be way too complex to be tractable. Therefore,
statistical modeling means to find a CDF that approximates F(h).
Following the discussion in Section 2.1, such an approximation should
be accurate, tractable, and general. Compared with Section 2.1, we
may make these requirements more specific, now that we established
a model structure.

• Accuracy of a stochastic model means that, on the one hand, it
should fit our measurement data. On the other hand, though, it
also needs to lead to consistent predictions: the model distribution
needs to be consistent with the empirical distribution of future
channel realizations.

• Tractability means that the mathematical complexity of the
joint CDF should be low; but for a stochastic model it also means
that the choice of a CDF is not completely abstract, but that we
can retain a link to the physical reality we set out to model; such
a link often helps to guide intuition.

Several stochastic modeling procedures exist that take into account
some but not all of the above requirements. For example, a density or
a CDF can be estimated on the basis of the measured impulse responses
alone, without recourse to any physical description of the channel
(Devroye and Györfi, 1985; Devroye, 1987). The resulting densities
would certainly show good agreement with measured data, but might
fall short of providing design intuition and generalizing easily to other
environments and application scenarios. A converse approach is to
use the principle of maximum entropy, proposed for wireless channel
modeling by Debbah and Müller (2005); here, modeling complexity
is reduced and physical knowledge about the environment can be
included, but consistency with measurements is difficult to assess.
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With our approach presented in the following sections, we try
to strike a balance between physical intuition, mathematical rigor,
and, hopefully, common sense. We do not follow a single modeling
paradigm, but use the methods we deem most suitable for a given
specific modeling question. However, such an approach is vulnerable
to significant experimenter bias: we might easily retain only the
results that are in agreement with our preconceived expectations and
stereotypes or choose those statistical methods that most likely lead
to the desired results. To minimize the likelihood of this happening,
we often double check results by different methods. Furthermore, we
list findings in the present and the next chapter even if they are
inconclusive or contradictory.
The number of samples necessary to completely characterize the

joint distribution of the channel impulse response vector cannot sensi-
bly be measured. For an impulse response vector of 700 taps, even the
relatively simple JPG PDF has over 245 000 complex-valued param-
eters. The number of samples necessary for any sensible statistical
method to yield reliable results would easily exceed several million, a
number impossible to obtain with the maximum acquisition rate of
about one channel snapshot per second in MCII. But at the same time,
the search for a mathematically tractable joint CDF for h is not much
of a search at all because there do not seem to exist mathematically
tractable multivariate distributions for random vectors of dimension
L > 2 besides the multivariate Gaussian (Fang et al., 1990; Anderson,
2003; Muirhead, 1982). However, these issues do not mean that we
should abandon all modeling efforts and simply use what is available.
Instead, we simplify the problem in that we first model the marginal
distribution of the individual channel taps in the present chapter and
characterize the joint distribution of h up to second order in Chap-
ter 6. Yet, even a second-order analysis, which requires estimation of
the mean and covariance of h, is difficult to perform reliably given
the relatively small number of samples available.
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5.3. MODEL SELECTION

As a compromise between the purely empirical approach of directly
estimating the marginal tap distributions and the theoretical approach
of constructing such distributions by the principle of maximum en-
tropy, we specify a set of candidate families on the basis of physical
insight and published measurement results, and then use statistical
tools to determine which distribution in this candidate set provides
the best approximation to the marginal operating distribution of each
individual channel tap.

As already outlined, we focus on the marginal distribution of indi-
vidual channel taps h[l]. Specific aspects of the multivariate channel
distribution are treated in Chapter 6. Our approach is one of model
selection, i.e., our goal is to choose from a set of fitted distributions the
one that best approximates the marginal operating distribution for a
given channel tap l. Even this simplified univariate model selection
problem is difficult to solve because each tap h[l] is a complex random
variable and is thus characterized by the multivariate distribution of
its real and imaginary part. Hence, we further simplify the modeling
problem and select a distribution for the tap magnitudes first. As the
following developments are not contingent on a specific tap index l,
we simplify notation and use the generic random variable a = |h[l]|
for all tap magnitudes, with the univariate CDF F(a) as operating
model. We have N samples in each measurement set; correspondingly,
we denote the nth realization of a by an.

Let M stand for the set of all univariate CDFs. A parametric
candidate family

Gj = {Gjqj | qj ∈ T j} (5.3)

is a subset ofM, where individual CDFs Gjqj (a) are identified by the
D-dimensional parameter vector qj , [q1 q2 . . . qD]T ∈ T j , with
T j ⊂ RD. For notational convenience, we take Gjqj (a) to mean Gjq(a)
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in the following, i.e., we drop the redundant superscript. The set

J =
J⋃
j=1

Gj (5.4)

of J candidate families constitutes the candidate set.

5.3.1. Candidate Families
Before we can analyze statistical procedures to select a distribution
that minimizes the approximation error with respect to F(a), the
marginal operating distribution corresponding to a given tap ampli-
tude, we need to specify the candidate set. Ideally, candidate families
are physically motivated, e.g., they are derived from physical princi-
ples like the superposition of partial waves that result from certain
propagation mechanisms. Yet, such a derivation is often elusive, ex-
cept for highly simplified propagation scenarios (Vaughan and Bach
Andersen, 2003). Therefore, we also take into account distributions
that do not have a clear physical explanation but whose suitability
has been demonstrated in a number of measurement campaigns. In
accord with the overall goal to find a stochastic model that is a
low-complexity approximation of the operating model, we require
candidate families to be reasonably simple; e.g., we rule out families
like the one proposed by Zhang et al. (2002). We furthermore exclude
families that are specifically derived to jointly model both small- and
large-scale fading, like the family proposed by Suzuki (1977) or com-
binations such as Rice-Lognormal or Nakagami-Lognormal (Yacoub,
2000). In accord with these criteria, and after an extensive literature
study, we chose to included the families described in the following
subsections. Hashemi (1993b) provides a tutorial review that covers
all of the listed families and contains further references.

A. Rayleigh

If a complex random variable is proper Gaussian distributed, i.e., if
its real and imaginary parts are i.i.d. Gaussian, then said random vari-
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able’s amplitude follows a Rayleigh distribution. We already discussed
the proper Gaussian assumption for the taps of h in Section 2.5.2; if
many partial waves that result from independent propagation mech-
anisms arrive in a range of delays that is not resolvable at the re-
ceiver, the resulting superposition of partial waves in any given tap
will, by the CLT, be JPG distributed (Vaughan and Bach Andersen,
2003). Consequently, the corresponding channel tap has a Rayleigh-
distributed amplitude and a uniformly distributed phase. In particular,
if h[l] ∼ CN (0, σ2), then the PDF of the tap amplitude a = |h[l]| is

gq(a) =
2a
σ2
e−

a2

σ2 , a ≥ 0, (5.5)

where the parameter vector q contains only a single entry, the vari-
ance σ2. The Rayleigh family is almost universally used to model
amplitude fading of narrowband wireless channels (Rappaport, 2002;
Vaughan and Bach Andersen, 2003; Tse and Viswanath, 2005). How-
ever, if the bandwidth of the baseband channel grows, the time resolu-
tion becomes finer and less and less partial waves might aggregate in
every particular tap of the discrete-time channel impulse response. For
this reason, several researchers question the validity of the Rayleigh
family to accurately model amplitude fading of UWB channels (Zhang
et al., 2002; Cassioli et al., 2002; Molisch et al., 2003a; Irahhauten
et al., 2006; Muqaibel et al., 2006). So far, though, this hypothesis is
not universally agreed on, as several other measurement campaigns
indicated that a Rayleigh distribution is indeed suitable to model
the tap amplitudes of UWB channels (Saleh and Valenzuela, 1987;
Ghassemzadeh et al., 2004; Karedal et al., 2004a)

B. Rice

If a strong partial wave of fixed delay∗ arrives at the receiver in
addition to many partial waves received over time-variant paths, the
tap of the complex baseband discrete-time impulse response that

∗ The delay has to be fixed with respect to the first arrival, similar to the
discussion about time normalization in Section 4.5.1.b.
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corresponds to the delay of the fixed path can often be modeled as
JPG distributed around a nonzero mean. The physical motivation
for the Gaussian distribution is the same as just discussed, whereas
the mean component might result from a LOS path of which the
receiver is able to track the time variation, or from a strong reflection
of a large, smooth surface in the environment if the delay of the
corresponding path does not change over time (Rappaport, 2002;
Vaughan and Bach Andersen, 2003; Tse and Viswanath, 2005). The
family of amplitude distributions that corresponds to a nonzero mean
JPG random variable was derived by Rice (1944). It can be expressed
in two different forms. In the first representation, the relation with
the underlying JPG distribution is apparent. Let h[l] ∼ CN (µ, σ2);
then, the PDF of a = |h[l]| is

gq(a) =
2a
σ2

exp

(
−a

2 + |µ|2

σ2

)
I0

(
2a
|µ|
σ2

)
a ≥ 0, (5.6)

where I0(a) is the modified Bessel function of the first kind and order
zero, and where the parameter vector is q = [µ, σ2]T . The second
representation is parameterized in terms of the total power

Ω , σ2 + |µ|2 (5.7a)

and the Ricean K-factor

K , |µ|2 /σ2, (5.7b)

the ratio of the power in the mean component and the random
component. The Ricean PDF in terms of the parameter vector q =
[Ω,K]T is then

gq(a) = 2a
1 +K

Ω
exp
(
−a2 1 +K

Ω
−K

)
× I0

(
2a

√
K(1 +K)

Ω

)
a ≥ 0. (5.8)
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For K = 0, we recover the Rayleigh PDF. The Rice family is subject
to the same criticism as the Rayleigh family as a model for small-scale
fading in wireless channels of very wide bandwidth. Though, again the
evidence against the Rice family is not conclusive so far, as there are
some publications that support it (Kunisch and Pamp, 2002; Hovinen
et al., 2002; Laine et al., 2004; Pagani and Pajusco, 2006).

C. Nakagami

Nakagami proposed the family carrying his name to fit data of an ex-
tensive measurement campaign of the tropospheric scattering channel
(Nakagami, 1960). The family is characterized by a two-parameter
PDF with parameter vector q = [Ω,m]T ,

ga(a) =
2

Γ(m)

(m
Ω

)m
a2m−1 exp

{
−ma

2

Ω

}
, a ≥ 0, (5.9)

where Γ(m) is the gamma function. As in the Rice family, the param-
eter Ω denotes the total power of h[l], i.e., Ω = E[|h[l]|2] = E[a]. The
Nakagami parameter m is defined as the ratio of moments,

m ,
Ω2

E[(a2 − Ω)2]
≥ 1

2
, (5.10)

and is sometimes called the fading figure. Although two parameters
specify the Nakagami PDF, only the m parameter changes its shape.
For m = 1, the Nakagami PDF reduces to the Rayleigh PDF; for m > 1
the tails of the Nakagami PDF are less accentuated than in the
Rayleigh case, which indicates less severe fading; for m < 1, the tails
are heavier, which means that fading is stronger.
The physical motivation for the Nakagami family as a model for

small-scale amplitude fading arises from the analysis of statistical
scattering from random rough surfaces and the resulting superposition
of partial waves. In particular, the Nakagami PDF is an approximation
of the PDF that results if one allows for correlated real and imaginary
parts of the superposing partial waves (Braun and Dersch, 1991). The
Nakagami parameter m in the corresponding derivation is linked to
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the surface height parameter of the random rough surface, which in
turn determines if a specular reflection results or if the returned wave
field is the superposition of many scattered partial waves (Nakagami,
1960; Braun and Dersch, 1991; Parsons, 2000).

The effect of the Nakagami parameter is comparable to the Ricean
K-factor (5.7b) in that it determines the severity of the fading. In-
deed, the two densities approximate each other by setting (see, e.g.,
equation (59) in the paper by Nakagami, 1960, or Appendix C.12 in
the book by Vaughan and Bach Andersen, 2003)

K = m− 1 +
√
m2 −m. (5.11)

Although originally derived and fitted for data obtained from mea-
surements of tropospheric scattering channels, Nakagami distributions
have been found to provide a good fit also to outdoor urban, subur-
ban and rural measurements (Suzuki, 1977; Braun and Dersch, 1991;
Lacroix et al., 1997) and to indoor measurements (Hashemi, 1993a;
Handforth et al., 1993; Abouraddy and Elnoubi, 2000). Recently, Nak-
agami distributions were found suitable to model small-scale fading
in UWB channels (Cassioli et al., 2002; Balakrishnan et al., 2004;
Hentilä et al., 2005); the Nakagami family is used to describe the
amplitude coefficients in the IEEE 802.15.4a SV block-fading impulse
response (Molisch et al., 2006b). However, some researchers dispute
the utility of the Nakagami family to stochastically model wideband
fading altogether (Stein, 1987).

D. Lognormal

The lognormal family (Limpert et al., 2001) is often used to model
large-scale fading, also known as shadowing, that results if the strength
of the received signal varies because of slowly changing attenuation
from hills, buildings, or other structures. If a random variable x is
normally distributed, i.e., x ∼ N (µ, σ2), then a = ex is lognormal
distributed with PDF

gq(a) =
1

a
√

2πσ2
exp

{
− (ln a− µ)2

2σ2

}
a ≥ 0. (5.12)
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The parameter vector q = [µ, σ2]T contains the parameters of the
corresponding underlying Gaussian distribution. While the Rayleigh,
Rice, and Nakagami amplitude families arise from the summation
of many independent random quantities, the lognormal family, by
the CLT, results if many independent quantities are multiplied. While
this multiplicative effect can be understood in the context of large-
scale fading, where successive attenuation of a given propagation path
acts multiplicatively, it is difficult to physically motivate the lognormal
family as a model for small-scale fading. Hashemi (1993b) conjectures
that small-scale lognormal fading might result from multiple reflections
of partial waves, which would lead to a multiplicative effect.∗ Although
physical motivation is scarce, some researchers report a good fit of
lognormal amplitude distributions for their channel measurement
data for conventional narrowband and wideband outdoor (Lacroix
et al., 1997) and indoor channels (Nikookar and Hashemi, 1993).
Most importantly however, some researchers found that lognormal
distributions provide a good fit to measured data for UWB channels
(Foerster and Li, 2002a,b; Keignart and Daniele, 2003; Li and Wong,
2003; Hentilä et al., 2005), so that the lognormal family was adopted
to model the path amplitudes in the IEEE 802.15.3a reference model
(Foerster, 2003; Molisch et al., 2003a).

E. Weibull

The Weibull family was originally proposed to model failure rates
over time (Johnson et al., 1995); it is a two-parameter family with
parameter vector q = [b, d]T . Its PDF is given as

gq(a) = db−dad−1e−(a/b)d a ≥ 0. (5.13)

As in the lognormal case, a physical explanation why small-scale ampli-
tude fading should be Weibull distributed is hard to come by—except
for d = 2, in which case the Weibull PDF reduces to the Rayleigh PDF.

∗ This reasoning originate in a paper by Suzuki (1977), but it is disputed, e.g.,
by Abbas and Sheikh (1997).
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Nevertheless, there are several published measurement campaigns
where researchers report a good fit of Weibull distributions for sev-
eral environments, carrier frequencies and bandwidths (Nikookar and
Hashemi, 1993; Hashemi et al., 1994; Healey et al., 2000; Tzeremes and
Christodoulou, 2002; Babich and Lombardi, 2000). In an extensive
report, the IEEE Vehicular Technology Society Committee on Radio
Propagation (1988) also recommended the use of either the Nakagami
or the Weibull family for models in the 800MHz to 900MHz range.
Pagani and Pajusco (2004) and Chong and Yong (2005) successfully
fitted Weibull distributions to UWB measurement results.

5.3.2. Parameter Estimation

The families just presented are parametric. The Rayleigh family is
completely specified by a single parameter, while all other candidate
families depend on two parameters. The first step in any model
selection method is to fit the candidate families with respect to
the measured data, i.e., to estimate the parameters of each family.
Although parameter estimation is treated in virtually every statistics
textbook, we briefly outline the specific estimators we use for the five
candidate families so as to guarantee reproducibility of our results.

A. Rayleigh

The sole parameter of the Rayleigh family is equal to the variance of
the underlying JPG family. Consequently, we estimate it as

σ̂2 =

√√√√ 1
N

N−1∑
n=0

a2
n, (5.14)

where the average is taken over the N channel samples in a given
measurement set.
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B. Rice

The maximum likelihood (ML) estimate of the total power Ω is the sam-
ple second moment (Taludkar and Lawing, 1991), as for the Rayleigh
family. However, estimation of the K-factor is tricky: Tepedelenlioǧlu
et al. (2003) numerically computed the Cramér-Rao lower bound on
the estimation error variance and showed that it diverges for K → 0,
i.e., when the Rice distribution approaches the Rayleigh distribution.
A closed-form ML estimate of Ω and K, or |µ| and σ2, does not exist;
hence, we need to resort to numerical methods. An implicit formula
for the ML estimate is given by Taludkar and Lawing (1991), and an
expectation-maximization algorithm by Marzetta (1995). We choose
yet another approach and numerically maximize the log-likelihood
function by standard optimization methods. In particular, we use
the Nelder-Mead algorithm as implemented in Matlab’s fminsearch
function, which is in turn called by the ricefit function.∗ A method
of moments estimate serves as a starting value for the numerical
maximum search (Rastogi and Holt, 1981; Tepedelenlioǧlu et al.,
2003). Yet for small values of K, the numerical minimum search does
not converge, manifesting the theoretical impossibility to accurately
estimate small K-factors. In this case, though, the difference between
the fitted Rice and Rayleigh distributions is very small for K close
to 0; hence, we simply set K = 0.

C. Nakagami

A closed-form ML estimator of the Nakagami parameters Ω andm does
not exist, but several approximations of the ML solution are available,
like the estimators recently proposed by Cheng and Beaulieu (2001)
and Ko and Alouini (2003), as well as the classical approximation
of the ML solution by Greenwood and Durand (1960). The latter
ML approximation is actually an estimator for the parameters of the
gamma distribution; because the square of a Nakagami-distributed
random variable is gamma distributed, the estimates are equivalent.

∗ We had to modify this function as it contained a bug.
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For reasons detailed later, we need ML parameter estimates. There-
fore, we square the channel taps to estimate the parameters of the
corresponding gamma distribution, but instead of approximating the
ML estimate by the method of Greenwood and Durand (1960), we
numerically maximize the gamma likelihood function by means of the
gamfit function in Matlab’s Statistics Toolbox.

D. Lognormal

We obtain ML parameter estimates of the lognormal family from
ML estimates of the corresponding normal family after a logarithmic
transformation of the data.

E. Weibull

The Weibull family is related to the extreme value family (Johnson
et al., 1995) through a logarithmic transformation of the random
variable; thus, we use a numerical ML estimate for the parameters of
the extreme value family, as implemented in Matlab’s evfit function.

5.3.3. Goodness-of-Fit Tests
With the candidate set in place, our main task is now to evaluate which
family with which parameter values provides the best approximation
for the operating distribution of our measurements. Several methods
exist in the literature on wireless channel modeling and in the statistics
literature. Each approach has its strengths and weaknesses in terms
of mathematical rigor, ease of use, intuition, and generality.
Probably the most well known and most commonly used method

to determine small-scale fading distributions is by means of GOF tests.
We do not believe that GOF tests are well suited to select small-scale
fading distributions; hence, we do not use GOF tests in the this work.
But their dominance in much of the literature on empirical modeling
of wireless channels obliges us to briefly review the main concepts
and to justify why we take a different approach.
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A GOF tests is a specific type of hypothesis test (Papoulis and
Pillai, 2002; Bartoszyński and Niewiadomska-Bugaj, 1996; Dixon and
Massey, Jr., 1983). In the framework of Neyman and Pearson (Spanos,
1999), the challenging hypothesis∗ Hc is that a given parameterized
candidate CDF Gq(a) equals the operating CDF, i.e., Hc : Gq = F. The
incumbent hypothesis Hi is the complementary event, Hi : Gq 6= F.
The general procedure to test for the hypothesis Hc is to partition the
sample space into an acceptance region and a rejection region, where
these regions are defined through a test statistic t(a) computed from
the data vector a ,

[
a0 a1 . . . aN−1

]T . The rejection region is the
set {a : t(a) < c} for some c. The event that Hc is rejected although
it was true is called a type I error. We choose c so as to attain a small
probability of type I error, called significance level α of the test: if we
consider the data as a random sample a, so that the test statistic t(a)
is a random variable, the significance level is α , P(t(a) < c |Hc).
To compute this probability, the test statistic needs to be such that
its sample distribution, given that Hc is true, is known or can be
approximated by its limiting distribution for N →∞. A type II error
is the event that Hc is false but not rejected. A good GOF test should
be powerful, i.e., it should minimize the probability of type II error
for a given significance level.

GOF tests are not well suited for model selection for two main
reasons. (i) Most GOF tests are applicable for a specific distribution
as challenging hypothesis, not for a complete parametric family of
distributions. If the distribution parameters are first estimated from
measured data, the corresponding parameterized distribution cannot
be subsequently used as challenging hypothesis in a GOF test on the
basis of the same data because the test would be biased: always the
best-fitting distribution for the given data would be used to compute
the test statistic, so that the passing probability of the test would
be inflated. (ii) GOF tests are meant to check if a given distribution

∗ As explained by Guttman (1977), the term “challenging hypothesis” is prefer-
able over the more commonly used “null hypothesis” because the challenging
hypothesis should represent the unexpected outcome.
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provides an adequate fit for a set of data or not; a GOF test does not
provide a measure of how good the fit actually is. Hence, GOF tests
cannot be used to compare the fit of different distributions. But model
selection requires to estimate parameters from measured data and to
select one family among a whole class of candidate families.

Some researchers apply GOF tests separately for each fitted distri-
bution in the candidate set and for different measurement sets, e.g.,
for LOS measurements taken at different distances d between trans-
mitter and receiver. They then use as a measure of fit the percentage
with which each fitted distribution in the candidate set passes the
test. In such an approach, the problem how to consistently estimate
parameters and compute test statistics from the same data persists; in
addition, such an approach presupposes that the test used is equally
powerful for all distributions, i.e., the type II error is the same for all
challenging hypothesis. This is not the case in general.

5.3.4. Discrepancy Minimization
A measure of how good one distribution approximates another dis-
tribution is called a discrepancy (Linhart and Zucchini, 1986). The
main problem with GOF tests for model selection is that they do not
provide a well-defined discrepancy between the distribution of the
data and the distribution of the challenging hypothesis on the basis of
which different distributions can be compared. The binary result of a
standard GOF test cannot be used as a discrepancy, it does not allow
to compare different distributions. A composite selection criteria like
the passing percentage of successive GOF tests cannot be used as
discrepancy, either, for the reasons pointed out in the last subsection.
The selection of a suitable approximating distribution out of a

given candidate set requires computation of a true discrepancy for
each candidate distribution with respect to the operating distribution,
and the selection of the distribution with the lowest discrepancy. To
compute such a discrepancy we need to know the operating distribu-
tion. But as the operating distribution is unknown, we need to find
a way to consistently estimate discrepancies. Any such estimator is
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plagued by a similar problem as already encountered in the previous
subsection: parameter estimation and discrepancy computation from
the same set of data may lead to biased results. The problems of
discrepancy estimation and bias correction were solved by Akaike
(1973) for the specific class of linear∗ models. His approach can be
generalized to other candidate families, as we are going to outline
now. The following summary is based on the book by Linhart and
Zucchini (1986) and a tutorial paper by Zucchini (2000).
A discrepancy is a functional ∆ : M ×M → R that satisfies

∆(G,F) ≥ ∆(F, F) for all G,F ∈ M. Every candidate family Gj
induces an optimal parameter vector q? with the property ∆(Gjq? , F) ≤
∆(Gjq, F) for all qj ∈ T j . This optimal parameter vector exists even
if the operating distribution does not belong to the candidate set.
A consistent estimator for the discrepancy ∆(Gjq, F) on the basis of N
samples a , [a1 a2 . . . aN ]T of a is called an empirical discrepancy;
we denote it by ∆N (Gjq, F). For a given candidate family Gj , the
empirical discrepancy induces the minimum discrepancy estimator

q̂j(a) , arg min
q∈T j

∆N (Gjq, F). (5.15)

When the dependence on the data vector a is clear from the context,
we simply write q̂j instead of q̂j(a) in the following.

Our goal is to choose the distribution that minimizes the discrepancy
among all members of the candidate set. Yet, although the empirical
discrepancy is a consistent estimator, the resulting estimate

Ĝ , arg min
G∈J

∆N (G,F) (5.16)

is not the best estimate if the number of samples N is finite: because
we use the same data to estimate the distribution parameters and
to select the model family, the estimate (5.16) is biased. The bias
results because families of increasing complexity, as measured by the

∗ A linear model in the statistical literature refers to a linear relation between
controls and observables, corrupted by additive noise (Burnham and Anderson,
2002). Prime examples are regressive and autoregressive models.
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number U of independent parameters, tend to provide more flexibility
to fit the data; thus, the chance of selecting a very complex distribution
to best fit a given set of data is high, an effect called overfitting. The
trade-off between complexity and estimation error can be seen if
we split the overall discrepancy of any candidate distribution with
estimated parameter vector Gjq̂ into two distinct contributions:

1. The approximation discrepancy is the discrepancy ∆(Gjq? , F)
that results if we select a family Gj different from the operating
family, even if we parameterized the selected family by its
discrepancy-minimizing parameter vector q?.

2. The estimation discrepancy is the discrepancy ∆(Gjq̂, G
j
q?) that

results if we estimate the parameter vector q from a finite
number of samples.

A complex CDF with many free parameters U has, in general, a
lower approximation discrepancy at the cost of a larger estimation
discrepancy. The goal of a sensible selection procedure is thus to
balance both discrepancies with respect to the number of samples
available.
As a simple example for this observation, consider a least squares

fit of a polynomial q[k] = α0 + α1k + α2k
2 + . . . of arbitrary order

to a set of equidistant points y[k] = k +w[k], where w[k] is white
Gaussian noise and k = 0, 1, . . . ,K−1. Although the operating model
is a first order polynomial, the best fit is achieved, in general, by the
polynomial of order at least K−1 that goes through all K points y[k]
because the squared error is zero in this case. However, if we draw a
new set of points according to the same distribution as before, the
polynomial just constructed would most certainly result in a large
discrepancy.∗

∗ This example is taken from a paper by Forster and Sober (1994); a nice
graphical illustration for a similar case—polynomial regression with the relative
Kullback-Leibler discrepancy—is depicted in the book by Sakamoto et al. (1986).
The present example illustrates that model selection is not just a statistical
problem but a problem of epistemology. The criteria a good model has to satisfy,
like parsimony and mathematical tractability, are outside the realm of rigorous
mathematical reasoning. Forster and Sober (1994) give a nontechnical introduc-
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The above example illustrates what we have called the predictive
property of a good model: it should fit available measurements equally
well as hypothetical future measurements. Hence, a suitable distribu-
tion should not necessarily minimize the empirical discrepancy for a
given set of measurements, but it should minimize it on average, over
all possible measurement sets. Let a , [a1 a2 . . . aN ]T denote a ran-
dom vector with i.i.d. entries distributed according to the operating
CDF F(a). For each candidate family Gj , the minimum discrepancy
estimator (5.15) on the basis of a is a random vector q̂j(a). The
preceding discussion suggests that we select the candidate family Gj
that minimizes the expected discrepancy

min
j

EF
[
∆(Gjq̂, F)

]
(5.17)

so as to minimize the discrepancy over all possible realizations of a,
not just over the measured data a.
The problem with the expected discrepancy is that the above ex-

pectation cannot be computed because it depends on the unknown
operating distribution F(a). However, it can be estimated. An estima-
tor of the expected discrepancy is called a model selection criterion.
If the operating family, but not the exact operating distribution, is
known, it is sometimes possible to derive criteria for finite sample
sizes. In our case, with an unknown operating family, we have to
resort to asymptotic methods, i.e., we have to contend ourselves with
criteria that hold if the number of samples approaches infinity. The
idea is to approximate, for a given candidate family Gj , the expected
discrepancy (5.17) by the first two terms of its Taylor series expansion
in q̂ around the unknown optimal parameter vector q?, and then
compute its expectation with respect to q̂. Linhart and Zucchini
(1986, A.1) show that the resulting approximation is

EF
[
∆(Gjq̂, F)

]
≈ ∆(Gjq? , F) +

tr(Ω
−1
j Σj)

2N
, (5.18)

tion to model selection by discrepancy minimization and discuss the relation
between the principle of parsimony and elementary empiricism as well as related
epistemological questions.
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where Ωj is the Hessian of ∆(Gjq, F) with respect to q and evaluated
at q = q?; furthermore, Σj is the asymptotic (N → ∞) covariance
matrix of the vector whose jth entry is

√
N
∂∆N (Gjq, F)

∂qj

∣∣∣∣∣
q=q?

. (5.19)

In a further step, the approximation discrepancy ∆(Gjq? , F) in (5.18)
is replaced by the expected empirical discrepancy plus half the trace
term of (5.18), i.e., (Linhart and Zucchini, 1986, Proposition 2)

EF
[
∆(Gjq̂, F)

]
≈ EF

[
∆N (Gjq̂, F)

]
+

tr(Ω
−1
j Σj)
N

, (5.20)

where the expectation on the right-hand side is with respect to the
random parameter vector q̂ = q̂(a). The proof of both approximations
relies on a set of regularity conditions (Linhart and Zucchini, 1986,
A.1.1.) and the rather strong assumption that the operating family
is a subset of the candidate set. The latter is unlikely in our case;
however, Linhart and Zucchini (1986) claim that the resulting criterion
is still useful if the candidate distributions are not grossly different
from the operating distribution. We further comment on this point in
Section 5.4.5.

The criterion (5.20) is not yet in a form that can be used in practice.
First of all, we still need to specify what discrepancy functional to
use. Second, the expected empirical discrepancy still depends on the
operating distribution; hence, we need to find an estimator for it.
Third, the trace term is rather complicated to compute and might
incur a large estimation variance for finite N . We address all three
issues in the following section.

5.4 . AKAIKE ’S INFORMATION CRITERION

A widely used discrepancy is based on the KL distance, also called
relative entropy (Cover and Thomas, 1991). The resulting model
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selection criterion is known as Akaike’s Information Criterion (AIC). It
can be derived in several different ways: Burnham and Anderson (2002)
directly manipulate the relative entropy functional and the resulting
log-likelihood expressions. A very intuitive geometrical derivation
can be found in the book by Sakamoto et al. (1986) and the papers
by Clergeot (1984) and Matsuoka and Ulrych (1986); however, the
geometrical interpretation only works for linear operating models.
We continue along the lines of Linhart and Zucchini (1986), whose
derivation is the most general we are aware of.

5.4.1. Kullback-Leibler Discrepancy
For simplicity, we assume that all distributions have correspond-
ing PDFs. This assumption is certainly satisfied for our candidate
set from Section 5.3.1. The relative entropy between the operating
distribution F(a) with PDF f(a) and a candidate distribution Gq(a)
with PDF gq(a) is the functional

D(f || gq) = EF [log f(a)]− EF [log gq(a)] , (5.21)

where the random variable a is distributed according to F(a). Relative
entropy D(f || gq) is nonnegative and equals zero only if f(a) ≡ gq(a).
It is not a true mathematical distance measure, yet it quantifies
how dissimilar two distributions are. In particular, relative entropy
measures the inefficiency if we substitute a distribution Gq(a) for
the true distribution F(a): a code for the distribution Gq(a) used to
encode independent source letters of distribution F(a) has an average
description length that is D(f || gq) nat longer per source symbol
than necessary (Cover and Thomas, 1991). If used as a discrepancy,
relative entropy ranks a distribution the higher the more probability
this distribution assigns on average to actual observations (Zucchini,
2000).

The first term on the right-hand side of (5.21) depends on the
operating distribution only; it contributes equally to the discrepancy
between the operating distribution and any candidate distribution.
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Thus, it suffices to consider the second term, which is called KL dis-
crepancy,

∆(Gjq, F) , −EF
[
log gjq(a)

]
. (5.22)

Consequently, the index j of the candidate family with lowest expected
KL discrepancy is, by (5.17), given as (Burnham and Anderson, 2002)

max
j

Eã

[
Ea

[
log gjq̂(ã)(a)

]]
, (5.23)

where a and the entries of ã are independent random variables that
all follow the operating distribution F(a). It is (5.23) we want to
estimate along the lines of (5.20).

The empirical discrepancy that corresponds to the KL discrepancy
in (5.22) is the empirical log-likelihood,

∆N (Gjq, F) , − 1
N

N∑
n=1

log gjq(an); (5.24)

it is obtained from (5.22) upon substitution of the empirical oper-
ating CDF, i.e., the cumulative relative frequency of a given data
set {an}N−1

n=0 , for the operating CDF F(a). The minimum discrepancy
estimator is the ML estimator,

q̂ , arg max
q∈T

1
N

N∑
n=1

log gq(an). (5.25)

In hindsight, this justifies our insistence on ML estimators in Sec-
tion 5.3.2. Finally, Burnham and Anderson (2002) show that the
expected empirical log-likelihood on the right-hand side in (5.20) can
be estimated simply by the empirical log-likelihood itself,

EF
[
∆N (Gjq̂, F)

]
≈ ∆N (Gjq̂, F) =

1
N

N∑
n=1

log gjq̂(an). (5.26)
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5.4.2. Approximating the Trace Term
The trace term tr(Ω

−1
j Σj) in (5.20) depends on the operating distri-

bution because the matrices Σj and Ωj are expectations with respect
to the operating model. For the KL discrepancy, we have

[Ωj ]rs = −EF

[
∂2 log gjq(a)
∂qr∂qs

]
q=q?

, (5.27)

[Σj ]rs = EF

[(
∂ log gjq(a)

∂qr

)(
∂ log gjq(a)

∂qs

)]
q=q?

, (5.28)

where r, s = 1, 2, . . . , U .
One possibility to remove the dependence on F(a) is to estimate

both matrices from the data. Each candidate family Gj requires a
different estimator, e.g., the ones provided for some common families
by Linhart and Zucchini (1986). Unfortunately, closed-form estima-
tors for the two matrices are only available for some families in our
candidate set. Another drawback in estimating Ωj and Σj is that
a large number of samples might be necessary to obtain a reliable
estimate.
An alternative approach is to approximate the trace term by the

value it would attain if the operating distribution was part of the
candidate family. Indeed, if there is no misspecification, i.e., F ≡ Gjq?
for some j, then Ωj = Σj . But even if the operating distribution is not
part of the candidate family, like in most cases of practical interest,
we can approximate Ωj ≈ Σj if the distributions in the candidate set
are judiciously selected in advance to provide a reasonable fit. Then,
the resulting approximation of the trace term is extremely simple,

tr(Ω
−1
j Σj) ≈ Uj . (5.29)

Linhart and Zucchini (1986) and Burnham and Anderson (2002) report
that the resulting simplified criterion often performs better than if
the trace term was estimated from the data, under the condition
that the candidate family does not contain families whose best-fitting
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distribution is vastly different in relative entropy from the operating
family.

We can now substitute the estimate (5.26) of the expected discrep-
ancy and the approximation for the trace term (5.29) into the Taylor
series approximation (5.20) of the expected KL discrepancy to obtain
the model selection criterion

arg min
j

− 1
N

N∑
n=1

log gjq̂(an) +
Uj
N
. (5.30)

This criterion, known as AIC, was first derived by Akaike (1973). It is
commonly stated in a slightly different form,

AICj , −2
N∑
n=1

log gjq̂(an) + 2Uj . (5.31)

AIC is an approximately unbiased estimator of the expected dis-
crepancy (5.23); hence, its estimation error depends on the number N
of samples used to compute it. Sakamoto et al. (1986) recommend
to limit the number U of free parameters in all candidate families
to less than 2

√
N if only N independent samples are available. The

approximation of the trace term (5.29) is an asymptotically unbiased
estimator if the candidate set contains the operating model; but for
small N , it might be significantly biased. Hurvich and Tsai (1989)
developed a small-sample corrected version of AIC, called AICC, to
alleviate this problem,

AICCj , AICj +
2Uj(Uj + 1)
N − Uj − 1

. (5.32)

Although the derivation of AICC relies on the assumption of linear mod-
els with Gaussian residuals, e.g., regressive and autoregressive models,
Burnham and Anderson (2002) recommend using AICC throughout
when the number of samples per parameter, N/U is less than 40.
Their recommendation is based on a large simulation study of the per-
formance of AIC and AICC. For larger sample sizes or fewer parameters,
the influence of the extra correction term tends to decrease.
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Instead of approximating the trace term as we did, it is possible
to directly estimate the expected KL discrepancy (5.23) using the
bootstrap (Linhart and Zucchini, 1986; Efron and Tibshirani, 1993).
We tried this approach, but did not succeed because of the immense
computing requirements of the bootstrap algorithm.

5.4.3. Akaike Weights
AIC estimates the approximation quality of different candidate dis-
tributions with respect to the operating distribution. Hence, it can
be used to rank the candidate distributions: the minimum AIC value
indicates the best fit. Yet, the raw AIC (and AICC) values are difficult
to interpret directly because we discard the point of reference, the
expected log-likelihood of the operating distribution in (5.22). To
conveniently compare the relative fit of each distribution within the
candidate set, we define the AIC differences (Burnham and Anderson,
2002)

φj = AICj −min
i

AICi, (5.33)

where mini AICi denotes the minimum AIC value over all J candidate
families, and compute the Akaike weights (Akaike, 1978)

wj ,
e−

1
2φj∑J

i=1 e
− 1

2φi
. (5.34)

The Akaike weights are normalized, i.e., they satisfy
∑J
j=1 wj = 1. So

far, this definition is a formal one only, meant to simplify comparison
of different candidate distributions. However, the Akaike weights
can be given a Bayesian interpretation as the likelihood of a model
(Akaike, 1978; Burnham and Anderson, 2002; Wagenmakers and
Farell, 2004), i.e., the Akaike weight wj can be interpreted as the
conditional probability that the candidate family Gj contains the
model of lowest KL discrepancy in the candidate set J , given the
data. Consequently, the Akaike weights allow us not only to select the
best distribution in the candidate set, they also provide information
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about the relative approximation quality of each family and about
the reliability of selecting the AIC-best model.

One way to assess the reliability of a given selection is to compute
the confidence set, the equivalent to a confidence interval for a given
significance level in classical model-based parameter estimation. A con-
fidence set is a set of families so that the family with the best-fitting
distribution is in the confidence set with high probability. The simplest
way to obtain such a confidence set is to include those families in the
set whose best-fitting distributions have cumulative Akaike weights
just larger than a given confidence level; e.g., if the fitted distributions
in the set {1, 5} have total Akaike weight w1 + w5 = 0.81, the ones
in the set {1, 2, 5} have total Akaike weight 0.967, but including the
next best distribution yields w1 + w2 + w3 + w5 = 0.98, then the
95% confidence set will be {1, 2, 5}. Thus, the Akaike weights can be
used to assess the reliability of any selection. If several distributions
have similar Akaike weights, the evidence provided by the data is not
sufficient to allow for a better differentiation (Burnham and Anderson,
2002, Chapter 4.5).

5.4.4. A Simulation Study
Apparently, AIC (or AICC) has never been used before to select suitable
distributions for small scale amplitude fading in wireless channels. The
only publication we are aware of in which model selection techniques
are employed to determine fading distributions is the one by Taneda
et al. (2001); the authors use the criterion of minimum description
length (MDL) to select a fading distribution among the Rayleigh, Rice,
Nakagami, Nakagami-q, Weibull, and generalized Nakagami families
on the basis of narrowband measurements of outdoor urban and
suburban channels. Unfortunately, they only report the percentage of
each family to provide the best fit but do not provide a more detailed
description of their results. Hence, we can only draw on very limited
previous experience with information criteria for wireless channel
modeling in general, and apparently on no such experience at all in
the particular case of AIC.
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Fig. 5.1: Plot of the PDFs used in the simulation experiment.

Hence, to obtain at least some experience and intuition about the
operation and limitation of AICC before actually applying it to our
measurement data, we perform a Monte-Carlo study. In particular,
we use Matlab’s random number generator to generate sample vectors
according to five specific distributions from the five families listed in
Section 5.3.1. For each family, the parameters below are similar to
those extracted from measurements reported in the literature.

• Rayleigh: σ2 = 2
• Rice: K = 4, Ω = 1
• Nakagami: m = 1.5, Ω = 1
• lognormal: µ = 0.2, σ2 = 0.3
• Weibull: b = 1.2, d = 1.4

The corresponding PDFs gjq(a) are shown in Figure 5.1. We generate
90 i.i.d. random vectors for every listed distribution, an compute AICC

values for all five families; the whole process is repeated 10 000 times.
To compare the fit of each family, we use the Akaike weights presented
in Section 5.4.3.
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Fig. 5.2: Histogram of Akaike weights; generating distribution is Rayleigh.

The simulation study is not in complete agreement with the as-
sumptions on the basis of which we want to apply AIC or AICC to our
measurement data. The five operating distributions used in the simu-
lation experiment are very simple, with only one or two parameters,
while we assume the operating distribution of the actual channel taps
to be of high complexity. Furthermore, the five operating distributions
used here are part of the candidate family by construction, while this
is most certainly not the case for the channel operating distribution.
Hence, the results of our simulation study might not necessarily be
representative for the performance of AICC on the basis of our mea-
surement data. Nevertheless, we can hope to get some understanding
of the general behavior of AICC and the Akaike weights.

A. Rayleigh

For the Rayleigh operating distribution with σ2 = 2, Figure 5.2
shows a normalized histogram for the 10 000 Akaike weights com-
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Fig. 5.3: Histogram of Akaike weights; generating distribution is Ricean. The
Rayleigh candidate family results in a single mass point at an Akaike weight
of 0.

puted for each candidate family. Two important observations are that
(i) Rayleigh provides indeed the best fit, the corresponding weight
is largest with high relative frequency, and (ii) the variance of the
weights is quite high. The Nakagami, Rice, and Weibull distributions,
which contain the Rayleigh distribution as a special case, come in
second. In comparison with the Rayleigh family, we may ascribe the
difference to the second parameter in each of these families, which pe-
nalizes the corresponding AICC values. Indeed, we find the maximum
AICC difference between the Rayleigh distribution on the one hand
and the Rice, Nakagami, and Weibull distributions on the other hand
to be around -2, the penalty incurred in (5.32) by the extra parameter.
The best lognormal distribution fits significantly worse than all the
other families; this might result because the lognormal family does
not reduce to the Rayleigh family for any parameter settings.
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B. Rice

If the generating distribution is Ricean with the above-listed parame-
ters, it is difficult to decide which of the Weibull, Nakagami, or Rice
distributions provides the best fit, as can be observed in the histogram
in Figure 5.3. Over a reasonable range of parameters, said families
can be parameterized in a way that they closely approximate each
other, as discussed in Section 5.3.1. Thus, the large variance of the
corresponding Akaike weights can be interpreted within the model
selection framework as lack of evidence—the available data does not
allow a better distinction between these three distributions in the
simulated scenario. On the other hand, even the best-fitting lognormal
distribution does provide a consistently bad fit. The Rayleigh distri-
bution is even worse—it is indeed so bad that it has a zero weight
with relative frequency one, as there is only a single data point in the
histogram.

C. Nakagami

The weight histogram in Figure 5.4, which results from the Nakagami
operating distribution with m = 1.5 and Ω = 1, is very similar to
the one in Figure 5.3 for the Ricean operating distribution. This
observation agrees with the earlier remarks that the Rice, Nakagami,
and Weibull distributions approximate each other for a certain range
of parameters. It seems as if the approximation is not as good for the
chosen parameter setting than in the previous example, but the Rice,
Nakagami, and Weibull distributions still provide a much better fit
than the Rayleigh and lognormal distributions.

D. Lognormal

We already observed in the previous examples that the lognormal
family seems to be different from the rest as it does not fit data
generated according to either a Rayleigh, a Rice, or a Nakagami
distribution. Figure 5.5 shows that the converse also seems to be
true: data generated according to the lognormal distribution with
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Fig. 5.4: Histogram of Akaike weights; generating distribution is Nakagami.
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Fig. 5.5: Histogram of Akaike weights; generating distribution is lognormal.
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Fig. 5.6: Histogram of Akaike weights; generating distribution is Weibull.

parameters as above seems to be difficult to fit with any of the four
other candidate families, while the lognormal family itself shows an
excellent fit. This clear-cut picture is important insofar as we can
expect to obtain a clear-cut answer to the question if the lognormal
distribution is indeed appropriate to model small-scale amplitude
fading of wideband channels.

E. Weibull

The last examples uses the Weibull distribution with parameters b =
1.2 and d = 1.4 as operating distribution. This distribution seems to
be rather different than anything the Rayleigh, Rice, or lognormal
family can approximate. Only the Nakagami family provides a good
approximation, as can be seen in Figure 5.6. As already observed
several times, the corresponding weights show large variability, which
indicates that there is not enough evidence in the data to warrant a
better discrimination of the two distributions.
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5.4.5. Comments

As the use of AIC to select suitable amplitude fading distributions on
the basis of measured channel impulse responses seems to be novel,
we cannot rely on past experience to guide us in its application. The
method still has a number of weak spots, both in the underlying theory
as well as in its application. We discuss the—in our opinion—most
important ones below.

A. Fundamental Assumptions

The derivation of AIC, as just outlined, rests on two crucial assump-
tions: the operating distribution is part of the candidate family, and
the asymptotic criterion is a sensible estimator also for finite sample
sizes.

We have no reason to believe that the operating distribution of the
channel tap amplitudes is contained in the candidate set of the rather
simple families listed in Section 5.3.1—in fact, the main reason why
we resort to a stochastic channel model is to reduce model complexity.
No rigorous derivation of a model selection criterion seems to exist for
the case when the operating distribution is not part of the candidate
set. The only justification to nevertheless use AIC, and in our opinion a
strong justification at present, is that the approach of model selection
by discrepancy minimization as such is theoretically sound, much
more so than any other statistical method currently used to determine
suitable small-scale fading amplitude distributions. In particular, the
necessity to judge how much information is actually contained in a
finite number of channel samples and to avoid overfitting seems to be
overlooked far to often in the context of wireless channel modeling.
The simulation examples by Burnham and Anderson (2002) and our
own simulation study in the preceding subsection support the claim
by Zucchini (2000) and others that AIC provides a sensible approach
to model selection as long as the best-fitting distributions in each
candidate family are not too far off.

How many samples are necessary for AIC or AICC to yield sensible
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results is difficult to answer. In both MCI and MCII we have enough
samples N per measurement set to satisfy the rule of thumb by
Sakamoto et al. (1986) that the number U of free parameters should
be smaller than 2

√
N . However, our simulation studies showed that

the variance of the Akaike weights might be quite large across a
number of independent experiments. Yet, this variability was most
pronounced in the cases where several families were similarly well
suited to approximate the operating distribution. In such a situation,
we should not try to extract more information than provided by the
data and expect to obtain an unequivocal answer. Instead, if several
distributions provide an adequate fit, we are at liberty to chose the
one that is most convenient to work with, i.e., that best satisfies our
criterion of mathematical tractability.

B. Do We Need AIC?

All our candidate families from Section 5.3.1 are completely charac-
terized by either one or two parameters; and out of the five families
under consideration, four have two parameters. This implies that
the second term in AIC and AICC is ineffective for the comparison of
four out of five families. Hence, is AIC actually necessary to select a
small-scale fading distribution? In fact, we could as well just com-
pute the expected log-likelihood for each fitted distribution, make a
comparison of distributions on the basis of this measure, and, if in
doubt, select the simplest distribution. Essentially, this is all that AIC

amounts to in our case. Nevertheless, we believe that the approach we
took is more comprehensive than evinced by the two formulas (5.31)
and (5.32) that we finally use to compute statistics.

• The expected log-likelihood that is the first term in AIC and AICC

results from a well-defined discrepancy, the KL discrepancy. This
already is an important improvement over many techniques com-
monly used in wireless channel modeling, which are all to some
extent ad-hoc.

• The fact that the available data limits the complexity of a suitable
distribution is often disregarded. AIC directly shows when this
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issue is of importance, even if only for a single family in the
candidate set.

• The interpretation of the Akaike weights as the likelihood of
corresponding fitted distributions is contingent on the approach
taken and yields valuable additional insight because it allows
us to directly compare the approximation quality of different
distributions.

In summary, we believe that the model selection approach as such is
sensible for the application at hand, even though we do not use it to
its full potential.

C. Measurement Noise

We base our approach to model selection on the assumption that our
data are channel impulse responses. Real life measurement data is
contaminated with noise picked up by the receiver and the different
amplification stages, and by interference. A Gaussian noise model
is a very good assumption in most cases, since noise is created by
many independent sources, such that the CLT is valid. Hence, it would
be possible to include the contribution of the noise into the model
selection process. Since the effect of the noise is almost always additive
and independent of the signal, the resulting overall density of the
output would be the convolution of the candidate PDF with the noise
PDF. In consequences, all resulting models would have one more free
parameter, the noise variance. However, including the noise effect
into the model has several drawbacks: the models might become
analytically intractable, often it would not be possible to compute
the resulting PDF in the first place; parameter estimation would be
even more difficult. Most important, since the noise is well below the
signal level, we would attempt to include effects in our model that are
to weak to be quantified using the small number of samples available
in MCI. Hence, we would counteract the parsimonious approach taken
in selecting the candidate models and built into the model selection
criterion. For these reasons we opt against inclusion of the noise
effects into the model and attempted instead to obtain measurements
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with the best possible SNR, ensuring that the noise effects are indeed
negligible.

5.4.6. Other Model Selection Criteria
AIC has proven very popular for linear models; e.g., for the regressive
and autoregressive models ubiquitous in most empirical sciences, AIC
is used to select the model order. Specialized applications are discussed
in the book by Sakamoto et al. (1986) and in a tutorial paper by
Stoica and Selén (2004). Another common application is selecting
the number of sources in array processing along the lines of Wax and
Kailath (1985). Because the class of linear models is highly structured,
a more detailed analysis of AIC is possible, and the approximations
in the derivation of the general case, e.g., in (5.29), often hold with
equality.
Following Akaike’s work, a wealth of other model selection cri-

teria have been proposed. Some of them are just modifications of
Akaike’s original result, others are derived taking a completely differ-
ent approach. The most popular ones are the criterion of minimum
description length (MDL), proposed by Rissanen, and the Bayes infor-
mation criterion (BIC), derived by Schwarz.

MDL is based on the theory of stochastic complexity; the approxi-
mation quality of a distribution is measured through the length of the
shortest description for the data at hand, i.e., the shortest encoding.
In this sense, MDL is related to relative entropy, the basis of AIC. The
simplest derivation of MDL uses two-stage coding, where in a first
step, for each model family parameters are estimated and quantized
in steps of size 1/

√
N . In a second step, the parameters are encoded

under the assumption of a uniform distribution while the data itself is
encoded following the fitted distribution. The total description length
is thus the sum of the code length for the data and the code length
for the parameters, which is for i.i.d. data

N∑
n=1

log gq̂(an) +
U

2
logN. (5.35)
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An introduction to MDL can be found in a tutorial paper by Hansen
and Yu (2001).

BIC is asymptotically equivalent to MDL, although the theoretical
starting point of BIC is to attach a prior probability to each family
and then to select the fitted distribution with the highest posterior
probability of being correct.
Although AIC and MDL/BIC differ only in their respective second

term, the theoretical implications are far-reaching. For linear models,
MDL/BIC is consistent if the operating distribution is of finite dimen-
sion, i.e., the correct model order is selected in the large-sample limit.
On the other hand, if the operating model is of infinite order, AIC se-
lects the distribution with minimal squared error, i.e., it is efficient.
These two characteristics are mutually exclusive—a consistent model
selection procedure is not efficient if the operating model is of infinite
dimension and vice versa. (Shibata, 1989; Yang, 2005). Heuristically
extrapolating these observations, AIC should be preferred in our case,
as we expect the operating model to be highly complex. In practice,
though, the difference in the second term between AIC and MDL/BIC
is of no importance for the set of candidate families we consider.

5.5 . MC I MARGINAL TAP DISTRIBUTIONS

In the present and the next section, we use AIC and AICC to assess
which of the proposed amplitude fading distributions listed in Sec-
tion 5.3.1 is best suited to statistically describe the small-scale fading
phenomenon in the two different types of wideband channels we mea-
sured in MCI and MCII. This analysis only concerns the marginal
distribution of each tap in the complex baseband channel impulse
responses because a complete characterization of the joint distribution
is infeasible for lack of sufficient channel samples. In accordance with
the approach outlined in Section 5.3, we attempt to characterize the
joint distribution of the discrete-time wideband block-fading channel
model up to second order in Chapter 6.
To assess the fit of the various candidate families listed in Sec-
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tion 5.3.1, we compute the AICC values according to (5.31) and (5.32),
the AICC differences as in (5.33), and the Akaike weights follow-
ing (5.34), for all measurement sets in the MCI LOS and OLOS settings.
The parameter estimates for each family that are needed in the com-
putation of AICC are detailed in Section 5.3.2. Each AICC value is
computed from N = 90 spatial samples. The impulse responses and
PDPs of the different measurement sets consist of a large number
of taps. Figure 5.7 and Figure 5.8 are our attempts to visualize the
Akaike weights for all taps of the channel vector in a given measure-
ment set in the LOS and OLOS setting, respectively. The PDP of the
corresponding measurement set is shown in the bottom-most graph
for reference. Similar plots for other measurement sets, i.e., taken
at different distances d between transmitter and receiver, look very
similar to the ones shown; hence, we refrain from presenting them
here.

5.5.1. Observations
The plots in Figure 5.7 and Figure 5.8 show the probability of best
fit of each fitted candidate model for each channel tap; in addition,
they also show interesting relations between different taps.

• Viewed globally, the fitted Rayleigh amplitude distribution pro-
vides the best fit for most channel taps in both the LOS and
the OLOS measurement set shown. The Akaike weight of the
Rayleigh distribution never exceeds 0.5, though, while significant
downward variability across different taps exists.

• Distributions from the Rice, Nakagami, and Weibull families
provide a very similar fit in total across all taps of a given channel
vector. Their Akaike weights are of similar magnitude, on average
around 0.2. However, these weights do vary significantly around
this mean value across taps.

• The lognormal family does not contain distributions that provide
a fit comparable to the Rayleigh distribution; for most of the taps,
the lognormal fit is also far less than that of the Rice, Nakagami,
and Weibull families; Akaike weights for lognormal distributions
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Fig. 5.7: MC I: Akaike weights and PDP, LOS setting, d = 27.2 m.
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Fig. 5.8: MC I: Akaike weights and PDP, OLOS setting, d = 27.4 m.
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are often close to 0.
• Especially in the LOS measurement set, but also at the beginning

of the OLOS impulse response, there exist short sequences of taps
where the lognormal family provides the best fit, with Akaike
weights close to 1. Similarly, for some consecutive taps the Rice,
Nakagami, and Weibull families show an improved quality of fit
compared with most other taps. These short sequences of taps
seem to correspond to the peaks of clusters in the correspond-
ing PDP. More such short runs of good lognormal fit or good fit
of the Rice, Nakagami, and Weibull fit appear in the LOS plot in
Figure 5.7 than in the OLOS plot in Figure 5.8.

Some of these observations are surprising as they seem to contradict
results of other measurement campaigns. Before analyzing these ob-
servations, though, we complement them by some related statistical
quantities.

Figure 5.9 shows, on a logarithmic scale, the estimates of the Ricean
K-factor and the Nakagami-m parameter for the LOS measurement
set with d = 27.2 m. Both parameters are usually taken as an indicator
of how sever the fading is in a given tap; smaller values indicate more
severe fading. Most of the estimates are small, in the Ricean case close
to or below 0dB, and in the Nakagami case around 0dB. For these
parameter settings, both distributions are very close to the Rayleigh
distribution. But for some groups of taps, especially the ones around
tap indices 936 and 1065, the Rice and Nakagami parameter estimates
are significantly larger, while around the tap indices 197 and 1122
they are smaller than average. These taps correspond to specific
cluster peaks in the PDP of Figure 5.7. The parameter estimates
for OLOS measurement sets not shown here are even closer to the
values that reduce the Rice respectively Nakagami distribution to
the Rayleigh distribution. Only for the first few taps does the Ricean
K-factor significantly exceed 5dB and the Nakagami-m parameter
2dB.

A special behavior of the channel taps at the beginning of the
impulse response and at the cluster peaks in the LOS measurement
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Fig. 5.9: Parameter estimates for the MC I LOS measurement set with d = 27.2 m.

set around tap indices 197, 936, 1065 and 1122 can also be observed
directly in the AICC differences φj defined in (5.33). For the same
measurement set as in the previous plots, i.e., MCI LOS at d = 27.2 m,
Figure 5.10 shows the difference between the Rayleigh AICC values
and the Rice, respectively Nakagami AICC values. While for the vast
majority of taps the difference is approximately -2, the taps just
mentioned show a positive difference, even a very large one at times—
we had to clip some AICC differences in Figure 5.10 because the
corresponding values were too large to be plotted, up to φ ≈ 400. The
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Fig. 5.10: Difference between AICC values, MC I LOS, d = 27.2 m.

AICC differences between the fitted Rayleigh and Weibull distributions
are similar to the differences just discussed; therefore, we do not plot
the Weibull differences here.

Except for taps that correspond to cluster peaks, neither the Akaike
weights and the corresponding AICC differences nor the parameter
estimates show a trend over the length of the impulse response; all
listed quantities vary considerably from one tap to the next, but these
changes appear to be purely random.
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5.5.2. Analysis and Interpretation

Especially in the LOS setting, but also in our OLOS measurement
sets at the onset of the impulse response, there is a clear distinction
between the many ordinary taps, and the few cluster taps, i.e., taps
that correspond to a cluster peak. As the difference between ordinary
taps and cluster taps is striking in Figure 5.7 and Figure 5.8, we
discuss the two separately.

A. Ordinary Taps

Overall, the Rayleigh distribution seems to provide the best fit, except
for cluster peaks in the LOS impulse responses and at the beginning
of the OLOS impulse responses. However, the variation of the Akaike
weights across taps is high.

In most taps where the Rayleigh distribution has the largest Akaike
weight, the weight differences to the fitted Rice, Nakagami, and
Weibull distributions are small, which means that all these dis-
tributions provide an adequate fit with nonnegligible probability.
Even more, Figure 5.10 shows that the AICC differences between the
Rayleigh distribution and the Rice, Nakagami, and Weibull distri-
butions is around -2 in most of these taps. But -2 is exactly the
difference that result from the term 2U in (5.31) that penalizes more
complex families, because the Rice, Nakagami, and Weibull families
have one more parameter than the Rayleigh family. Together with the
estimated parameters of the Rice and Nakagami families in Figure 5.9,
which are often such that they reduce the fitted distributions to the
Rayleigh distribution, there is ample evidence that many individual
taps are best modeled by the simplest family available, the Rayleigh
family.

But what about the ordinary taps where the Rayleigh distribution
does not fit best? If we strictly follow the theory outlined in Section 5.3,
we cannot say more than the Akaike weights tell us—that in those
taps another distribution has a higher probability of best fit. It is now
a modeling decision to weight the evidence for another distribution
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against the simplicity that results from the use of a single family to
describe all marginal tap amplitude distributions.

Additional information beyond what is contained in the AICC differ-
ences and Akaike weights can be used to help making the aforemen-
tioned modeling decision. The large variability of the Akaike weights
between adjacent taps cannot be quantified from within the theory at
present. But we discussed in Section 5.3.2 that some of our parameter
estimates have a large error variance, especially the estimate of the
Ricean K-factor. Furthermore, the simulation study in Section 5.4.4
indicated that a large variation in Akaike weights can be observed
even when the operating distribution is known, simple, and part of
the candidate set. In fact, the histogram in Figure 5.2 for the case
of a Rayleigh operating distribution is very similar to histograms for
Akaike weights computed across the channel taps of OLOS impulse
responses, and also for LOS impulse responses if we exclude the taps
around cluster peaks. Because said channel taps cannot be taken
as i.i.d. random variables—already their variances differ, as seen in
any PDP—this observation does not show that the variability of Akaike
weights solely manifests the inherent estimator variance; but we can
take it as an indication that modeling all taps as Rayleigh distributed
is not a bad modeling assumption. This modeling assumption is also
supported by two more arguments. Physically, there does not seem
to be a reason for a significant change over the duration of the im-
pulse response in the composition of the arriving partial waves. If at
all, we expect that more partial waves average in later taps than in
earlier taps because of multiple reflections, diffraction, and scattering
of paths. From an estimation-theoretic viewpoint, the variation in
Akaike weights over taps indicates that we do not have enough data
to obtain low estimator variance. Hence, a parsimonious modeling
choice is to use the same family for all taps; everything else would
amount to overfitting in the same way as a family with two many
parameters provides a better fit at the cost of increased predictive
power of the resulting model.
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B. Cluster Taps

The cluster taps are clearly distinct from the ordinary taps in that
the Akaike weights for those taps do not vary in the same way. For
all cluster taps, the Rayleigh fit is rather bad, e.g., for the LOS

measurement set in Figure 5.7 with Akaike weights close to 0 for
the first taps and for the clusters around tap indices 197, 325, 936,
and 1122. The Weibull family shows a good fit for the taps that
correspond to the LOS path and the clusters at tap indices 197, 936,
and 1122, the Rice family seems suitable for cluster taps around
indices 936 and 1065, and the lognormal family provides a reasonable
fit for the taps around indices 197, 325, and 1122. One possible and
plausible explanation for this striking difference of the cluster taps
compared with the ordinary taps is the variation of the arrival times
of strong specular paths as the transmit antenna is moved over the
virtual array, in combination with the temporal alignment of the first
arrival described in Section 4.5.1.

• The LOS path is the one aligned in time. If the paths around tap
indices 936 and 1065 in the LOS measurement are caused by a
double reflection off the window at the top and the brick wall at
the bottom right-hand side in the floor plan of Figure 4.7, they
will be similarly aligned as these paths are collinear with the
LOS path so that their path length differential upon moving the
transmit antenna will be equal to the path length differential of
the LOS path. The Weibull and Rice distributions provide the best
fit for the taps around indices 936 and 1065, as indicated by their
high Akaike weight in Figure 5.7. A look at the corresponding
parameter estimates reveals that both fitted distributions for
these cluster taps have a very light right tail; the corresponding
Weibull parameter b is on the order 10−2 in all LOS measurement
sets while the parameter d is large, between 6 and 9. Similarly, the
Ricean K-factor for the taps around indices 936 and 1065 is large,
as shown in Figure 5.9. Both observations indicate little fading.
This finding can be physically expected for aligned specular
arrivals.
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• For the cluster peaks around tap indices 197, 325, and 1122, both
the lognormal and the Weibull family provide a good fit. But for
the corresponding distribution parameters estimated from our
data, the lognormal and Weibull PDFs have a heavy right tail for
these taps. A possible explanation is that a nonaligned specular
reflection does not always contribute to the same tap for all 90
measured impulse response vectors in a given measurement set
but appears as an outlier in many samples. Because the N = 90
impulse responses of a given measurement set are recorded at
different locations of the transmitting antenna on the virtual
array, the corresponding delay of a specular reflection changes
from one measured impulse response to the next. We aligned the
LOS arrival, as discussed in Section 4.5.1.b, but this alignment
step does not apply to specular paths that are incident under
a different AOA than the LOS path. Hence, a strong specular
reflection may appear as an outlier in several adjacent taps.
Strong outliers increase the weight of the tail of a PDF fitted to
the measurements of the affected taps, which might explain the
good fit of the lognormal and Weibull distributions.

5.6. MC II MARGINAL TAP DISTRIBUTIONS

We compute the Akaike weights for the three MCII measurement
sets in the same way as for MCI data. The only difference is that we
used AIC instead of AICC, because the number of samples in each MCII

measurement set is much large than in the MCI measurement sets.
Indeed, we could observe hardly any difference between AIC and AICC

values computed from MCII data.
The AIC values are shown in Figure 5.11 for the LOSmeasurement set

with N = 1011 samples, in Figure 5.12 for the OLOS measurement set
with N = 2722 samples, and in Figure 5.13 for the NLOS measurement
set with N = 1256 samples. As before, we also include in each figure
the corresponding PDP for reference.
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Fig. 5.11: MC II: Akaike weights and PDP, LOS setting, d = 20 m.
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Fig. 5.12: MC II: Akaike weights and PDP, OLOS setting, d = 20 m.
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Fig. 5.13: MC II: Akaike weights and PDP, NLOS setting, d = 13 m.
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(a) MC II LOS, d = 20m
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(b) MC II NLOS, d = 13m

Fig. 5.14: RiceanK-factors estimated from MC II measurements.

5.6.1. Observations

All three figures are quite different compared with the ones computed
from MCI data.

• Rice distributions provide the best fit for most taps up to around
tap index 1200 in all three measurement sets. The Weibull family
also has a high probability of fit in some of the taps in this
range. The Nakagami family seems to be suitable for taps at the
beginning of the impulse responses in all three settings, and only
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sporadically useful for later taps.
• The Rayleigh family provides a good fit for later taps, starting

around index 1200 in all three settings. For these later taps, the
Akaike weight plots very much resemble the plots for the ordinary
taps in all MCI LOS and MCI OLOS measurement sets.

• The lognormal family is almost never adequate to model small
scale amplitude fading in all three measurement sets. Indeed, the
Akaike weights for the lognormal family are often so small that
they are indistinguishable form zero in all three plots.

• Although there do exist clusters in the LOS PDP, and to a lesser
extent also in the OLOS and NLOS PDPs, there is no apparent
change in the Akaike weights of the taps that correspond to
cluster peaks.

The estimated Ricean K-factor for the LOS and NLOS setting in
Figure 5.14 is quite high in both cases, compared with the K-factor
from MCI shown in Figure 5.9a. Only for later taps, starting around
tap index 1200, does the MCII K-factor become as small as in MCI.
The sporadic low values result from convergence problems of the
parameter estimation algorithm, as described in Section 5.3.2.

5.6.2. Analysis and Interpretation
Ricean fading is often attributed to a strong mean component in an
impulse response tap (Vaughan and Bach Andersen, 2003), which
renders the affected tap less variable compared with Rayleigh fading.
Most statistical models for wireless channels that make use of the
Rice family do so only for the first tap of the impulse response vector,
because a strong LOS path is usually taken as physical justification.
The underlying modeling assumption is that the first tap is proper
Gaussian distributed with nonzero mean.

The Akaike weights for all three MCII measurement sets indicate a
good fit of the Rice family not just for the first tap but for many taps
of the impulse response vector. We would like to know if this fit indeed
results from a strong mean component in every tap, because a Ricean
envelope can also result if the underlying complex-valued channel tap
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Fig. 5.15: Scatter plots of a randomly selected MC II tap.

has zero mean; e.g., from the multiplication of a nonzero-mean JPG

random variable with a random variable of constant modulus and
uniformly distributed phase. To exclude the possibility of a zero-mean
tap distribution giving rise to the Rice amplitude distribution, we
inspect some scatter plots of individual impulse response taps, as
shown in Figure 5.15. Both plots indicate that all samples within one
measurement set cluster in one quadrant of the complex plane. We
cannot inspect every single tap in this way, but the random taps we
analyzed all show the same clustering. Hence, it is very likely that the
Rice amplitude distribution indeed fits because there is a strong mean
component in every tap. Further evidence for this hypothesis follows
from our analysis of MCII PDPs in Section 4.6.1. The complete PDP

in Figure 4.18 looks rather random, while the PDP computed from
the same data but with the estimated mean subtracted in Figure 4.19
looks much less erratic. This behavior indicates that it is the mean
component in every tap that is responsible for the ragged appearance
of the PDP in Figure 4.18.
A physical explanation for the presence of a strong mean compo-

nent in every single tap might be as follows: While in MCI, most
scattering and reflecting objects move relative to the position of the
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antennas, the major reflectors and scatterers in MCII are static. Only
persons did move about in the lobby during the measurements; the
energy scattered by them is much less compared to the amount of
energy transferred by the static environment. The channel variations
induced by moving persons lead to small fluctuations around the
mean components from specular reflections. Similar observations were
already reported by Hashemi et al. (1994) on the basis of narrowband
measurements and by Bultitude et al. (1989) for indoor channels of
80MHz bandwidth.

Because transmit and receive antennas were mounted approximately
1.6m above the floor, people moving in the environment sometimes
blocked the LOS or propagation paths of some of the dominant reflec-
tions. Consequently, it is not possible to perfectly separate small-scale
fading and shadowing in MCII, as we will discuss in more detail in
Section 6.4.2. Maybe it is this mix of shadowing and small-scale
fading that leads to a good fit of the Weibull family for the corre-
sponding shadowed taps. In a recent study of temporal variation in a
UWB channel with fixed antennas, Pagani and Pajusco (2004) also
find a good fit of Weibull distributions. However, their measurement
methodology is different from MCII.
Approximately from tap 1200 on, the Rayleigh family exhibits a

better fit than the Rice family for all three MCII measurement sets.
Indeed, the Akaike weights for the affected taps are very similar to the
ones obtained from MCI data for all impulse response taps. Therefore,
we hypothesize that all those taps are best modeled to be Rayleigh
distributed. The Rayleigh family arises if the underlying complex-
valued channel taps are zero-mean proper Gaussian, the family most
often used to model thermal noise. Hence, we believe that the good
fit of the Rayleigh family from tap 1200 onward results because the
measurement SNR of these taps is so low that we are essentially fitting
Gaussian-distributed noise.
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5 MARGINAL TAP DISTRIBUTIONS

5.7. COMPLEX TAP DISTRIBUTIONS

We use AIC to select a suitable amplitude distribution for the channel
taps, but did not look at the tap phases so far. In this section we at-
tempt to characterize the phase distribution of the individual channel
taps; however, there are several issues that might lead to results less
strong than for the amplitude distributions.

• First and foremost, we lack physically motivated candidate dis-
tributions for the tap phases. If the taps are proper Gaussian
distributed, the phase of each tap around a potentially present
mean component is uniform. Hence, the Rayleigh and Rice ampli-
tude distributions come with a corresponding phase distribution
that derives from the physical explanation of the underlying
complex tap distribution. But there do not seem to exist such
companion phase distributions for the other families we investi-
gated, i.e., phase distributions that complement the Nakagami,
lognormal, and Weibull amplitude distributions.

• We invested much effort to devise a postprocessing methodology
that preserves phase information as well as possible. Nevertheless,
the quality of the phase information in our complex baseband
impulse responses is of much lower quality than the amplitude
information, especially for MCII where alignment of the first path
is difficult.

Because we lack an alternative to the uniform phase distribution,
because this distribution is the physically sensible companion to the
Rice and Rayleigh families that we found to provide the best fit
for many taps in MCI and MCII impulse responses, respectively, and
because the uniform distribution is the maximum entropy distribution
barring any further information, all we can do in this section is to
evaluate if the phases of individual channel taps can be sensibly
modeled as uniform around a potentially present mean or not. We
are thus faced with a binary decision problem instead of a model
selection problem; a GOF test is a suitable statistical tool in this case.
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Fig. 5.16: Results of the Kolmogorov-Smirnov GOF test for MC I data under the
challenging hypothesis of a uniform phase distribution.

A. Measurement Campaign I

Figure 5.16 shows the results of a series of Kolmogorov-Smirnov
GOF test results (Bartoszyński and Niewiadomska-Bugaj, 1996; Zey
et al., 2006). We perform the test for each tap in a given MCI mea-
surement set under the challenging hypothesis of a uniform phase
distribution for each tap and with a significance level of 5%. Hence,
each test is computed on the basis of N = 90 samples. A negative
test result, indicated by 0 in Figure 5.16, means that the challenging
hypothesis of a uniform phase distribution cannot be rejected for most
ordinary taps. Only cluster taps fail the test, which is consistent with
our interpretation of these taps in Section 5.5.2.b.
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(c) MC II NLOS, d = 13m.

Fig. 5.17: Results of the Kolmogorov-Smirnov GOF test for MC II data under the
challenging hypothesis of a uniform phase distribution.

B. Measurement Campaign II

The picture changes drastically if we apply the same Kolmogorov-
Smirnov GOF test just described to MCII data. The corresponding test
results are shown for all three MCII measurement sets in Figure 5.17.
According to the test, the uniform phase hypothesis must be rejected
for about half of all channel taps in a given MCII measurement set.
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C. Discussion

The test results for MCI seem to be unequivocal—the uniform phase
hypothesis does not need to be rejected, except for cluster taps.
For MCII, the situation is not as clear and the corresponding modeling
decision a difficult one. A parsimonious model would ideally use the
same phase distribution in all taps, but if we follow the test results,
we need to reject the uniform phase hypothesis for around half the
channel taps in each measurement set.

Any statistical test can only make use of the information contained
in the data and used in the design of the test; yet, we do know
more, about the measurement environment, about the measurement
system, about the postprocessing steps. Unfortunately, this additional
knowledge does not help to make our modeling decision easier, as the
following considerations show.

• The MCI GOF test statistics are computed on the basis of N = 90
samples, while for MCII, we have 1011 samples in the LOS set,
2722 samples in the OLOS set, and 1256 samples in the NLOS

set available. Hence, our confidence in the test results for MCII

should be higher.
• There does not seem to be a compelling physical reason for the
observed variation in test results from one tap to the next.

• MCII phase variation is either induced by people moving in the
lobby or by inaccurate measurements and postprocessing. The
large impact of our postprocessing on the phase of each tap is
best illustrated by comparing Figure 4.12 with Figure 4.13, where
the difference in phase without and with interpolation-based tap
alignment is shown. Combined with the higher sensitivity of the
test because of the large number of samples, measurement and
postprocessing inaccuracies in MCII might be a possible reason
for the inconclusive result.

• The two taps for which a scatter plot of all measured values is
shown in Figure 5.15 both belong to the set of taps for which the
uniform phase hypothesis needs to be rejected according to the
test result in Figure 5.17a and Figure 5.17b, respectively. The
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5 MARGINAL TAP DISTRIBUTIONS

deviation from uniformity does not seem to follow a common
pattern, an observation bolstered by similar inspections of other
taps.

To summarize: For MCI, the almost unequivocal test results suggest
to model the corresponding tap phases as uniform, while the same
test for MCII does not support a single distribution for the phase of all
impulse response taps; the latter finding might very well result from
imperfections of the measurement system and the postprocessing
steps applied to the raw MCII measurement data. For lack of an
alternative, and appealing to the modeling principles of parsimony and
mathematical tractability, we decide, nevertheless, to model the phase
of all MCII impulse response taps as uniformly distributed around
their means. The uniform distribution is also the maximum entropy
distribution, i.e., the distribution that requires the least number of
assumptions about the physical reality. The combination of a Rayleigh
or Rice amplitude distribution with the uniformly distributed phase
of the zero-mean component results in a proper Gaussian distribution
for each individual tap.
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CHAPTER 6

Second-Order Analysis

Acomplete stochastic description of the block-fading model
(5.1) requires specification of a joint distribution for the
random channel vector h. As it is impossible to collect enough

independent channel samples to use the model selection techniques
presented in the previous chapter as a means of selecting a suitable
joint distribution for h, we need to contend ourselves with a second-
order analysis of this joint distribution.

6.1. THE JOINTLY PROPER GAUSSIAN
DISTRIBUTION

The second-order properties of a complex-valued random vector h are
completely specified by its mean µh , E[h], covariance matrix

Rh , E[(h− µh)(h− µh)†], (6.1)

and pseudocovariance matrix

Jh , E[(h− µh)(h− µh)T ]. (6.2)

The term pseudocovariance matrix seems to originate in a paper by
Neeser and Massey (1993); other commonly used names are comple-
mentary covariance matrix (Schreier and Scharf, 2003) or relation
matrix (Picinbono, 1996).
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A further simplification in the second-order description of complex-
valued random vectors arises if the pseudocovariance vanishes. Such
random vectors are called proper (Neeser and Massey, 1993). If a
complex-valued random vector h is proper, the real and imaginary
parts of a given element of this vector are uncorrelated and of the
same variance; furthermore, the covariance matrix of Re(h) equals
the covariance matrix of Im(h). If a complex-valued random vector h
is JPG, it is completely described by its mean µh and covariance
matrix Rh. JPG vectors are especially amenable to mathematical
analysis because affine transformations of JPG vectors are again JPG.
Therefore, many relations that result from the linear structure of
the space of JPG vectors, like linear estimators, carry over verbatim
to the case of JPG vectors (Miller, 1973). Densities and generating
functions can also be defined for JPG vectors analogously to their
real-valued counterparts (Wooding, 1956; Miller, 1969), and many
fundamental results from real multivariate statistical theory have a
JPG counterpart (Goodman, 1963).

The complex baseband impulse response of a wireless channel is
often taken as a proper random process, or as a proper random
vector in discrete-time, because it seems physically sensible to model
the phase as uniformly distributed for all delays, as discussed in
Section 2.5. This assumption implies that, for a given delay, real and
imaginary part of the impulse response are uncorrelated. A further
common assumption is that the real and imaginary parts of the
impulse response have the same covariance. This assumption can be
justified by the definition of a baseband equivalent signal: the choice
of center frequency is arbitrary, and hence is the choice of real and
imaginary part of the impulse response, so that there does not seem to
be any reason to distinguish the real part from the imaginary part and
break the symmetry. The two conditions just discussed are necessary
for a vector or process to be proper, but they are not sufficient—
the crosscorrelation between imaginary and real parts needs to be
Hermitian symmetric in addition. This latter condition is difficult to
justify on physical grounds, though, and virtually impossible to check
empirically.
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Properness is a sensible modeling assumption for many complex
baseband signals, as it can be shown that a complex baseband repre-
sentation of a real-valued WSS process is proper (Schreier and Scharf,
2003). In our case, though, two complications arise: First, we are
dealing with discrete-time and discrete-frequency signals, for which
the relation between properness and stationarity is more involved
(Picinbono, 1994).∗ Second, our LTI channel impulse responses are
indexed by a delay variable, but wide-sense stationarity in delay is not
a sensible modeling assumption. Nevertheless, virtually all families
used to model the complex baseband channel are proper, e.g., in
the WSSUS model introduced in Section 2.5.3, or for most block-fading
models with tap correlation (Tse and Viswanath, 2005). Similarly, it
is common to specify spatial covariance matrices for multiantenna
channels while the corresponding pseudocovariances are implicitly
assumed to vanish (Paulraj et al., 2003; Goldsmith et al., 2003).
We would like to know if we can sensibly model the measured

UWB channels as proper Gaussian distributed. The analysis in Chap-
ter 5 shows that the individual channel taps of MCI impulse responses
can be described as zero-mean proper Gaussian. The evidence for
proper Gaussian marginal taps is not as compelling for MCII im-
pulse responses, but a proper Gaussian distribution, in this cases
with nonzero mean component, still seems to be a reasonable choice.
Marginal properness does not imply joint properness, and a marginal
Gaussian distribution does not imply that the overall vector is jointly
Gaussian distributed. Unfortunately, it seems to be extremely difficult
to make a sound judgment on the validity of the JPG assumption,
because we do not have enough data relative to the size of the co-
variance and pseudocovariance matrices at hand to reliably estimate
them. Schreier et al. (2006) propose a generalized likelihood ratio test
for properness whose test statistic depends on the covariance and
pseudocovariance matrix of the channel vector. We did not succeed

∗ Picinbono (1994) discusses the relation between stationarity and circularity,
not properness. However, circularity and zero-mean properness are equivalent in
the Gaussian case (Neeser and Massey, 1993).
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computing this test statistic from MCII data because of numerical
instability. The test fails because the JPG property is a global one. We
need to consider the entire covariance matrix and the entire pseudo-
covariance matrix, both of which are described by L2 real variables,∗

where L denotes the length of the impulse response vector. Reliable
estimation of that many parameters even from MCII data is difficult—
not for an isolated entry of the covariance matrix, but in order to
infer structural properties of the entire matrix.
The only possible way to proceed is to indirectly characterize the

joint distribution via low-dimensional quantities that can be reliably
estimated. One such low-dimensional test is to analyze the marginal
distribution of transformed channel vectors. If some random vector x
is JPG distributed, the DFT, or any other linear transformation of x,
will result in another JPG random vector. Therefore, as a simple
heuristic test, we compute the DFTs of all MCII impulse response
vectors h and verify through AIC that the tap amplitudes of the DFT

of h are Rayleigh, respectively Rice, distributed. This simple test does,
of course, not solve the problem to determine if the JPG assumption
on h is sensible, but with no evidence against it so far, we take is as
a working hypothesis in the following.

6.2. INTERTAP CORRELATION

Any baseband channel includes the effect of band-limiting filters;
hence, the corresponding discrete-time complex baseband channel
impulse response cannot have uncorrelated taps, even if the continuous-
time propagation channel was US—a highly idealized modeling as-
sumption, as discussed in Section 2.5.3. Furthermore, the effect of
frequency-dependent propagation paths and a violation of the small
fractional bandwidth assumption from Section 2.3.2 also manifest
themselves in correlation of the complex baseband channel vector.
Because we only have access to measurements of the discrete-time

∗ Any L× L Hermitian matrix is parameterized by L2 free real variables.
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baseband channel impulse response, we cannot separate the three
mentioned sources of tap correlation; but we can analyze if correlation
is significant enough to question the commonly used discrete-time
US assumption.

An unbiased estimate for the channel mean vector µh is the empiri-
cal mean

µ̂h ,
1

N − 1

N∑
n=1

hn, (6.3)

where the hn are the individual measured channel impulse response
vectors in a given measurement set. The channel covariance Rh can
be estimated unbiasedly as

R̂h ,
1
N

N∑
n=1

(hn − µ̂h)(hn − µ̂h)†, (6.4)

which, if the underlying distribution is JPG, is the ML estimate (Good-
man, 1963). If we normalize all entries of this matrix, we obtain the
normalized sample correlation matrix, whose entries are the normal-
ized sample correlation coefficients

ρij ,

[
R̂h

]
ij√[

R̂h

]
ii

[
R̂h

]
jj

, i, j = 0, 1, . . . , L− 1. (6.5)

Every individual correlation coefficient can be estimated quite accu-
rately from MCII data because we have a sufficient number of samples
available; it is the overall structure of the correlation matrix, i.e., the
relation between individual entries, that cannot be estimated reliably.

A plot of the normalized correlation coefficient magnitudes |ρij | is
shown in Figure 6.1 for the MCII LOS measurement set. For ease of
presentation, we compute the corresponding matrix from truncated
channel impulse response vectors of L = 700 taps. The lighter the
shading at a given index pair (i, j) in Figure 6.1, the less correlated
are the ith and the jth tap. Because of the normalization in (6.5), the
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Fig. 6.1: Matrix of normalized correlation coefficients ρij for the MC II LOS mea-
surement setting with d = 20 m, computed fromN = 1011 sample impulse
response vectors of length L = 700 each.

autocorrelation coefficients on the main diagonal satisfy ρii = 1 by
definition for all i. Correlation matrices for the MCII OLOS and NLOS

settings look very similar to the LOS correlation matrix shown, with

210



6.2 INTERTAP CORRELATION

100

100

300

300

400

400

500

500

600

600

700

700

200

200

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.90.8 1.0

1

normalized correlation coefficient magnitude  |ρ| grayscale index

matrix of normalized correlation coefficient magnitudes [|ρ
ij

|]

Fig. 6.2: Matrix of normalized correlation coefficients ρij for the MC I LOS mea-
surement set with d = 27.2 m, computed from N = 90 sample impulse
response vectors of length L = 700 each.

correlation in the OLOS setting a little lower and in the NLOS setting
a little higher than in the LOS setting. Figure 6.2 presents a similar
plot, but computed from MCI LOS data.
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The two plots from MCI and MCII data show some striking similar-
ities but also some curious differences.

• The magnitude of the normalized cross-correlation coefficients ρij
for i 6= j are small, around 0.15 on average in both cases, appar-
ently somewhat smaller in MCI than in MCII. Yet it is impossible
to determine if the values are small enough to be considered
negligible.

• Especially in the MCI plot in Figure 6.2, there are small areas
of high correlation around some points on the main diagonal.
A comparison with the PDP for the same measurement set in
Figure 4.15 indicates that the corresponding tap indices belong
to cluster peaks. But for those “cluster taps” we argued in Sec-
tion 5.5.2.b that strong specular reflections appear in several
neighboring taps because of their delay variation over the virtual
array. Consistent with this interpretation, we find a stronger
clustering effect in Figure 6.2, computed from MCI data, than in
Figure 6.1, computed from MCII data.

• Probably the most curious difference between the MCI and MCII

sample correlation matrices is the hatched structure in Figure 6.1,
which is almost nonexistent in Figure 6.2. Unfortunately, we do
not have an unequivocal explanation for this observation. It might
be related to the fewer number of samples in MCI and thus simply
lost in the noise, but it might equally well result from the not
always perfectly uniform phase of MCII taps, as discussed in
Section 5.7.

In summary, correlation between most taps seems to be low, lower
in MCI than in MCII. However, while individual correlation coefficients
can be estimated quite accurately, we cannot say much about the
overall correlation structure of the channel impulse response vectors
for a lack of sufficient data. Thus, we cannot determine if effects like
band limitation and frequency-dependent propagation paths, which
might lead to correlation of impulse response taps, have a significant
impact on the joint distribution of h.
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6.3. EIGENVALUES AND DEGREES OF
UNCERTAINTY

The receiver of a wireless communication system generally does not
know the instantaneous realizations of the channel coefficients; hence,
it needs to jointly resolve the uncertainty in the transmitted signal
and in the channel. This channel uncertainty can be expected to
increase with increasing bandwidth. For certain US channel models,
it is well known that too much bandwidth can be detrimental in that
the achievable rates over such channels under a peak power constraint
at the transmitter start to decrease if bandwidth is increased beyond
a certain critical bandwidth (Telatar and Tse, 2000; Médard and
Gallager, 2002; Subramanian and Hajek, 2002; Verdú, 2002). This
effect is important for the optimal choice of bandwidth in future
UWB communication systems. To empirically characterize channel
uncertainty, though, we first need to determine how to best measure
and devise an estimator for it.

From a communication-theoretic perspective, a sensible measure of
channel uncertainty is the number of uncorrelated fading dimensions
in signal space. This number is commonly referred to as the diversity
order of a wireless channel; it determines the slope of the high-SNR
error probability curve for coded transmission (Tse and Viswanath,
2005). We prefer to use the term degrees of uncertainty (DOU) here,
because the realization of a diversity gain is contingent on the receiver.
The number of DOUs in a block-fading channel increases linearly over
blocks of time because these blocks fade independently. Thus, we
are interested in the number of DOUs within a single block. If the
channel under study satisfies the discrete-time US assumption, i.e.,
if the taps of the impulse response are uncorrelated, the number
of DOUs is simply given by the number of nonzero taps. However,
the correlation analysis in the preceding section was inconclusive
as to wether significant correlation exists in the channels measured
in MCI and MCII; hence, we have to take a more cautious approach.
The Karhunen-Loève expansion, also known as principal component
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analysis (Anderson, 2003), linearly decomposes a random vector
into uncorrelated components. Mathematically, the Karunen-Loève
expansion is simply a change of coordinates, where the new coordinate
system results from the spectral decomposition of the covariance
matrix Rh of the random vector h under study. Therefore, the number
of uncorrelated components, and hence the number of DOUs is equal to
the number of nonzero eigenvalues of Rh. We denote its lth eigenvalue
by λl, where l = 0, 1, . . . , L− 1, and we assume that the eigenvalues
are arranged in nonincreasing order, i.e., λ0 ≥ λ1 ≥ · · · ≥ λL−1.
As Rh is nonnegative definite, all eigenvalues are real-valued and
nonnegative.

Because we do not know Rh, we also do not know its eigenvalues λl.
Hence, to analyze the scaling behavior of the DOUs with bandwidth,
we need a suitable eigenvalue estimator. As estimated eigenvalues
are never exactly equal to zero, we also need to devise a method to
estimate the effective number of eigenvalues.

6.3.1. Eigenvalue Estimation
Most of the multivariate statistical theory, as presented, e.g., in the
book by Anderson (2003), deals with real-valued sample vectors and
corresponding real covariance matrices. To analyze complex random
vectors z , x+ iy, where x and y are jointly Gaussian, we can always
resort to real statistical analysis on the basis of the stacked random
vector z̃ , [x y]T . However, if z is JPG distributed, many results
can be expressed directly in terms of the complex random vector z
instead of the stacked real vector z̃ (Goodman, 1963). Of particular
importance for the problem at hand is the fact that for a JPG vector z,
each eigenvalue of the covariance matrix E[zz†] appears twice as an
eigenvalue of E[z̃z̃T ] (Schreier and Scharf, 2003); hence, all results
about eigenvalue estimation in the real case also apply to the JPG

case.
The most straightforward estimator for the eigenvalues of Rh are

the eigenvalues of R̂h, which we denote as λ̂l, with l = 0, 1, . . . , L− 1.
As before, we assume that these eigenvalues are arranged in nonin-
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creasing order, i.e., λ̂0 ≥ λ̂1 ≥ · · · ≥ λ̂L−1. Although R̂h, defined
in (6.4), is an unbiased estimator for the covariance matrix Rh, the
eigenvalues λ̂l of R̂h are biased estimates for the eigenvalues λl of Rh if
the number of samples used in the computation of Rh is finite. In par-
ticular, the vector of estimated eigenvalues λ̂ , [λ̂0 λ̂1 · · · λ̂L−1]T is
more dispersed than the vector of eigenvalues λ , [λ0 λ1 · · · λL−1]T ,
i.e., estimates of small eigenvalues are biased down while estimates of
large eigenvalues are biased up (Muirhead, 1987). This property is
apparent in the extreme case where the dimension L of the covariance
matrix Rh is larger than the number N of samples available for its
estimation; then, the corresponding estimate R̂h is rank deficient and
the smallest L−N eigenvalues equal zero. For this reason we need
to confine our analysis to MCII data. But even then the number of
samples is not much larger than the number of parameters we wish to
estimate. For MCII channel impulse responses truncated to L = 700
taps, we have N/L ≈ 1.44 in the LOS setting, N/L ≈ 3.89 in the
OLOS setting, and N/L ≈ 1.79 in the NLOS setting. Clearly, we cannot
satisfy the assumption of N/L� 1, under which most estimators are
derived. Improved eigenvalue estimators were proposed by Anderson
(1965), Stein,∗ and Haff (1980). However, these improved estimators
are still derived for a number of samples that is large compared with
the size of the covariance matrix.
An alternative approach is to devise estimators for the covari-

ance matrix under generalized asymptotes, i.e., for N,L → ∞ with
fixed N/L. Ledoit and Wolf (2004) provide such a covariance matrix
estimator, which is well conditioned and invertible for small sample
sizes. This estimate induces an estimate for the eigenvalues of Rh,
given by

λ̂?l , ζ̂1 + ζ̂2λ̂l, l = 0, 1, . . . , L− 1, (6.6)

where ζ̂1 and ζ̂2 need to be estimated from the data. For typical
parameters ζ̂1 and ζ̂2, the eigenvalue estimate λ̂?l corrects the biased

∗ Cited following Muirhead (1987), as the original references seem to be inac-
cessible.
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sample estimate λ̂l toward 1, i.t., it shrinks the dispersion of the
eigenvalue vector. We compute the estimate (6.6) for all L eigenvalues
from MCII data and find that ζ̂1 ≈ 0 and ζ̂2 ≈ 1, i.e., hardly any
correction is applied compared with the sample eigenvalue λ̂l. This
suggests that N might be large enough to reliably estimate the
eigenvalues λ̂l of R̂h in our case.

6.3.2. Counting the Effective Degrees of Uncertainty
Heuristically, the more a channel tap varies, the more uncertain the
receiver is about this tap. In the coordinate system defined by the
Karunen-Loève transform, the eigenvalues indicate the variance of
their corresponding dimension; hence, a sensible measure for the
number of effective DOUs is how many eigenvalues contribute a fixed
fraction, say 90%, of the total channel variance. A similar criterion has
already been used by Patenaude et al. (1999) to measure the number
of effective diversity branches for channels at 950MHz and 40GHz
center frequency. More precisely, we normalize the total estimated
variance according to

∑L−1
l=0 λ̂l = 1 and declare all eigenvalues λ̂l

with index l ≤ Ls to be significant, where Ls is the largest integer
that satisfies

∑Ls−1
l=0 λ̂l ≤ s, with 0 ≤ s ≤ 1. This criterion essentially

measures the number of diversity branches with an effective branch
receive SNR above an implicitly defined threshold.
Our main interest is in the scaling behavior of the effective DOUs

with bandwidth. Therefore, we compute the just described measure Ls
for various bandwidths in the following way:

1. We truncate all measured impulse responses to a length of 700
taps.

2. We use the DFT to transform all N measured impulse responses
to the frequency domain and compute the empirical covariance
matrix (6.4) from these frequency-domain samples. As the DFT

is a unitary transform, it does not change the eigenvalues of the
covariance matrix.

3. We subdivide the overall bandwidth of 3GHz into 30 intervals of
100MHz each and map this division to the 700 frequency points.
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Fig. 6.3: Number Ls of largest estimated eigenvalues that account for a frac-
tion s of the total channel variance. Computed from N = 1011 MC II olos
samples.

One interval thus corresponds to either 23 or 24 frequency points.
Step by step we reduce the bandwidth from the upper band edge
by pruning the covariance matrix: for each bandwidth reduction
by 100MHz we remove the last 23 respectively 24 rows of the
frequency-domain covariance matrix.

4. We compute the eigenvalues for each pruned covariance matrix.
If the channel taps were uncorrelated, the channel covariance matrix
for each measurement set would be diagonal, and the diagonal would
consist of the PDP after removing the channel mean, like in (4.9). To
test wether the discrete-time US assumption is viable, we treat this
zero-mean PDP as an eigenvalue spectrum and compute its scaling
behavior as just outlined.
The resulting scaling of the number of effective eigenvalues as a

function of bandwidth is shown in Figure 6.3 for the MCII LOS setting,
in Figure 6.4 for the MCII OLOS setting, and in Figure 6.5 for the
MCII NLOS setting. In all three measurement sets, the number of
effective eigenvalues Ls seems to scale approximately linearly with
bandwidth. Physically, this hints at the possibility that the amount
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Fig. 6.4: Number Ls of largest estimated eigenvalues that account for a frac-
tion s of the total channel variance. Computed from N = 2722 MC II OLOS
samples.
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Fig. 6.5: Number Ls of largest estimated eigenvalues that account for a frac-
tion s of the total channel variance. Computed from N = 1256 MC II NLOS
samples.
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of scattering in the environment is not limited over the measured
frequency band. Such a finding lends support to the proper Gaus-
sian tap distribution in Chapter 5, which can be explained by rich
scattering and correspondingly many partial waves arriving over the
duration of each tap. However, we can also observe that the slope of
the eigenvalue vs. bandwidth curve of the hypothetical uncorrelated
channel is higher than the empirical eigenvalue curves in all three
measurement sets. This hints at the existence of intertap correlation;
though, in view of the discussion in Section 6.2 about the tap corre-
lation coefficients, the source of the observed correlation cannot be
unequivocally determined. Another curious observation for which we
do not have a sensible explanation is the decrease of Ls at very large
bandwidth in the NLOS setting shown in Figure 6.5.

To double-check our results, we also use AIC and MDL in the
form described by Wax and Kailath (1985). Both criteria are often
used to determine the number of signals impinging on a linear array.
We adapt both criteria following Zhao et al. (1986) to take into
account the noise color introduced through the calibration process.
The application of information criteria to determine the number of
signals is structurally equivalent to our problem of discerning the
number of nonzero eigenvalues (Stoica and Selén, 2004). Both AIC

and MDL show an approximately linear scaling behavior of the number
of eigenvalues as a function of bandwidth, consistent with the findings
reported here.

We mention in Section 6.3.1 that the eigenvalues of the sample
covariance matrix R̂h are biased estimates for the eigenvalues of the
channel covariance matrix Rh itself and discuss several improved
eigenvalue estimators. To bolster the claim that our eigenvalue esti-
mates are accurate enough to indicate the correct scaling of Ls, we
recompute the number of eigenvalues as a function of bandwidth for
the improved eigenvalue estimators by Anderson (1965), Stein (Muir-
head, 1987), and Haff (1980). The result for the MCII OLOS setting
with s = 0.9 in Figure 6.6 shows that the scaling behavior is indeed
unchanged, although a small correction of the slope is apparent.
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Fig. 6.6: Comparison of different eigenvalue estimates on the scaling behavior
of the number of significant eigenvalues that account for 90% of the total
variance in the channel. Estimated from 2722 MC II OLOS samples.

Contradicting Results

Our finding on the scaling of the number of DOUs with bandwidth
seems to be consistent with other observations from our measurements,
yet it is inconsistent with a similar analysis by Menouni Hayar et al.
(2005),∗ who found a sublinear scaling of the DOUs. As often in
experimental work, we can think of several explanations for this
difference, but we cannot be certain which one is correct.

• Our measurement system might have introduced artifacts. One
prominent impairment that might lead to an inflation of the
number of DOUs is sampling jitter (Balakrishnan, 1962; Brown,
1963; Liu and Stanley, 1965). To check if the different scaling
behavior indeed results from sampling jitter introduced by the
DSO, we used data from Menouni Hayar et al. (2005) and artifi-
cially added sampling jitter. We found that jitter with standard
deviation of 10 ps, almost ten times more than given in our DSO

∗ See also the papers by Saadane et al. (2004, 2005).
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specification, is too small to have any noticeable effect upon the
number of significant eigenvalues.

• The way how the DOUs are measured is different in our analysis
compared with the analysis by Menouni Hayar et al. (2005).

• The measurement setup of Menouni Hayar et al. (2005) is different
from our MCII, more similar to MCI, with a VNA as measurement
device and a virtual array to induce channel variation.

If indeed the different sources of channel variation—motion of the
entire propagation environment relative to the antennas compared
with the motion within a fixed environment of people only—lead to
the different scaling behavior, the design implications for UWB com-
munication system could be quite far-reaching. However, we were not
able to test this hypothesis.

6.4 . CAPACITY ESTIMATES

Statistical channel models are typically used to predict the perfor-
mance of communication systems. Because the most fundamental
performance measure is the channel capacity C, the goal of this
section is to assess the approximation quality of the discrete-time
block-fading channel model with JPG taps of nonzero mean with
respect to the capacity directly estimated from MCII data. To this end
we use the Monte-Carlo method (MCM) to synthesize JPG-distributed
impulse responses with either uncorrelated or correlated taps; mean
and covariance in both cases are ML-estimated from MCII data, as
described in Section 5.3.2. Throughout, we assume no instantaneous
channel state information (CSI) at the transmitter and perfect CSI at
the receiver, i.e., we consider the coherent setting, mainly because no
closed-form capacity expression is known for the noncoherent case.
A detailed study of the noncoherent capacity of wideband channels,
albeit on the basis of the discretized WSSUS model from Section 3.2.4,
is the theme of Part III.
The coherent mutual information of a block-fading channel with

random transfer function H(f) and additive white Gaussian noise is
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a random variable I, given as (Biglieri et al., 1998)

I =

B/2∫
−B/2

log(1 + snr |H(f)|2)df [nat/s]. (6.7)

6.4.1. Ergodic Capacity
An estimate∗ of the ergodic capacity C = E[I] on the basis of N sam-
ples of the discrete-time channel impulse response h can be obtained
as (Hirt and Massey, 1988; Bölcskei et al., 2002a)

Ĉ =
1
N

N∑
n=1

L−1∑
l=0

log
(

1 +
P

LN0
|Hn[l]|2

)
[nat/s] (6.8)

where
[
Hn[0] Hn[1] . . . Hn[L− 1]

]T is the length-L DFT of the nth
channel vector sample hn. The average transmit power is constrained
to P , allocated uniformly over all L parallel channels, and N0 is the
noise variance in each parallel channel. This estimate does not assume
a specific distribution of the taps, nor does it impose any correlation
structure between taps. We compute the capacity estimate (6.8) from
the measured and the synthesized impulse responses as a function of
bandwidth B. All impulse responses are normalized to unit average
power and truncated after L = 701 taps. The result for the MCII NLOS

setting, along with the capacity of the AWGN channel with the same
receive SNR, is shown in Figure 6.7. For this figure, we set P/N0 =
10 dB and use L = 5608 parallel channels at B = 3 GHz. The channel
synthesized according to the uncorrelated Ricean model predicts the
ergodic capacity of the measured channel very accurately, with a
relative mean squared error at P/N0 = 10 dB of less than 0.3% in
the NLOS setting, less than 0.2% in the OLOS setting, and less than
0.07% in the LOS setting. The corresponding plots for the latter two

∗ The estimator (6.8) is a so-called plug-in estimate (Efron and Tibshirani,
1993); effectively, we use the empirical CDF in lieu of the operating CDF.
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Fig. 6.7: Estimated capacity Ĉ according to (6.8) from 1265 MC II NLOS sam-
ples, Monte-Carlo capacity estimate of the corresponding synthetic channel,
and AWGN channel capacity. P/N0 = 10 dB.

measurement sets are not shown here because they are very similar
to Figure 6.7.

6.4.2. Outage Capacity
For slow-fading channels (Ozarow et al., 1994; Tse and Viswanath,
2005), the ε-outage capacity Cε, defined as P(I < Cε) ≤ ε, is a more
sensible performance measure than the ergodic capacity (Biglieri
et al., 1998). Figure 6.8 shows empirical CDFs of I for the measured
LOS channel and two synthetic channels. One of the synthetic channels
takes into account intertap correlation according to R̂h, i.e., the
individual MCM samples are drawn according to a JPG distribution
with covariance matrix R̂h. Measured and synthetic channels behave
quite differently at low outage probabilities. For the measured channel,
the large change in mutual information from 8.8nat to 9.3nat at
nearly constant outage probability of 0.12 indicates a reduction in
total received power for some channel realizations.
In fact, a simulation experiment shows that it suffices to heavily

attenuate the cluster taps of the strongest cluster in the synthesized
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Fig. 6.8: Empirical CDF of the instantaneous mutual information for MC II LOS
data, and Monte-Carlo estimate of the CDF for the corresponding synthetic
channels. P/N0 = 10 dB.

LOS impulse responses in 10% of all realizations to observe an even
stronger increase in outage probability than in Figure 6.8. The em-
pirical CDF of the resulting simulated impulse responses is shown in
Figure 6.9. A possible physical explanation for the drop in received
power in some channel realizations is that persons moving in the
lobby might have sometimes blocked the LOS or some other propa-
gation paths that convey a significant fraction of the total energy.
Indeed, the LOS between transmitting and receiving antenna was
frequently blocked in the MCII LOS setting because both antennas
were positioned at a height of approximately 1.6m above the floor.

Although it is common practice in channel modeling to separate
shadowing and small-scale fading, this separation is not an intrinsic
property of the channel but a modeling assumption. Figure 6.8 indi-
cates that this assumption might not always be valid for the measured
channels of MCII. The distribution of the multiplicative shadowing
random variable that leads to the best agreement between simulated
CDFs and the CDF estimated from MCII LOS data is bimodal, to model
presence or absence of a person blocking a dominant propagation
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Fig. 6.9: Empirical CDF of the instantaneous mutual information for MC II LOS
data, and Monte-Carlo estimate of the CDF for the corresponding synthetic
channels with cluster taps shadowed in 10 % of all channel realizations.
P/N0 = 10 dB.

path; this is in stark contrast to the commonly used lognormal distri-
bution for shadow fading. Scatter plots for individual taps support the
finding that only a small number of taps are affected by shadowing.
The AIC-best distribution for these taps is most often the Weibull
distribution, consistent with our findings in Section 5.6. Shadowing
has an even larger impact on the CDF of the mutual information in
the NLOS setting, because the overall received SNR is lower, while the
impact in the OLOS setting is smaller for the LOS setting depicted in
Fig. 6.8.

6.5. SUMMARY AND DISCUSSION

The stated goal in this part of the thesis was to empirically assess the
validity of standard modeling assumptions for channels of very wide
bandwidth, in particular the proper Gaussian distribution of channel
taps, the US assumption, and the scaling of the number of DOUs
with bandwidth, as detailed in Section 4.3.1. To this end, we devised
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two UWB measurement campaigns and presented statistical methods
to answer the three modeling questions on the basis of measured data.
Despite the recent advances in measurement and instrumentation
technology, channel sounding with several gigahertz bandwidth is
still challenging; consequently, it is sometimes difficult to discern
measurement artifacts from channel effects, as evinced in the analysis
of the intertap correlation in Section 6.2. The single most important
hurdle to obtain statistically sound results is the lack of an adequate
number of measurements that can be reasonably well considered as
a random sample. For this reason, we sometimes have to resort to
extrinsic modeling criteria like mathematical tractability or modeling
convention to bridge empirical gaps. A common argument of ours
if empirical results are inconclusive can be best summarized as “if
it ain’t broke don’t fix it,” i.e., we use a well established tried and
proven standard model as long as the data does not clearly falsify
said model. This is an engineering approach and not scientifically
and epistemologically completely sound; nevertheless, as models of
wireless channels ultimately are tools to solve engineering problems,
we believe that our results can be valuable to this end; they provide
design guidelines for wireless systems that operate over channels of
large bandwidth. On the one hand, our results dispel some apparently
common believes that basic communication theory for UWB channels
is fundamentally different from the theory used to design systems
of several megahertz bandwidth; on the other hand, we found some
interesting aspects of wideband channels not accounted for in the
present theory that might be beneficially used in future wideband
systems.

6.5.1. Marginal Tap Distributions

The model selection criterion AIC allows us to compare the suitability
of different fitted amplitude distributions. Both the analysis of indi-
vidual taps as well as the variation of the Akaike weights across taps
yield interesting results.
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A. Individual Taps

Especially surprising is the bad fit of the lognormal family for bothMCI

and MCII data, as this family of amplitude distributions was found to
provide a good fit in some early UWB measurement campaigns and
was consequently adopted in the channel model of the IEEE 802.15.3a
Task Group (Foerster, 2003). The differentiation between the other
candidate families is not as clear cut, which hints at the fact that there
is not enough evidence in our measurement data to unequivocally
select a single family on the basis of the data alone; the Akaike
weights reveal that the differences between the Rayleigh family and
the Rice, Nakagami, and Weibull families in MCI and between the
Rice family and the Weibull family in MCII are often small. One
possible resolution of this ambiguous statistical result is multimodel
inference (Burnham and Anderson, 2002), i.e., to simultaneously use
different amplitude distributions and average the results of whatever
analysis we wish to perform on the basis of these models. The Akaike
weights can be used to weight the different results in a final averaging
step. Because of its inherent complexity, such a multimodel approach
appears to be suitable only in the simulation stage of a design, not
for manual analysis.

For initial analysis and design, the small differences between differ-
ent candidate families mandate the use of the simplest possible model
that is still good enough (see the modeling principles outlined in
Section 2.1). The AIC results from Chapter 5 favor the Rayleigh and
Rice amplitude distributions, although not always by a strong margin;
hence, we believe that for most analysis purposes, these two families
are well suited to model small scale fading even of UWB channels.
Because the differences between the analyzed amplitude distributions
are often small, analyses performed on the basis of either family
should yield similar results. Widely differing performance predictions
for a specific modulation and coding technique and a specific type of
receiver between, say, Nakagami or Ricean fading should not be taken
as an indication of huge possible gains to be had if only the system
was designed to take advantage of the specific features of either the
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Nakagami or the Rice distribution for some parameter setting but
rather as a warning to rethink ones modeling assumptions. To state
it more bluntly, there appears to be no need for analysis and design
of systems for fading different than Rayleigh and Ricean.

Most of the appeal of the Rayleigh and Rice amplitude distribution
results from the link to the proper Gaussian distribution. Our analysis
in Section 5.7 shows that a zero-mean proper Gaussian distribution
for each individual channel tap is a sensible model for MCI, while
the tests performed on the basis of MCII data do not provide a clear
answer to the question if all MCII taps can sensibly be modeled as
proper Gaussian with nonzero mean. On the other hand, we also
did not find evidence that clearly contradicts the proper Gaussian
assumption. Hence, without a clear alternative, and referring again
to the criterion of parsimony and tractability of a suitable model, we
believe that the complex Gaussian distribution is a suitable working
hypothesis for channels similar to the one measured in MCII.

B. Cluster Taps in MC I

Not all channel taps in MCI can be sensibly modeled as complex Gaus-
sian, the cluster taps, as we called them, are distinct. The straight-
forward consequence would be to model cluster tap amplitudes as
Weibull or lognormal distributed.∗ However, we do not believe that
such a modeling approach is sensible. Certainly not to keep the model
tractable; but more importantly, we do not believe a system designed
on the basis of such a model would offer any performance advantage.
Instead, the physical cause for the distinct distribution of cluster taps
needs to be taken into account and exploited by a viable design.

We argued in Section 5.5.2.b that the cluster tap amplitudes follow
a distribution distinct from the ordinary taps because a single strong
specular reflection contributes to several adjacent taps. But such a
distinct arrival that moves between taps as the transmitter or the

∗ We might even presume that it is the distinction of the cluster taps that has
lead to the adoption of the lognormal distribution in the IEEE 802.15.3a standard
model.
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receiver is displaced violates the small-scale fading assumption, i.e.,
the assumption that the channel impulse response at different points
on the virtual array can be treated as independent realizations of the
same random vector.∗ Thus, the difference in Akaike weights for the
cluster taps is a manifestation of a large-scale effect, and modeling it in
a small-scale fashion, by means of a small-scale amplitude distribution,
is not a sensible approach. Instead, a system should exploit the clusters
and track them over time, as the corresponding taps convey more
energy than other taps in the impulse response, and they are less
affected by fading.† For example, a receiver that can track not just the
first arrival but also subsequent specular reflections can use a selective
rake combiner with less fingers than a conventional rake receiver of
comparable performance that simply weights all taps according to
the channel’s PDP (Win and Scholtz, 2002). Yet to design such a
system, the channel model needs to be time variant and correctly
reproduce the time variation of strong specular reflections. An SV-type
model is not suitable here, because the cluster excess delays τl in (3.3)
change in a completely random fashion between individual channel
realizations. Much more appropriate is a GSCM, as discussed briefly
in Section 4.2.2.d.

C. Ricean Component in MC II

Our finding in Section 5.6 that virtually all taps in an MCII impulse
response have a strong mean component around which the channel
fluctuates is not novel, Bultitude et al. (1989) and Hashemi et al.
(1994) reported similar observations. Apparently not much attention
has been paid to these results almost 20 years ago, when mobile
telephony was the main driver of wireless technology. Nowadays,
many wireless systems operate with predominantly static terminals—
they are to serve as cable replacements in WPANs, in sensor networks,
or as links between stationary laptop computers and access points.

∗ For details, refer to the design of the virtual array described in Section 4.4.1.b.
† The lognormal amplitude distribution with its heavy right tail predicts exactly

the opposite, that cluster taps are more severely faded.
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In all those settings we may expect the channel to feature a strong
mean component in every impulse response tap because the major
features of the environment do not change relative to transmitter and
receiver. Such a mean component in each tap greatly decreases the
channel uncertainty the receiver needs to resolve; in fact, there might
exist DOFs that are not affected by fading at all (Nabar et al., 2005;
Gärtner and Bölcskei, 2007).

6.5.2. Joint Tap Distribution

Statistical analysis of the joint distribution of an entire channel
impulse response is practically infeasible because of the huge number
of samples that would be required for most statistical methods. Our
working hypothesis of proper complex Gaussian taps suggests to
use a JPG distribution for the entire channel vector. This choice is
mathematically appealing because it is virtually the only tractable
multivariate distribution. Yet this lack of alternatives puts us into a
methodological dilemma: An unbiased statistical analysis is supposed
to weight all options only on the basis of the available data. But we
know already in advance that there is only a single viable option;
hence, there is great danger to interpret all findings in a way to
fit this anticipated result. Indeed, this is to some extent what we
did in the preceding sections. Most of the multivariate analysis we
performed had the goal to identify if the data openly violated some of
the key consequences of a JPG distribution. In statistical language, we
performed a hypothesis test where the incumbent hypothesis was the
JPG distribution of the channel vector and the challenging hypothesis
was its converse. On the basis of the data alone, incumbent and
challenging hypothesis should be exchanged, but on physical grounds
and from the vast experience of working wireless communication
systems designed on the basis of a JPG channel model, this methodical
mistake may be acceptable, although it cannot be fully justified.
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A. Tap Correlation

Taken individually, most taps in MCII impulse responses are only
weakly correlated, with magnitude of the normalized correlation co-
efficient around 0.15 on average. For such low intertap correlation,
Intarapanich et al. (2004) and Xiao and Zheng (2004) observe only a
small decrease in coherent ergodic capacity compared with the uncor-
related case in their numerical analyses. However, both results are for
channels with few taps only and assume perfect CSI at the receiver; it
is not clear if small intertap correlation is equally unimportant for the
performance of noncoherent wireless receivers, in which we are mainly
interested in the thesis. While intertap correlation is detrimental in
the coherent setting, it might actually be beneficial in the noncoherent
setting as it can help to reduce channel uncertainty at the receiver.
Indeed, we find in Section 7.7 that correlation between antennas can
boost noncoherent capacity. As multiple antennas at transmitter and
receiver are a source of DOFs just as bandwidth, the hypothesis that
tap correlation may be beneficial seems reasonable.

B. Degrees of Uncertainty

The accuracy of multivariate statistical methods increases with shrink-
ing dimension of the random vector under study. For this reason the
eigenvalue estimation and the scaling analysis of the number of DOUs
in Section 6.3 are relatively robust, as indicated by the similar results
of the different eigenvalue estimates in Figure 6.6. The finding of a
linear scaling of the number of DOUs with bandwidth is consistent
with the physical justification of the proper Gaussian tap distributions
even for 3GHz channel bandwidth, yet it is not consistent with find-
ings by Menouni Hayar et al. (2005). We conjecture in Section 6.3.2
that the difference might result because we estimate the eigenvalues
of the channel’s covariance matrix from MCII data, where all chan-
nel variation results form moving people in the lobby, whereas the
eigenvalue scaling result by Menouni Hayar et al. (2005) derives from
measurements similar to our MCI, where the antennas move with
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respect to the fixed environment. In the latter setting, all major reflec-
tors and scatterers maintain their geometrical configuration relative
to each other, whereas the relative location of people as time-variant
scattering objects in our MCII varies. This difference between the two
measurement campaigns might indeed be the reason for the different
scaling behavior, but so far we are not aware of any physical expla-
nation of this phenomenon. Furthermore, with only two independent
measurement campaigns that result in two different findings, neither
of the two results should be given too much significance until fur-
ther independent measurement campaigns either substantiate the two
different scaling behaviors of the two different types of channels or
falsify at least one of them.
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PART III

CAPACITY OF MULTIANTENNA
WSSUS CHANNELS
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CHAPTER 7

Capacity Bounds

The theme of the previous two parts of this thesis was channel
modeling, both from a theoretical and an empirical perspec-
tive. Yet, a channel model is not an end in itself but—in

our case—a tool for analysis and design of wireless communication
systems that operate not over the channel as modeled but over real-
world channels of which the model is only a more or less accurate
approximation. In this third part of the thesis, we make use of the
modeling efforts just presented to analyze the performance attainable
over wideband wireless channels. In doing so, we continue the over-
all theme of this thesis to analyze fundamental effects rather than
specifics of particular communication systems. Therefore, the natural
setting is information theoretic, and we are interested in the capacity
of wireless channels as the ultimate performance limit on information
transmission (Gallager, 1968; Cover and Thomas, 1991).

Operational capacity of a given channel—the supremum of all rates
achievable with arbitrarily small probability of error—is a benchmark
for the design of any practical wireless system. But the most important
asset of a capacity expression besides its numerical value is the insight
it offers into which channel mechanisms, which system parameters, and
which constraints are fundamental, i.e., significantly change capacity.
These insights, often a result of the techniques used to compute or
bound channel capacity, provide guidelines for the design of practical
systems, e.g., how to best utilize the resources DOFs and power, and
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how to design efficient modulation and coding schemes (Biglieri et al.,
1998, Section III.3).

The main results of the present chapter are upper and lower bounds
on the capacity of wideband multiantenna channels that are selective
in time and frequency. The material presented in the current and the
next chapter builds on many contributions of Dr. G. Durisi; in fact,
all the results are the outcome of a fruitful cooperation (Durisi et al.,
2007, 2008; Schuster et al., 2009).

7.1. FROM CHANNEL TO SYSTEM MODEL

Capacity analysis of fading channels requires a system model, not just
a channel model. Although both terms are often used synonymously in
the information-theoretic literature, we prefer to keep them separate
in the light of the specific channel models developed in the previous
chapters.

7.1.1. Aspects of a Realistic System Model
A system model is more comprehensive than a channel model because
it specifies power constraints, the amount of channel knowledge avail-
able at the terminals, possible processing steps like interleaving or
power control, the user configuration in a multiuser system, feedback
links, and any further application and implementation constraints, all
in addition to the basic channel model. Our goal here is to analyze
the capacity of a system model that is of practical importance. Like
in all our modeling efforts discussed so far, we need to strike a bal-
ance between complexity and tractability of the model. Therefore, we
restrict our attention to aspects that are both of practical interest as
well as fundamental. In particular:

1. Neither transmitter nor receiver know the realization of the chan-
nel: As the received signal is always corrupted by thermal noise
and other impairments, even the best estimate of the channel
coefficients cannot be perfectly accurate. Without perfect chan-
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nel knowledge at the receiver, perfect channel knowledge at the
transmitter is impossible as well, even in the rather unrealistic
case of an error-free instantaneous or even anticausal feedback
link. The amount of channel knowledge is a fundamental as-
pect: lack of perfect CSI drastically alters the low-SNR capacity
behavior (Verdú, 2002); channel capacity with perfect channel
knowledge at the receiver is always larger than the capacity
without channel knowledge (Médard, 2000), and the signaling
schemes necessary to achieve capacity are also very different in
the two cases (Biglieri et al., 1998).

2. Channel fading is selective in time and frequency: i.e., the chan-
nel exhibits memory in frequency and time. Frequency selectivity
is realistic for channels of very wide bandwidth, even in indoor
environments with small delay spread. Time selectivity is an
equally realistic modeling assumption, as either the terminals or
the propagation environment change over time in virtually all ap-
plication scenarios. Channel selectivity over time and frequency
is fundamental as it significantly impacts capacity behavior. For
example, without instantaneous channel knowledge, the capacity
of a block-fading channel scales differently with increasing SNR

than the capacity of certain types of channels with stationary
time variation, as shown by Lapidoth and Moser (2003) and
Lapidoth (2005); furthermore, different types of frequency selec-
tivity may result in different capacity behavior at low SNR and
large bandwidth (Porrat et al., 2007).

3. The peak power of the transmitted signal is limited. This assump-
tion is of practical importance as any power amplifier has finite
gain and every mobile transmitter has limited battery resources.
In addition, regulatory bodies often constrain the admissible
radiated power. However, it is more common in information-
theoretic analysis to constrain the average power of the transmit-
ted signal. The type of power constraint—peak vs. average—is
fundamental: while capacity increases with bandwidth and the
infinite-bandwidth AWGN capacity can be attained asymptoti-
cally if a constraint on the average transmitted power only is
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in place (Pierce, 1966; Kennedy, 1969; Gallager, 1968; Verdú,
2002; Durisi et al., 2006), certain types of peak constraints can
lead to vanishing capacity in the large bandwidth limit (Telatar
and Tse, 2000; Médard and Gallager, 2002; Subramanian and
Hajek, 2002).

The attainable SNR in all practical receivers is limited because of
limited resolution of the ADC, limited operating range of the amplifi-
cation stages, phase noise, and other impairments. For the systems of
large bandwidth we are interested in, this means that the SNR per
DOF is often very low. Therefore, we primarily analyze capacity at
large bandwidth and correspondingly low SNR.

7.1.2. Modeling Assumptions
With the requirements established, we can now review the modeling
results of Part I and the empirical evidence of Part II to determine a
suitable channel description that, in combination with the mentioned
system aspects, allows us to analyze the capacity of wideband wireless
systems of practical interest.

A. Single-Antenna Channel

The requirements just outlined in combination with the empirical
results in Part II suggest∗ to use one specific channel model discussed
in Part I, namely, the WSSUS model in Section 2.5.3, chiefly because
this model captures channel selectivity in time and in frequency.
However, the WSSUS model entails several assumptions that need to
be scrutinized.

Tap distribution: Our empirical analysis suggests to model the in-
dividual tap amplitudes as Rayleigh, respectively Rice distributed.
Although the analysis of the tap phases and of the joint tap distribu-

∗ Although the requirements may strongly suggest to analyze the underspread
WSSUS model in Section 2.5.3, these requirements themselves are not set in stone
but result from our personal and subjective preferences and experience.
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tion did not yield equally strong results in favor of the JPG distribution
as a suitable joint distribution of the channel impulse response, we
did not find a compelling reason to abandon this mathematically
tractable model, i.e., we did not find strong evidence to discount the
standard WSSUS model’s JPG-distributed two-dimensional channel
process.

Uncorrelated scattering: The US assumption is difficult to analyze
empirically. Our correlation analysis in Section 6.2 is inconclusive:
correlation between taps is low in general, its impact on the coherent
mutual information, discussed in Section 6.4.2, is weak, yet we find
in Section 6.3.2 that tap correlation has an observable impact on the
number of significant eigenvalues of the channel covariance matrix.
On physical grounds, the channel cannot be US as it cannot be WSS in
frequency: the effective baseband channel is band limited, and channel
attenuation increases with increasing frequency. But for capacity
analysis of real-world systems, it suffices if the US assumption is a
sensible model for bandwidths of practical interest. The fundamental
implication of channel correlation is the scaling behavior of the DOUs
with bandwidth. The US assumption entails linear scaling, which is
also what we find in our empirical study in Section 6.3.2. However,
it is difficult to reconcile the US assumption with the strong mean
component we found in all MCII impulse response taps. For the
channel to be US, it needs to be WSS in frequency, so that a nonzero
mean in all time-domain channel taps would need to result in an
equal mean across all frequency points. As we do not find such a
constant nonzero mean over frequency in MCII data, the analysis in
the following sections pertains only to settings where at least one of
the terminals is mobile and all channel taps can be assumed to have
zero mean, as in the setting of MCI. Those settings are exactly the
ones that lead to the type of time- and frequency-selective channels
we are interested in, and it is for these settings that we believe the
US assumption to be reasonable over frequency bands of practical
interest.
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Stationarity: We did not assess the WSS assumption in Part II
because we could not record time-variant channels with the mea-
surement equipment we had available. Some findings, like the PDP

clusters in the LOS setting that change only slowly over time and can
be related to major reflectors in the environment, may render the
WSS assumption questionable. In the OLOS and LOS settings, however,
the impact of specular reflections seems to be greatly diminished. Yet,
without first-hand time-variant data, it is difficult to decide if the
WSS assumption needs to be discarded altogether, or if it is sufficient
to take special care of specular reflections in the channel impulse
response. Most importantly, the WSS assumption in time needs to
hold reasonably well only over time intervals of interest, i.e., for the
duration of a transmitted packet, frame, or codeword, whichever
constitutes the longest entity to be jointly processed at the receiver.

The standard WSSUS model is not well suited for information-
theoretic studies because it is continuous in time and frequency. But
the approximate diagonalization presented in Section 3.2 is; indeed,
we believe that it is better suited for the specific setting at hand
than most other discretizations because (i) for a suitable choice of the
prototype pulse g(t) and of the time-frequency shift parameters T
and F , the error incurred in the approximation of the kernel kH(t, t′)
in (3.16) is minimized. As the optimal choice of g(t), T , and F de-
pends on the channel’s scattering function cs(ν, τ) as discussed in
Section 3.2.3, we say that the approximate diagonalization (3.16) is
a matched expansion of the LTV channel H (Kozek, 1997a); (ii) the
approximate diagonalization explicitly uses that wireless channels
are highly underspread; thus, it exploits an important property of
wireless channels that is not made use of in other types of channel
decompositions, cf. the basis expansion model of Giannakis and Te-
pedelenlioǧlu (1998) or the sampling decomposition of Médard (1995);
(iii) the approximate eigenvectors of the matched Weyl-Heisenberg
expansion (3.16) are deterministic, so that the diagonalization (3.34)
does not require instantaneous channel knowledge at the transmitter
and at the receiver, but knowledge of the channel’s scattering function
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only; (iv) the prototype pulse g(t) of the expansion can be chosen to
be well TF localized, so that the canonical input signal (3.33) suit-
ably models the fact that real-world transmitted signals are always
effectively time and band limited; (v) the link between the resulting
discretized channel model and the continuous-time WSSUS model
allows to express results directly in terms of the channel’s scattering
function, which can be estimated from measurements∗ (Gaarder, 1968;
Artés et al., 2004); (vi) the canonical IO relation (3.34) on the basis
of the Weyl-Heisenberg transmission set {gk,n(t)} can be interpreted
as PS-OFDM, which is a practical transmission scheme (see the dis-
cussion in Section 3.2.5); furthermore, the matching rule (3.47) for T
and F and the conditions on g(t) reviewed in Section 3.2 give design
guidelines to jointly mitigate ISI and ICI. With hindsight, these bene-
fits explain the prominent exposition of the discretized underspread
WSSUS model in Section 3.2.

B. Multiantenna Extension

Although practical wireless systems are in general designed to serve
multiple users, we limit our analysis to a single point-to-point link,
because capacity in the noncoherent setting is unknown even for this
simple case. We do, however, take a very small first step that might at
some future time enable an extension of our results to the multiuser
setting: we augment the SISO channel model of Section 3.2 to a MIMO

channel model. As will become clear in Section 7.3, this extension
is primarily a formal one, i.e., without physical modeling support.
We directly extend the standard narrowband multiantenna channel
description established in the information-theoretic multiantenna
literature (Telatar, 1999; Foschini and Gans, 1998; Paulraj et al.,
2003; Goldsmith et al., 2003) to the case that the component channels
between individual transmit and receive antennas are described by the
discretized and diagonalized WSSUS channel model from Section 3.2.
While we spent much effort in the previous chapters to analyze the

∗ As discussed in Section 4.3.3 time variant measurements of UWB channels
are still extremely challenging to date.
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small-scale fading model on which we base the capacity analysis for a
point-to-point link in the present chapter, we did not concern ourselves
with theoretical and experimental assessment of the spatial channel
properties required for a physically sound description of multiantenna
channels (Steinbauer et al., 2001; Vaughan and Bach Andersen, 2003;
Poon et al., 2004). The standard approach to model the multiantenna
channel by means of matrix-valued channel coefficients is sensible for
small bandwidth, but becomes questionable as bandwidth increases.
Antenna patterns start to play an important role, as they often
show great variation with frequency (e.g., see the pattern of the
measurement antenna in Figure 4.4), and the narrowband array
assumption (van Trees, 2002; Tse and Viswanath, 2005), which lies
at the heart of the standard MIMO channel model, breaks down. The
question what constitutes a sensible wideband multiantenna channel
model is certainly an important and interesting one, but goes far
beyond the scope of the present work.

Many spatial channel properties result in spatial correlation of the
component channels between individual transmit and receive anten-
nas. We provision for such correlation in our multiantenna extension,
though we do not describe its physical basis nor do we provide em-
pirical assessment of spatial correlation. But we may hope that the
generality of our MIMO extension covers some cases of practical inter-
est, so that future measurement results may be mapped to the model
to be presented in Section 7.3.

C. System

The amount of channel knowledge at the transmitter and the receiver
can be modeled in different gradations. We use the common assump-
tion that neither transmitter nor receiver know the realization of the
channel process, but both know the channel law. This assumption is
commonly referred to as the noncoherent setting, as opposed to the
coherent setting, where the receiver has perfect CSI while the trans-
mitter knows the channel law only. Perfect knowledge of the channel
law is still a rather strong assumption, yet a much more reasonable
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one than perfect knowledge of the channel realization. For the WSSUS

model, knowledge of the channel law amounts to knowledge of the
scattering function, which the receiver can measure with reasonable
accuracy even during data transmission (Artés et al., 2004).
A constraint on the average power of the transmitted signal is

suitable to model effects such as a limited battery capacity of mo-
bile devices and limited cooling of integrated circuits. But such an
average-power constraint alone is not realistic, as already outlined. All
physically realizable power amplifiers can only provided limited out-
put power (Gray et al., 2001), and regulatory bodies often constrain
the maximum radiated power at a specified distance from the trans-
mitter. Therefore, we also limit the peak power of the transmitted
signal. Various possibilities exist to model such a peak limitation: per
antenna or summed over all antennas (Sethuraman et al., 2007); as a
constraint on the peak signal value or on higher-order moments (Mé-
dard and Gallager, 2002; Subramanian and Hajek, 2002); as a fixed
value or in relation to the constraint on the average power (Hajek and
Subramanian, 2002); in a given frequency band or accumulated over
the entire bandwidth. In consideration of current UWB regulations,
we limit the peak radiated power in a given frequency band, i.e., we
place a hard limit on the squared magnitude of the transmit signal in
a given frequency band and summed over all transmit antennas.

As already discussed, we do not analyze notions of multiuser capac-
ity; neither do we explicitly take into account interference from other
users. Instead, we simply aggregate all impairments besides fading in
an additive noise term.

7.2. RELATED CAPACITY RESULTS

In the following, we give a brief overview of capacity results for fading
channels to put our work into perspective. We limit our discussion
to the noncoherent single-user setting, as channel capacity in the
coherent setting is well understood and widely documented, e.g., in
the extensive survey by Biglieri et al. (1998), or in standard textbooks
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like the one by Tse and Viswanath (2005).
A multitude of possibilities exist to model power constraints and

channel variation in noncoherent communication systems; equally
diverse are the available results on the capacity of those systems.
A common trait of all these results, however, is that a closed-form
capacity expression is not known, even for the seemingly simple memo-
ryless and frequency flat Rayleigh-fading channel (Abou-Faycal et al.,
2001). Nevertheless, several asymptotic results exist for both snr→∞
and snr→ 0.

7.2.1. High-SNR Regime
The performance of wireless systems at high SNR has been the focus
of much research in the past in terms of channel capacity, capacity
versus outage, and error probability, mainly because many widely
used communication system that operate over a relatively narrow
frequency band, say, up to several megahertz bandwidth, also operate
at high SNR. Because the bandwidth of such systems is small, the
high total receive SNR of 20dB and more in practice implies a high
effective SNR, i.e., high SNR per DOF.

As no closed-form expressions for capacity are known in the nonco-
herent setting, one resorts to characterizing the scaling behavior of
capacity as SNR grows without bound. This scaling behavior is highly
sensitive to the channel model used. In the AWGN channel and in
coherent fading channels, both subject to an average-power constraint,
capacity scales logarithmically with increasing power (Telatar, 1999;
Tse and Viswanath, 2005); logarithmic capacity scaling with SNR also
holds for noncoherent SISO and MIMO block-fading channels with
block length larger than the minimum of MT and MR, the number of
transmit and receive antennas, respectively (Marzetta and Hochwald,
1999; Zheng and Tse, 2002; Liang and Veeravalli, 2004). In all three
types of channels, the multiplicative constant in front of the logarith-
mic term in the high-SNR capacity expansion, referred to as pre-log
or multiplexing gain, can be interpreted as the number of DOFs these
channels provide for communication; thus, capacity increases linearly
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in the number of DOFs at high SNR (Tse and Viswanath, 2005) for
the mentioned channel models.

If the fading process is stationary—this includes memoryless fading
and, therefore, the block-fading model of block length one—capacity
does not necessarily scale logarithmically with SNR. Lapidoth and
Moser (2003) show that the noncoherent capacity of general flat fading
SISO and MIMO channels scales doubly logarithmic at high SNR if the
channel process is of finite differential entropy rate, irrespective of
the transmitted average power or the peak power being constrained.
This double-logarithmic capacity increase is dominant at very high
SNR values, while for smaller, but still large SNR, the fading number,
which increases linearly in the number of degrees of freedom, is the
dominant term in the high-SNR capacity expansion (Lapidoth and
Moser, 2003; Moser, 2007; Koch and Lapidoth, 2005).
Channel processes whose differential entropy rate is unbounded

seem to be difficult to analyze in general. An important exception are
stationary JPG processes, whose scaling behavior can be characterized
in detail in the case of both finite and infinite differential entropy
rate (Lapidoth, 2003, 2005). If the channel is flat fading, so that the
channel process is univariate stationary JPG, its differential entropy
rate depends only on the one-step infinite-horizon causal prediction
error (Kolmogorov, 1992b,a), i.e., the error in predicting the current
channel realization from noiseless observations of its infinite past.
Channels with unbounded differential entropy rate have a one-step
prediction error of zero and are referred to as deterministic because
their future can be predicted perfectly given the infinite past of
the process. Finite differential entropy rate implies a nonzero one-
step prediction error, and the corresponding processes are, therefore,
called nondeterministic.∗ The capacity scaling behavior at high SNR

is quite diverse for deterministic stationary JPG channel processes
(Lapidoth, 2003, 2005); in particular, if the spectrum of the channel

∗ We follow Wiener and Masani (1957) as their terminology appears to be the
most descriptive. Kolmogorov (1992b,a) and Rozanov (1967) use the terms singular
and nonsingular instead of deterministic and nondeterministic, respectively.
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process vanishes on a set of positive Lebesgue measure, capacity scales
logarithmically at high SNR, and the pre-log is determined by said
measure. Chen and Veeravalli (2007) extended the latter result to the
block-stationary fading channel introduced by Liang and Veeravalli
(2004).

7.2.2. Wideband Regime
The terms low-power regime, power-limited regime, and wideband
regime are often used interchangeably to mean low effective SNR.
While the high-SNR capacity scaling of nondeterministic channels does
not seem to depend strongly on the nature of the power constraint—
average or peak—the type of power constraint is crucially important at
low SNR. Conversely, capacity results seem to be insensitive to whether
the channel is deterministic or nondeterministic in the wideband
regime.

A. Asymptotic Results

If only a constraint on the average transmitted power is imposed, the
infinite bandwidth AWGN capacity can be achieved also in the presence
of fading. This result is quite robust, as it holds for a wide variety of
channel models (Pierce, 1958; Jacobs, 1963; Gallager, 1968; Kennedy,
1969; Telatar and Tse, 2000; Verdú, 2002; Durisi et al., 2006). Verdú
(2002) showed that flash signaling, which implies unbounded peak
power of the input symbols, is necessary and sufficient to achieve the
infinite-bandwidth AWGN capacity on block-memoryless channels; a
form of flash signaling is also infinite-bandwidth optimal for the more
general time- and frequency-selective channel model that we use in the
present work (Durisi et al., 2006). If the peakiness of the input symbols
is restricted, the resulting capacity limit for infinite bandwidth SISO

channels is less than the corresponding AWGN capacity (Viterbi, 1967;
Gallager, 1968; Telatar and Tse, 2000; Médard and Gallager, 2002;
Subramanian and Hajek, 2002). For channels that are selective in
time, frequency, or both, the exact capacity behavior depends on
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the type of input peak constraint. The analysis by Viterbi (1967)
provides a result that can be interpreted as a lower bound on the
infinite-bandwidth SISO capacity of a time- and frequency-selective
channel if a peak constraint is imposed only in time but not across
frequency. For SISO channels that are time-selective but frequency-
flat, structurally similar expressions exist for the infinite-bandwidth
capacity (Sethuraman and Hajek, 2006; Zhang and Laneman, 2007b)
and for the capacity per unit energy (Sethuraman and Hajek, 2005).
Durisi et al. (2008) obtain Viterbi’s lower bound for the channel model
we use in this thesis, and also provide an upper bound that coincides
with the lower bound for a specific class of channels.

If we allow for multiple antennas at the transmitter and the receiver,
an additional determinant of capacity behavior is spatial correlation.
For the separable (Kronecker) spatial correlation model (Chuah et al.,
2002; Kermoal et al., 2002), Jafar and Goldsmith (2005) proved that
transmit correlation increases the capacity of a memoryless fading
channel. Moreover, in the low-SNR regime, the rates achievable with on-
off keying on memoryless fading channels (Zhang and Laneman, 2007a)
and with finite-cardinality constellations on block-fading channels
(Srinivasan and Varanasi, 2007) increase in the presence of spatial
correlation at the transmitter, the receiver, or both.

Sethuraman et al. (2009) analyzed the capacity of peak-constrained
MIMO Rayleigh-fading channels that are frequency flat, time selective,
and spatially uncorrelated and derived an upper bound and a low-
SNR lower bound that allow to characterize the second-order Taylor
series expansion of capacity around the point snr = 0. In particular,
they proved that in the low-SNR regime it is optimal to use only a
single transmit antenna, while additional receive antennas are always
beneficial. These low-SNR results also apply to a wideband channel
with fixed total transmit power and increasing bandwidth if the
wideband channel can be decomposed into a set of i.i.d. parallel
subchannels in frequency.
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B. Nonasymptotic Results

If a peak constraint is imposed in both time and frequency, like we have
chosen to do in the present work, a closed-form capacity expression
valid for all bandwidth is not available. However, it is known that the
infinite-bandwidth capacity is zero for various channel models (Telatar
and Tse, 2000; Médard and Gallager, 2002; Subramanian and Hajek,
2002). This asymptotic capacity behavior is often used to discuss the
suitability of different signaling schemes in the large bandwidth regime.
Yet, even more useful for this purpose would be capacity bounds for
finite bandwidth. For frequency flat time-selective SISO channels,
such an upper bound was derived by Sethuraman et al. (2005) and
subsequently extended by Sethuraman et al. (2009) to frequency-
flat, time-selective, and spatially uncorrelated Rayleigh-fading MIMO

channels. For the more general time- and frequency-selective case
treated here, upper bounds seem to exist only on the rates achievable
with specific signaling schemes, namely, for constant-modulus OFDM

over underspread SISO WSSUS channels, as derived by Schafhuber
et al. (2004), and for unitarily space-frequency coded MIMO OFDM

over frequency-selective block-fading channels, derived by Borgmann
and Bölcskei (2005).

7.3. SYSTEM MODEL

In the present section, we translate the requirements and modeling
assumptions discussed in Section 7.1 into mathematical language.
We start from the discretized and diagonalized IO relation (3.34) for
underspread WSSUS channels, extend it formally to multiple transmit
and receive antennas, specify how the resulting time- and frequency-
selective MIMO channel can be spatially correlated, and state the
power constraints at the transmitter.
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7.3.1. Discretized IO Relation
The IO relation (3.34) describes a channel that is selective in time
and frequency. To supplement the spatial dimension, we consider a
point-to-point MIMO system with MT transmit antennas, indexed
by q, and MR receive antennas, indexed by r, and assume that all
component channels are WSSUS and identically distributed, though
not necessarily independent. Hence, all component channels are char-
acterized by the same scattering function cs(ν, τ) so that they are
diagonalized by the same Weyl-Heisenberg set {gk,n(t)}. For each
TF slot (k, n) and component channel (r, q), the resulting scalar chan-
nel coefficient is denoted as hr,q[k, n]. We arrange the coefficients
for a given TF slot (k, n) in an MR ×MT matrix H[k, n] with en-
tries [H[k, n]]r,q , hr,q[k, n]. Similarly, the symbol transmitted from
the qth antenna in the TF slot (k, n) is denoted xq[k, n], the symbol
received at the rth antenna in the same TF slot is yr[k, n], and the
corresponding noise random variable is wr[k, n], which we assume
to be proper Gaussian of unit variance. For each TF slot (k, n), we
define the input, output, and noise vectors respectively as∗

x[k, n] ,
[
x0[k, n] x1[k, n] · · · xMT−1[k, n]

]T , (7.1a)

y[k, n] ,
[
y0[k, n] y1[k, n] · · · yMT−1[k, n]

]T , (7.1b)

w[k, n] ∼ CN (0, IMR). (7.1c)

The diagonalized IO relation of the multiantenna channel is then given
by a countable set of standard MIMO IO relations of the form

y[k, n] = H[k, n]x[k, n] + w[k, n]. (7.2)

Transmitted signals are always effectively limited in time duration
and bandwidth. Therefore, we limit the signal of each transmit antenna
to a rectangle of K×N TF slots, i.e., we describe each transmit signal

∗ To distinguish quantities that pertain to the MIMO IO relation for an individ-
ual TF slot (k, n) from the corresponding quantities of the joint time-frequency-
space IO relation (7.5) to be introduced momentarily, we use a sans-serif font for
the former quantities.
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in the canonical form (3.33) defined in Section 3.2.4. For simplicity,
we refer to the above rectangle of K ×N TF slots as one channel use.

With four parameters to index time, frequency, transmit antennas,
and receive antennas, notation can become very cumbersome quickly.
Therefore, we devise a compact multivariate notation in the following.
We stack the symbols {xq[k, n]} transmitted from all MT transmit
antennas during one channel use into a large MTKN -dimensional
vector x, the corresponding output {yr[k, n]} for all MR receive
antennas into an MRKN -dimensional vector y, and likewise the
noise {wr[k, n]} into an MRKN -dimensional vector w. Stacking pro-
ceeds first along frequency, then along time, and finally along space,
as shown exemplarily for the input vector x:

xq[k] =
[
xq[k, 0] xq[k, 1] · · · xq[k,N − 1]

]T , (7.3a)

xq =
[
xTq [0] xTq [1] · · · xTq [K − 1]

]T , (7.3b)

x =
[
xT0 xT1 · · · xTMT−1

]T . (7.3c)

In the same way, we stack the channel coefficients first in frequency
to obtain the vectors hr,q[k], and then in time to obtain a vector hr,q
for each component channel (r, q); further stacking of these vectors
along transmit antennas q and then along receive antennas r results
in the MRMTKN -dimensional vector h. In mathematical notation:

hr,q[k] =
[
hr,q[k, 0] hr,q[k, 1] · · · hr,q[k,N − 1]

]T , (7.4a)

hr,q =
[
hTr,q[0] hTr,q[1] · · · hTr,q[K − 1]

]T , (7.4b)

hr =
[
hTr,0 hTr,1 · · · hTr,MT−1

]T , (7.4c)

h =
[
hT0 hT1 · · · hTMR−1

]T . (7.4d)

Here, each component channel process {hr,q[k]}k is multivariate sta-
tionary. Let Xq , diag xq and X ,

[
X0 X1 · · · XMT−1

]
, where the

vectors xq are defined in (7.3b). With this notation, the IO relation
of the WSSUS MIMO channel for one channel use can be conveniently
expressed as

y = (IMR ⊗X)h + w. (7.5)
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7.3.2. Channel Correlation
As we assume that all continuous-time component channels are
stochastically modeled by the same scattering function, their dis-
cretized counterparts all have the same correlation function, which is
matrix valued and given by

Rh[∆k] , E
[
hr,q[∆k + k]h†r,q[k]

]

=


cl[∆k, 0] cl[∆k, 1] . . . cl[∆k,N − 1]
cl[∆k, 1] cl[∆k, 0] . . . cl[∆k,N − 2]

...
...

. . .
...

cl[∆k,N − 1] cl[∆k,N − 2] . . . cl[∆k, 0]

 . (7.6)

During one channel use, the corresponding completely stacked channel
vector h is characterized by its correlation matrix

Rh = E
[
hr,qh†r,q

]

=


Rh[0] R†h[1] . . . R†h[K − 1]
Rh[1] Rh[0] . . . R†h[K − 2]

...
...

. . .
...

Rh[K − 1] Rh[K − 2] . . . Rh[0]

 . (7.7)

This correlation matrix does not depend on the transmit and receive
antenna indices either, as we assumed all component channels to
have the same scattering function. Because each component channel
process {hr,q[k, n]}k,n is stationary in time and in frequency, Rh is a
two-level Hermitian Toeplitz matrix (Tyrtyshnikov and Zamarashkin,
1998), i.e., Rh is block-Toeplitz with Toeplitz blocks.

In addition to correlation over time and frequency as in (7.7), which
in turn is a consequences of (3.35), we allow for spatial correlation,
albeit in a rather restrictive form to keep the model tractable. In
particular, we assume that:

• Spatial correlation does not change over time and frequency. This
is a direct extension of the WSSUS assumption for each component
channel.
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• Spatial correlation is separable, i.e., we use the so-called Kro-
necker correlation model of Chuah et al. (2002) and Kermoal
et al. (2002). Separability means that spatial correlation is local
to the transmitter and the receiver: For any given TF slot, cor-
relation between a component channel (r, q) and a component
channel (r′, q′) can be expressed in terms of a transmit correlation
coefficient aqq′ and a receive correlation coefficient brr′ .

In combination with the use of a single scattering function for all
component channels, the above assumptions on spatial correlation
imply that

E
[
hr,q[∆k + k,∆n+ n]hr′,q′ [k, n]

]
= brr′aqq′cl[∆k,∆n]. (7.8)

The MT × MT matrix A with entries [A]q,q′ = aqq′ is called the
transmit correlation matrix, and the MR ×MR matrix B, with en-
tries [B]r,r′ = brr′ , is the receive correlation matrix. Both spatial
correlation matrices are normalized according to

tr A = MT, (7.9a)

tr B = MR, (7.9b)

i.e., the overall receive SNR remains constant irrespectively of the
correlation structure. For all (k, n), let Hw[k, n] be an MR × MT

matrix with i.i.d. JPG entries of zero mean and unit variance. Then,
the channel matrix in each TF slot can be written as

H[k, n] = B1/2Hw[k, n]
(
A1/2

)T
. (7.10)

It now follows from (7.8) that the distribution of the channel in
one channel use is completely characterized by the MRMTKN ×
MRMTKN correlation matrix

E
[
hh†

]
= B⊗A⊗Rh. (7.11)

We assume that the three matrices A, B, and Rh are known to the
transmitter and the receiver.

252



7.3 SYSTEM MODEL

7.3.3. Power Constraints
As already discussed in Section 7.1.1, we impose a constraint on the
peak transmitted power, as such a constraint appropriately models
real-world implementation constraints. In addition, we also constrain
the average transmitted power.

A. Average Power

The most commonly used input constraint in information-theoretic
analysis is on the average transmitted power. We follow this practice
an impose the limitation

1
T

E
[
‖x‖2

]
=
∑
q

∑
k,n

E
[
|xq[k, n]|2

]
≤ KP. (7.12)

An average-power constraint models, for example, the limited battery
resources of typical mobile devices and heat dissipation limits of
integrated circuits used in the transmitter and the receiver.

B. Peak Power

We opt for a constraint on the peak power summed over all antennas,
and relate it to the average power according to

1
T
‖x[k, n]‖2 =

1
T

MT−1∑
q=0

|xq[k, n]|2 ≤ βP

N
w.p.1 (7.13)

for each TF slot. This constraint models, e.g., a limitation of the total
radiated peak power in a given frequency band. The parameter β
stands for the nominal peak- to average-power ratio (PAPR), which is
commonly used in circuit design.

The peak constraint (7.13) is imposed on the input symbols x[k, n],
i.e., in the eigenspace of the approximating channel operator. This
limitation is mathematically convenient; however, the peak value of
the corresponding transmitted continuous time signal also depends on
the prototype pulse g(t), so that a limit on x[k, n] does not imply in
general that the transmitted signal is peak limited to the same value.
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7.3.4. Spatially Decorrelated IO Relation
Before proceeding to analyze the capacity of the channel just intro-
duced, we make one more cosmetic change to the IO relation (7.5),
which simplifies the exposition of our results considerably. For each
TF slot, we express the input and output vectors in the coordinate
systems defined by the eigendecomposition of the transmit and receive
correlation matrices, respectively. A similar transformation is used by
Jafar and Goldsmith (2005) and Srinivasan and Varanasi (2007) for
a frequency-flat block-fading spatially correlated MIMO channel. Let
the eigendecomposition of the spatial correlation matrices be

A = UAΣU†A, (7.14a)

B = UBΛU†B. (7.14b)

where Σ = diag [σ0 σ1 · · · σMT−1]T contains the eigenvalues {σq}
of A, ordered according to σ0 ≥ σ1 ≥ · · · ≥ σMT−1 and, similarly,
Λ = diag [λ0 λ1 · · · λMR−1]T contains the eigenvalues {λr} of B, or-
dered according to λ0 ≥ λ1 ≥ · · · ≥ λMR−1. The columns of UA are
called the transmit eigenmodes and the columns of UB are the receive
eigenmodes.
Instead of the vectors x[k, n] and y[k, n], we use the rotated vec-

tors UT
A x[k, n] and U†By[k, n], respectively, to obtain the following

spatially decorrelated IO relation in each TF slot (k, n):

U†By[k, n] = U†BH[k, n]x[k, n] + U†Bw[k, n]
(a)
= U†B

(
UBΛ

1/2U†B
)
Hw[k, n]

(
UAΣ

1/2U†A
)T

x[k, n]

+ U†Bw[k, n]

= Λ
1/2U†BHw[k, n]UAΣ

1/2UT
A x[k, n] + U†Bw[k, n], (7.15)

where (a) follows from (7.10). Rotations are unitary operations; there-
fore, U†BHw[k, n]UA ∼ Hw[k, n] and U†Bw[k, n] ∼ w[k, n]. Furthermore,
rotations preserve norms, so that the rotated input vector UT

A x[k, n]
satisfies the same power constraints as the unrotated input vec-
tor x[k, n]. Finally, U†By[k, n] is a sufficient statistic for the output
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vector y[k, n]. These three properties imply that the capacity of the
channel with input x[k, n] and output y[k, n] in (7.2) is the same as
the capacity of the spatially decorrelated channel Λ1/2Hw[k, n]Σ1/2

in (7.15) with input UT
A x[k, n] and output U†By[k, n]. In the new co-

ordinate system, q indexes transmit eigenmodes instead of transmit
antennas, and r indexes receive eigenmodes instead of receive anten-
nas.

It is now tedious but straightforward to similarly rotate the stacked
IO relation (7.5). To keep notation simple, we chose not to introduce
new symbols for the rotated input and output and for the spatially
decorrelated channel; from here on, all inputs and outputs are with re-
spect to the rotated coordinate systems, and the channel vector h now
stands for the spatially decorrelated stacked channel with correlation
matrix

E
[
hh†

]
= Λ⊗Σ⊗Rh, (7.16)

This correlation matrix is block diagonal, and hence of much simpler
structure than (7.11).

7.4 . AN UPPER BOUND ON CAPACITY

In the present and the next sections, we analyze the capacity of the
diagonalized underspread WSSUS multiantenna channel in (7.5) subject
to the constraint on the average transmitted power (7.12) and to the
peak constraint (7.13). The link established in Section 3.2 between
the diagonalized component channels (3.34) and the continuous-time
WSSUS channel model H then allows us to express the resulting bounds
in terms of the channel’s scattering function cs(ν, τ).
Operational channel capacity is the ultimate rate at which trans-

mission with arbitrarily small error probability is possible. If the
channel varies ergodically over time, a coding theorem exists, so that
operational capacity is equivalent to information-theoretic capacity.
Ergodicity is a modeling assumption, similar to the WSSUS assump-
tion in Section 2.5.3 or the assumption on spatial independence in
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Section 4.4.1.b. Over time intervals of practical interest, i.e., time
intervals over which the small-scale fading assumption is reasonable,
we can sensibly assume that {hr,q[k, n]} is ergodic in k. In fact, we
implicitly made this assumption already when we required the pro-
cess {hr,q[k, n]} to be JPG and to have a spectral density (3.36) for
all component channels (r, q), as these conditions guarantee ergodic-
ity (Maruyama, 1949). Hence, operational and information-theoretic
capacity coincide, and we henceforth simply refer to both as capacity.
It is given by (Gray, 2007, Chapter 12)

C(B) = lim
K→∞

1
KT

sup
P
I(x; y), (7.17)

for any fixed bandwidth B = NF . The supremum is taken over the
set P of all input distributions that satisfy the constraints on the
average transmitted power (7.12) and on the peak power (7.13) in
Section 7.3.3.

7.4.1. Bounding Idea

Our derivation of an upper bound on (7.17) is rather involved; not
because the bounding idea is intricate, but simply because the system
model in Section 7.3 is quite general, so that we need to take care
of many technical details that may obscure the main thoughts. To
expose the key bounding steps without the clutter that comes with
the complicated model, we illustrate them here for a very simple
setting.

We briefly deviate from the notation introduced in Section 7.3, but
do so only in the present subsection. Let h ∼ CN (0, 1) denote the
random gain of a memoryless flat-fading SISO channel with input x,
output y, and additive noise w ∼ CN (0, 1), i.e., with IO relation y =
hx+w. Let P denote the set of all distributions on x that satisfy the
average-power constraint E[|x|2] ≤ P and the peak constraint |x|2 ≤
βP w.p.1. We obtain an upper bound on the capacity C = supP I(x;y)
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per channel use along the lines of Sethuraman and Hajek (2006):

C
(a)
= sup

P

{
I(x,h;y)− I(h;y |x)

}
(b)

≤ sup
P

{
log
(
1 + E

[
|x|2

])
− E

[
log(1 + |x|2)

]}
= sup

0≤α≤1
sup
P

E[|x|2]=αP

{
log
(
1 + E

[
|x|2

])
− E

[
log(1 + |x|2)

]}
≤ sup

0≤α≤1

{
log(1 + αP )− inf

P
E[|x|2]=αP

E
[
log(1 + |x|2)

]}
(c)

≤ sup
0≤α≤1

{
log(1 + αP )

− inf
P

E[|x|2]=αP

E

[
inf

|x|2≤βP

log(1 + |x|2)
|x|2

|x|2
]}

(d)
= sup

0≤α≤1

{
log(1 + αP )− α

β
log(1 + βP )

}
. (7.18)

Here, (a) follows from the chain rule for mutual information (Cover
and Thomas, 1991); the inequality (b) results because we take hx
as JPG with variance E[|hx|2] = E[|x|2]. To obtain the inequality (c),
we multiply and divide the second term inside the braces by |x|2 and
lower-bound the first factor inside the expectation by its infimum
over all inputs x that satisfy the peak constraint. Finally, (d) results
because log(1 + |x|2)/ |x|2 is convex and monotonically decreasing, so
that its infimum is achieved for |x|2 = βP . If the supremum in (7.18)
is achieved for α = 1, the upper bound simplifies to

C ≤ log(1 + P )− 1
β

log(1 + βP ). (7.19)

This bound can be interpreted as the capacity of an AWGN channel
with SNR P minus a penalty term that quantifies the capacity loss
because of channel uncertainty. The higher the allowed peakiness
of the input, as measured by the PAPR β, the smaller the penalty.
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With log(1 + x) = x + x2/2 + o(x2), the upper bound (7.19) can
be expanded into a Taylor series around P = 0 as P 2(β − 1)/2 +
o(P 2). This expansion matches the Taylor series derived by Wang
(2006) for more general time-selective fading channels. Hence, the
simple bound (7.19) has the correct low-SNR behavior. However, its
asymptotic behavior for increasing SNR is far too optimistic: the
bound (7.19) scales logarithmically in P , while the correct high-SNR
scaling is doubly logarithmic for memoryless channels (Taricco and
Elia, 1997; Lapidoth and Moser, 2003).

7.4.2. The Upper Bound
In this section, we expand the simple bounding idea just presented to
the full-fledged system model from Section 7.3. The resulting upper
bound on capacity C(B) is given in the following theorem.

Theorem 7.1. The capacity (7.17) of the underspread WSSUS MIMO

channel with spatial correlation described in Section 7.3, whose av-
erage input power is constrained as (7.12) and whose peak power
follows (7.13) is upper-bounded as C(B) ≤ U1(B), where

U1(B) , sup
0≤α≤σ0

MR−1∑
r=0

{
B

TF
log
(

1 + αλr
PTF

B

)
− α B

σ0β

∫∫
ν τ

log
(

1 +
σ0λrβP

B
cs(ν, τ)

)
dτdν

︸ ︷︷ ︸
,Gr(B)

}
, (7.20 )

and σ0 denotes the maximum eigenvalue of the transmit correlation
matrix A.

Proof. We initially fix K. The first step to upper-bound (7.17) is to
relax the constraint on the average power (7.12). Let Q denote the
set of input distributions that satisfy

1
T

MT−1∑
q=0

σq E
[
‖xq‖2

]
≤ σ0KP (7.21)
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and the peak constraint (7.13). As

MT−1∑
q=0

σq E
[
‖xq‖2

]
≤ σ0

MT−1∑
q=0

E
[
‖xq‖2

]
= σ0 E

[
‖x‖2

]
, (7.22)

any input distribution that satisfies the average-power constraint
E
[
‖x‖2

]
/T ≤ KP in (7.12) also satisfies (7.21), so that P ⊂ Q. To

upper-bound C(B), we replace the supremum over P in the capac-
ity formula (7.17) with a supremum over Q, use the chain rule to
decompose the mutual information as

sup
Q
I(x; y) = sup

Q
{I(x,h; y)− I(h; y |x)} (7.23)

and then split the supremum over Q in two parts:
1. One supremum over a restricted set Q|α of input distributions

that satisfy the peak constraint (7.13) and attain the relaxed
constraint on the average power, i.e., satisfy (7.21) with equality
for some fixed parameter α ∈ [0, σ0]:

1
T

MT−1∑
q=0

σq E
[
‖xq‖2

]
= αKP. (7.24)

2. Another supremum over the parameter α.
Consequently,

sup
P
I(x; y) ≤ sup

Q
I(x; y)

= sup
Q
{I(x,h; y)− I(h; y |x)}

= sup
0≤α≤σ0

sup
Q|α
{I(x,h; y)− I(h; y |x)}

≤ sup
0≤α≤σ0

{
sup
Q|α

I(x,h; y)− inf
Q|α

I(h; y |x)

}
. (7.25)

Next, we bound the two terms inside the braces individually. While
standard steps suffice for the bound on the first term, the second
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term requires some auxiliary derivations that are rather technical. We
focus on the main steps here and relegate detailed derivations of the
auxiliary results to Chapter 8.

A. Upper Bound on the First Term

The output vector y depends on the input vector x and the channel
vector h only through s , (IMR ⊗X)h, so that I(x,h; y) = I(s; y).
We drop the peak constraint on the input distributions in Q|α but
retain the relaxed constraint on the average power (7.24). Let R|α
denote the resulting set of distributions. We obtain an upper bound
on I(s; y) if we choose x such that s is JPG distributed with zero
mean and covariance matrix

E
[
ss†
]

= E
[
(IMR ⊗X)hh†(IMR ⊗X)†

]
= E

[
(IMR ⊗X)(Λ⊗Σ⊗Rh)(IMR ⊗X)†

]
= E

[(
Λ⊗X(Σ⊗Rh)

)
(IMR ⊗X)†

]
= Λ⊗E

[
X(Σ⊗Rh)X†

]
(a)
= Λ⊗

MT−1∑
q=0

σq E
[
xqx†q

]
�Rh. (7.26)

In the above derivation, we used several times that for matrices A,
B, C, and D of appropriate dimension (Horn and Johnson, 1991,
Lemma 4.2.10)

(A⊗B)(C⊗D) = AC⊗BD. (7.27)

Furthermore, the equation (a) in (7.26) results because

X(Σ⊗Rh)X† =
MT−1∑
q=0

σqXqRhX†q =
MT−1∑
q=0

σqxqx†q �Rh. (7.28)

As Q|α ⊂ R|α, we can now upper-bound the first term inside the
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braces in (7.25) as follows:

sup
Q|α

I(x;h,y) = sup
Q|α

I(s; y) ≤ sup
R|α

I(s; y)

(a)

≤ sup
R|α

MR−1∑
r=0

log det
(

IKN + λr

MT−1∑
q=0

σq E
[
xqx†q

]
�Rh

)
(b)

≤ sup
R|α

MR−1∑
r=0

N−1∑
n=0

K−1∑
k=0

log
(

1 + λr

MT−1∑
q=0

σq E
[
|xq[k, n]|2

])
(c)

≤ KN

MR−1∑
r=0

log
(

1 +
αλrPT

N

)
(d)
=

KB

F

MR−1∑
r=0

log
(

1 +
αλrPTF

B

)
. (7.29)

Here, (a) follows from the entropy-maximizing property of JPG random
vectors (Neeser and Massey, 1993) and from (7.26); we can sum over
the receive eigenmodes because the covariance matrix (7.26) of the JPG

input vector s is block diagonal. As the channel taps are normalized
so that [Rh]i,i = 1 for all i, Hadamard’s inequality gives (b). Next,
(c) follows from Jensen’s inequality and the constraint on the average
power (7.24). Finally, we obtain (d) upon substitution of the physical
channel parameter B for NF .

B. Lower Bound on the Second Term

We use the fact that the channel h is JPG, so that

inf
Q|α

I(h; y |x) = E
[
log det

(
IMRKN + Λ⊗X(Σ⊗Rh)X†

)]
=
MR−1∑
r=0

E

[
log det

(
IKN + λr

MT−1∑
q=0

σqxqx†q �Rh

)]
, (7.30)

where the second equality once more follows because Λ⊗X(Σ⊗Rh)X†

is block diagonal and from (7.28). Then, we expand the expectation
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operator and multiply and divide by
∑MT−1
q=0 σq‖xq‖2:

inf
Q|α

I(h; y |x)

= inf
Q|α

MR−1∑
r=0

E

[
log det

(
IKN + λr

MT−1∑
q=0

σqxqx†q �Rh

)]

= inf
Gx∈Q|α

MR−1∑
r=0∫

x

log det
(

IKN + λr
∑MT−1
q=0 σqxqx†q �Rh

)
∑MT−1
q=0 σq‖xq‖2

×

(
MT−1∑
q=0

σq‖xq‖2
)
dGx. (7.31)

Both factors inside the integral are nonnegative;∗ hence, we obtain
a lower bound if we replace the first factor by its infimum over all
deterministic input vectors x that satisfy the peak constraint (7.13);
furthermore, we exchange the order of infimum and summation. Then,

inf
Q|α

I(h; y |x)

≥
MR−1∑
r=0

inf
Gx∈Q|α∫

x

log det
(

IKN + λr
∑MT−1
q=0 σqxqx†q �Rh

)
∑MT−1
q=0 σq‖xq‖2

×

(
MT−1∑
q=0

σq‖xq‖2
)
dGx

∗ The point x = 0 can be excluded from the integration interval as it is a zero
of the integrand.

262



7.4 AN UPPER BOUND ON CAPACITY

≥
MR−1∑
r=0

inf
x

log det
(

IKN + λr
∑MT−1
q=0 σqxqx†q �Rh

)
∑MT−1
q=0 σq‖xq‖2

× inf
Q|α

E

[
MT−1∑
q=0

σq‖xq‖2
]

︸ ︷︷ ︸
αKPT

= αKPT

MR−1∑
r=0

inf
x

log det
(

IKN + λr
∑MT−1
q=0 σqxqx†q �Rh

)
∑MT−1
q=0 σq‖xq‖2

(a)

≥ αKPT

MR−1∑
r=0

inf
x

log det
(

IKN + λr
∑MT−1
q=0 σqX†qXqRh

)
∑MT−1
q=0 σq‖xq‖2

.

(7.32)

Inequality (a) follows from Lemma 8.1, which states that for any two
nonnegative definite matrices A and B of equal dimension, det(I +
A�B) ≥ det

(
I + (I�A)B

)
. We prove this lemma in Section 8.1. As

the matrix Rh is nonnegative definite, the infimum on the right-hand
side in (7.32) is achieved on the boundary of the admissible set, as
shown by Sethuraman and Hajek (2005, Section VI.A). In other words,
the vector x that minimizes the right-hand side of (7.32) has entries
that satisfy

MT−1∑
q=0

|xq[k, n]|2 ∈ {0, βPT/N} (7.33)

for all TF slots (k, n). We use this fact and the relation between
mutual information and the minimum mean squared error (MMSE),
recently discovered by Guo et al. (2005) to further lower-bound the
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infimum on the right-hand side of (7.32) as

inf
x

log det
(

IKN + λr
∑MT−1
q=0 σqX†qXqRh

)
∑MT−1
q=0 σq‖xq‖2

≥ N

σ0βPT

1/2∫
−1/2

1/2∫
−1/2

log
(

1 +
σ0λrβPT

N
ψ(ϕ, ζ)

)
dϕdζ (7.34)

where ψ(ϕ, ζ) is the two-dimensional spectral density of the multi-
variate component channel processes {hr,q[k, n]}k,n defined in (3.36).
The derivation of the bound (7.34) is detailed in Section 8.3, where
we also show that the bound can be achieved for B →∞.

Finally, we substitute (7.34) into (7.32) and relate ψ(ϕ, ζ) to the
scattering function cs(ν, τ) by means of (3.37). Hence,

inf
Q|α

I(h; y |x)

≥ αKN

σ0β

MR−1∑
r=0

1/2∫
−1/2

1/2∫
−1/2

log

[
1 +

σ0λrβPT

N

×
∞∑

∆k=−∞

∞∑
∆n=−∞

cs

(
ϕ+ ∆k
T

,
ζ + ∆n
F

)]
dϕdζ

=
αKN

σ0β

MR−1∑
r=0

1/2∫
−1/2

1/2∫
−1/2

log

[
1 +

σ0λrβPT

N
cs

(
ϕ

T
,
ζ

F

)]
dϕdζ

=
αKTNF

σ0β

MR−1∑
r=0

∫∫
ν τ

log
(

1 +
σ0λrβP

NF
cs(ν, τ)

)
dτdν

=
αKTB

σ0β

MR−1∑
r=0

∫∫
ν τ

log
(

1 +
σ0λrβP

B
cs(ν, τ)

)
dτdν, (7.35)

where we follow the derivation in (3.39), i.e., we use the underspread
property to eliminate the double summation, followed by a change of
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variables. As in the upper bound on the first term (7.29), we substitute
the physical channel parameter B for NF to obtain the last equality.

C. Completing the Proof

The bounds in (7.29) and (7.35) are valid for any K, in particular
for K → ∞. Consequently, we insert (7.29) and (7.35) in (7.25),
divide by KT , and set B = NF to obtain the upper bound (7.20) on
capacity (7.17).

7.4.3. Refinement for Channels of Practical Interest
As the value of α that achieves the supremum in (7.20) depends on B
in general, the upper bound U1(B) is difficult to interpret. However,
for the special case that the supremum is attained for α = σ0 inde-
pendently of B, the upper bound can be interpreted as the capacity
of a set of MR parallel AWGN channels with received power σ0λrP

and B/(TF ) DOFs per second, minus a penalty term that quanti-
fies the capacity loss because of channel uncertainty. Fortunately, it
turns out that only the latter case is of practical interest. Let ∆̃H ,
TF∆H/β denote the effective spread and recall that the maximum
eigenvalue of the receive correlation matrix B is λ0. As we show in
Section 8.4, a sufficient condition for the supremum in (7.20) to be
achieved for α = σ0 is

∆̃H ≤ 1/3 (7.36a)

and

0 ≤ PTF

B
<

∆̃H

σ0λ0

[
exp
(

1
2∆̃H

)
− 1
]
. (7.36b)

As virtually all wireless channels are highly underspread, as β ≥ 1
and, typically, TF ≈ 1.25, condition (7.36a) is always satisfied, so
that the only relevant condition is (7.36b); but even for large channel
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spread, this condition holds for all SNR values P/B of practical inter-
est. As an example, consider a system with β = 1, and MT = MR = 4
that operates over a channel with spread ∆H = 10−2. If we use the up-
per bound σ0λ0 ≤MRMT, which follows from the normalization (7.9),
we find from (7.36) that P/B < 141 dB is sufficient for the supremum
in (7.20) to be achieved for α = σ0. The conditions (7.36) are ana-
lytically tractable but rather loose. A numerical analysis with the
parameters of the above example indicates that α = σ0 even for P/B
up to 315 dB. These values are far in excess of the receive SNR in
practical systems. Therefore, we exclusively consider the case α = σ0

in the following.

7.4.4. Impact of Channel Characteristics
The number of transmit and receive antennas, the spatial corre-
lation structure, the spread ∆H, and the shape of the scattering
function cs(ν, τ) are important characteristics of wireless channels.
As the upper bound (7.20) is explicit in the scattering function, we
can analyze the impact of cs(ν, τ) on U1(B). As just discussed, we
restrict our discussion to the practically relevant case α = σ0.

A. Spread

For a fixed shape of the scattering function, the upper bound U1(B)
decreases for increasing channel spread ∆H. To see this, we de-
fine a normalized scattering function c̃s(ν, τ) with unit spread, so
that cs(ν, τ) = c̃s

(
ν/ν0, τ/τ0

)
/∆H. By a change of variables, the

penalty term Gr(B) in (7.20) can be written as

Gr(B) =
B

σ0β

MR−1∑
r=0

∫∫
ν τ

log
(

1 +
σ0λrβP

B
cs(ν, τ)

)
dτdν

=
B∆H

σ0β

MR−1∑
r=0

1/2∫
−1/2

1/2∫
−1/2

log
(

1 +
σ0λrβP

B∆H
c̃s(ν, τ)

)
dτ̃dν̃. (7.37)
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Because ∆H log(1 + ρ/∆H) is monotonically increasing in ∆H for
any positive constant ρ > 0, the penalty term Gr(B) increases with
increasing spread. On the other hand, the first term on the right-
hand side of (7.20) does not depend on the spread; consequently,
the upper bound U1(B) decreases with increasing spread. The larger
the spread, the more rapidly does the channel change either in time,
in frequency, or in both domains. Intuitively, a large spread means
little memory in the channel that the receiver can exploit to reduce
channel uncertainty. Consequently, we expect the capacity to decrease
with increasing spread—an intuition that is consistent with the above
finding.
The penalty term (7.37) expressed in terms of the normalized

scattering function c̃s(ν, τ) depends on ∆H and β only through the
ratio β/∆H. Hence, increasing the peakiness of the input signal, as
measured by β, has the same effect as transmitting over a channel
with lower spread.

B. Shape of the Scattering Function

For fixed τ0 and ν0, and hence fixed spread ∆H, the scattering function
that results in the lowest upper bound U1(B) is the “brick-shaped”
scattering function:

cs(ν, τ) = 1/∆H, (ν, τ) ∈ [−ν0/2, ν0/2]× [−τ0/2, τ0/2]. (7.38)

We prove this claim in two steps. First, we apply Jensen’s inequality
to the penalty term Gr(B) in (7.20),∫∫

ν τ

log
(

1 +
σ0λrβP

B
cs(ν, τ)

)
dτdν

≤ ∆H log

1 +
σ0λrβP

B∆H

∫∫
ν τ

cs(ν, τ)dτdν


= ∆H log

(
1 +

σ0λrβP

∆HB

)
. (7.39)
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Second, we note that a brick-shaped scattering function achieves this
upper bound. The worst-case upper bound is thus

C ≤ B

TF

MR−1∑
r=0

{
log
(

1 + σ0λr
PTF

B

)

− ∆̃H log
(

1 + σ0λr
PTF

∆̃HB

)}
, (7.40)

where we substituted the effective spread ∆̃H = ∆HTF/β.
The representation of the bound in terms of the effective spread al-

lows for an interesting comparison with the simple bound (7.19) for the
memoryless frequency-flat SISO setting derived in Section 7.4.1, which
has the same structure as (7.40): the complicated upper bound (7.20)
for an underspread WSSUS MIMO channel can be interpreted as an
upper bound on the capacity per unit time of MRB/F parallel flat-
fading memoryless SISO channels with effective PAPR ∆̃H, where the
rth channel has an SNR of σ0λrPTF/B.

The observation that a brick-shaped scattering function minimizes
the upper bound U1(B) sheds some light on the common practice
to use ν0 and τ0 in the initial design stages of a communication
system. A design on the basis of ν0 and τ0 alone, without further
recourse to cs(ν, τ) is implicitly targeted at a channel with brick-
shaped scattering function. It is thus a min-max design: one optimizes
the system for the worst-case channel.

C. Spatial Correlation and Number of Antennas

The upper bound U1(B) depends on the transmit correlation ma-
trix A only through its maximum eigenvalue σ0, which plays the
role of a power gain. This observation shows that rank-one statisti-
cal beamforming along any eigenvector of A corresponding to σ0 is
optimal whenever U1(B) is tight. At high P/B and correspondingly
small bandwidth, U1(B) increases linearly in the number of nonzero
eigenvalues of the receive correlation matrix, that is, in rank(B).
As the capacity in the coherent setting, which is a simple upper
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bound on C(B), increases at high P/B linearly only in the mini-
mum of rank(A) and rank(B) (Tulino et al., 2005, Proposition 4), we
conclude that U1(B) is not tight at high P/B. However, for large
bandwidth and corresponding small P/B, we show in Section 7.7
that U1(B) is tight and that rank-one statistical beamforming is
indeed optimal in the wideband regime.

7.5 . A LOWER BOUND ON CAPACITY

Lower bounds on capacity are, in general, easier to derive than upper
bounds, as the mutual information of any specific signaling scheme
may serve as a lower bound. The key point is thus to choose a signaling
scheme that is tractable yet good enough to furnish a tight bound.
A popular choice is a JPG-distributed input vector because it is easy to
handle and known to be optimal in the coherent setting. Unfortunately,
a Gaussian distribution is incompatible with the peak constraint (7.13).
Instead, we use input symbols of constant amplitude and rotation-
symmetric phase, e.g., a phase-shift keying (PSK) constellation.

7.5.1. The Lower Bound
To state our lower bound on capacity (7.17), we require the following
definitions.:

• Let Ψ(ϕ) denote the N ×N matrix-valued spectral density of
an arbitrary component channel process∗ {h[k]}, i.e.,

Ψ(ϕ) ,
∞∑

k=−∞

E
[
h[∆k + k]h†[k]

]
e−i2π∆kϕ |ϕ| ,≤ 1

2
. (7.41)

• Let s denote an MT-dimensional random vector whose first Q
elements are i.i.d. and of constant modulus, i.e., they have zero
mean and satisfy |[s]q|2 = PT/(NQ), and let the remainingMT−
Q elements of s be zero.

∗ The vector processes h[k] of all component channels (r, q) have the same
spectral density by assumption; therefore, we drop the subscripts r and q.

269



7 CAPACITY BOUNDS

• Let Hw be an MR×MT matrix and let w be an MR-dimensional
vector, both with i.i.d. JPG entries of zero mean and unit variance.

With these definitions, the coherent mutual information of the fad-
ing MIMO channel with IO relation y = Λ1/2HwΣ1/2s + w is given
by I(s; y |Hw), a quantity we need momentarily.

Theorem 7.2. The capacity (7.17) of the underspread WSSUS MIMO

channel with spatial correlation described in Section 7.3, whose av-
erage input power is constrained as (7.12) and whose peak power
follows (7.13) is lower-bounded as C(B) ≥ max1≤Q≤MT L1(B), where

L1(B) , max
1≤γ≤β

{
B

γTF
I(
√
γs; y |Hw)

− 1
γT

Q−1∑
q=0

MR−1∑
r=0

1/2∫
−1/2

log det
(

IN + σqλr
γPTF

QB
Ψ(ϕ)

)
dϕ

}
. (7.42 )

Proof. Any specific input distribution leads to a lower bound on
capacity; in particular, we choose to transmit constant modulus
symbols xq[k, n] = sq[k, n] that are i.i.d. over time, frequency, and
eigenmodes, and that satisfy |sq[k, n]|2 = PT/(QN) w.p.1 for all (k, n)
and for q = 0, 1, . . . , Q− 1. The remaining MT −Q eigenmodes are
not used to transmit information. We stack the symbols sq[k, n] as
in (7.3) and define the KN ×MTKN matrix

S ,
[
S0 S1 · · · SQ−1 0KN · · · 0KN

]
(7.43)

with Sq , diag sq, and where the last MT − Q entries are all-zero
matrices of dimension KN . By the chain rule for mutual information
and the fact that mutual information is nonnegative,

I(S; y) = I(S,h; y)− I(h; y |S)

= I(h; y) + I(S; y |h)− I(h; y |S)

≥ I(S; y |h)− I(h; y |S). (7.44)

Next, we analyze the two terms on the right-hand side separately.
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Because we chose the input symbols to be i.i.d., and because all
channel coefficients have the same marginal distribution,

I(S; y |h) = KN I(s; y |Hw). (7.45)

Given the input S, the corresponding output vector y is JPG dis-
tributed. Therefore, the second term on the right-hand side in (7.44)
can be evaluated as

I(h; y |S) =
MR−1∑
r=0

E
[
log det

(
IKN + λrS(Σ⊗Rh)S†

)]
(a)

≤
MR−1∑
r=0

log det
(
IQKN + λr E

[
S†S

]
(Σ⊗Rh)

)
(b)
=

Q−1∑
q=0

MR−1∑
r=0

log det
(

IKN + σqλr
PT

QN
Rh

)
. (7.46)

Here, (a) follows from the determinant identity det
(
I + AB†

)
=

det
(
I + B†A

)
for any two square matrices A and B of appropriate di-

mension (Horn and Johnson, 1985, Theorem 1.3.20) and from Jensen’s
inequality; the latter is applicable because the log-determinant ex-
pression is concave in S†S (Diggavi and Cover, 2001). Subsequently,
(b) follows because the {sq[k, n]} are i.i.d. with zero mean and con-
stant modulus.
We combine the two terms (7.45) and (7.46), set B = NF , divide

by KT , and take the limit K →∞ to obtain the lower bound

C(B) ≥ lim
K→∞

1
KT

I(S; y)

≥ B

TF
I(s; y |Hw)

− lim
K→∞

1
KT

Q−1∑
q=0

MR−1∑
r=0

log det
(

IKN + σqλr
PTF

QB
Rh

)
.

(7.47)

The correlation matrix Rh of the stacked channel vector h is two-level
Toeplitz with blocks that are N × N correlation matrices Rh[∆k],

271



7 CAPACITY BOUNDS

as shown in (7.7) and (7.6), respectively. Therefore, we can evaluate
the limit on the right-hand side in (7.47) and express it in terms
of an integral over the matrix-valued spectral density Ψ(ϕ) of the
multivariate channel process h[k] by means of an extension of Szegö’s
Theorem to the case of block-Toeplitz matrices generated by matrix-
valued spectra (Miranda and Tilli, 2000, Theorem 3.4):

lim
K→∞

1
KT

Q−1∑
q=0

MR−1∑
r=0

log det
(

IKN + σqλr
PTF

QB
Rh

)

=
1
T

Q−1∑
q=0

MR−1∑
r=0

1/2∫
−1/2

log det
(

IN + σqλr
PTF

QB
Ψ(ϕ)

)
dϕ. (7.48)

The lower bound that results by substituting (7.48) in (7.47) can
be improved upon by time-sharing: Let 1 ≤ γ ≤ β. We transmit √γs
during a fraction 1/γ of the transmission time and let the transmitter
be silent otherwise, so that the constraint on the average power is
satisfied.

7.5.2. Some Simplifications and Approximations
Evaluation of the lower bound (7.42) is complicated by two facts.

1. The mutual information I(
√
γs; y |Hw) in the first term on the

right-hand side of (7.42) needs to be evaluated for constant
modulus input vectors.

2. In general, the eigenvalues of Ψ(ϕ) in the second term on the
right-hand side of (7.42) cannot be derived in closed form.

While the coherent mutual information I(
√
γs; y |Hw) can be evalu-

ated numerically for constant modulus inputs at reasonable expense,
computing the eigenvalues of Ψ(ϕ) is challenging for channels of very
wide bandwidth because the matrix might be very large. Therefore,
we derive a lower bound on L1(B) that can be efficiently evaluated.
Furthermore, we present a closed-form approximation of (7.42) that
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can be used for back-of-the-envelope calculations. Both the bound
and the approximation are tight for large bandwidth.
We first analyze the second term of L1(B), which can be again

interpreted as a penalty term that quantifies the lack of channel
knowledge.

Lemma 7.3. Let

dj , Re

{
2
N

N−1∑
∆n=0

(N −∆n)cl[0,∆n]e−i2π
j∆n
N

}
− 1. (7.49 )

Then, the (q, r)th addend of the penalty term in (7.48) can be bounded
as

ν0

N−1∑
j=0

log
(

1 + σqλr
PF

ν0QB
dj

)

≥ 1
T

1/2∫
−1/2

log det
(

IN + σqλr
PTF

QB
Ψ(ϕ)

)
dϕ

≥ B
∫∫
ν τ

log
(

1 + σqλr
P

QB
cs(ν, τ)

)
dτdν. (7.50 )

Furthermore, the following asymptotic results hold:
• The difference between the (q, r)th addend of the penalty term
in (7.48) and its lower bound in (7.50) vanishes as B grows large.

• For scattering functions that are flat in the Doppler domain, i.e.,
that satisfy

cs(ν, τ) =
1
ν0
ps(τ) (7.51 )

for (ν, τ) ∈ [−ν0/2, ν0/2]× [−τ0/2, τ0/2], the difference between
the upper bound and the lower bound in (7.50) vanishes as B
grows large.∗

∗ The normalization of the scattering function in (2.39) implies that the PDP
is normalized as well, i.e.,

R
τ ps(τ)dτ = 1.
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Proof. We present the proof in Section 8.5. The key step to upper-
bound the penalty term tightly for large bandwidth is to replace Ψ(ϕ)
with a circulant matrix that is, inN , asymptotically equivalent to Ψ(ϕ)
(Gray, 2005), while the lower bound follows from Lemma 8.5 in
Section 8.3.

A. Further Lower Bound for Efficient Evaluation

If we replace the penalty term in (7.42) with the upper bound on
each of its addends in (7.50), we obtain the lower bound on capac-
ity L2(B) ≤ C(B), where

L2(B) , max
1≤γ≤β

{
B

γTF
I(
√
γs; y |Hw)

− ν0

γ

Q−1∑
q=0

MR−1∑
r=0

N−1∑
j=0

log
(

1 + σqλr
γPF

ν0QB
dj

)}
. (7.52)

This lower bound is less tight than L1(B); however, it can be eval-
uated numerically in a much more efficient way than L1(B) be-
cause the coefficient sequence {dj}N−1

j=0 can be obtained from the
values {(N −∆n)cl[0,∆n]}N−1

∆n=0 through the DFT.

B. Closed-Form Approximation of the Lower Bound

For large enough bandwidth, the difference between each addend of
the penalty term (7.48) and the corresponding lower bound (7.50) is
so small that we can replace the individual addends in the second
term of L1(B) by their corresponding lower bounds to obtain a good
approximation of L1(B):

L1(B) ≈ La(B) , max
1≤γ≤β

{
B

γTF
I(
√
γs; y |Hw)

− B

γ

Q−1∑
q=0

MR−1∑
r=0

∫∫
ν τ

log
(

1 + σqλr
γP

QB
cs(ν, τ)

)
dτdν

}
. (7.53)
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Furthermore, we can replace the first term of La(B) in (7.53) by its
Taylor series up to first order, as given by Prelov and Verdú (2004,
Theorem 3). This series expansion requires the evaluation of several
expected trace terms that involve the channel matrix; Lemmas 3 and 4
by Lozano et al. (2003) provide these expectations. The resulting
coarser approximation of L1(B) is

Laa(B) , max
1≤γ≤β

{
MRP

Q

Q−1∑
q=0

σq

− γP 2TF

B

(∑Q−1
q=0 σq

)2∑MR−1
r=0 λ2

r +M2
R
∑Q−1
q=0 σ

2
q

2Q2

− B

γ

Q−1∑
q=0

MR−1∑
r=0

∫∫
ν τ

log
(

1 + σqλr
γP

QB
cs(ν, τ)

)
dτdν

}
. (7.54)

Both La(B) and Laa(B) are tight for B →∞.

7.6. NUMERICAL EXAMPLES

7.6.1. Setting
The relation between the WSSUS channel model and our discrete
approximation (3.16) allows us to plot upper and lower bounds for
realistic channel and system parameters. In particular, we use the
following parameter set for the numerical evaluation of our bounds:

• A brick-shaped scattering function with maximum delay τ0 =
10 µs, maximum positive or negative Doppler shift ν0/2 = 50 Hz,
and corresponding spread ∆H = τ0ν0 = 10−3.

• Grid parameters∗ T = 353 µs and F = 3.53 kHz, so that TF ≈
1.25 and T/F = τ0/ν0, as suggested by the matching rule for the

∗ Note that these parameters deviate significantly from corresponding param-
eters of commercially deployed OFDM systems: e.g., T = 4 µs and F = 325 kHz
in the IEEE 802.11a/g/n standard, which means that the standard is optimized
for channels with a much smaller ratio τ0/ν0 than the one considered here, i.e.,
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TF discretization grid (3.47).
• Receive power normalized with respect to the noise spectral
density and the pathloss of

P

1 W/Hz
= 2.42 · 108 s−1.

These parameters are representative for several different types of
systems under the assumption of a thermal noise level at the receiver
of -174 dBm/Hz. For example:

1. An IEEE 802.11a system with transmitted power of 200mW,
pathloss of 108dB, and receiver noise figure (Razavi, 1998)
of 5dB; the pathloss is rather pessimistic for typical indoor link
distances and includes the attenuation of the signal by, e.g., a
concrete wall.

2. A UWB system with transmitted power of 0.5mW, pathloss
of 67dB, and receiver noise figure of 20dB. The latter also
accounts for ADC back-off.

The large maximum delay and maximum Doppler shift are certainly
not representative for typical home environments, but may be encoun-
tered, for example, in a factory with moving machinery.

7.6.2. Evaluation Methodology
The upper bound U1(B) in Theorem 7.1 can be evaluated in closed
form for a brick-shaped scattering function, but the lower bound L1(B)
in Theorem 7.2 is difficult to evaluate numerically. Therefore, we turn
to the simplifications discussed in Section 7.5.2. The lower bound
L2(B) in (7.52) can be evaluated much more efficient than L1(B), yet
the memory requirement to compute the dj for bandwidths in excess
of several hundred megahertz is still prohibitive for the parameters

for channels that are much more time variant. This difference results because the
effective channel of real-world communication systems also accounts for effects
like carrier frequency offset and phase noise, which significantly increase channel
variation over time.
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specified above. Instead, we use the approximation La(B), as its sec-
ond term can be evaluated in closed form for a brick-shaped scattering
function. However, La(B) is an upper bound on the lower bound L1(B)
instead of a true lower bound. Fortunately, the match between La(B)
and the true lower bound L2(B) is extremely good already for the
range of bandwidth for which we can actually compute L2(B)—so
good that the resulting curves are virtually indistinguishable. Thus,
de facto the lower bound L1(B) in (7.42), which lies between L2(B)
and La(B), is fully characterized. Therefore, we label the correspond-
ing plots as both L1 and La.
To compute the first term of La(B), i.e., the mutual informa-

tion I(s; y |Hw), we use Monte-Carlo integration and input symbols
with quaternary phase-shift keying (QPSK) modulation. The loss be-
cause of the finite-dimensional QPSK constellation compared with
continuous-valued input symbols is negligible at low SNR. In addition
to the two mentioned bounds, we also compute the second-order
approximation Laa(B) in (7.54), which turns out to be suitable for
very large bandwidth.

7.6.3. Numerical Results
For a 3× 3 MIMO system, we show in this section plots of the upper
bound U1(B) of Theorem 7.1, and—for Q between 1 and 3—plots of
the approximation La(B) in (7.53) that is indistinguishable from the
true lower bound L1(B) of Theorem 7.2. In addition, we also show
plots of the corresponding bounds of a SISO system that operates
over a channel with spread ∆H = 10−5. In all figures, we also plot the
large-bandwidth approximation Laa(B) of the lower bound in (7.54).

A. Spatially Uncorrelated Channel

Figure 7.1 shows the bounds and approximations just mentioned
for the spatially uncorrelated case Σ = Λ = I3. For comparison,
we also plot a standard capacity upper bound Uc(B), obtained for
the coherent setting and with input subject to an average-power
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Fig. 7.1: Upper and lower bounds on the capacity of a spatially uncorrelated
underspread WSSUS MIMO channel with Σ = Λ = I3, MT = MR = 3, β = 1,
and ∆H = 10−3.

constraint only. We can observe that Uc(B) is tighter than U1(B)
for small bandwidth B; this holds true in general as for small B the
penalty term in (7.20) can be neglected and U1(B) in the spatially
uncorrelated case reduces to

U1(B) ≈ MRB

TF
log
(

1 +
PTF

B

)
(7.55)

which is the Jensen upper bound on the capacity upper bound Uc(B)
in the coherent setting. For small and medium bandwidth, the lower
bound L1(B) increases with Q and comes surprisingly close to the
coherent capacity upper bound Uc(B) for Q = 3.
As can be expected in the light of results, e.g., by Médard and

Gallager (2002) and Subramanian and Hajek (2002), when bandwidth
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Fig. 7.2: Upper and lower bounds on the capacity of an underspread WSSUS
MIMO channel that is spatially uncorrelated at the transmitter, Σ = I3, but
correlated at the receiver with Λ = diag [2.6 0.3 0.1]T ;MT = MR = 3, β = 1,
and ∆H = 10−3.

increases above a certain critical bandwidth, both U1(B) and L1(B)
start to decrease; in this regime, the rate gain resulting from the
additional DOFs is offset by the resources required to resolve channel
uncertainty. The same argument seems to hold in the wideband
regime for the DOFs by multiple transmit and receive antennas: U1(B)
appears to match L1(B) for Q = 1; hence, using a single transmit
antenna seems optimal in the wideband regime.

B. Impact of Receive Correlation

Figure 7.2 shows the same bounds as before, but evaluated with spatial
correlation Λ = diag [2.6 0.3 0.1]T at the receiver and a spatially
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uncorrelated channel at the transmitter, i.e., Σ = I3. The curves
in Figure 7.2 are very similar to the ones shown in Figure 7.1 for
the spatially uncorrelated case, yet they are shifted toward higher
bandwidth while the maximum rate is lower. Hence, at least for
the example at hand, receive correlation decreases capacity at small
bandwidth but it is beneficial at large bandwidth.

C. Impact of Transmit Correlation

We evaluate the same bounds once more, but this time for spatial
correlation Σ = diag [1.7 1.0 0.3]T at the transmitter and a spatially
uncorrelated channel at the receiver, i.e., Λ = I3. The corresponding
curves are shown in Figure 7.3. Here, transmit correlation increases
the capacity at large bandwidth, while its impact at small bandwidth
is more difficult to judge because the distance between upper and
lower bound increases compared to the spatially uncorrelated case.

D. Impact of the Spread

A spread of ∆H = 10−3 is rather large for typical indoor channels,
where the maximum delay τ0 is small and mobility is low. Therefore,
Figure 7.4 shows the same capacity bounds as before but for a chan-
nel of spread ∆H = 10−5, where we again assumed a brick-shaped
scattering function, but this time with maximum delay τ0 = 1 µs and
maximum positive or negative Doppler shift ν0/2 = 5 Hz, as well as a
received-power to noise-density ratio of P/(1 W/Hz) = 2.42 · 108 s−1.
For simplicity, we plot the bounds for a SISO system only. We can
observe that the maximum of both upper and lower bounds broaden
and extend to higher bandwidths. Specifically, the wideband approxi-
mation Laa(B) appears useful down to modest bandwidths.

7.6.4. Observations
All four figures show that especially for large bandwidth the ap-
proximation Laa(B) of L1(B) is quite accurate. An observation of
significant practical importance is that the bounds U1(B) and L1(B)
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Fig. 7.3: Upper and lower bounds on the capacity of an underspread WSSUS MIMO
channel that is correlated at the transmitter with Σ = diag [1.7 1.0 0.3]T

and spatially uncorrelated at the receiver, Λ = I3; MT = MR = 3, β = 1,
and ∆H = 10−3.

are quite flat over a wide range of bandwidth around their maxima,
and that these maxima broaden with decreasing spread. Further nu-
merical results not shown here point at an increase in the gap between
upper and lower bounds as β increases.

The single most important caveat with all four figures is that much
of the bandwidth shown certainly exceeds the range of bandwidths for
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Fig. 7.4: Upper and lower bounds on the capacity of an underspread WSSUS SISO
channel, β = 1, and ∆H = 10−5.

which our channel model is a reasonable approximation of physical
channels. Even the critical bandwidth, somewhere between 1GHz
and 10GHz in the plots, is already a stretch for the model. This
does not mean that the bounds of Theorem 7.1 and Theorem 7.2 are
useless, though; on the contrary, we can draw the following important
conclusions:

• Even for rather pessimistic assumptions about the physical chan-
nel does capacity increase with an increase in bandwidth for
virtually all practically relevant frequency ranges over which our
model makes sense. The effect of vanishing wideband capacity
is not practically relevant in the scenarios we analyzed, and
probably not relevant either for smaller values of the spread ∆H.

• Our bounds allow to judge how much bandwidth can be benefi-
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cially used for a given set of system parameters as long as the
underlying channel model is sensible. The bounds themselves are
reasonably accurate for the parameters considered here.

Finally, we can see from all four figures that virtually all wireless
systems currently deployed operate well below the critical bandwidth,
at least for the settings considered.

7.7. ASYMPTOTIC WIDEBAND ANALYSIS

The plots in Section 7.6 suggest that in the wideband regime (i) using
a single transmit antenna is optimal when the channel is spatially
uncorrelated at the transmitter side, (ii) it is optimal to signal on
the maximum transmit eigenmode if transmit correlation is present,
and (iii) both transmit and receive correlation are beneficial. To
substantiate these observations, we compute the first-order Taylor
series expansion of C(B) around 1/B = 0.

7.7.1. Wideband Asymptotes
We would like to find a closed-form expression for the first-order
Taylor expansion

C(B) =
φ

B
+ o

(
1
B

)
. (7.56)

To describe this expansion in a compact way, we need the following
definitions:

κH ,
∫∫
ν τ

c2s(ν, τ)dτdν, (7.57)

ϑ ,
MR−1∑
r=0

λ2
r. (7.58)
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Theorem 7.4. The capacity C(B) of an underspread WSSUS channel
that satisfies the constraint on the average power (7.12) and the peak
constraint (7.13) has the following first-order coefficient φ in the
Taylor series expansion (7.56) around the point 1/B = 0:

φ = lim
B→∞

B U1(B)

=


ϑ(σ0P )2

2
(βκH − TF ) , if β >

2TF
κH

ϑ(σ0κHβP )2

8TF
, if β ≤ 2TF

κH
.

(7.59 )

Proof. A seemingly direct approach to proof Theorem 7.4 is to ex-
pand both the upper bound U1(B) in Theorem 7.1 and the lower
bound L1(B) in Theorem 7.2 into a Taylor series around the point
1/B = 0 and show that both expansions match up to first order.
Unfortunately they don’t. The culprit is the lower bound, where the
signaling scheme we use to derive it in Section 7.5.1 is not optimal at
low SNR—and correspondingly large bandwidth—because information
is not encoded in the signal amplitude. Thus, we derive a lower bound
on the infinite bandwidth capacity in Section 8.6.2 that has the correct
asymptotic first-order behavior.
There are two key elements in the derivation of this new lower

bound: an extension of the block-constant signaling scheme used
by Sethuraman et al. (2009) to prove asymptotic capacity results
for flat-fading time-selective channels, and transmission only over
the strongest transmit eigenmode, as we observed in Section 7.6
that signaling over a single eigenmode seems to be optimal for large
bandwidth. Such a signaling scheme is often referred to as rank-one
beamforming. Hence, we transmit on the strongest eigenmode a signal
with uniformly distributed phase whose magnitude is toggled on and
off at random with a prescribed probability, so that information is
encoded jointly in the amplitude and in the phase. In comparison, the
signaling scheme used to obtain L1(B) transmits a signal of constant
amplitude in all time-frequency slots. The so constructed asymptotic
lower bound matches the first-order Taylor expansion of U1(B). We
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present the derivation of both the Taylor series expansion of U1(B)
and of the asymptotically matching lower bound in Section 8.6 as
they are rather technical.

Similar to the capacity behavior of a discrete-time stationary flat-
fading channel for vanishing SNR (Wang, 2006), the first-order Taylor
expansion coefficient φ in (7.59) can take on two different forms as
a function of the channel parameters. However, the link in (3.38)
between the discretized channel and the WSSUS channel H allows us
to conclude that β > 2TF/κH and thus φ = P 2(βκH − TF )/2 for
virtually all wireless channels of practical interest: In fact, κH ≥ ∆−1

H
by Jensen’s inequality, so that 2TF∆H ≥ 2TF/κH; consequently, a
sufficient condition for β > 2TF/κH is β > 2TF∆H. But for typical
values of TF , e.g., TF ≈ 1.25, and virtually all sensible values of ∆H,
say, ∆H < 10−2, this latter condition is satisfied for every admissible β.

7.7.2. Impact of Spatial Correlation
Rank-one statistical beamforming along any eigenvector of A associ-
ated with σ0 is optimal to attain the wideband asymptotes of Theo-
rem 7.4. For channels that are spatially uncorrelated at the transmitter,
this result implies that using only one transmit antenna is optimal, as
previously shown by Sethuraman et al. (2009) for the frequency-flat
time-selective case.
To further assess the impact of correlation on capacity, we follow

Chuah et al. (2002), Jafar and Goldsmith (2005), Jorswieck and Boche
(2006) and define a partial ordering of correlation matrices through
majorization (Marshall and Olkin, 1979). We say that a correlation
matrix K entails more correlation than a correlation matrix C if
the vector of eigenvalues λ(K) majorizes λ(C). A brief review of
majorization theory is provided in Section 8.2 for convenience.

In the coherent setting, capacity is Schur concave in λ(B) = λ(Λ) =
[λ0 λ1 · · · λMR−1], the eigenvalue vector of the receive correlation
matrix while—for sufficiently large bandwidth—it is Schur convex
in λ(A) = λ(Σ) = [σ0 σ1 · · · σMT−1], the eigenvalue vector of the
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transmit correlation matrix (Tulino et al., 2005; Jorswieck and Boche,
2006). Hence, in the coherent setting receive correlation is detrimental
at any bandwidth while transmit correlation is beneficial at large
bandwidth. The intuition is that transmit correlation allows to focus
the transmit power into the maximum transmit eigenmode, and the
corresponding power gain offsets the reduction in effective transmit
signal space dimensions in the power-limited regime, i.e., at large
bandwidth. On the other hand, receive correlation is detrimental at
any bandwidth because it reduces the effective dimensionality of the
receive signal space without any power gain, as shown by Lozano
et al. (2006).
On the basis of Theorem 7.4, we conclude that the picture is fun-

damentally different in the noncoherent setting. The coefficient φ
in (7.59) is a Schur-convex function in both the eigenvalue vector λ(B)
of the transmit correlation matrix and the eigenvalue vector λ(B)
of the receive correlation matrix because σ0 and ϑ are continuous
convex functions of the corresponding eigenvalue vectors (Marshall
and Proschan, 1965). Hence, both receive and transmit correlation
are beneficial for sufficiently large bandwidth. This observation agrees
with the results for memoryless and block-fading channels reported
by Jafar and Goldsmith (2005), Zhang and Laneman (2007a), and
Srinivasan and Varanasi (2007). In the wideband regime, while trans-
mit correlation is beneficial in both the coherent and the noncoherent
setting because it allows for power focusing,∗ receive correlation is
beneficial rather than detrimental in the noncoherent setting for the
following reason: for fixed MT and MR, the rate gain obtained from
additional bandwidth is offset in the wideband regime by the corre-
sponding increase in channel uncertainty (see Figures 7.1, 7.2, and 7.3);
yet, for fixed but large bandwidth, channel uncertainty decreases in
the presence of receive correlation so that capacity increases.

∗ Differently from the coherent setting treated by Tulino et al. (2005, Propo-
sition 3) though, the multiplicity of the maximum eigenvalue does not need to
be taken into account in the design of capacity-achieving signaling schemes at
low SNR.
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CHAPTER 8

Technical Results

In the present chapter, we compile several technical results that
are needed for proofs and derivations in Chapter 7. Some of
these results, like the determinant inequality of Lemma 8.1, the

majorization relation of Lemma 8.3, or the bound in Lemma 8.5 on
the basis of the relation between mutual information and the MMSE

might be of independent interest, while other results are probably not
directly applicable elsewhere.

8.1. A DETERMINANT INEQUALITY

Lemma 8.1. Let A and B be two N ×N nonnegative definite Her-
mitian matrices. Then,

det(IN + A�B) ≥ det
(
IN + (IN �A)B

)
.

Proof. Assume for now that A does not have zeros on its main diagonal
and define Ã , (IN �A)−1. Then,

det(IN + A�B) = det
(
A�(Ã + B)

)
(a)

≥ det(IN �A) det(Ã + B)

= det
(
(IN �A)Ã + (IN �A)B

)
= det

(
IN + (IN �A)B

)
(8.1)
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where (a) is a direct consequence of Oppenheim’s inequality (Horn
and Johnson, 1985, Theorem 7.8.6). To conclude the proof, we remove
the restriction that A has only nonzero diagonal entries. Because A is
nonnegative definite, its ith row and its ith column are zero if [A]ii = 0
(Horn and Johnson, 1985, Section 7.1), so that, by the definition of the
Hadamard product, the ith row and the ith column of A�B are zero
as well. Let I be the set that contains all indices i for which [A]ii = 0,
assume without loss of generality that there are L such indices, and
let AI and BI denote the submatrices of A and B, respectively, with
all rows and columns corresponding to I removed. An expansion by
minors of det(IN + A�B) now shows that

det(IN + A�B) = det(IL + AI �BI). (8.2)

Hence, it suffices to apply the inequality (8.1) to the right-hand side
of (8.2).

8.2. MAJORIZATION

Majorization theory is a general tool to derive inequalities between
vector- and matrix-valued quantities (Marshall and Olkin, 1979). We
need it to compare the impact of spatial correlation on the wideband
capacity of MIMO channels in Section 7.7, and we also use majorization
theory to provide an alternative proof of Lemma 8.1.

8.2.1. Basic Definitions and Results
Definition 8.1 (Marshall and Olkin 1979, Definition 1.A.1). Let a
and b be two real-valued vectors of length N , and denote by α ,[
α0 α1 · · · αN−1

]T and β ,
[
β0 β1 · · · βN−1

]T two permutations
of a and b, respectively, so that α0 ≥ α1 ≥ · · · ≥ αN−1 and β0 ≥
β1 ≥ · · · ≥ βN−1, i.e., α contains the elements of a and β contains
the elements of b in nonincreasing order. Then, the vector a is said
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to majorize the vector b, written as a � b, if
k−1∑
j=0

αj ≥
k−1∑
j=0

βj , k = 1, 2, . . . , N (8.3)

and
N−1∑
j=0

αj =
N−1∑
j=0

βj . (8.4)

Majorization provides a partial ordering on real Euclidean spaceRN .
Intuitively, a � b means that a is more spread out than b.

Definition 8.2 (Marshall and Olkin 1979, Definition 3.A.1). A real-
valued function f defined on A ⊂ RN is said to be Schur convex on A
if for a,b ∈ A,

a � b =⇒ f(a) ≥ f(b). (8.5)

Similarly, f is said to be Schur concave on A if

a � b =⇒ f(a) ≤ f(b). (8.6)

Lemma 8.2 to follow, due to Hardy, Littlewood, and Pólya, is of
particular importance to verify majorization relations. The lemma
relates majorization to a linear relation between two vectors by means
of a doubly stochastic matrix.

Definition 8.3 (Marshall and Olkin 1979, Definition 2.A.1). A square
matrix S of dimension N×N is called doubly stochastic if all its entries
are nonnegative, i.e.,

si,j , [S]i,j ≥ 0 for i, j = 0, 1, . . . , N − 1, (8.7)

and if its row and column sums equal 1:
N−1∑
i=0

si,j = 1 for j = 0, 1, . . . , N − 1, (8.8a)

N−1∑
j=0

si,j = 1 for i = 0, 1, . . . , N − 1. (8.8b)
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Lemma 8.2 (Marshall and Olkin 1979, Theorem 2.B.2). Take a and b
as in Definition 8.1. A necessary and sufficient condition for a � b is
that there exists a doubly stochastic matrix S such that b = Sa.

8.2.2. Majorization and Hadamard Products
We can use majorization theory to provide an alternative proof of
Lemma 8.1. Although more involved than the proof given in Sec-
tion 8.1, the next lemma, on which this alternative proof is based
may be interesting in its own right.

Lemma 8.3. Let A and B be two N×N Hermitian matrices, and let d
be the vector that contains the square-root of the diagonal elements
of A, i.e., [d]i =

√
[A]i,i. Then, the eigenvalue vector λ(dd†�B)

majorizes the vector of eigenvalues λ(A�B):

λ(dd†�B) � λ(A�B). (8.9 )

To simplify presentation of the corresponding proof, we first state
a lemma by Bapat and Sunder (1985).

Lemma 8.4 (Bapat and Sunder 1985, Lemma 1). Let P and Q be
complex-valued N ×N matrices and let a ∈ CN . Then, the diagonal
of the matrix P diag(a) Q, arranged as a column vector, equals the
vector (P�QT )a.

Proof of Lemma 8.3. The proof of Lemma 8.3 follows along the lines
of Bapat and Sunder (1985). To simplify notation, let X , A�B
and Y , dd†�B. By Lemma 8.2, the majorization relation in
Lemma 8.3 holds if we can find a doubly stochastic matrix S such
that λ(X) = Sλ(Y).
Assume for now that A does not have zero entries on its main

diagonal. Any Hermitian matrix A can be written as a sum of outer
products, A =

∑N−1
i=0 aia

†
i (Horn and Johnson, 1985). Let Ai = diag ai

and define for all i the normalized diagonal matrices Ci , AiD−1,
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where D = diag d. Then,

N−1∑
i=0

CiC
†
i =

N−1∑
i=0

AiD−1D−1A†i

= D−1D−1
N−1∑
i=0

AiA
†
i

(a)
= DDD−1D−1 = I, (8.10)

where (a) follows from the definition of D. Define the spectral decom-
positions

X = UXΛXU†X, (8.11a)

Y = UYΛYU†Y. (8.11b)

where ΛX , diag λ(X) and ΛY , diag λ(Y), and where the columns
of UX and UY are the corresponding eigenvectors. Then,

ΛX = U†X

(
N−1∑
i=0

aia
†
i �B

)
UX = U†X

(
N−1∑
i=0

AiBA†i

)
UX

=
N−1∑
i=0

U†XCiDBD†C†iUX

=
N−1∑
i=0

U†XCi (dd†�B)︸ ︷︷ ︸
Y

C†iUX

=
N−1∑
i=0

U†XCiUY︸ ︷︷ ︸
C̃i

ΛY U†YC†iUX︸ ︷︷ ︸
C̃†i

. (8.12)

It then follows by Lemma 8.4 that

λ(X) =

(
N−1∑
i=0

C̃i� C̃i

)
︸ ︷︷ ︸

S

λ(Y). (8.13)

The matrix S has nonnegative entries by definition. Its row sums can
be computed as Sa and its column sums as ST a = S†a, with a taken
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as the all-1 vector. To show that row and column sums are all unity,
it suffices to proof that

∑N−1
i=0 C̃iC̃

†
i , respectively

∑N−1
i=0 C̃†i C̃i, has an

all-1 diagonal, by Lemma 8.4. This follows because

N−1∑
i=0

C̃iC̃
†
i =

N−1∑
i=0

U†XCiUYU†YC†iUX = I =
N−1∑
i=0

C̃†i C̃i. (8.14)

Hence, S is indeed doubly stochastic.
To conclude the proof, we remove the restriction that A has only

nonzero diagonal entries in a similar same way as in the first proof
of Lemma 8.1: Because A is nonnegative definite, it follows that if
a diagonal entry is zero, the entire row and the entire column that
contain this entry vanish. As zero eigenvalues do not alter majorization,
it suffices to apply the steps just described to the remaining nonzero
submatrix to obtain the desired majorization relation in its general
form.

8.2.3. Alternative Proof of Lemma 8.1

Proof. For any two nonnegative definite matrices A and B, the ma-
jorization λ(B) � λ(A) implies det A ≥ det B (Marshall and Olkin,
1979, Proposition 3.F.1.a). Hence, by Lemma 8.3,

det(I + A�B) ≥ det(I + dd†�B). (8.15)

Furthermore, as dd†�B = DBD†, where D = diag d, it follows that

det(I + dd†�B) = det(I + DBD†) = det(I + D†DB), (8.16)

where the last equality follows from Theorem 1.3.20 by Horn and
Johnson (1985). Now, D†D = I�A by definition.
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8.3. MUTUAL INFORMATION AND MMSE

Lemma 8.5. Let {h[k]} be a stationary random process with auto-
correlation Rh[∆k] , E

[
h[∆k + k]h[k]

]
and spectral density

ψh(ϕ) ,
∞∑

∆k=−∞

Rh[∆k]e−i2π∆kϕ, |ϕ| ≤ 1/2. (8.17 )

Furthermore, let h ,
[
h[0] h[1] · · · h[K − 1]

]T be a K-dimensional
random vector constructed from {h[k]}K−1

k=0 , and denote the K ×K
covariance matrix of h by Rh , E

[
hh†

]
. This covariance matrix is

Hermitian Toeplitz with entries [Rh]i,j = Rh[i − j]. Then, for any
vector x with binary entries {0, 1} and for any ρ > 0, the following
inequality holds for any finite K:

inf
x

1
‖x‖2

log det
(
IK + ρxx†�Rh

)
≥

1/2∫
−1/2

log
(
1 + ρψh(ϕ)

)
dϕ. (8.18 )

Furthermore, in the limit for K →∞, the above inequality is achieved
by a vector x whose entries are all equal to 1.

Remark 8.1. The second part of Lemma 8.5, that the infimum can
be achieved by an all-1 vector in the limit for K →∞, was already
proved by Sethuraman and Hajek (2005, Section VI.B). Their proof
relies on technical set-theoretic and limiting arguments, so that it is
not easy to see how the fundamental property—the stationarity of
the process {h[k]} and the corresponding Toeplitz structure of Rh—
come into play. Therefore, it is also difficult to extend their proof to
multidimensional stationary processes like we need them for the time
and the frequency dimension in Chapter 7. We give an alternative proof
that is much shorter, explicitly uses the stationarity property, and
which even allows us to derive the seemingly new lower bound (8.18).
The proof can be directly generalized to the case of multidimensional
stationary processes, as we show in Corollary 8.7 below.
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A key idea of the proof is already contained in a derivation by
Sanderovich et al. (2007); Dr. S. Shamai (Shitz) suggested its use for
the problem at hand. In particular, we employ the relation between
mutual information and the MMSE that was discovered recently by
Guo et al. (2005). We need a modification of their Theorem 2 to
the case of JPG random vectors, which we state here as a lemma for
convenience.

Lemma 8.6 (Guo et al., 2005). Let h be a random vector that sat-
isfies E

[
‖h‖2

]
< ∞, and let w be a zero-mean JPG vector, w ∼

CN (0, I), independent of h. Then, for any fixed vector x of dimen-
sion KN ,

d

dγ
I(h;
√
γx�h + w)

= E
[
‖x�h− x�E[h |√γx�h + w]‖2

]
. (8.19 )

The expression on the right-hand side in (8.19) is the MMSE if x�h
is estimated from the noisy observation √γx�h + w.

Proof of Lemma 8.5. We first derive the lower bound (8.18) and then
show achievability in the limit for K →∞ in a second step.
To apply Lemma 8.6, we rewrite the left-hand side of (8.18) as a

mutual information,

1
‖x‖2

log det
(
IK + ρxx†�Rh

)
=

1
‖x‖2

I(h;
√
ρx�h + w), (8.20)

where w ∼ CN (0, IK) is a JPG random vector. Without loss of gener-
ality, we assume that the vector x has exactly M nonzero elements
with indices in a given index set I. Then,

1
‖x‖2

I(h;
√
ρx�h + w) =

(a)
=

1
‖x‖2

ρ∫
0

E
[
‖x�h− E[x�h |√γx�h + w]‖2

]
dγ
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(b)
=

1
M

ρ∫
0

∑
m∈I

E
[∣∣h[m]− E

[
h[m] | {√γh[k] +w[k]}k∈I

]∣∣2] dγ
(c)

≥ 1
M

ρ∫
0

∑
m∈I

E
[∣∣h[m]− E

[
h[m] | {√γh[k] +w[k]}k∈Z

]∣∣2] dγ
(d)
=

ρ∫
0

E
[∣∣∣h[0]− E

[
h[0] | {√γh[k] +w[k]}∞k=−∞

]∣∣∣2] dγ.
(8.21)

Here, (a) follows from the relation between mutual information and
the MMSE in Lemma 8.6. Equality (b) holds because x has exactly M
nonzero entries whose indices are in I, and the components of the
observation that contain only noise do not influence the estimation
error. To obtain inequality (c), we estimate each h[m] not just from a
finite set of noisy observations of the random process {h[k]} but also
from noisy observations of the process’s infinite past and future. This
is the so-called infinite horizon noncausal MMSE estimate. Finally, we
obtain (d) because the process {h[k]} is stationary and its infinite
horizon noncausal MMSE is, therefore, the same for all indices m ∈ I.
The noncausal MMSE can be expressed in terms of the spectral

density of the process {h[k]} (Poor, 1994, Equation (V.D.28)):

E
[∣∣∣h[0]− E

[
h[0] | {√γh[k] +w[k]]}∞k=−∞

]∣∣∣2]

=

1/2∫
−1/2

ψh(ϕ)
1 + γψh(ϕ)

dϕ. (8.22)

To obtain the desired inequality (8.18), we substitute (8.22) in (8.21)
and note that the lower bound (8.21) does not depend on x. Therefore,
it is also a lower bound on the left-hand side of (8.18). We finally
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integrate over γ to obtain

inf
x

1
‖x‖2

log det
(
IK + ρxx†�Rh

)
≥

1/2∫
−1/2

ρ∫
0

ψh(ϕ)
1 + γψh(ϕ)

dγdϕ =

1/2∫
−1/2

log
(
1 + ρψh(ϕ)

)
dϕ. (8.23)

To prove the second part of Lemma 8.5, we choose x to be the all-1
vector for any dimension K and evaluate the limit for K → ∞ by
means of Szegö’s Theorem on the eigenvalue distribution of a Toeplitz
matrix (Grenander and Szegö, 1984; Gray, 2005):

lim
K→∞

1
K

log det(IK + ρRh) =

1/2∫
−1/2

log
(
1 + ρψh(ϕ)

)
dϕ. (8.24)

This shows that the lower bound in (8.18) can indeed be achieved in
the limit for K →∞.

We already mentioned that our proof allows for a simple general-
ization of Lemma 8.5 to multidimensional stationary processes. In
the following corollary, we state this result for the case of a two-
dimensional stationary process.

Corollary 8.7. Let {h[k, n]} be a random process that is stationary
in discrete time k and discrete frequency n with two-dimensional
autocorrelation function Rh[∆k,∆n] , E

[
h[∆k + k,∆n+ n]h[k, n]

]
and two-dimensional spectral density

ψh(ϕ, ζ) ,
∞∑

∆k=−∞

∞∑
∆n=−∞

Rh[∆k,∆n]e−i2π(∆kϕ−∆nζ) (8.25 )

for all |ϕ| , |ζ| ≤ 1/2. Furthermore, let

h[k] ,
[
h[k, 0] h[k, 1] · · · h[k,N − 1]

]T (8.26 )
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be an N-dimensional random vector constructed from {h[k, n]}N−1
n=0 ,

define the stacked vector

h ,
[
hT [0] hT [1] · · · hT [K − 1]

]T , (8.27 )

and denote the KN ×KN covariance matrix of h by Rh , E
[
hh†

]
.

Then, for any vector x with binary entries {0, 1} and for any ρ > 0,
the following inequality holds for any finite K and N :

inf
x

1
‖x‖2

log det
(
IKN + ρxx†�Rh

)
≥

1/2∫
−1/2

1/2∫
−1/2

log
(
1 + ρψh(ϕ, ζ)

)
dϕdζ. (8.28 )

Furthermore, in the limit for K,N →∞, the above inequality can be
achieved by a vector x whose entries are all equal to 1.

Proof. Without loss of generality, we assume that the vector x has
exactly M nonzero elements with indices in a given index set I. The
arguments used in (8.21) directly apply, and we obtain

1
‖x‖2

log det
(
IKN + ρxx†�Rh

)
≥

ρ∫
0

E
[∣∣∣h[0, 0]− E

[
h[0, 0] | {√γh[k, n] +w[k, n]}∞k,n=−∞

]∣∣∣2] dγ.
(8.29)

To complete the proof, we use the two-dimensional counterpart
of (8.22)—the closed-form expression for the two-dimensional non-
causal MMSE (Helstrom, 1967, Equation (2.6)), and we compute the
two-dimensional equivalent of (8.24) by an extension of Szegö’s The-
orem to two-level Toeplitz matrices (Sakrison, 1969; Tyrtyshnikov,
1996).
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8.4 . OPTIMIZATION OF THE UPPER BOUND

In this section, we analyze the remaining optimization in the upper
bound of Theorem 7.1, restated here for convenience. A closed-form
expression of the parameter α that maximizes

Uα ,
MR−1∑
r=0

(
B

TF
log
(

1 + αλr
PTF

B

)
− α B

σ0β

∫∫
ν τ

log
(

1 +
σ0λrβP

B
cs(ν, τ)

)
dτdν

︸ ︷︷ ︸
Gr(B)

)
(8.30)

over all α ∈ [0, σ0] does not exist for MR > 4, and even for MR = 1,
the upper bound (7.20) becomes intractable for all parameter values
except α = σ0. Therefore, we analyze here if the case that α = σ0

achieves the supremum in (7.20) is operationally relevant. Our goal is
to find a sufficient condition for α = σ0 to maximize Uα and to assess
the range of the physical parameters power, spread, and bandwidth
under which this condition is satisfied.
The function Uα to be optimized is continuous and its first and

second derivatives with respect to the optimization parameter α are

∂

∂α
Uα =

MR−1∑
r=0

( λrP

1 + αλrPTF/B
−Gr(B)

)
, (8.31a)

∂2

∂α2
Uα = −

MR−1∑
r=0

λ2
rTFBP

2

(B + αλrTFP )2
. (8.31b)

It follows that Uα is concave in α; hence, the optimizing parameter α
is unique. We bound the penalty term Gr(B) by Jensen’s inequality
as

Gr(B) ≤ B∆H

σ0β
log
(

1 +
σ0λrβP

∆HB

)
≤ λrP (8.32)
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to conclude that

∂

∂α
Uα

∣∣∣
α=0
≥ 0. (8.33)

Furthermore, we can see from (8.30) that Uα = 0 for α = 0. Therefore,
a necessary and sufficient condition for α = σ0 to maximize Uα is
that the zero of the first derivative (8.31a) occurs at a point larger or
equal to σ0, or, equivalently, that (8.31a) is positive for α ∈ (0, σ0).
Then, concavity guarantees that the maximum is attained on the
boundary of the admissible set, at α = σ0.

Finding the zeros of (8.31a) is difficult for rank B > 1. However, for
our purposes it suffices to bound these zeros away from (0, σ0), i.e., it
suffices if each term on the right-hand side of (8.31a) satisfies

λrP

1 + αλrPTF/B
> Gr(B). (8.34)

Assume now that each of the following implications holds:

(a)
=⇒ λrP

1 + αλrPTF/B
>
B∆H

σ0β
log
(

1 +
σ0λrβP

∆HB

)
(b)

=⇒ λrP

1 + σ0λrPTF/B
>
B∆H

σ0β
log
(

1 +
σ0λrβP

∆HB

)
(c)⇐⇒

(
1
λrρ

+ σ0TF

)−1

>
∆H

σ0β
log
(

1 +
σ0λrβρ

∆H

)
. (8.35)

For (a), we use Jensen’s inequality, as in (8.32); if we upper-bound α
by σ0, (b) results, and (c) follows from a change of variables: we define
the SNR ρ , P/B. Reversing the argument, the last condition, i.e.,
condition (8.35), is sufficient for (8.34) to hold, and consequently for
the rth addend of the first derivative (8.31a) to be positive in (0, σ0).
To render the condition (8.35) more tractable, we replace it by two
complementary conditions that are easier to evaluate:

• We replace the left-hand side of the sufficient condition (8.35) by
a lower bound.

• We replace the right-hand side in (8.35) by an upper bound.
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A. First Condition

If ρ ≥ 1/(σ0λrTF ), we lower-bound the left-hand side in (8.35) so
that

1
2σ0TF

>
∆H

σ0β
log
(

1 +
σ0λrβρ

∆H

)
and ρ ≥ 1/(σ0λrTF ), (8.36)

which can be expressed in terms of ρ as

∆H

σ0λrβ

[
exp
(

β

2∆HTF

)
− 1
]
> ρ ≥ 1

σ0λrTF
(8.37)

B. Second Condition

An upper bound on the right-hand side of (8.35) results from the
inequality∗

1
x

log(1 + x) ≤ 1√
1 + x

, for all x ≥ 0. (8.38)

Hence, we obtain a second sufficient condition:(
1
λrρ

+ σ0TF

)−1

> λrρ

(
1 +

σ0λrβρ

∆H

)−1/2

⇐⇒ β/(∆HTF )− 2
σ0λrTF

> ρ > 0, (8.39)

where equivalency holds because on physical grounds we can rule out
all solutions that require ρ ≤ 0.

C. Joint Condition

For ρ ≤ 1/(σ0λrTF ), we only need to consider the second condi-
tion (8.39); otherwise, we can use the condition (8.37). Hence, to
obtain a joint sufficient condition, we need to ensure that the admis-
sible sets for ρ in (8.37) and (8.39) overlap, i.e.,

β/(∆HTF )− 2
σ0λrTF

≥ 1
σ0λrTF

. (8.40)

∗ C. Ac.kaba suggested this inequality.
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But this latter condition is equivalent to

∆HTF

β︸ ︷︷ ︸
∆̃H

≤ 1
3
. (8.41)

Therefore, we combine (8.37) and (8.39) to find the following set of
sufficient conditions for α = σ0:

0 < ρTF <
∆̃H

σ0λr

[
exp
(

1
2∆̃H

)
− 1
]

and ∆̃H ≤
1
3
, (8.42)

where ∆̃H , ∆HTF/β is the effective spread of the channel.

8.5 . PENALTY TERM OF THE LOWER BOUND

To proof Lemma 7.3, we need to upper- and lower-bound the penalty
term addend

1
T

1/2∫
−1/2

log det
(

IN + σqλr
PTF

QB
Ψ(ϕ)

)
dϕ. (8.43)

An upper bound follows from the asymptotic equivalence between
Toeplitz and circulant matrices, a lower bound from Lemma 8.5.

8.5.1. Upper Bound
We would like to upper-bound (8.43) by an expression that can be
evaluated efficiently even for large bandwidth and that is asymptoti-
cally tight. To obtain such a bound, we need to solve two problems.
(i) The eigenvalues of the Toeplitz matrix Ψ(ϕ) are difficult to com-
pute. Therefore, we replace it with an asymptotically equivalent
circulant matrix whose eigenvalues can be obtained efficiently by
the DFT. The asymptotic equivalence guarantees that the resulting
bound is asymptotically tight. For an extensive discussion of asymp-
totic equivalence between Toeplitz and circulant matrices, see the
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tutorial article by Gray (2005). (ii) The determinant expression in
the penalty term (8.43) needs to be evaluated for all values of the
continuous parameter ϕ. To remove this dependency, we use Jensen’s
inequality.

We need the following result on the asymptotic equivalence between
Toeplitz and circulant matrices.

Lemma 8.8 (Pearl, 1973). Let T be a N ×N Toeplitz matrix. Fur-
thermore, let F be the DFT matrix, i.e., the matrix

F ,
[
f0 f1 · · · fN−1

]
(8.44 )

whose columns

fn ,
[
β0n β1n · · · β(N−1)n

]T /√N (8.45 )

contain increasing powers of the Nth root of unity, β = ei2π/N. Con-
struct from the matrix F†TF the diagonal matrix D so that the entries
on the main diagonal of D and on the main diagonal of F†TF are
the same. Then, T and the circulant matrix FDF† are asymptotically
equivalent.

The asymptotically equivalent matrix FDF† is the best circulant
approximation of T in Frobenius norm for any finite dimension N
(Chan et al., 1991).

We want to upper-bound a function of the form log det(IN + T/N).
Because F is unitary, and by Hadamard’s inequality,

log det
(

IN +
1
N

T
)

= log det
(

IN +
1
N

F†TF
)

≤ log det
(

IN +
1
N

D
)

= log det
(

IN +
1
N

FDF†
)
. (8.46)

As T and FDF† are asymptotically equivalent by Lemma 8.8, the dif-
ference between log det(IN + D/N) and log det(IN + T/N) vanishes
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as N grows large (Gray, 2005, Lemma 4.3), i.e., the bound is asymp-
totically tight.

To apply the bound (8.46) to our problem of upper-bounding (8.43),
we need to compute the diagonal entries of F†Ψ(ϕ)F. We denote the en-
tries of the Toeplitz covariance matrix Ψ(ϕ) as {ψ∆n(ϕ)}N−1

∆n=−(N−1),
so that

Ψ(ϕ) =


ψ0(ϕ) ψ−1(ϕ) . . . ψ−(N−1)(ϕ)
ψ1(ϕ) ψ0(ϕ) . . . ψ−(N−2)(ϕ)

...
...

. . .
...

ψN−1(ϕ) ψN−2(ϕ) . . . ψ0(ϕ)

 . (8.47)

By (3.36), each entry ψ∆n(ϕ) is related to the discrete-time discrete-
frequency correlation function cl[∆k,∆n] by the following Fourier
transform:

ψ∆n(ϕ) =
∞∑

∆k=−∞

cl[∆k,∆n]e−i2π∆kϕ (8.48)

=
1
T

∞∑
∆k=−∞

τ0/2∫
−τ0/2

cs

(
ϕ+ ∆k
T

, τ

)
e−i2πτ∆nF dτ. (8.49)

Consequently, the jth element on the main diagonal of F†Ψ(ϕ)F,
which we denote as dj(ϕ), can be expressed as a function of the
entries of Ψ(ϕ), using the substitution ∆n = q − p.

dj(ϕ) =
1
N

N−1∑
p=0

N−1∑
q=0

β−jqψq−p(ϕ)βjp

=
1
N

N−1∑
p=0

N−1∑
q=0

ψq−p(ϕ)β−j(q−p)

=
1
N

N−1∑
∆n=−(N−1)

(N − |∆n|)ψ∆n(ϕ)e−i2π
j∆n
N

= Re

{
2
N

N−1∑
∆n=0

(N −∆n)ψ∆n(ϕ)e−i2π
j∆n
N

}
− ψ0(ϕ). (8.50)
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We are now in a position to use the upper bound (8.46) for the
penalty term addend (8.43):

1
T

1/2∫
−1/2

log det
(

IN + σqλr
PTF

QB
Ψ(ϕ)

)
dϕ

=
1
T

1/2∫
−1/2

log det
(

IN + σqλr
PTF

QB
F†Ψ(ϕ)F

)
dϕ

≤ 1
T

1/2∫
−1/2

N−1∑
j=0

log
(

1 + σqλr
PTF

QB
dj(ϕ)

)
dϕ

=

ν0/2∫
−ν0/2

N−1∑
j=0

log
(

1 + σqλr
PTF

QB
dj(νT )

)
dν, (8.51)

where the last equality follows from a change of variables ν = ϕ/T .
We proceed to remove the dependence on ϕ. To this end, we further

upper-bound (8.51) by means of Jensen’s inequality and obtain the
desired upper bound in (7.50). Define

dj , T

ν0/2∫
−ν0/2

dj(νT )dν. (8.52)

Then,
ν0/2∫
−ν0/2

N−1∑
j=0

log
(

1 + σqλr
PTF

QB
dj(νT )

)
dν

≤ ν0

N−1∑
j=0

log

1 + σqλr
PTF

ν0QB

ν0/2∫
−ν0/2

dj(νT )dν


= ν0

N−1∑
j=0

log
(

1 + σqλr
PF

ν0QB
dj

)
. (8.53)
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Because

T

ν0/2∫
−ν0/2

ψ∆n(νT )dν

=
∞∑

k=−∞

τ0/2∫
−τ0/2

ν0/2∫
−ν0/2

cs

(
ν +

k

T
, τ

)
e−i2πτ∆nF dτdν

=

τ0/2∫
−τ0/2

ν0/2∫
−ν0/2

cs(ν, τ)e−i2πτ∆nF dτdν

= cl[0,∆n], (8.54)

it follows from (8.50) that

dj = Re

{
2
N

N−1∑
∆n=0

(N −∆n)cl[0,∆n]e−i2π
j∆n
N

}
− 1 (8.55)

as defined in (7.49). Because we obtained the upper bound (8.53) from
the tighter upper bound (8.51) by Jensen’s inequality, the bound (8.53)
is asymptotically tight only if the inequality (8.51) reduces to an
equality. This happens for scattering functions that are flat in the
Doppler domain, or, equivalently, that satisfy (7.51).
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8.5.2. Lower Bound
To lower-bound the penalty term addend (8.43), we use Lemma 8.5 and
the relation between the spectral density of the underlying discrete-
time discrete-frequency component channel and the scattering function
of the continuous-time component channel in (3.37) to conclude that

1
T

1/2∫
−1/2

log det
(

IN + σqλr
PTF

QB
Ψ(ϕ)

)
dϕ

≥ B
∫∫
ν τ

log
(

1 + σqλr
P

QB
cs(ν, τ)

)
dτdν. (8.56)

Furthermore, by Szegö’s Theorem, the difference between the right-
hand side and the left-hand side of the above inequality vanishes
as B →∞. We rigorously prove this last result in Section 8.6.2, where
we analyze the first order Taylor expansion of the lower bound L1(B)
in (7.42).

8.6. TAYLOR SERIES EXPANSION OF CAPACITY

8.6.1. Upper Bound
We would like to compute limB→∞BU1(B). This task is complicated
by the supremum over α in (7.20). However, the argument of the
supremum is a measurable function in α, so that by Fatou’s Lemma
(Rudin, 1976),

lim
B→∞

B U1(B) ≤ sup
0≤α≤σ0

lim
B→∞

MR−1∑
r=0

(
B2

TF
log
(

1 + αλr
PTF

B

)

− αB2

σ0β

∫∫
ν τ

log
(

1 +
σ0λrβP

B
cs(ν, τ)

)
dτdν

)
. (8.57)

Hence, we can compute the limit first. To do so, we take a look at the
two terms inside the summation separately. We expand the first term
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in a Taylor series according to log(1 + x) = x− x2/2 + o(x2), i.e.,

B2

TF
log
(

1 + αλr
PTF

B

)
= αλrBP −

α2λ2
rP

2TF

2
+ o

(
1
B2

)
. (8.58)

As cs(ν, τ) does not depend on B, the Monotone Convergence The-
orem (Rudin, 1976) allows to similarly expand the logarithm inside
the penalty term integral,

αB2

σ0β

∫∫
ν τ

log
(

1 +
σ0λrβP

B
cs(ν, τ)

)
dτdν

= αλrBP

∫∫
ν τ

cs(ν, τ)dτdν

− ασ0λ
2
rβP

2

2

∫∫
ν τ

c2s(ν, τ)dτdν

︸ ︷︷ ︸
κH

+o
(

1
B2

)

= αλrBP −
ασ0λ

2
rκHβP

2

2
+ o

(
1
B2

)
(8.59)

We can now combine the two terms and compute the limit in (8.57):

lim
B→∞

B U1(B) ≤ sup
0≤α≤σ0

lim
B→∞

MR−1∑
r=0

(
+
ασ0λ

2
rκHβP

2

2

− α2λ2
rP

2TF

2
− o

(
1
B2

))

= sup
0≤α≤σ0

{
αP 2

2
(
σ0κHβ − αTF

)MR−1∑
r=0

λr︸ ︷︷ ︸
ϑ

}
. (8.60)
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Elementary optimization now yields the maximizing parameter α, so
that

lim
B→∞

B U1(B) ≤


ϑ(σ0P )2

2
(βκH − TF ) , if β >

2TF
κH

ϑ(σ0κHβP )2

8TF
, if β ≤ 2TF

κH
.

(8.61)

8.6.2. Lower Bound
To prove Theorem 7.4, we need to find a lower bound on C(B) whose
first-order Taylor expansion matches (8.61). To this end, we compute
the mutual information for a specific signaling scheme that generalizes
the scheme used by Sethuraman et al. (2009).
We observe in Section 7.6 that signaling over a single transmit

eigenmode seems to be optimal for very wide bandwidth; hence, it is
sensible to use a signaling scheme that uses only the strongest transmit
eigenmode in each TF slot for the construction of the asymptotic lower
bound. Such a signaling scheme transmits over all available antennas
in general; only if there is no spatial correlation at the transmitter can
antennas be physically switched off. The effective IO relation induced
by this signaling scheme has a single input and MR outputs in each
TF slot. On the strongest eigenmode, we let the transmitter modulate
data onto blocks of K ′ consecutive slots in time and N ′ consecutive
slots in frequency, where K ′ ≤ K and N ′ ≤ N are fixed. For now,
we also assume that the total available bandwidth N and the total
available time per channel use K are integer multiples of N ′ and K ′,
respectively, so that the transmitter can send N/N ′ ×K/K ′ blocks
in one channel use. The signal in each TF slot in a given block is
independent and identically distributed with unit amplitude and zero
mean, i.e., we use constant modulus signaling within each block. We
arrange the K ′ × N ′ block of these constant-modulus signals in a
vector d in the same way as in (7.3), i.e., we stack first in frequency
and then in time. The transmitter does not directly send d along the
strongest eigenmode but x̃0 = bd, where b is a binary random variable
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that takes independent values across blocks and has distribution

b =

{√
βPT/N with probability ζ,

0 with probability 1− ζ.
(8.62)

This means that each block of i.i.d. constant modulus signals under-
goes on-off modulation with duty cycle ζ. The above signaling scheme
satisfies the peak constraint (7.13) by construction. The covariance
matrix of the input vector x̃0 is given by

E
[
x̃0x̃

†
0

]
= Eb

[
Ex̃0

[
x̃0x̃

†
0 | b
]]

= ζ
βPT

N
IK′N ′ , (8.63)

from which we can infer that x̃0 also satisfies the constraint on the
average power if we chose ζ ≤ 1/β. Because the input vector is
nonzero only on the strongest eigenmode, the MIMO channel reduces
to a single input multiple output (SIMO) channel that consists of
MR component channels. The rth component channel, truncated to
K ′ time slots and N ′ frequency slots, is denoted as h̃r, and we stack
all MR component channel vectors according to

h̃ ,
[
h̃T0 h̃T1 · · · h̃TMR−1

]T . (8.64)

The covariance matrices of the time-frequency truncated component
channels are all equal; we denote them as

Rh̃ = E
[
h̃rh̃†r

]
. (8.65)

Consequently, the covariance of the stacked channel is E
[
h̃h̃†

]
=

σ0Λ1/2⊗Rh̃. We denote the TF-truncated and stacked output vector
as ỹ, where stacking proceeds as in (7.3), and define X̃0 , diag x̃0.
Then, the IO relation (7.5) for the transmission of one block reduces
to

ỹ = (IMR ⊗ X̃0)h̃ + w̃. (8.66)

As the transmit signals are i.i.d. across blocks, we can use the chain
rule for mutual information to lower-bound the rates achievable by
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this signaling scheme:

C(B) = lim
K→∞

sup
P

1
KT

I(x; y) ≥ N

K ′N ′T
I(x̃0; ỹ). (8.67)

The right-hand side of (8.67) is the rate achievable over a generalized
SIMO block fading channel with blocks of size K ′ ×N ′, independent
fading across blocks, and correlation within each block equal to the
correlation of the original channel. Such a channel model is also
analyzed by Liang and Veeravalli (2004).
Because we are only interested in the asymptotic behavior of the

above bound, it suffices to analyze the second-order expansion of the
mutual information I(x̃0; ỹ) on the right-hand side in (8.67). For the
channel model at hand, this second-order expansion was derived by
Prelov and Verdú (2004, Corollary 1) for fixed K ′ and N ′:

I(x̃0; ỹ)

=
1
2

tr
{

Ex̃0

[(
Eh̃

[
(IMR ⊗ X̃0)h̃h̃†(IMR ⊗ X̃0)†

])2
]}

− 1
2

tr
{(

Eh̃,x̃0

[
(IMR ⊗ X̃0)h̃h̃†(IMR ⊗ X̃0)†

])2
}

+ o

(
1
N2

)
. (8.68)

In the following, we use that

Eh̃

[
(IMR ⊗ X̃0)h̃h̃†(IMR ⊗ X̃0)†

]
= σ0Λ⊗(X̃0Rh̃X̃

†
0)

= σ0Λ⊗(Rh̃� x̃0x̃
†
0) (8.69)

and analyze the two trace terms in (8.68) separately.
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The first trace term in (8.68) is

tr
{

E
[(
σ0Λ⊗(Rh̃� x̃0x̃

†
0)
)2
]}

= σ2
0 tr
{

Λ
2⊗E

[
(Rh̃� x̃0x̃

†
0)2
]}

(a)
= σ2

0

(MR−1∑
r=0

λ2
r︸ ︷︷ ︸

ϑ

)
tr
{

E
[
(Rh̃� x̃0x̃

†
0)2
]}

(b)
= σ2

0ϑ tr
{

E
[(

Rh̃� x̃0x̃
†
0

)†(
Rh̃� x̃0x̃

†
0

)]}
(c)
= σ2

0ϑ tr
{

E
[
R†

h̃

(
x̃0x̃T0 �Rh̃� x̃0x̃

†
0

)]}
(d)
= σ2

0ϑζ tr

{
R†

h̃

(
Rh̃�E

[
x̃0x̃T0 � x̃0x̃

†
0 | b =

√
βPT

N

])}
(e)
= σ2

0ϑζ

(
βPT

N

)2

tr
{

R†
h̃
Rh̃

}
. (8.70)

Here, (a) is a consequence of Theorem 4.2.12 by Horn and Johnson
(1991); (b) results because the matrices involved are all Hermitian,
and (c) follows from the Hermitian product identity (Lütkepohl, 1996,
p. 42)

tr
{(

AT �BT
)
C
}

= tr
{

AT (B�C)
}
. (8.71)

To obtain (d), we partially evaluate the expectation and use that
the Hadamard product is commutative; finally, (e) holds because the
entries of the matrix x̃0x̃T0 � x̃0x̃

†
0 are all equal to (βPT )2/N2 w.p.1

given that b =
√
βPT/N .
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The second trace term in (8.68) is

tr

{
E
[
σ0Λ⊗(Rh̃� x̃0x̃

†
0)
]2}

= σ2
0 tr


(

Λ⊗
(

Rh̃�E
[
x̃0x̃

†
0

]))2


= σ2
0 tr


(

Λ⊗
(

Rh̃�
ζβPT

N
IK′N ′

))2


(a)
= σ2

0 tr

{
Λ

2⊗
(
ζβPT

N

)2

IK′N ′

}

= σ2
0ϑ

(
ζβPT

N

)2

K ′N ′, (8.72)

where (a) follows from (7.27).
We have thus shown that the asymptotic mutual information ex-

pression (8.68) simplifies to

I(x̃0; ỹ) =
1
2
ϑζ

(
σ0βPT

N

)2

×
(

tr{R†
h̃
Rh̃} − ζK

′N ′
)

+ o

(
1
N2

)
(8.73)

which we can now substitute in (8.67) to compute a lower bound
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on limB→∞BC(B). This lower bound is valid for any fixed K ′ and N ′:

lim
B→∞

BC(B) ≥ lim
B→∞

B2

K ′N ′TF
I(x̃0; ỹ)

= lim
B→∞

B2

K ′N ′TF

[
1
2
ϑζ

(
σ0βPTF

B

)2

(
tr{R†

h̃
Rh̃} − ζK

′N ′
)

+ o

(
1
B2

)]

=
ϑ

2
TF (σ0ζβP )2

(
tr{R†

h̃
Rh̃}

ζK ′N ′
− 1

)
(8.74)

To obtain a closed-form expression for (8.74), we take its limit
for K ′ → ∞ and N ′ → ∞. Although this limit is no longer a valid
lower bound itself because we require that K ′ and N ′ are fixed to
apply the asymptotic expansion of mutual information by Prelov
and Verdú (2004, Corollary 1), we can always chose K ′ and N ′ large
enough but fixed to come arbitrarily close to this limit. To identify
its value, we use a result by Tyrtyshnikov (1994, Section 4) and
Capizzano (2001) about the asymptotic eigenvalue spectrum of the
product of two-level Toeplitz matrices. This result generalizes the
relation between the product of two Hermitian Toeplitz matrices
and the product of corresponding asymptotically equivalent circulant
matrices by Grenander and Szegö (1984, Chapter 7) (see also the
simplified derivation by Gray 2005, Theorem 5.3).

lim
K′,N ′→∞

1
K ′N ′

tr
{

R†
h̃
Rh̃

}
=

1/2∫
−1/2

1/2∫
−1/2

(
ψ(ϕ, ζ)

)2
dϕdζ

=
1
TF

∫∫
ν τ

c2s(ν, τ)dτdν

︸ ︷︷ ︸
κH

. (8.75)

Thus, if we chose K ′ and N ′ large enough, we can come arbitrarily
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close to

ϑ(σ0ζβP )2

2

(
κH

ζ
− TF

)
. (8.76)

But for ζ = 1/β and ζ = κH/(2TF ), this limit equals the upper bound
on the first-order Taylor series coefficient φ of U1 in (8.61) for the two
cases β > 2TF/κH and β ≤ 2TF/κH. Hence, the first order Taylor
expansion of the lower bound (8.74) can be made to match the upper
bound (8.61) as closely as desired.
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CHAPTER 9

Conclusions

The gap between model and reality, how large is it? If we
consider all the assumptions we made to get from the de-
scription of the wireless channel by means of Maxwell’s equa-

tions to the discretized and approximately diagonalized underspread
WSSUS model in Section 3.2, or even to the discrete-time block-fading
model in Section 3.1.4, and if we also take into account the rather
inconclusive empirical results on the joint tap distribution from Sec-
tion 6.3, which in turn rest on measurements that required complicated
postprocessing, we might easily conclude that the models used for
communication-theoretic analysis are disconnected from reality. And
in an absolute sense, if we just care about modeling accuracy, we
might actually be right with this conclusion.

But maybe we are just asking the wrong question. “How important
is the gap?” or “How fundamental is the gap?” are probably much
more relevant questions to ask, because in the end the utility of a
model is determined by the designs enabled by it. And to this end we
hope to have contributed some aspects in this thesis, even if they are
only minor aspects.
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9.1. MODELING CONSEQUENCES

Motivated by our considerations in Chapter 2, we stated three impor-
tant modeling questions in Section 4.3.1, about marginal tap distribu-
tions, tap correlation, and DOU scaling. From these three questions,
we could empirically answer the one about marginal tap distributions
in a satisfactory way, the one about the number of DOUs as a function
of bandwidth positively only contingent on our measurements alone,
but inconclusively in view of other reported results, and the question
about tap correlation only to a certain degree—correlation is low, but
seems to play a role nevertheless.

Maybe of equal importance is what we did not find: clear evidence
against most of the fundamental features of the standard discrete-
time block-fading model commonly used for the analysis of wideband
wireless channels (Tse and Viswanath, 2005). With the advent of UWB

communications, several researchers claimed that completely different
models would be necessary, that the conventional design principles
no longer held. The answers to these supposed challenges have been
mainly specular block-fading models with various tap amplitude
distributions and various cluster and ray arrival processes. While
the findings that are undisputed in the literature, the exponentially
decaying clustered PDP, the large number of channel taps, the reported
delay spread and mean delay values for indoor scenarios, are also
reflected in MCI and MCII, our results seem to imply that Rayleigh
and Rice amplitude distributions are still adequate to model small-
scale fading of UWB channels and, more importantly, that the JPG

distribution for the entire channel impulse response is empirically
at least equally well supported than other models. On the basis of
these observations, we are confident that the conventional discrete-
time wideband block-fading channel model reviewed in Section 3.1.4
is much better suited for mathematical analysis of ultrawideband
communication system than the proposed alternatives, and that a
time variant extension of this model like the GSCM by Kunisch and
Pamp (2003), which adequately describes the evolution of specular
reflections, is better suited for simulations than derivatives of the
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SV model, like the IEEE 802.15.3a and IEEE 802.15.4a models, for the
reasons detailed in Section 6.5.1.
Though we do not advance a radically different approach to wide-

band channel modeling, we find several interesting features that might
be beneficially targeted in the design of future UWB systems, namely,
the evolution of specular paths over space in application scenarios with
mobile terminals and the strong mean component in every impulse
response tap for channels between static terminals.

The basic empirical findings about tap distributions and DOU scaling
hint at the possibility that Kozek’s more general time- and frequency-
selective fading model presented in Section 3.2 captures several funda-
mental features of wideband channels, so that our capacity analysis
in Chapter 7 may be of practical relevance. Because of the connection
between the discrete-time and continuous-time models, it is possible
to evaluate our capacity bounds for scattering functions that are ob-
tained from channel measurements and to use the results to optimize
a communication system for specific channel characteristics.

9.2. DESIGN IMPLICATIONS

A model is only as good as the designs it enables. We argue above
that our results support the conventional discrete-time JPG channel
model for mathematical analysis, and that the more comprehensive
discretized WSSUS model is also in line with our empirical findings.
The upper and lower bounds form Chapter 7 may, therefore, provide
important quantitative design guidelines for a channel with known
scattering function, e.g., obtained by measurements. But even if the
scattering function is not known completely and the channel is only
characterized coarsely by its maximum delay τ0 and maximum Doppler
shift ν0/2, the bounds may serve as an efficient design tool. Maximum
delay and maximum Doppler shift are sufficient to characterize a
brick-shaped scattering function, and for such a scattering function
the upper bound (7.20) and the approximate lower bound (7.53) are
especially easy to evaluate. Furthermore, a brick-shaped scattering
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function results in the worst-case capacity upper bound for a given τ0
and ν0. Therefore, the widely accepted practice to characterize wireless
channels simply by means of these two parameters leads to a robust
design.

The numerical evaluation in Section 7.6 indicates that our bounds
are surprisingly good over a large range of bandwidths for a set
of practically relevant parameters. In particular, our lower bound
is close to the coherent upper bound in Figure 7.1 for bandwidths
up to 1GHz. It is exactly this regime that is of most interest for
current wideband and ultrawideband communication systems, and
also the regime where we can expect the modeling assumptions in
Chapter 2 to be most accurate. While our bounds are general, the
numerical examples pertain only to certain parameter choices and do
not allow for general statements. However, we use rather conservative
parameters in the plots of Section 7.6; many systems might operate
over channels with smaller spread and at higher SNR. And even for very
different parameters, the bounds are appropriate to check if a given
bandwidth still lies in the benign regime where capacity increases
with DOFs and where the lower bound is close to the coherent upper
bound.

The small difference between noncoherent lower bound and coherent
upper bound for practically relevant bandwidth hints at the possibility
that the standard coherent design methodology for coding and modu-
lation schemes, in which perfect CSI is assumed at the receiver, might
still be useful for UWB systems, and that well established receiver
architectures, codes, training schemes, etc. might be scaled to larger
bandwidth. To prove this claim rigorously, though, some additional
work is required.

In addition to standard design principles, our results give several
hints on how to improve a design to operate over wideband channels
that are possibly time-variant.

• If both terminals can be expected to move little, the Ricean
component in all channel taps should be made use of.

• If terminals are mobile, it might be worthwhile to track several
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strong specular path.
• The numerical evaluation of our lower bound for QPSKmodulation
indicates that low-order modulation schemes may be close to
optimal for a large range of bandwidth.

• The number of DOU increases with bandwidth and limits the
performance if bandwidth gets too large. The most efficient way
to combat this problem seems to make use of channel memory
in space, time, and frequency. Many current wireless systems do
not exploit channel memory over more than a single packet. But
many indoor channels are highly underspread, i.e., have lots of
memory, and it would be wasteful not to use it, even if only very
coarsely to initialize a channel estimation algorithm or adaptive
equalizer at the start of a new packet.

Many of these design guidelines have one important drawback, tough.
They require substantial computation. While the tremendous advances
in silicon integration have enabled many computationally intensive
receiver algorithms to be implemented for wideband systems of, say,
40MHz bandwidth, they are still extremely challenging to build for
bandwidths that are one or two orders of magnitude larger. But
then, nobody envisioned in 1958 that the then refrigerator-sized rake
receiver (Price and Green, 1958) is part of most wireless devices some
50 years later.

9.3. OPEN PROBLEMS

In this thesis, we tried to analyze the problem of wireless communica-
tions over wideband fading channels with a focus on fundamental yet
practically relevant aspects. Our results shed light on some interest-
ing questions, but they are by no means comprehensive. We briefly
summarize some important, as we believe, open problems we came
across.

The delay-scale representation: To derive the LTV IO relation used
throughout the thesis, we require the small fractional bandwidth as-
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sumption (2.7). Without it, we need to resort to the more complicated
delay-scale IO representation (2.4). Two important problems are to
analyze if and when the latter model can be beneficially used, and to
develop mathematical tools with which the delay-scale model can be
as efficiently handled as the delay-Doppler model.

Time-variant and multiantenna measurements: Our multiantenna
extension of the basic SISO WSSUS channel model in Section 7.3 is not
backed up empirically, mainly because truly time-variant multiantenna
channel measurements are still difficult to perform.

Scaling of the number of degrees of uncertainty in different types of
channels: We were not able to fundamentally explain the different
scaling behavior of the DOUs in our MCII and the measurements
by Menouni Hayar et al. (2005). As this question is of fundamental
importance for our capacity results in Chapter 7, further empirical
and fundamental theoretical investigations would be valuable.

Channel models for the design of synchronization algorithms: We
aligned individual impulse response samples in Section 4.5 to obtain
impulse responses as a receiver synchronized to the transmitter would
perceive them. This implies that our model is not suited to design
synchronization algorithms, as the synchronization step is already
implicitly contained in the model. To the best of our knowledge, no
dedicated channel models are available for the design of synchronizers.

Capacity results for different channel models: Our capacity analysis
in Chapter 7 fundamentally requires that the channel is underspread
and stationary. How does capacity behave if either assumption is
violated? Matz (2003, 2005) provides some first promising results
for non-WSSUS channels. Overspread channels can be found mainly
in underwater acoustic communications. A promising approach to
analyze their asymptotic capacity behavior might follow along the
lines of Koch et al. (2007a,b).
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Capacity results for a constraint on the transmitted PSD: Current
UWB regulations do not constrain the average transmitted power as we
do in Section 7.3.3 but limit the transmitted signal’s PSD. Therefore,
the total transmitted power is allowed to increase with increasing
bandwidth, which results in a scaling behavior different from our
results in Chapter 7. The analysis for a PSD constraint only follows
along the same lines as in Chapter 7; however, the more interesting and
more realistic case is to include the frequency dependent attenuation
as observed by Kunisch and Pamp (2002), so that the received power
does not scale with bandwidth in the same way than the transmit
power. The corresponding channel model would no longer be US,
though.

Signaling schemes that take advantage of the Ricean component: An
important finding in Chapter 5 is the strong Ricean component in
every impulse response tap inMCII. As already discussed in Section 6.5,
a strong mean component in every tap might significantly increase
capacity compared to purely Rayleigh fading. However, our capacity
analysis in Chapter 7 requires a zero-mean JPG channel process. A
constant mean can probably be incorporated as well, but a more
realistic mean component that is frequency dependent breaks the US

assumption; hence, different analysis techniques might be necessary.

Assessment of pilot-aided transmission: We hypothesized in Sec-
tion 7.6 that the small gap between the noncoherent lower bound L1

and the coherent upper bound Uc observed in Figure 7.1 for band-
widths up to 1GHz means that not knowing the channel incurs only
a small capacity penalty compared with the coherent setting, a state-
ment theoretically verified by Médard (2000). A question of practical
interest is if the commonly used pilot-aided transmission schemes in
combination with codes designed for the coherent setting achieve rates
comparable to our lower bound L1, or if a different design paradigm
is necessary.
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APPENDIX A

Notation

A .1 . MISCELLANEOUS

A,B, . . . sets
|A| cardinality of the set A
Ac complement of the set A in some specified superset
A− B set difference
R, C real line, complex plane
Z set of all integers
F Fourier transform:

(
Ft→f f

)
(f) ,

∫
f(t)e−i2πftdt

F−1 inverse Fourier transform:(
F−1
f→t g

)
(t) ,

∫
g(f)ei2πtfdf

log x logarithm of x to the base e (natural logarithm)
δ(t) Dirac distribution
δi,j discrete Kronecker delta; takes on the value 1 if

i = j and the value 0 otherwise
? convolution:

(
x ? y

)
(t) ,

∫
τ
x(τ)y(t− τ)dτ

Re, Im real, imaginary part of a complex-valued quantity
Γ(x) gamma function
I0(x) modified Bessel function of the first kind and order 0
f(x) = o(x) f(x)/x→ 0 for x→ 0
{xn} , {xn}N−1

n=0 generic sequence, finite sequence with N elements
dxe smallest integer equal to or larger than x
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A .2. LINEAR ALGEBRA

a,A, b, B . . . deterministic scalars
a,b, . . . deterministic vectors
A,B, . . . deterministic matrices
aT , AT transpose of the vector a and the matrix A
a, a, A element-wise complex conjugate of the scalar a, the

vector a, and the matrix A
a†, A† Hermitian transpose of the vector a and the matrix A
[A]i,j element in the ith row and jth column of the

matrix A
IN , 0N N ×N identity, N ×N all-zero matrix
diag(a) diagonal matrix with a on its main diagonal
‖A‖2F squared Frobenius norm of A: ‖A‖2F =

∑
i,j |[A]i,j |2

tr A,det A trace, determinant of the square matrix A
rank A rank of the matrix A
A⊗B Kronecker product of the matrices A and B
A�B Schur-Hadamard product of the matrices A and B
(aa†)�⊗B the standard matrix product takes precedence over

= aa† �⊗B Kronecker and Hadamard products
〈a,b〉 inner product of the vectors a and b
a � b the vector a majorizes the vector b
λ, σ eigenvalue, singular value
λn(A) nth eigenvalue of the N ×N matrix A, sorted in

nonincreasing order and including multiplicities, i.e.,
λ0 ≥ λ1 ≥ · · · λN−1

λ(A) vector of eigenvalues of A:
λ(A) =

[
λ0(A) λ1(A) . . . λN−1(A)

]
FK K ×K discrete Fourier transform (DFT) matrix:

[FK ]m,n = (1/
√
K) e−j2πmn/K , for

m = 0, 1, . . . ,K − 1 and n = 0, 1, . . . ,K − 1
spanA closed linear span of the vectors in A
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A .3. PROBABILITY AND STATISTICS

P(A) probability of the event A
P(A |B) conditional probability of the event A given the

event B
a, b, . . . random variables
a,b, . . . random vectors
A,B, . . . random matrices
Fq(a), fq(a) CDF, PDF of the random variable a, parametrized

by the parameter vector q
F(a | b), f(a | b) conditional CDF, PDF of b given the

realization b = b

M set of all univariate CDFs
G candidate family of CDFs
J candidate set
EF [·] expectation operator (with respect to the CDF F )
µ generic mean vector
R, J generic covariance, pseudocovariance matrix
ψ(ϕ, ζ) bivariate spectral density
Ψ(ϕ) matrix-valued spectral density
ρij normalized correlation coefficient
CN (µ,R) multivariate jointly proper Gaussian (JPG)

distribution with mean µ and covariance matrix R
q̂ estimate of the parameter vector q
Hi, Hc incumbent, challenging hypothesis
∆(·, ·) discrepancy between two probability distributions
∆N (·, ·) empirical discrepancy between two probability

distributions, computed from N samples
AIC value of Akaike’s Information Criterion (AIC)
AICC value of the small-sample corrected version of AIC
φj difference between the AIC-best distribution and

the fitted distribution j
wj Akaike weight of the fitted distribution j
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A . 4 . COMMUNICATION AND INFORMATION
THEORY

N0 spectral density of the thermal noise
P average power
β peak- to average-power ratio (PAPR)
Eb energy per bit
snr signal to noise ratio
fc carrier frequency
K Ricean K-factor
MT,MR number of transmit, receive antennas
A,B transmit, receive spatial correlation matrix
x,x, x,X (random) channel input
r noise-free (random) channel output
y,y, y noisy channel output
h,h,H (random) channel
w,w,w white noise
D duration
B bandwidth
ρ (random) path gain
µτ , στ mean delay, delay spread
h(x) differential entropy of the random vector x
I(x; y) mutual information between the random vectors x

and y
P,Q sets of input distributions
D(f || g) relative entropy between the probability densities f

and g, also called Kullback-Leibler (KL) distance or
divergence

C,Cε channel capacity, ε-outage capacity
L1, L2, lower bounds on capacity
U1, Uc upper bound on capacity, coherent capacity

326



A.5 LINEAR TIME-VARIANT SYSTEMS

A .5 . LINEAR TIME-VARIANT SYSTEMS

L2 Hilbert space of square-integrable functions
t,∆t, k continuous time, time difference, discrete time
τ, l continuous, discrete delay
τ0 maximum delay
f,∆f, n continuous frequency, frequency difference, discrete

frequency
ν,m continuous, discrete Doppler frequency
ν0 maximum Doppler shift
T, F time, frequency grid spacing
∆H, ∆̃H spread, effective spread
H Hilbert-Schmidt (HS) channel operator
IH,RH,NH channel input, output, null-space
kH(t, t′) (random) kernel of the HS operator H
hH(t, τ) (random) time-variant impulse response
lH(t, f) (random) time-variant transfer function
sH(ν, τ) (random) spreading function
bH(ν, f) (random) bi-frequency function
ss(ν, τ) specular spreading function
cS(a, b) wideband spreading function
ch(∆t, τ) WSSUS impulse response correlation function
cl(∆t,∆f) WSSUS time-frequency correlation function
cs(ν, τ) WSSUS scattering function
ps(τ) power-delay profile (PDP)
ui(t), vi(t′) left and right singular functions of H
g(t) Weyl-Heisenberg (WH) prototype pulse
Ag(ν, τ) ambiguity function of g(t)
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Acronyms

ADC analog-to-digital converter
AIC Akaike’s Information Criterion
AICC small-sample corrected AIC

AOA angle of arrival
AOD angle of departure
AR autoregressive
AWGN additive white Gaussian noise
BIC Bayes information criterion
CLT central limit theorem
CDF cumulative distribution function
CP cyclic prefix
CSI instantaneous channel state information
DFT discrete Fourier transform
DOF degrees of freedom
DOU degrees of uncertainty
DSO digital sampling oscilloscope
FH frequency hopping
GO geometrical optics
GOF goodness of fit
GSCM geometry-based stochastic channel model
GTD geometrical theory of diffraction
HS Hilbert-Schmidt
ICI intercarrier interference
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B ACRONYMS

IDFT inverse discrete Fourier transform
IEEE Institute of Electrical and Electronics Engineers
IF intermediate frequency
IO input-output
IR impulse radio
ISI intersymbol interference
JPG jointly proper Gaussian
KL Kullback-Leibler
LFI linear frequency-invariant
LOS line of sight
LTI linear time-invariant
LTV linear time-variant
MCI measurement campaign I
MCII measurement campaign II
MCM Monte-Carlo method
MDL criterion of minimum description length
MIMO multiple input multiple output
ML maximum likelihood
MMSE minimum mean squared error
MUSIC multiple signal classification
NLOS non line of sight
OFDM orthogonal frequency division multiplexing
OLOS obstructed line of sight
PAPR peak- to average-power ratio
PDF probability density function
PDP power-delay profile
PN pseudonoise
PSD power spectral density
PSK phase-shift keying
PS-OFDM pulse-shaped orthogonal frequency division multiplexing
QPSK quaternary phase-shift keying
RF radio frequency
RMS root mean square
SAGE space alternating generalized expectation maximization
SIMO single input multiple output
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SISO single input single output
SNR signal-to-noise ratio
SV Saleh-Valenzuela
SVD singular value decomposition
TDMA time division multiple access
TF time-frequency
US uncorrelated scattering
USB universal serial bus
UTD uniform theory of diffraction
UWB ultrawideband
VNA vector network analyzer
WH Weyl-Heisenberg
WLAN wireless local area network
WPAN wireless personal area network
w.p.1 with probability 1
WSS wide-sense stationary
WSSUS wide-sense stationary uncorrelated scattering
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