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1. INTRODUCTION

Linear and semidefinite programming (LP, SDP), regularisation through basis pursuit (BP) and Lasso,
as well as neural networks in deep learning have seen great success in mathematics, statistics, data sci-
ence, and computer-assisted proofs. The success and performance of LP is traditionally attributed to
the fact that it is polynomially solvable (colloquially, “in P”’) for rational inputs. On the other hand, in
his list of problems for the 21st century [[1]] S. Smale calls for “[Computational] models which process
approximate inputs and which permit round-off computations”. Indeed, since e.g. /- and exp(-) do not
have exact representations, inaccurate data input is a daily encounter. The relevance of such a model
is further emphasised by the fact that even a rational number such as 1/3 is stored only approximately
when using floating-point arithmetic, a situation faced by most software. This model allowing inaccurate
input of arbitrary precision, which we call the extended model, leads to extended versions of fundamental
problems such as: “Are LP and other aforementioned problems in P?” The same question can be asked of
an extended version of Smale’s 9th problem [[1]] on the list of mathematical problems for the 21st century.

Recall, Smale’s 9th problem reads

Is there a polynomial time algorithm over the real numbers which decides the feasibility

of the linear system of inequalities Ax > vy, and if so, outputs such an x?

One can thus pose this problem in the extended model where A and y are given as inexact inputs with
arbitrary precision. Similarly, the optimisation problems BP, SDP, as well as (constrained and uncon-
strained) Lasso, where the task is to output a solution to a specified precision, can likewise be posed in
the extended model. Given the widespread use of randomised algorithms, one can then ask questions
on the existence of randomised algorithms providing an approximate solution with a certain probability.
We will collectively refer to these problems as the extended Smale’s 9th problem (see Problem|I] for the
precise formulation), which we will consider in both the extended Turing and the extended Blum-Shub-
Smale (BSS) model for real arithmetic.

We settle this problem in both the negative and the positive, revealing two surprises: (1) In mathe-
matics, sparse regularisation, statistics, and learning, one successfully computes with non-computable
problems (e.g., in compressed sensing, for which we provide a detailed account). The same happens
also in computer-assisted proofs, for example in the famous proof of Kepler’s conjecture (Hilbert’s 18th
problem) [2]], [3]. (2) In order to mathematically characterise this phenomenon, one needs an intricate
complexity theory for, seemingly paradoxically, non-computable problems.
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Short summary of the main results on the extended Smale’s 9th problem: Consider the task of
computing a minimiser of LP, BP, or (constrained and unconstrained) Lasso in the extended model, and
choose an appropriate norm to measure the error. Then, for any integer K > 2, there exists a class of
feasible inputs €2 such that we have the following.

(i) No algorithm, even randomised, can produce K correct digits of the true solution for all inputs
in Q (with probability exceeding p > 1/2 in the randomised case).

(i) If we allow randomised algorithms with non-zero probability of not halting (i.e., not producing
an output), then no such algorithm can produce K correct digits for all inputs in £2 with proba-
bility exceeding p > 2/3. However, there does exist such an algorithm that produces K correct
digits for all inputs in €2 with probability 2/3.

(iii) One cannot decide if a given algorithm taking inputs from (2 fails to produce K correct digits on
a given input. This is in fact strictly harder than solving the original problem in the following
sense. Even if given an oracle for solving, e.g., LP accurately, one cannot decide if the algorithm
for solving LP successfully produces K correct digits of the true solution.

(iv) There does exist an algorithm that provides K — 1 correct digits for all inputs in {2. However,
any such algorithm will need an arbitrarily long time to achieve this. Specifically, there is an
Q' C Q with inputs of fixed dimensions, such that, for any 7" > 0 and any algorithm T', there
exists an input ¢ € €’ so that either I'(¢) does not approximate the true solution with K — 1
correct digits or the runtime of I' on ¢ exceeds T". Moreover, for any randomised algorithm """
and p € (0,1/2), there exists an input ¢ € Q' such that

P(I™*"(+) does not approximate the true solution with K — 1 correct digits

or the runtime of I on ¢ exceeds T') > p.

(v) The problem of producing K — 2 correct digits for all inputs in €2 is in P, i.e., can be solved in
time polynomial in the number of variables n.

(vi) If one only considers (i) - (iv), {2 can be chosen with any fixed dimensions m < N with m > 4
(see §I.T[for the precise formulation of the problems) . Moreover, if one only considers (i) - (iii),
then K can be chosen to be 1.

(vii) Furthermore, there are classes Qf #  of problems for which there are algorithms that can
produce K correct digits of the true solution for any input in QF and any K, with runtime bounded
by a polynomial in both n and K, as opposed to just n as above.

(viii) Similar results to the above hold for the extended LP feasibility decision problem.

In the above, we use the unqualified term algorithm to mean an algorithm that always provides an output,
i.e., always halts. More precise and elaborate versions of these claims will follow in Theorem [3.4]
Theorem [5.1] Theorem[6.1} and Theorem[7.1}

It may come as a surprise that the above results are independent of the many condition numbers in
the literature (see §9.1). Indeed, bounded condition numbers generally do not imply the existence of
successful algorithms, and, on the other hand, there are problem classes in P with infinite condition
numbers. Moreover, the input can be bounded from above and below. The reader is invited to consult §E]
for a demonstration of the failure of modern software consistent with the above results.

Our theory leading to the results above has implications for a variety of fields such as computer-
assisted proofs, compressed sensing, and Smale’s 18th problem in connection with deep learning that
can be summarised briefly as follows.

Computer-assisted proofs: The recent computer-assisted proof, led by T. Hales [2], [3]], of the long-
standing Kepler’s conjecture was possible despite relying on computing with non-computable problems.
A crucial part of the proof consists of the numerical computation of linear programs with inexact input
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as in the extended model described above. In view of (i) - (iii) above, this may seem paradoxical. How-
ever, non-computable problems can indeed be used in computer-assisted proofs, the Dirac-Schwinger
conjecture proved by C. Fefferman and L. Seco in [4]-[12]] serving as another example.

Compressed sensing: This widely applied scientific and engineering discipline is an example where
all of (i)-(vii) apply. Indeed, as we show, for many compressed sensing problems one cannot compute an
approximate solution with, say, five digits accuracy, however, one can compute a four digit approximation
efficiently. In imaging problems this typically suffices due to limitations of the human eye.

Smale’s 18th problem and deep learning: The 18th problem on Smale’s list [1] echoes Turing’s famous
paper from 1950 and asks about the limitations of artificial intelligence. Our theory sheds light on
this problem in view of the following paradoxes in deep learning.

(1) (Non-existence of algorithms) The standard computational problem of constructing a neural net-
work through risk minimisation and applying it to test data is in general non-computable.

(ii) (Instability) Neural networks based on deep learning may have great success rate but typically
become unstable. Specifically, there are uncountably many classification problems for which the
following happens. One may have 100% success rate on arbitrarily large training and validation
data sets, and yet there are uncountably many points arbitrarily close to the training data for

which the trained network will fail.
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1.1. The computational problems. Linear and semidefinite programming, regularisation techniques
such as basis pursuit and Lasso, as well as deep learning have become highly popular over the last
decades. These approaches have in many areas of mathematics, statistics, learning, artificial intelligence
and data science changed the state of the art from linear to non-linear approaches, typically via obtaining
minimisers of both convex and non-convex problems [14]-[28]]. The list of areas using these techniques
is far reaching and their influence has been extensive. The key problems to compute are:

(i) Linear Programming (LP)

z € argmin(z, ¢) subjectto Az =y, x>0, (1.1)
(i) Basis Pursuit (BP) '
z € argmin J (z) subject to ||Az — yll2 <4, § € [0,1], (1.2)
(iii) Unconstrained Lassom(UL)
z € argmin || Az — y||2 + X\ T (z), A€ (0,1], (1.3)
(iv) Constrained Lasso (Cali)
z € argmin ||Az — y||2 subject to ||z||s <7, 7 >0, (1.4)
(v) Semidefinite Programm:;ng (SDP)
Z € argmin(C’,X)Sn subject to (A, X)sn = b, X =0, k=1,...,m (1.5)
(vi) Neural Netw;ilfsS (NN)
{¢(yj)}j‘:1a where ¢ € argmin R({qg(xj)}§:17{f(xj) i-1)s (1.6)
GPENNN, L4

for 7= {z',...,2"} CR%and V = {y',...,y°}.

In the above notation we have
AcR™N yeR™ ceRY, J(x) = ||z|; or T(x) = ||z|Tv,
where the TV semi-norm is defined as ||z||Tv = Z;V:_ll |z; — xj41|. For SDP, the notation is
C, Ay, € S™ (real n x n symmetric matrices), by € R, (C, X)gn = trace(CT X).

Finally, in the case of neural networks 7~ denotes the training set, V the validation set, f : R — {0, 1}Vz
is the classification function to be learnt, and R € CF is the cost function, where

CF={R:R>Ne x R™Ne 5 R, | R(v,w) = 0iff v =w}.

Moreover, NN'n .4, where N = (N1, Ny_1,..., N1, Ng = d), denotes the set of all L-layer neural
networks, i.e., all mappings ¢ : R¢ — Rz of the form

p(x) = Wh(pWE(p(- - p(W'(z))--+)))), = €RY,

where W* : RNe-1 — RNe 1 < ¢ < L, are affine mappings and p : R — R is a function which
acts on vectors componentwise. Throughout the paper we consider the ReLU nonlinearity, i.e., p(z) =
max{0,x}.

Note that all of the problems above may have multi-valued solutions in certain cases. Whenever this
occurs, the computational problem of interest is to compute any of these solutions. We will throughout
the paper use the notation

E: Q=3 M, (1.7)
to denote the multivalued solution map, mapping an input ¢ € € to a metric space (M, d), allowing
measurement of error. The metric space is typically RYY or C%V equipped with the || - |2 norm, however,

any metric can be considered. Even though the solution map = may be multivalued, in our theory the
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output of an algorithm will always be single-valued. Thus, if I" : 2 — M is an algorithm we measure
the approximation error by

distun (0. Z0)) = _inf dui(D(0).€).

Remark 1.1 (Objective function vs minimisers). In this paper we are primarily concerned with the
problem of obtaining minimisers that are vectors and not the real-valued minimum value of the objective
function. There is a very rich literature [29]—[33]] on how to compute the objective function, and, in
particular, the minimum value f(z*) = min{f(z)|z € X}, for some convex function f : R? — R,
convex set X C R, and minimiser z* € X. The traditional problem of interest is as follows. Given
€ > 0, compute an z. € R? such that f(z.) — f(z*) < e. Note, however, that f(z.) — f(2*) < € does
not necessarily mean that

|ze —z*|| <e. (1.8)

In this paper, however, it is exactly the problem of computing . such that we have (I.8) that will be
of prime interest. The motivation behind this is self-evident as there are vast areas of mathematics of
information, regularisation, estimation, learning, compressed sensing and data sciences where the object
of interest is the minimiser and not the minimum value.

2. THE EXTENDED MODEL AND THE EXTENDED SMALE’S 9TH PROBLEM

The question: “is LP in P?” [|34]-[|36]] was a fundamental problem whose solution reached the front
page of The New York Times [37]]. The affirmative answer has been refined several times and is now

typically stated in the following form. One can solve LPs with rational inputs in runtime is bounded by
On3°L? -log L -loglog L), (2.1)

where n denotes the number of variables and L is the number of bits or digits required in the representa-
tion of the inputs [38]], [39]. The problem, however, is that in an overwhelming number of problems in
computational mathematics and scientific computing the input contains irrational numbers. Thus, if the
number /2 occurs as an input in the LP, the question remains of what the cost of producing an accurate

solution is.

2.1. Inexact input and the extended model. An example of an LP where the matrix A contains irra-
tional numbers is when its rows derive from the discrete cosine transform or a discrete wavelet transform.
Note that these are not contrived examples. In fact, in the fields of inverse problems, medical imaging,
compressed sensing, etc. this is a common occurrence. Since A contains numbers that cannot be rep-
resented exactly as binary numbers, the bound 2.1)) does not apply. Therefore, the classical model for
asking “is LP in P?” does not address the common case of irrepresentable input. On the practical side,
an overwhelming amount of the modern software used is based on floating-point arithmetic, and hence if
the input is rational, there will be inexactness due to the floating-point representation. For example, 1/3
can only be approximated in base 2, giving rise to round-off approximation. Indeed, the following quote
explains the situation succinctly:

“But real number computations and algorithms which work only in exact arithmetic can
offer only limited understanding. Models which process approximate inputs and which

permit round-off computations are called for.”

— S. Smale (from the list of mathematical problems for the 21st century []1])

This issue illustrates the classical dichotomy in mathematics between the discrete and continuous.

Indeed, as mentioned above, classical complexity analysis for LP is done in a discrete model. Yet, LP
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can also be naturally considered in the continuous world, which is the standard way in which Smale’s 9th
problem is stated. The following quote draws attention to this dichotomy:

“ Perhaps the most successful tool in economics and operations research is linear pro-

gramming, which lives on the boundary of discrete and continuous.”

— L. Lovasz (from“Discrete and Continuous: Two sides of the same?”
in “Visions in Mathematics”, essays on mathematics entering the 21st century [40]])

These issues call for an extension of the continuous model that accommodates inexact input, introduced
next.

2.1.1. The extended model - inexact input provided by an oracle. Suppose that we are given an algorithm
(a Turing or Blum-Shub-Smale (BSS) machine) intended to solve LP (or any of the other problems in
§1.1)), and furthermore assume that the algorithm is equipped with an oracle & that can acquire the true
input to any accuracy €. A natural assumption in this scenario is that the oracle completes its task in time
polynomial in | log(e)]| (see for example Lovész [41} p. 36]). More concretely, given a domain Q@ C C"
of inputs, the algorithm cannot access ¢ € 2, but rather, for any £ € N, it can call the oracle & to obtain
= 0(1,k) € C" satisfying

160 (t, k) = t]]oo < 27F, Vi€ Q,VkeN, (2.2)

and the time cost of accessing (¢, k) is polynomial in k. Another key assumption when discussing the
success of the algorithm is that it must be “oracle agnostic”, i.e., it must work with any choice of the
oracle ¢ satisfying (2.2). In the Turing model the Turing machine accesses the oracle via an oracle tape
and in the BSS model the BSS machine accesses the oracle through an oracle node.

2.1.2. The extended Smale’s 9th problem. Given that the input is inexact, the output of an algorithm will
come with an error as well. The model, both in the Turing and the BSS case, where one measures the
computational cost of running the algorithm in terms of the number of variables n and the error (or the
number of correct digits i = | log(e€)|, where € is the error) is well established. See, for example Blum,
Cucker, Shub and Smale [42, p. 29], Grotschel, Lovasz and Schrijver [37, p. 34] and Valiant [43] p.
131]). We thus arrive at the following extension of Smale’s 9th problem.

Problem 1 (The extended Smale’s 9th problem). Given any of the problems in (I1)) - (L4)), represented
by the solution map E mapping a class of inputs Q into a metric space (M, d 1), is there an algorithm
which decides the feasibility of the problem, and if so, produces an output that is correct up to K digits
(where the error is measured via dist oq) and whose computational cost is bounded by a polynomial in

K and the number of variables n?

This question can be asked both in the Turing model, where the computational cost can be expressed
either in terms of the number of steps performed by the Turing machine, or alternatively in terms of
the total number of arithmetic operations and comparisons as well as the space complexity. In the BSS
model, the computational cost is given by the total number of arithmetic operations and comparisons
executed by the BSS machine. We will consider all these cases.

Remark 2.1 (Weaker and randomised versions of the extended Smale’s 9th problem). The question in
Problem ] can be weakened by asking if, for a fixed K, there is an algorithm polynomial in the number
of variables that produces an output that is correct up to K digits. One can also weaken the statement by
allowing randomised algorithms and asking whether an algorithm succeeds with probability p € [0, 1].

In the case of feasibility questions one can weaken the question by relaxing the constraints to only be
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satisfied up to a certain accuracy. For example, given K € NU {co} and M € R, one may ask to decide
whether there is an z € R such that

(z,c)xk < M subjectto Az =y, x>0,

where (z,c) = [105 (z,c) |10~ . We will discuss this particular problem later in in connection

with the computer-assisted proof of Kepler’s conjecture.

We will as a general rule split the feasibility problem and the problem of producing an approximate

solution into separate theorems.

3. MAIN THEOREM I — THE EXTENDED SMALE’S 9TH PROBLEM

The main results on the existence of successful polynomial cost algorithms for the extended Smale’s
9th problem are summarised in Theorem[3.4] Theorem[6.1] and Theorem[7.1] whereas Theorem[5.1|deals
with the decision problem of certifying the correctness of an algorithm (the “exit flag” problem). We now
present each of these theorems.

3.1. Universality of the results. The statements in the theorems below are well-defined up to the defi-
nition of an algorithm, randomised algorithm and runtime. There are a myriad of different types of ma-
chines that can be used as the formal definition of an algorithm: the Turing machine, the BSS machine,
the Von Neumann computer, the real RAM, etc. as well as their randomised versions. The different mod-
els are not equivalent when it comes to computability and runtime. Thus, to create universal impossibility
results we use the concept of a general algorithm (defined in §9.2) and a randomised general algorithm
(defined in §9.5) that encompasses any reasonable definition of a computational model in the way that
they are more powerful than any standard machine, therefore making the impossibility results stronger.
For example, these general algorithms can solve the halting problem, and hence, perhaps surprisingly, the
impossibility results are not about recursiveness vs. non-recursiveness. In order to make our theorems
reader-friendly, we state them before giving the precise definitions of algorithms and runtime. Moreover,
in order to assure a streamlined exposition, some of the results are slightly weaker than what we actually
prove. The fully formal statements of the theorems can be found in the propositions in §9]further below,
and references to these follow each theorem.

3.2. The paradox - A complexity theory for non-computable problems. The first paradoxical result
demonstrates the following intricate phenomenon. Key problems used in statistical estimation, sparse
regularisation, compressed sensing, learning, and modern data science require a complexity theory for
non-computable problems. The term “non-computable” here refers to the classical definition given by
Turing in [44]. As it turns out, despite the classical result of LP being in P for rational inputs, in the
extended model where inputs can be accessed only approximately even LP is non-computable, and yet
we can discuss its complexity in a sense that will presently become apparent. In the following = will
denote the solution map (as in (I.7)) to any of the problems - with set of inputs {2, so that

Q= |J Qmn Z:Qny =My, (3.1)

N>m>4
where ,,, v is a nonempty set of inputs for = of fixed dimensions m and N, and My is RY equipped
with the || - ||, norm for some p € [1, co|. The fact that the dimensions blow up is crucial in order to make

sense of “in P”-type statements.

Remark 3.1 (Algorithms that may not halt). As already mentioned in the introduction, unless speci-

fied otherwise, the term algorithm will mean an algorithm that always provides an output, i.e., always
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halts. Interestingly, in the randomised case, an algorithm that is allowed to not halt with non-zero prob-
ability may be more powerful than a randomised algorithm that is required to halt. An example of this
phenomenon is provided in Theorem parts (i) and (ii).

Remark 3.2 (Computing K correct digits). Having specified the p-norm || - ||, for measuring the error
in My, we frequently discuss whether an algorithm can “produce (or compute) K correct digits for =”.
For an algorithm having access to the dimensions m, N and an oracle representation ¢ (according to[2.2)
of an input ¢ € €2, y, this will mean the assertion that
dist o (T(m, N, 7),Z(2)) = ginf : |T(m, N,7) — €[, <1075, (3.2)
€E(L
for all m, N and all possible oracle representations 7 of all ¢ € €),,, ;. Moreover, in the randomised case,
(3:2) should happen with a certain probability that will always be made explicit.

Remark 3.3 (Condition numbers). In the following we refer to several condition numbers common in
the literature, namely the condition of a matrix, the feasibility-primal condition number Crp, and the
condition of a solution map. The precise definitions of these can be found in §0.1]

Theorem 3.4 (The extended Smale’s 9th problem - computing solutions). Let = denote the solution map
to any of the problems (1.1)) - (I4) with the regularisation parameters satisfying 6 € [0,1], A € (0,1/3],
and T € [1/2,2] (and additionally being rational in the Turing case) and consider the || - ||,-norm for
measuring the error, for an arbitrary p € [1,00]. Let K > 2 be an integer. There exists a class ) of

feasible inputs as in (3.1)) so that we have the following.
(i) No algorithm can produce K correct digits on each input in Q as in (3.2). Moreover, for any

p> %, no randomised algorithm can produce K correct digits with probability greater than or
equal to p on each input in €.

(ii) If we allow randomised algorithms with a non-zero probability of not halting (not producing an
output), then, for any p > %, no such algorithm can produce K correct digits with probability
greater than or equal to p on each input in Q). However, there does exist such an algorithm that
can produce K correct digits on each input in Q2 with probability 2/3.

(iii) There does exist an algorithm (a Turing or a BSS machine) that produces K — 1 correct digits
Sfor all inputs in Q). However, any such algorithm will need an arbitrarily long time to achieve
this. In particular, for any fixed dimensions m, N, any T' > 0, and any algorithm T, there exists
an input v € QN such that either " on input  does not produce K — 1 correct digits for Z(1)
or the runtime of T on v exceeds T. Moreover, for any randomised algorithm T and p < 1/2

there exists an input v € Q,, N such that
P(I"*" (1) does not produce K — 1 correct digits for Z(v)
or the runtime of I on 1 exceeds T’ ) > p.

(iv) There exists a polynomial pol : R — R, as well as a Turing machine and a BSS machine that
both produce K — 2 correct digits for all inputs in €, so that the number of arithmetic operations
for both machines is bounded by pol(n), where n = m + mN is the number of variables, and
the number of digits required from the oracle [2.2)) is bounded by pol(log(n)). Moreover, the
space complexity of the Turing machine is bounded by pol(n).

(v) If one only considers (i) - (iii), 2 can be chosen with any fixed dimensions m and N provided

that m > 4 and N > m. Moreover, if one only considers (i) then K can be chosen to be 1.

The statements (i) - (iii) above are true even when we require the input in each ), N to be well-
conditioned and bounded from above. In particular, for any input v = (y, A) € QN (0 = (y, 4, ¢) in
the case of LP) we have Cond(AA*) < 3.2, Crp(t) < 4, Cond(E) < 179, ||y|lco < 2, and || A||max = 1.
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The precise and slightly stronger version of Theorem|3.4]is summarised in Proposition[9.32]and Propo-
sition

Remark 3.5 (Lower bound on the vector component of the inputs). Note that the matrix component
of every input ¢ = (y, A) € Q in Theorem is bounded from both below and above with universal
bounds, specifically, || Al|max := max; ;j |4; ;| = 1. The vector component y admits an upper bound but
does not admit a lower bound uniform across 2. This minor deficiency is an artefact of our construction
of (2 and could be easily remedied by carrying out a more involved construction. This, however, would
significantly increase the technical detail of the proof while not contributing to the theory nor any of the
techniques developed, so we refrain from doing so.

Remark 3.6. The results of Theorem|3.4]also hold for the SDP problem (I.3), which can be shown easily
by employing the standard argument to recast the LP problem (together with the associated class €2) as
an SDP. With this embedding the impossibility results hold immediately, however the parts referring to
the existence of algorithms would need to be proven separately.

Remark 3.7 (Turing’s definition of computability - should it be extended?). There is traditionally a sharp
divide in the literature between problems that are computable (according to Turing’s definition [44]) and
those that are not. Moreover, complexity theory is only considered for problems that are computable.
Turing’s definition of computability subsumes that one can compute an approximation to arbitrarily high
accuracy. Although this is a natural definition in contexts where the phenomena described in Theorem
[3.4do not occur, it deems many problems of interest non-computable despite the fact that computing with
them is commonplace. The apparent paradox is resolved by noting that these problems are only solved
to an accuracy needed for the application of interest. Arbitrary accuracy, which by Theorem [3.4 may be
impossible, is typically not needed. Standard examples include problems related to imaging, where the
limitation of the human eye makes high precision superfluous. Indeed, as we show later in Theorem [7.1]
on compressed sensing in the context of Smale’s 9th problem, the phenomenon described in Theorem
[3.4)is not due to exotic constructions, but also occurs naturally in key applications. Hence, in order to
analyse and describe the above phenomenon, we need a complexity theory for non-computable problems.
With this in mind, one could simply extend Turing’s definition of computability and, for instance, call
a problem K-computable if one can compute K correct digits, and replace the traditional concept of
Turing computability with co-computability. In this setup, each class of K-computable problems would
get its own complexity theory.

4. FAILURE OF MODERN ALGORITHMS AND COMPUTING THE EXIT FLAG

A crucial topic in computational mathematics is the reliability of algorithms. This is a paramount
issue in pure mathematics when computer-assisted proofs are used and in applications in the sciences in
general. It is therefore natural to test whether the built-in algorithms in, for example, Matlab are reliable.
We consider two concrete examples: the linear program

min x1 + x2 subjectto x1 + (1 —d)xy =1, r1, T > 0, 4.1

zER?
where § > 0 is a parameter, and the centred and standardised (so that the columns of the design matrix

are normalised) Lasso problem

1
min —||4sDsz = yll5 + Az, (42)

z€RN
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+3 | The solution is feasible with respect to the relative ConstraintTolerance tolerance, but
is not feasible with respect to the absolute tolerance.
+1 | Function converged to a solution x.
0 | Number of iterations exceeded options.MaxIterations or solution time in seconds
exceeded options.MaxTime.
—2 | No feasible point was found.
—3 | Problem is unbounded.
—4 | NaN value was encountered during execution of the algorithm.
—5 | Both primal and dual problems are infeasible.
—7 | Search direction became too small. No further progress could be made.
—9 | Solver lost feasibility.

TABLE 1. The EXITFLAG is used to verify the correctness of the solution. Possible
values for the EXITFLAG output of 1 inprog as well as their corresponding interpre-
tations are displayed in this table. Note that a value of 1 indicates the correctness of
the solution, whereas other values indicate various types of failure.

‘dual-simplex’ ‘interior-point’ ‘interior-point-legacy’
1) Error EXITFLAG | Error EXITFLAG Error EXITFLAG
21 0 1 0 1 6.0- 10712 1
2-15 0 1 0 1 3.0-107° 1
272010 1 0 1 7.0-1077 1
22 0 1 0 1 7.1-1078 1
27261 14 1 14 1 1.2-1071 1
2728 14 1 14 1 4.6-1071 1
27301 14 1 1.4 1 7.1-107¢ 1

TABLE 2. Testing the output of 1inprog applied to the problem in (@.I)) for the three
algorithms ‘dual-simplex’, ‘interior-point’ and ‘interior-point-legacy’. The table shows
the error ||Z — Z|| 2 and the value of EXITFLAG, where & is the true minimiser of {.T)

and 7 is the computed approximate minimiser. Note that machine epsilon is €yach =
2752,

where m = 3, N =2, A € (0,1/V/3],

15 1
V3 vz , T

A= |3 s "1 emoe, y:(1/\/§ SYNG) o) € R?, (4.3)
25 0

and Dj is the unique diagonal matrix such that each column of AsD; has norm +/m.

In order to compute a solution to {@.I]), we consider Matlab’s 1inprog command; a well-established
and reliable optimisation algorithm for linear programs. This is a general purpose algorithm, which
offers three different solvers: ‘dual-simplex’ (the default), ‘interior-point’, and ‘interior-point-legacy’.
Besides a minimiser, Linprog also computes an additional output, EXITFLAG, which is an integer
value corresponding to the reason for why the algorithm halted. These are listed in Table[I] Note that +1
indicates convergence to a minimiser, all other values indicate some form of failure. In Table[2] we apply
the three 1 inprog algorithms (with default settings) to the problem with different values of . The
results are fascinating. Not only does 1inprog completely fail to compute a minimiser accurately, it



COMPUTATIONAL BARRIERS IN ESTIMATION, REGULARISATION AND LEARNING 11

Default settings ‘RelTol’ = €mach ‘RelTol’ = €mach
‘MaxIter’ = e;;Ch
1) Error Runtime Warn Error Runtime Warn Error Runtime Warn

271 | 1-107'% < 0.01s 0 1-107' < 0.01s 0 1-107' < 0.01s 0
2-7 0.68 < 0.01s 0 2-107'%  0.02s 0 2.10716 0.02s 0
2-15 1.17 < 0.01s 0 1.17 0.33s 1 1-107'' 1381.5s 0
2720 1.17 < 0.01s 0 1.17 0.33s 1 nooutput > 12h 0
2-24 1.17 < 0.01s 0 1.17 0.34s 1 no output > 12h 0
2-26 1.17 < 0.01s 0 1.17 0.34s 1 nooutput > 12h 0
2-28 1.17 < 0.01s 0 1.17 < 0.01s 0 1.17 < 0.01s 0
230 1.17 < 0.01s 0 1.17 < 0.01s 0 1.17 < 0.01s 0

TABLE 3. Testing the output of 1asso applied to the problem in (£.2)) The output of
linprog applied to (4.2) with inputs as in (4.3) and A = 0.1. The table shows the
error ||& — Z||,2 (where & is the true minimiser and Z is the computed minimiser), the

CPU runtime, and a boolean value indicating whether a Warning was issued.

also fails to recognise that the computed minimiser is incorrect: in all cases, the EXI TFLAG returns the
value +1 indicating a successful termination.

To compute a solution to (#.2)), we consider Matlab’s 1asso command. We perform three tests: one
with default settings, another with the tolerance parameter set to machine epsilon €,cn = 2752 and

1 The 1asso routine does not have an

finally one with the maximum number of iterations set to € .

‘exit flag’, however, it provides a Warning if it considers the output to be untrustworthy. The results of
this experiment are summarised in Table [3} where we display 1 under the Warn column if a Warning
was issued, or 0 if no warning was issued. As is evident, the failure of lasso is similar to the failure
of 1inprog, however, an interesting observation is that the Warning parameter is occasionally able
to verify the wrong solution, yet, most of the time, no warning is issued despite completely inaccurate
outputs. The failures of the EXITFLAG and the Warning suggest the following foundational question:

Problem 2 (Can the ‘exit flag’ be computed?). Consider an algorithm designed to compute any of the
problems (I.1)) - (I.4). Suppose that the algorithm should produce K correct digits. Can we compute the
‘exit flag’ for this algorithm, i.e., the function taking on the value 1 if the algorithm succeeds in producing

K correct digits, and O else?

5. MAIN THEOREM II — THE EXTENDED SMALE’S 9TH PROBLEM AND THE EXIT FLAG

5.1. The exit flag cannot be computed - even when given an exact solution oracle. Let = denote the
solution map (as in (I.7)) to any of the problems (I.I) - (T.4), let K € N, and let I be an algorithm
approximating =. Suppose that €2 is a collection of inputs such that no algorithm can produce K correct
digits for all inputs in €2 (recall that the existence of such an ) is guaranteed by Theorem [3.4).

The exit flag problem is now as follows. Is it is possible to decide whether I' fails or succeeds on a
particular input? More precisely, can we find another algorithm that can compute the exit flag, meaning
the function of the input taking on the value 1 when I" succeeds in producing K correct digits for a
particular input and 0 when it fails?

5.1.1. Exact solution oracle. To illustrate the difficulty of computing the exit flag, we add the assumption
that we can also access the true solution, and show that even with this extra information the task is
impossible. The most direct way to do this would be to assume that, in addition to accessing ¢ € 2, the
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prospective algorithm for computing the exit flag can also access an exact solution p € =(¢). However,
this assumption would be too restrictive, as we wish our theory to encompass Turing machines, which
could not access p if it has irrational entries by their very nature. We thus assume instead that, for a fixed
(but arbitrarily small) parameter w > 0, the algorithm can access a p € B, (Z(¢)), i.e., an element of
M that is strictly within w of a true solution. We will, nonetheless, consider an algorithm with access
to such an oracle to be successful only if it works for any such p, which is a natural assumption that
excludes from consideration “omniscient” algorithms that can distinguish between different solutions in
Z(¢). Throughout the paper we will use the wording “with access to an exact solution oracle of precision
w” to mean the situation just described, and this concept will be formally treated in §9.11]

To avoid trivial examples we need another assumption. For instance, if I' outputs values that do not
belong to the range of the solution map =, then one can easily construct examples where it becomes
trivial to check if T fails. Concretely, if I" produces correct output when I'(¢) € Z(£2) and wrong output
when I'(:) = € ¢ Z(Q), the exit flag is easy to compute: it is simply O when the output is £ and 1
otherwise. A natural assumption precluding this situation could thus be that I'(¢) € =(€2), for all ¢ € Q.
This, however, would again create issues in the Turing model if Z(£2) contained elements with irrational
entries, and hence we introduce another precision parameter o > 0 and make the following assumption:

distpm(I'(1), E(Q)) < o forall v € Q. 5.1

We are now ready to state the following result which shows that computing the exit flag is typically
harder than the original problem.

Theorem 5.1 (Impossibility of computing the exit flag). Let = denote the solution map to any of the
problems - with the regularisation parameters satisfying 6 € [0,1], A € (0,1/3], and T €
[1/2,2] (and additionally being rational in the Turing case) and consider the || - || ,-norm for measuring
the error, for an arbitrary p € [1,00]. Let K € N and fix real o and w so that 0 < o < w < 107K,
Then, for any fixed dimensions N > m > 4, there exists a class of inputs ) for = such that, if T is an
algorithm satisfying (5.1) with parameter « for the computational problem of approximating Z with K
correct digits, then we have the following.

(i) No algorithm, even randomised with access to an exact solution oracle of precision w, can
compute the exit flag of T’ (with probability exceeding p > 1/2 in the randomised case).

(ii) If we allow randomised algorithms with non-zero probability of not halting (producing an out-
put), then no such algorithm, even with access to an exact solution oracle of precision w, can
compute the exit flag of T with probability exceeding p > 1/2.

(iii) The problem of computing the exit flag of U is strictly harder than computing K correct digits of
= in the following sense: if one is given the exit flag as an oracle then it is possible to construct
an algorithm that computes K correct digits of Z. However, if one is instead given an oracle
providing a K-digit approximation to =, then it is still not possible to compute the exit flag of T'.

(iv) For linear programming and basis pursuit, however, there exists a class of inputs QF # Q such
that no algorithm, even randomised with non-zero probability of not halting, can compute the
exit flag of T (with probability exceeding p > 1/2 in the randomised case), yet one can compute
the exit flag with a deterministic algorithm with access to an exact solution oracle of precision
w.

The statements (i) and (ii) above are true even when we require the input in each 2 to be well-conditioned
and bounded from above. In particular, for any input v = (y, A) € QN (0 = (y, A, ¢) in the case of
LP) we have Cond(AA*) < 3.2, Crp(1) < 4, Cond(E) < 179, ||[Y|loo < 2, and || Al|max = 1.

The precise version of Theorem [5.1] can be found in Proposition[0.41]
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Remark 5.2 (Halting vs non-halting algorithms). Note that (ii) in Theorem[5.1]directly implies (i) and is
hence a stronger statement. However, we deliberately put both (i) and (ii) in the statement of the theorem
to allow comparison with Theorem [3.4] Indeed, in Theorem [3.4]there is a difference in the lower bound
for the probability between the case of a halting algorithm vs. a non-halting algorithm, which is not the
case in Theorem[3.1]

6. MAIN THEOREM III — THE EXTENDED SMALE’S 9TH PROBLEM AND KEPLER’S CONJECTURE

6.1. Smale’s 9th problem and the computational proof of Kepler’s conjecture. There is an impor-
tant link between Smale’s 9th problem and the recent proof of Kepler’s conjecture [2]], [3]]. Kepler’s
conjecture, originally stated in 1611[45], hypothesised an optimality result for sphere packing in three
dimensions. Continuing for nearly two decades, the program led by T. Hales [2], [3]] concluded with a
computer-assisted proof (the Flyspeck program) verifying Kepler’s conjecture. The link to Smale’s 9th
problem is that Hales’ program hinges on the numerical verification of more than fifty thousand decision
problems of the following form: Given K € NU{oc} and M € R, does there exist an z € R” such that

(x,c), < M subjectto Ax =y, x> 0 coordinatewise, (6.1)

where (z,¢)x = [105(x,¢)|107K? What makes this numerical verification delicate is that the in-
puts (y, A, ¢) are also approximated through numerical computation, and hence we find ourselves in the
extended model. Informally, we could think of (x,c)k as (x,c) computed to K correct digits (in the
Flyspeck program (6.1)) is computed with K = 6). The key question is now, is this problem in general
decidable?

We will consider input sets of the form

0= U Qv sothat  Zg : Qv — {0,1} = {no, yes}, (6.2)
m<N
where, for each m and N, Q,, y is a non-empty set of inputs of fixed dimensions m and N for the
solution map =g of (6.I). Again, as in §3.2] we need to have inputs of arbitrarily large dimensions in
order to be able to state “in P” results. We make the dependence of the solution map on K explicit, as we
will consider on the same input set and with the same M, but with different values of K.

Before discussing decidability, we note the following intricacy behind the choice of K. Suppose that
the K-th digit behind the decimal point is 9. Then {z € RN | (z,¢)x < M} = {z € RY | (z,c)x_1 <
M}, and hence Ex = Z 1, i.e., the decision problem (6.1) is indistinguishable for K and K — 1. Now,
writing S}, for the set of positive real numbers whose k-th digit after the decimal point is 9, we have the
following theorem demonstrating the intricacy of the Smale’s 9th problem in the extended model. This
theorem shows that Smale’s 9th problem in the extended model actually becomes a classification theory
and testifies to the intricacy of the computational proof of Kepler’s conjecture.

Theorem 6.1 (The extended Smale’s 9th problem - deciding feasibility). Let M > 0 be real and K > 2
an integer, and consider the decision problem (6.1)) for this value of M and the corresponding solution

maps 2, Zx 1, and 2 _o. Then there is a class of inputs 2 as in (6.2)) such that we have the following:

(i) There does not exist any sequence of algorithms {I';} jcn with output in {0, 1} so that, for all v €
Q, we have lim;_, o I';(v) = Ex (1) and, if T';(¢) = 1 for some j € N, then ZEx (1) =T;(¢) = 1.

(ii) There does not exist a randomised algorithm I'"*", even with non-zero probability of not halting,
such that, for all v € Q, we have T (1) = E (1) with probability exceeding p > 1/2.

Additionally, depending on whether M is in one (or both) of S3- or S83-_,, one or both of the following
hold as well:
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(iii) There does exist an algorithm T (Turing or BSS machine) such that, for all v € §, we have
I'(:) = Ex—_1(t). However, any algorithm will need arbitrarily long time to compute =g 1. In
particular, for any fixed dimensions m and N, any T' > 0, and any algorithm U, there exists an
input v € Qy,, N such that either I'(¢) # Zx _1(1) or the runtime of I' on v exceeds T. Moreover,
for any randomised algorithm I'™" and p € (0,1/2), there exists an input v € Qy, N such that

P ("% (1) is wrong or the runtime exceeds T') > p.

(iv) There exists a polynomial pol : R — R as well as a Turing machine and a BSS machine that both
compute Z o for all inputs in S, so that the number of arithmetic operations for both machines
is bounded by pol(n), where n = m + mN is the number of variables, and the number of digits
required from the oracle (2.2)) is bounded by pol(log(n)). Moreover, the space complexity of the
Turing machine is bounded by pol(n).

Concretely, (iii) holds whenever M ¢ S?(: whereas (iv) holds whenever M ¢ S?(—r Finally, if one only
considers (i) - (iii), ) can be chosen with any fixed dimensions m < N with N > 4. Moreover, if one

only considers (i) then K can be chosen to be 1.
The precise version of Theorem[6.1] can be found in Proposition[0.43]

6.2. Undecidable problems in computer-assisted proofs: The proof of Kepler’s conjecture. The
Flyspeck program is a stunning example of a successful computer-assisted proof of one of the few open
questions spanning several centuries. However, Theorem [6.1] reveals that the computational proof is
actually even more intricate than one might think. In fact, part (ii) of Theorem demonstrates that
the general decision problem is actually undecidable even for K = 1, and even in a randomised setting.
Moreover, part (i) reveals that not only is it undecidable, but no sequence of algorithms can certify a
positive answer to the decision problem. In the language of the Solvability Complexity Index (SCI)
hierarchy (see §9.2), this means that the problem is not in 3;. This means that the problem can be
viewed as strictly harder than the “halting problem”, which can easily be seen to be in ;. Given the
results of Theorem [6.1] it may seem paradoxical that one could prove Kepler’s conjecture through the
Flyspeck program by trying to decide the decision problem Zx with K = 6, which is done in the proof.
There are other examples too of conjectures that are proven by means of computer-assisted proofs relying
on problems that are non-computable in the general case, for instance the Dirac-Schwinger conjecture
proved by C. Fefferman and L. Seco in [4]—[12] (see further discussion in [46]).

Theorem|6.T|shows that the Flyspeck program may have been impossible in several ways. Specifically,
any of the following scenarios could have happened.

(1) Conditions of part (i) of Theorem [6.1] apply, i.e., the answer to all 50000 decision problems
involved in the proof would have been yes, and hence Kepler’s conjecture would have been
true, yet the computations in the Flyspeck program would continue forever, regardless of the
computing power, never producing the 50000 affirmative answers needed. Thus, it would never
confirm Kepler’s conjecture.

(2) Conditions of part (ii) of Theorem [6.1] apply instead of part (i). In particular, one might design a
sequence of algorithms {I';} ;e so that for any linear program input ¢ we have I'; (1) — Zx (¢)
as j — oo and, if I';(:) = 1 for some j € N, thenI';(¢) = Zx(¢). Still, because of (ii), if one
of the decision problems had a negative answer, the Flyspeck program would run forever and
never conclude with an answer. Moreover, one could not even use randomised algorithms and
conclude with a probability better than coin flipping.

(3) Conditions of part (iii) of Theoremapply instead of parts (i) and (ii), i.e., there is an algorithm
I such that for any linear program input ¢ we have I'(¢) = Zx (¢). However, because of (iii) the
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following could occur. All 50000 decision problems would have answer yes, yet it would take
1080 years for the Flyspeck program to conclude that Kepler’s conjecture was true.

The scenario (1) can, in fact, always be avoided by considering different decision problems where one
replaces (z,c)x < M in (6.I) by (z,c¢)x < M. For this problem, a statement analogous to part (i)
of Theorem is no longer true. In fact, for every K € N, there does exist a sequence of algorithms
{T'; }jen such that for any linear program input ¢ we have I';(¢) — Ex (1) as j — oo and, if I';(¢) =1
for some j € N, then I';(:) = Ex(¢). In the proof of Kepler’s conjecture, all decision problems have
the property that (x, c) x < M for some feasible x (and the appropriate M). Moreover, these decision
problems can be solved quickly, and one is in fact in conditions analogous to part (iv) of Theorem[6.1]

7. MAIN THEOREM IV — THE EXTENDED SMALE’S 9TH PROBLEM AND COMPRESSED SENSING

7.1. The extended Smale’s 9th problem and compressed sensing - Why things often work in prac-
tice. In view of Theorem a natural question is the following: Under which conditions on the set of
inputs may (1.2)) in the extended model be in P? Obvious candidates for such conditions would be vari-
ous standard assumptions on problems in compressed sensing and sparse regularisation, which we now
recall. A fundamental concept of compressed sensing is sparsity, where we say that a vector x is s-sparse
if it has at most s non-zero entries. Furthermore, a standard requirement is that the matrix A satisfy
either the restricted isometry property or the robust nullspace property (RNP). We will only consider the

C™*N is said to satisfy the £2-robust nullspace property of order s with

latter. Concretely, a matrix A €
parameters p € (0,1) and 7 > 0 if
p
< L
||Us||2 = \/g

for all index sets S C {1,..., N} with |S| < s (where | - | denotes the cardinality) and vectors v € CV.

The notation vs means that the entries of v with indices in S¢ are set to zero and the remaining entries

[vselr + 7l|Avl2, (7.1)

are left unchanged. We can now make our question more specific.

Problem 3. Given K € N, is the problem of computing K correct digits of a solution to the BP problem
(T.2) in the extended model in P, assuming y = Az, for some x guaranteed to be s-sparse, and A satisfies

the 0-robust nullspace property of order s with parameters p and T?

As we will see below, this question is rather intricate since we again need a complexity theory for non-
computable problems to provide a satisfactory answer. Namely, one cannot obtain K = [log;,(26 )]
correct digits for all inputs, yet the problem of getting K = [log,, ((1 — p)(167)~16~1)] digits is in
P. More precisely, we consider classes of inputs specified as follows. Fix real constants p € (1/3,1),
7> 10, by > 3, and by > 6, and, for € € [0, 1] and s, m, N € N such that m < N and s < N define

Qv = {(y, A) € R™ x R™N | (y, A) satisfies (73)} (7.2)

where
A satisfies the RNP (7.1)) of order s with parameters p and 7,

y = Ax for some s-sparse x, (7.3)

[Yll2 < b1, [|All2 < bar/N/m.

Finally, set
o= |J Q. (7.4)

s,m,NeN
m<N

Then, defining log,,(0) = —oo and recalling the definition of the Crcc condition number (see §9.1),

we have the following theorem.
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Theorem 7.1. (The extended Smale’s 9th problem and compressed sensing). Let =gp and =y, denote
the solution maps respectively to the (*-BP problem (I.2) and the ¢'-Lasso problem (I.3), and consider
the || - ||2-norm for measuring the error. If Q5 .  and Q¢ are as in and the following holds.
(i) There exists a constant C' > 0, independent of p, T,by and bs, such that if we fix s = 2* for
some k € N and m, N satisfying N > m > Ts and m > C'slog?(2s) log(N), then we have the
following. For 6 € (0,1] and

K > ﬂog10 (25*1ﬂ ,

there does not exist any algorithm (even randomised) that can produce K correct digits for =gp
(with probability exceeding p > 1/2 in the randomised case) for all inputs in QS,m,N'
(ii) Let s, m, and N be as in (i). Then, for A € (0,1/(2+/s)] and

K > {loglo (25_1/2)\_1)-‘ ,

the same impossibility result as in (i) holds for computing K correct digits for Zuy, for inputs in

0
s,m,N*

(iii) There exists a polynomial pol : R?> — R and, for every § € [0, (1 — p)/(167)], there exists an
algorithm Us (either a Turing machine or a BSS machine) such that, for K € N satisfying

K < |log (1= p)(167) "'~ 1) ], (7.5)

I's produces K correct digits for Egp for all inputs in Q°. In the case that § = 0, (73) is
to be interpreted as K < oco. Moreover, the runtime of I's (steps performed by the Turing
machine, arithmetic operations performed by the BSS machine) is bounded by pol(n, K ), where
n = m + mN is the number of variables. In particular, for § = 0, the runtime is bounded by
pol(n, K) forall K € N.

(iv) Consider the ¢*-BP problem (1.2) with 6 = 0. For any fixed s > 3, there are infinitely many
pairs (m, N) and inputs . = (Ax, A) € Q°, where x € R™ is s-sparse and A € R™*N is a

subsampled Hadamard, Bernoulli, or Hadamard-to-Haar matrix such that
CRCC(L) = OQ.

In particular, appreciating (iii) and (iv), there exist inputs in Q with infinite RCC condition

number, yet the problem is in P.

The precise version of Theorem [7.I]can be found in Proposition[9.3¢

Theorem|[7.1|can be viewed as the practical cousin of Theorem[3.4] Indeed, Theorem|[7.1|demonstrates
the facets of Theorem [3.4]in actual applications where the phenomenon described in Theorem [3.4] occur
under usual conditions. However, it is important to emphasise that, while Theorem @ and Theorem@
explain why things fail, they also explain why things often work in practice. Specifically, the negative
parts (i) and (ii) of Theorem 7.1 can be interpreted in conjunction with the positive parts (iii) and (iv) as
follows: one may not be able to get, say, 5 digits of accuracy in certain cases, however, for sufficiently
small values of §, one may be able to get 4 digits, and that can be achieved quickly. As discussed in
Remark [3.7] 4 digits of accuracy is enough for any application in imaging.

Part (iv) of Theorem @ demonstrates how one can have tractable problems that are nonetheless ill-
conditioned according to the RCC condition number. The fact that Croc(t) = oo means that there
are arbitrarily small perturbations that yield a problem with several minimisers. This is, however, not
a problem when it comes to designing fast algorithms. Moreover, our examples are not contrived, but
key examples from applications. Indeed, subsampled Hadamard matrices (where the rows are randomly
sampled in a typical compressed sensing fashion) and Bernoulli matrices form the foundations of com-
pressive imaging in microscopy, lensless camera, compressive video, etc. [47].
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Remark 7.2. Note that (i) in Theorem [7.1]only provides a lower bound for the Lasso problem. The “in
P” statement and conditions on K are missing, which remains an open problem.

8. SMALE’S 18TH PROBLEM AND THE PARADOXES OF DEEP LEARNING

8.1. Smale’s 18th problem. Smale’s 18th problem, from the list of mathematical problems for the 21st
century [1]], echoes Turing’s paper from 1950 [13] on the question of artificial intelligence. Turing
asks if a computer can think, and suggests the imitation game as a test for his question about artificial
intelligence. Smale takes the question even further and asks in his 18th problem:

What are the limits of intelligence, both artificial and human?

The question is followed by a discussion on the problem that ends as follows. “Learning is a part of
human intelligent activity. The corresponding mathematics is suggested by the theory of repeated games,
neural nets and genetic algorithms.” Hence, given the unprecedented developments in deep learning and
neural nets [[28]] over the last years and the impact these developments may have on artificial intelligence,
it is timely to consider Smale’s 18th problem in view of these advancements. Indeed, the latest deep
learning results using neural networks on the image classification problem result in a failure rate below
3%, which is referred to as super human [48]. Moreover, methods based on deep learning provide by
far the best results ever created for artificial intelligent image recognition, however, deep learning is em-
pirically shown to be universally unstable. There is now an overwhelming literature documenting the
universal instability phenomenon of deep learning. We will address Smale’s 18th problem by demon-
strating how instability becomes a key limitation in deep learning despite the existence of stable neural

networks.

8.2. Deep learning becomes unstable despite the existence of stable neural networks. We consider
the simplest deep learning problem of approximating a given classification function

f:DcR? = {0,1},

where D is some domain, by constructing a neural network from training data and testing it on a vali-
dation set. More precisely, given an input set {2 consisting of various ¢ = (7, ), where the training set
T = {«',..., 2"} and validation set V = {y', ... y*} are finite subsets of R?, the solution map that we
are asked to compute is given by

=0 = {6} 16 € argmin R ({6))}i_, {£@))})-,) |, 8.1)

(bGNNN,L

where « = (T,V), the set NNy with N := (N = 1, Ng_1,..., N1, Ng = d) denotes the set of
all L-layer neural networks under the ReLU nonlinearity with /N, neurons in the ¢-th layer, and the cost
function R is assumed to be an element of

CF,={R:R" xR" = Ry |R(v,w) =0iff v =w}. (8.2)

As we will discuss the stability of neural networks, we introduce the idea of well-separated and
stable sets to exclude pathological examples whereby training and validation sets have elements that are
arbitrarily close to each other in a way that could make the classification function jump subject to a small
perturbation. Specifically, given a classification function f : D C R¢ — {0, 1}, we define the family of

well-separated and stable sets S g with separation at least 26 according to
Sf ={{az',... e} D2’ |l < 1, min, 2" = 27l|oe = 26, f(z? +y) = f(a?) for ||yl < O}

Our first theorem addresses the instability of trained neural networks, and does not rely on the extended

model (i.e., training with inexact input).
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Theorem 8.1 (Instability of trained NNs despite existence of a stable NN). There is an uncountable
family of classification functions f : RY — {0,1} with d > 2 and a constant C > 0 such that we have
the following. For every ¢ > 0, there is an uncountable family of distributions D on [0,1]¢ so that for
any neural network dimensions N = (N, = 1, Ny_1,...,N1,Ngo =d) with L > 2, anyp € (0,1), any

positive integers s,  with
rzmaX{Cp_3,C[(Nl—|—1)---(NL_1+1)]3/2}, (8.3)

and training and validation data T = {z',... 2"} and V = {y',...,y*}, where the 7 and y’ are
drawn independently at random from D, the following happens with probability exceeding 1 — p.
We have T,V € Sg(( where £(n) = (Cn)~4, and, for every R € CF,, there exists a ¢ such

TVs)/p)
that
o argmin R ({o(e)}_1, {F(2))}),)
thNNN,L
and
o(z) = f(x) YeeTUl. (8.4)

Yet, for any quS € NN~ 1 (and thus, in particular, forngS = ¢), there exist uncountably many v € R such
that

lp(v) — F(0)] > 1/2 and ||v—z|le <€ for some x € T. (8.5)
However, there exists a (stable) neural network ¢ ¢ NN 1, that satisfies (x) = f(x) for all x €
Blrvaym (T YY)

Remark 8.2. The training and validation data 7 and V in Theorem are technically not sets, but

randomised multisets, as some of the samples 27 or 7 may be repeated.

The second theorem says that even validating a trained neural network on the training set itself is in
general uncomputable in the extended model. Concretely, for a fixed training set 7 = {z!,...,2"} C
R?, define the input domain

Q7 = {0 = ({#7})o, {87))2) |7 € B (ad), Vol € T, (8.6)
where B5°(z7) denotes the open ball of radius v > 0 in the /> norm centred at 27 .

Theorem 8.3 (Non-existence of algorithms for deep learning). There is an uncountable family of classi-
fication functions f : RY — {0, 1} with d > 2 so that, for any neural network dimensions N = (N, =
1,N_1,...,N1i,No=d)with L > 2and anyr > 3(Ny + 1) --- (Np_1 + 1), there exist uncountably
many training sets T = {z',... 2"} € Sg,(r) of size  (where £'(n) := [(4n + 3)(4n + 4)]~) such
that we have the following. Given any cost function R € CF, and v < €(r), there does not exist any
algorithm, even randomised with non-zero probability of not halting, that can compute

{6y forsome ¢ € argmin R ({5(2))};_1, {f(@")}j)) 8.7)

PENNN,L

to one digit accuracy (with error measured in the {>° norm) for all inputs in Q1 , (as given in (8.6)) with

probability greater than p > 1/2.
The precise version of Theorem [8.3|can be found in Proposition

Remark 8.4 (Failure on the training set). One may be puzzled by and the contrast to the com-
putational problem (8.I) that deals with the problem of computing {gzﬁ(yj)}j:l on the validation set
V = {y',...,y°}. However, this is of no consequence, as Theorem simply says that the process
of constructing the neural network through the optimisation problem (8.1I)) and evaluating it even on the
training set only is non-computable. In fact, this cannot be done even with one digit accuracy with a
probability better than a coin flip.
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Remark 8.5 (Irrelevance of local minima). Note that Theorem has nothing to do with the poten-
tial issue of the optimisation problem having several local minima. Indeed, Theorem [8.3]is true for
a general algorithm according to Definition in §9} which is more powerful than any Turing ma-
chine or BSS machine, or even such a machine with access to an oracle that provides a minimiser

¢ € argmingcary , R ({g?)(wj Wim, {f(27) §:1> for every inexact input provided to the algorithm.

Remark 8.6 (The fixed-architecture instability problem). Theorem demonstrates the delicate issue
of the instability problem. The key is that as long as the dimensions of the network is fixed, one can get
100% success rate on the trained network, however, it will become arbitrarily unstable (even around the
training set), as will other networks of the same dimensions. Moreover, as the last statement of Theorem
[8:I]reveals, if one changes the dimensions, then one can again find a stable network on the given training
and classification test data, however, there is no recipe on how to construct it. In fact, Theorem @]
demonstrates that even if one knew the dimensions of the stable neural network, producing such a neural
network through the standard optimisation may be non-computable. Furthermore, Theorem [8.1] may be
applied again with the architecture of the stable network suggesting that the same architecture with a
different set of input data will again lead to an unstable network.

9. THE SCI HIERARCHY — MATHEMATICAL PRELIMINARIES FOR THE PROOFS

In this section we present outlines of the proofs of the main theorems and how to navigate through the
manuscript. In addition we present the mathematical preliminaries needed. We begin by giving a brief
account of the new concepts introduced in the paper in order to prove the theorems. Note that the main
abstract results that eventually lead to the proofs of the main theorems are deliberately made as general
as possible as these techniques can be used for many other types of problems in the future. Moreover,
the techniques used in proofs as well as the mathematical preliminaries are based on the recent program
on the Solvability Complexity Index (SCI) hierarchy [49]-[51]].

9.1. Condition - precise definitions. We recall the standard definitions of condition used in optimisation
[52]], [53]], [42]] [54]. The classical condition number of a matrix A is given by

Cond(A) = [|All2[|A™"|2.

For different types of condition numbers related to a mapping = :  C C™ — C" we need to establish
what types of perturbations we are interested in. For example, if €2 denotes the set of diagonal matrices,
we may not be interested in perturbations in the off-diagonal elements as they will always be zero. In
particular, we may only be interested in perturbations in the coordinates that are varying in the set .
Thus, given 2 C C™ we define the active coordinates of (2 to be

which we refer to as the active set as well as
O ={z eR"|Jy € Qsuchthatz4c = yac}, A=A(Q). 9.1)

In particular, 2% describes the perturbations allowed as dictated by the active set of coordinates, namely
the perturbations along the non-constant coordinates of elements in 2. We can now recall some of the
classical condition numbers from the literature [54].
We begin with condition of a mapping. Let = : Q C R™ — R be a linear or non-linear mapping,
and suppose that = is also defined on some set Q with Q C . Then,
disteo (2(x + 2), Z(z)) }
)

I12]lo

Cond(Z) = sup lim sup { (9.2)
z€Qe=0F Ly cqung
0<||z][oc <€
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—_

where we allow for multivalued functions by defining disto (2(),2(2)) = infyez(a), ez 27 —
Z'||oo (here, the supremum of the empty set is understood to be 0). We typically choose Q) to be the
largest set on which = can be defined in a natural fashion.

Next we have distance to infeasibility and the Feasibility Primal condition number, defined for both
Linear Programming (I.T) and Basis Pursuit (I.2). Specifically, we define the set of infeasible inputs
(which we denote by XFF) for a linear program to be the set of (i, A) such that no x exists with z > 0
and Az = y. Similarly, for basis pursuit denoising with parameter § > 0, we define the set of infeasible
inputs (which we also denote, with a slight abuse of notation, by ¥FF) as the set of inputs for which no
x exists with || Az — y||2 < 4.

We then define the Feasibility Primal (FP) condition number for either basis pursuit or linear pro-
gramming with inputs in €2 according to

i lyll2VIIA=2 if dist A). Y FP  Qact 0
CFP(y,A) = dist2[(y,4),EFPNQ] 2 I:(y7 )’ ] 75

00 otherwise

(9.3)

where we use the standard V, A as notation for max/min respectively and where, for a pair (y, A) €
R™ x R™*¥ and a set of pairs S C R™ x R™*¥ dist, is defined in the following way:

distz((y, A), S| = inf{[ly’ = yll2 V[|A" = All2 | (¢, A') € S}.

Here, the infimum of the empty-set is understood to be co.

Note that UL (T.3)), CL (I.4) and the neural network (I.6) problem are always feasible, and hence the
Feasibility Primal condition number is not defined for these problems.

Finally, we have the distance to inputs with several minimisers and the RCC condition number: For
any of problems (I.1I)) to (T.4), we define the set of inputs with several minimisers (which we denote
by RCC) to be the set of pairs (y, A) such that the problem with input (y, A) has at least two distinct
solutions. We then define the RCC condition number according to

e VIAle o if disty [(y, A), ERCC N Q] £ 0
Creel(y, A) = { distally, ), BREEnex] [ 4) 170

00 otherwise

9.4)

Remark 9.1 (RCC condition number). Note that the definition of the RCC condition number here is
slightly weaker than the one in [30], that is to say, our RCC condition number is less than or equal to
the one defined in [30]. However, our weaker definition simply makes our results stronger in that we
show that Crcc(y, A) = oo yet the problem of computing minimisers is still in P. We have also split the
definition in [30] into two parts - one for feasibility, and one for two minimisers. This allows for a more
granular analysis of the influence of condition.

9.2. SCI hierarchy. To formalise our results and the underlying theory we recall the definitions from
[46] and start by defining a computational problem.

Definition 9.2 (Computational problem). Let {2 be some set, which we call the input set, and A be a set
of complex valued functions on ) such that for ¢1,to € €, then ¢; = ¢o if and only if f(11) = f(t2)
for all f € A, called an evaluation set. Let (M, d) be a metric space, and finally let = : Q@ — M be a
function which we call the solution map. We call the collection {Z, Q, M, A} a computational problem.
When it is clear what M and A are we will sometimes write {=, Q} for brevity.

The set € is essentially the set of objects that give rise to the various instances of our computational
problem. It can be a family of matrices (infinite or finite) and vectors, a collection of polynomials, a
family of Schr’odinger operators with a certain potential etc. The solution map Z : © — M is what

we are interested in computing. It could be one of the problems in (I.1I)), the set of eigenvalues of an
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n X n matrix, the spectrum of a Hilbert (or Banach) space operator, root(s) of a polynomial, etc. Finally,
the set A is the collection of functions that provide us with the information we are allowed to read, say
matrix elements and vector coefficients, polynomial coefficients or pointwise values of the potential of a

Schr’odinger operator, for example.

9.2.1. Algorithms and tower of algorithms. The cornerstone of the SCI framework is the definition of a
general algorithm, introduced next.

Definition 9.3 (General Algorithm). Given a computational problem {=, Q, M, A}, a general algorithm
is a mapping " : Q@ — M U {NH} such that, for every ¢ € €2, the following conditions hold:

(i) there exists a nonempty subset of evaluations Ap(¢) C A, and, whenever I'(:) # NH, we have
[Ar(1)] < o0,
(ii) the action of I" on ¢ is uniquely determined by { f(¢)} rear()»
(iil) forevery /' € Q such that f(./) = f(¢) forall f € Ap(¢), it holds that Ap(v/) = Ar().

Remark 9.4 (The purpose of a general algorithm: universal impossibility results). The purpose of a
general algorithm is to have a definition that will encompass any model of computation, and that will
allow impossibility results to become universal. Given that there are several non-equivalent models of
computation, impossibility results will be shown with this general definition of an algorithm.

Remark 9.5 (The non-halting output NH). The non-halting “output” NH of a general algorithm may
seem like an unnecessary distraction given that a general algorithm is just a mapping, which is strictly
more powerful than a Turing or a BSS machine. However, the NH output is needed when the concept
of a general algorithm is extended to a randomised general algorithm (as done in needed to prove
Theorem [3.4] Potentially surprisingly, as shown in Theorem [3.4} allowing a randomised algorithm to
not halt with positive probability makes it more powerful. Note, however, that adding the NH as a
possible output of a general algorithm does not make any results weaker. A technical remark about NH
is also appropriate, namely that Ar(¢) is allowed to be infinite in the case when I'(¢) = NH. This is to
allow general algorithms to capture the behaviour of a Turing or a BSS machine not halting by virtue of
requiring an infinite amount of input information.

Owing to the presence of the special non-halting “output” NH, we have to extend the metric d¢ on
M x Mtoda : MU{NH} x M U{NH} — R> in the following way:

dpm(z,y) ifz,ye M
dm(z,y) =140 ifz=y=NH 9.5)

00 otherwise.

Definition[9.3]is sufficient for defining a randomised general algorithm, which is the only tool from the
SCI theory needed in order to prove Theorem@ However, for several other results, the full definition of
the SCI hierarchy will be useful. The first is the concept of a tower of algorithms, which is important in
the general SCI theory in order to allow for problems that require several limits, such as spectral problems
for operators on Hilbert spaces.

Definition 9.6 (Tower of algorithms). Given a computational problem {=Z, 2, M, A}, a general tower of
algorithms of height k for {2, Q, M, A} is a family of sequences of functions

Dpp i Q= M, Ty i Q= M, T g Q= M,
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where ny,...,n; € N and the functions I';,, ., are general algorithms in the sense of Deﬁnition
Moreover, for every ¢ € €2,

E() = lim Ty, (¢), Thpiny ()= lim Ty () j=k—-1,... 1L (9.6)

N —>00 mj—00

Remark 9.7 (Multivalued functions). When dealing with optimisation problems one needs a framework
that can handle multiple solutions. As the setup above does not allow = to be multi-valued we need some
slight changes. We allow = to be multivalued, even though towers of algorithms are not. Hence, the only
difference to the standard SCI hierarchy is that the first limit in (9.6)) is replaced by

dist p(E(¢), Ty (1)) — 0, ng — 00,
where dist v (2(1), ', (1)) := infrez() dam(z, Ty (1))

As already mentioned above, the purpose of a general algorithm is to obtain universal impossibility
results. Conversely, for a more granular analysis of the complementary positive results, i.e., the analysis
of problems where it is possible to construct an algorithm, we define arithmetic towers depending on the
underlying computational model.

Definition 9.8 (Arithmetic towers). Given a computational problem {Z, 2, M, A}, where A is countable,
an arithmetic tower of algorithms of height k for {Z, Q, M, A} is defined as a tower of algorithms whose
lowest-level functions I' = I',, ., : © — M satisfy the following: For each ¢ € () the mapping
(g, ..sn1) = Tppong (1) = Doyt ({f(0) }ren) is recursive, and Ty, p, (¢) is a finite string of
complex numbers that can be identified with an element in M.

Remark 9.9 (Recursiveness). For the positive results we will always construct recursive algorithms, the
meaning of which depends on whether one is working with the Turing or the BSS model. In the Turing
case, recursive means that f(¢) € Q, forall f € A and ¢ € Q, A is countable, and 'y, ., ({f(¢)}ren)
can be executed by a Turing machine [44], that takes (ng, ...,n) as input, and that has an oracle tape
providing f(¢) for every f € A, see for example [55]]. In the BSS model, recursive means that f(¢) € R
(orC)forall f € A,and Ty, ., ({f(¢)}sen) can be executed by a Blum-Shub-Smale (BSS) machine
[42] that takes (ng,...,n1), as input, and that has an oracle node that provides f(¢), for every f € A.
See also Remark [0.16]

9.2.2. Solvability Complexity Index and Hierarchy. With the concept of towers of algorithms established
we can finally define the Solvability Complexity Index (SCI).

Definition 9.10 (Solvability Complexity Index). Given a computational problem {=, 2, M, A}, itis said
to have Solvability Complexity Index SCI(Z,Q, M, A),, = k of type «, where o = G (for ‘general’) or
«a = A (for ‘arithmetic’), if k is the smallest integer for which there exists a tower of algorithms of height
k and type «. If no such tower exists then SCI(Z, 2, M, A), = oco. If there exists such a tower {I';, } en
of height 1, and additionally = = T',,, for some n; < oo, then we define SCI(Z, 2, M, A), = 0.

The Solvability Complexity Index induces the SCI hierarchy. The key is that this hierarchy does
not collapse regardless of the computational model [46]. Thus, it provides a universal framework for
classifying problems in scientific computing.

Definition 9.11 (The Solvability Complexity Index Hierarchy). Consider a collection C of computational
problems and a type a« = A or o« = G for the computational problems in C. Define

A% = {{Z,Q} € C| SCI(E, ), = 0}
A% = {{E,Q} € C|SCI(E,Q)a < m}, Vm €N,
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as well as
AL = {{E,9} € C| I {T"},en tower of type ar s.t. Vn dist ag (T (1), Z(1)) < 277}

9.2.3. The computational problems. We are now ready to formalise the problems of interest (I.T)-(T.6)
as computational problems in the sense of Definition for fixed dimensions m and N. In all the

problems under consideration we consider (M, d) = (R™ U {oo}, || -

), where the norm depends on
the different problems. In all cases except for neural networks, the set {2 will always contain vectors
and matrices, and thus the set of evaluations will naturally be the collection of the coordinate functions.
Concretely, we will often consider input sets 2 whose elements are of the form ¢ = (y, A) with y € R™
and A € R™*Y in which case we let

atyj=m,k=N
Amn = {7} U YIS

where f7°°(¢) = y; and f}’2*(¢) = Aj 1. In the following we write 7 for || - [|1 or || - || v depending on

the context.
(i) Linear Programming: v € ) is of the form . = (y, A), where y € R™ and A € R™*¥. For
fixed ¢ € R the solution map is given by
=(¢) = argmin(z, ¢) such that Az =y, x> 0.
z€RN

(ii) Basis Pursuit: ¢ € Q is of the form ¢ = (y, A) where y € R™ and A € R™*¥ . For a fixed

parameter § > 0 the solution map is given by

argmin,cp~ J(x) such that ||Ax — y|lo <6, if ¢ is feasible
1} else .

(iii) Constrained Lasso: €) consists of inputs of the same form as for basis pursuit. For a fixed
parameter 7 > 0, the solution map is

E(¢) = argmin || Az — y||2 such that [[z[|; < 7.
zERN
(iv) Unconstrained Lasso: () consists of inputs of the same form as for basis pursuit. For a fixed

parameter A > 0, the solution map is
Z(:) = argmin || Az — y[|3 + A T (2).
Tz€RN

(v) Neural Networks (Deep Learning): We only consider lower bounds and thus concentrate on the
simplest classification functions f : R — {0, 1}. Given such f and a training set 7 C R?, the
task is to compute a neural network ¢ € NN N,I,4 and evaluate it on a validation set V. We fix
s, let (M, d) = (R?%,|| - |l) and consider input sets §2 consisting of various ¢ = (7, V), where
T ={x',...,2"}and V = {y',..., y*} are finite subsets of R%. The set of evaluations is given

by the coordinates of the training and validation points, i.e.,
_ [T j=dk=r V yj=d.k=s
Aagrs ={fieti=in=1 Y {fedj=ii=1> 9.7

where f7,(:) = x% and fY, (1) = y}, and finally, for a cost function R € CF,, where CF, is
defined in (8:2)), the solution map of interest is given by (8-I).
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9.3. Inexact input and perturbations. Suppose we are given a computational problem {=, Q, M, A},
and that A = {f,},ep5, where § is some index set that can be finite or infinite. However, obtaining f;
may be a computational task on its own, which is exactly the problem in most areas of computational
mathematics. In particular, for ¢ € €, fj(L) could be the number 7 for example. Hence, we cannot
access f;(¢), but rather f;,(¢) where f;,(¢) = f;(¢) as n — oo. In this paper we will be interested
in the case when this can be done with error control. In particular, we consider f;, : Q — D,, + iD,,
where D, := {k27" | k € Z}, such that

{fin()}jes —{fi()}jepllo <277, Ve (9.8)

By analogy with A; classification, we will call a collection of such functions Aj-information for the
computational problem. Formally, we have the following.

Definition 9.12 (A;-information). Let {Z, 2, M, A} be a computational problem with A = {f;};eg.
Suppose that, for each j € 3 and n € N, there exists an f; , :  — D, 4 D, such that (©-8) holds. We
then say that the set A = {f; . |j € 8,n € N} provides A;-information for {Z,Q, M, A}. Moreover,
we denote the family of all such A by £'(A).

Remark 9.13. One can take the analogy with A; classification in the SCI hierarchy even further by
considering f; that are higher up in the hierarchy, and analogously define A,,-information for m > 1

(see [46]]). However, this is beyond the scope of the present paper.

Note that we want to have algorithms that can the computational problems {=, Q, M, A} for all pos-
sible choices of A L1(A). In order to formalise this we define what we mean by a computational

problem with A;-information.

Definition 9.14 (Computational problem with A;-information). Given {Z, Q, M, A} with A = {f;} ez,
the corresponding computational problem with /A1 -information is defined as

{2,Q, M, A}A = {2,Q, M, A},

where

0= {Z = {(fj@(b),fjﬁ(b), fia(),... )}jeﬁ |t €, fin:Q— D, +iD, satisfy } , (9.9
2(i) = 2(t), and A = {f;n}jnepxn, where fj,(0) = f;n(¢). Given an i € €, there is a unique ¢ €
for which 7 = {(f;1(1), f5.2(0), fi3(1), - .. )}jeﬁ (by Definition . We say that this ¢ € Q corresponds
tol e Q.

Remark 9.15. Note that the correspondence of a unique ¢ to each ¢ in Definition ensures that = and
the elements of A are well-defined.

One may interpret the computational problem {Z, Q, M, A}t = {Z,Q, M, A} as follows. The col-
lection € is the family of all sequences approximating the inputs in . For an algorithm to be successful
for {=,Q, M, A}t it must work for all 7 € Q, that is, for any sequence approximating ¢, as opposed
to a particular choice of Aj-information for {=,Q2, M, A} according to Definition The relation
between these two closely related concepts will be further elucidated in §9.6|below.

Remark 9.16 (Oracle tape/node providing A;-information). For impossibility results we use general
algorithms and randomised general algorithms (as defined below), and thus, due to their generality, we
do not need to specify how the algorithms read the information. However, all positive results are done for
problems {Z, Q, M, A}At = {é, Q, M, JNX} with either a Turing or a BSS machine, and we thus need
to specify how ¢ € Qin (9.9) is passed to the algorithm as an input. Suppose that 3, the index set for
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A, is countable. In the Turing case we follow the standard convention in the literature (see for example
[55]]), in particular,  is represented by an oracle tape that, on input (j,n) € S x N (where j is an integer
or otherwise encoded in a finite alphabet), prints the (unique) finite binary string representing the dyadic
number fjn(l) Similarly, for a BSS machine, we assume the standard setup (see [42]) with an oracle
node that on input (j,7) € 8 x N returns f; ,, (7).

9.4. Breakdown-epsilons — the key to proving K, K — 1, K — 2 -type theorems. The purpose of
breakdown epsilons is to characterise the lower bounds on the accuracy that can be achieved by algo-
rithms. As the name suggests, the breakdown epsilons are the fundamental barriers on the best possible
accuracy that any algorithm can achieve. There are two types of (deterministic) breakdown epsilons,
namely the strong and the weak one, as well as their probabilistic versions. We define and discuss each
of them in detail below. We begin with the strong breakdown epsilon.

Definition 9.17 (Strong breakdown epsilon). Given a computational problem {=, 2, M, A}, we define

its strong breakdown epsilon as follows:
€ = sup{e > 0|V general algorithms I", 3¢ € Q such that dist p((I'(¢), E(2)) > €}.

Hence, the strong breakdown epsilon is the largest number ¢ > 0 such that no algorithm can provide
accuracy exceeding e.

Remark 9.18 (The breakdown epsilons with respect to a specific computational model). The purpose
of the strong and other breakdown epsilons is to establish universal impossibility results in the form of
lower bounds on the achievable accuracy, and hence we define them in terms of general algorithms (and
randomised general algorithms to be introduced below). However, occasionally, it may be convenient to
work with the concept of a breakdown epsilon specific to the computational model. This can easily be
done by replacing the words ‘general algorithm’ in Definition by either ‘Turing machine’ or ‘BSS

machine’, for example. In this case we will use the superscript ‘A’ (for arithmetic):
e%’A is the strong breakdown epsilon in the Turing (or BSS) model,

where, as in Remark@], the Turing model is understood if the inputs are rationals, and the BSS model
otherwise.

The weak breakdown epsilon, introduced next, is the largest ¢ > 0 such that all algorithms will need
to use an arbitrarily large amount of input information to reach e accuracy. To make this precise we
first need to define the minimum amount of input information, which, in turn, we define in terms of an
enumeration of the elements in A. We thus assume that A is countable and enumerated according to

A={felk €N,k <[Al}, (9.10)

where |A| denotes the cardinality of A. As we will see below, although we assume that A has a spe-
cific enumeration, many of the key concepts defined below, including the weak breakdown epsilon, are

independent of the specific enumeration, and so the only assumption needed is that A be countable.

Definition 9.19 (Minimum amount of input information). Given the computational problem {Z, Q, M,
A}, where A = {fi |k € N, k < |A|} and a general algorithm I', we define the minimum amount of
input information Tr (1) for T and ¢ € Q as

Tr () = sup{m € N| fn € Ar(1)}.

Note that, for ¢ such that I'(:) = NH, the set Ar(:) may be infinite (see Definition , in which case
TI‘(L) = Q.
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We are now ready to define the weak breakdown epsilon.

Definition 9.20 (Weak breakdown epsilon). Given the computational problem {Z, 2, M, A}, where A =
{fx|k € N, k <|A|}, we define the weak breakdown epsilon by

e = sup{e > 0|V general algorithms I" and M € N 3. € Q such that
dist p(T'(e), E(¢)) > eor Tr(¢) > M.

As mentioned above, it is easy to see that the weak breakdown epsilon is independent of the ordering of

A. In words, if the breakdown epsilons are greater than €, we have the following:

(1) (Strong Breakdown Epsilon) For any algorithm there is an input such that the algorithm fails to
produce an e-accurate solution on that input.

(ii)) (Weak Breakdown Epsilon) One can choose an arbitrary large integer M and find an input such
that the algorithm will need to have used at least the M-th input and still not have reached e

accuracy. In other words, the amount of information needed is unbounded to reach e-accuracy.

Remark 9.21 (Independence of ordering). Although the minimum amount of input information is de-
pendent of the enumeration of A in (9.10), it is easy to see that the weak breakdown epsilon and the
probabilistic weak breakdown epsilon (to be defined below) are independent of the choice of the enumer-
ation.

9.4.1. The weak breakdown epsilon for problems with A1-information. In the case of computational
problems with Aj-information, the minimum amount of input information is related to the ‘accuracy

needed’ on the input to the algorithm.

Definition 9.22 (Number of correct ‘digits” on the input). Suppose that A = { fem | (k,m) € 8 x N}
provides Aj-information for {Z, 2, M, A}. Given a general algorithm T" for the problem {=, Q, M, A},

we define the ‘number of digits’ required on the input according to
Dr(t) =sup{m € N|3k € Bst. frm € Ar(1)}.

Remark 9.23 (Interpretation of 7t and Dr: accuracy on input and lower bound on runtime). Consider
the computational problem {Z,Q, M, A} above. Then, independently of the enumeration of A used to
define 1T, we have that

Dr(ty) — 00 asn — oo = Tr(tn) — 00 asn — 0o, 9.11)

for every general algorithm I' and every sequence {¢,, 5, in 2. Moreover, in the case when A is finite,
the implication (9.11) also holds in reverse. Therefore, the weak breakdown epsilon for problems with
A -information derived from a finite set of evaluations is equivalently given by

ey = sup{e > 0|V general algorithms I" and M € N 3¢ € 2 such that
distpm(T'(¢), E(¢)) > e or Dp(¢) > M}.
Note that any reasonable complexity model would have a definition of runtime of an algorithm I" such

that the runtime is at least the number of digits it acquires from the input. In particular, any reasonable
definition of the runtime of I" (such as the standard definition to be specified in §9.8)) will have

Runtimer(¢) > Dr(1). (9.12)

Hence, for such computational problems, Dr can be used to show that if the weak breakdown epsilon
is greater than e then any algorithm will have arbitrarily large runtime when attempting to achieve e-

accuracy.
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9.5. Randomised algorithms. In many contemporary fields of mathematics of information such as deep
learning, the use of randomised algorithms is widespread. We therefore need to extend the concept of a
general algorithm to a randomised random algorithm.

Definition 9.24 (Randomised General Algorithm). Given a computational problem {=, 2, M, A}, where
A = {fulk € N,k < |A|}, a randomised general algorithm (RGA) is a collection X of general
algorithms " : Q@ — M U{NH}, a sigma-algebra F on X, and a family of probability measures {P, },cq
on F such that the following conditions hold:
(Pi) For each ¢ € (2, the mapping I'}*" : (X, F) — (M U {NH}, B) defined by I'}**(I") =T'(¢) is a
random variable, where B is the Borel sigma-algebra on M U {NH}.
(Pii) Foreachn € Nand: € Q, we have {I" € X |T1(¢) < n} € F.
(Piii) For all ¢t1,.5 € Q and E € F so that, for every I' € E and every f € Ar(¢1), we have
f(t1) = f(t2),itholds that P, (E) = P, (E).
It is not immediately clear whether condition|(Pii)|for a given RGA (X, F, {P, },cq) holds independently
of the choice of the enumeration of A. This is indeed the case and will be established in Lemma
further below.

Remark 9.25 (Assumption [(Pi1)). Note that in Definition is needed in order to ensure that the
minimum amount of input information also becomes a valid random variable. More specifically, for each
L € (), we define the random variable

Trran (1) : X — N U {oo} according to " +— T (¢).

As the minimum amount of input information is typically related to the minimum runtime, one would
be dealing with a rather exotic probabilistic model if Tran (1) were not a random variable. Indeed, note
that the standard models of randomised algorithms (see [56]]) can be considered as RGAs (in particular,

satisfying [(Pi1)).

Remark 9.26 (The purpose of a randomised general algorithm: universal lower bounds). As for a general
algorithm, the purpose of a randomised general algorithm is to have a definition that will encompass every
model of computation, which will allow lower bounds and impossibility results to be universal. Indeed,
randomised Turing and BSS machines can be viewed as randomised general algorithms.

We will, with a slight abuse of notation, also write RGA for the family of all randomised general
algorithms for a given a computational problem and refer to the algorithms in RGA by I'"". With the
definitions above we can now make probabilistic version of the strong breakdown epsilon as follows.

Definition 9.27 (Probabilistic strong breakdown epsilon). Given a computational problem {Z, Q, M, A},
where A = {fr |k e N, k < |A

according to

}. we define the probabilistic strong breakdown epsilon €} : [0,1) — R

epp(p) = sup{e > 0, |[VI™" € RGA 3¢ € Q such that P, (dist o (T52",E(2)) > €) > p},
where I'}*" is defined in [(PD)|in Definition

As already mentioned in previous sections, impossibility results for randomised algorithms can differ

if one considers only those algorithms that halt on every input, leading to the following two definitions.

Definition 9.28 (Halting randomised general algorithms). A randomised general algorithm I'"?" for
a computational problem {=, Q, M, A} is called a halting randomised general algorithm (hRGA) if
P, (I'"*» = NH) = 0, for all ¢« € 2.

We denote the class of all halting randomised general algorithms by hRGA.
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Definition 9.29 (Probabilistic strong halting breakdown epsilon). Given the computational problem
{E,Q, M, A}, where A = {fi | k € N, k < |A|}, we define the halting probabilistic strong Breakdown-
epsilon €3, : [0,1) — R according to

eppp(p) = sup{e > 0, |VI™" € hRGA 3. € Q such that P, (dist ¢ (I}, Z(¢)) > €) > p},
where I'}*" is defined in [(PD)]in Definition

Note that the probabilistic strong Breakdown-epsilon is not a single number but a function of p.
Specifically, it is the largest € so that the probability of failure with at least e-error is greater than p.
Similarly, there is a probabilistic version of the weak breakdown epsilon.

Definition 9.30 (Probabilistic weak breakdown epsilon). Given the computational problem {Z, Q, M,
A}, where A = {fi|k € N, k < |A]}, we define the probabilistic weak breakdown epsilon €}y :
[0,1) — R according to

epg(p) = sup{e > 0|VI"™ € RGA and M € N 3¢ € Q such that
P, (dist g (I3, Z(1)) > € or Trean (1) > M) > p},

where I''*" is defined in in Definition [0.24]

As for the (deterministic) weak breakdown epsilon discussed above, it is easy to see that the probabilis-
tic weak breakdown epsilon is independent of the enumeration of A. The probabilistic weak breakdown
epsilon describes a weaker form of failure than the probabilistic strong breakdown epsilon. In particular,
the weak breakdown epsilon of p is the largest € so that for, any randomised algorithm and M € N, the
probability of either getting an error of size at least € or having spent runtime longer than M, is greater
than p. The connection between the different breakdown epsilons will be summarised in Proposition[T0.1]
further below.

9.6. Different types of impossibility results. There are several non-equivalent statements about the
non-existence of algorithms for a computational problem {Z, 2, M, A} with A;-information that we

will discuss. For a fixed ¢ > 0, the statements are as follows:

G) JA € L1(A) such that, for the computational problem {Z, Q, M, f\}, we have €, > .

(ii) When considering the computational problem {=, Q, M, A}A1, we have €, > ¢.

(iii) {2,902, M,A}2 ¢ A§.
Note that (i) = (ii)) = (iii) . Observe also that (i) says that there is a particular choice A of collections
of approximations that provide Aj-information for A such that no algorithm, given this specific A;-
information, will be able to secure ¢ accuracy. Note that the strong breakdown epsilon in (i) and (ii)
could be replaced with any of the other breakdown epsilons (at a fixed p, in the case of the probabilistic
breakdown epsilons), and the implication (i) = (ii) would still hold. However, the implication (ii) =

(ii1) holds only for the various strong breakdown epsilons.

Remark 9.31 (Turing’s classical definition of non-computability). Note that in the SCI hierarchy frame-
work, the classical Turing definition of non-computability [44], [55] is equivalent to {=, Q, M, A} ¢
A4, However, as the main results in this paper demonstrate, in order to characterise the many facets of

scientific computing one needs the richness of the SCI hierarchy framework.

9.7. Theorem @]— Part (i) and (ii) in the SCI language. Let = denote the solution map (as in (I.7))
to any of the problems (I.T) - (T.4). The statements in Theorem [3.4]are well-defined up to the definition
of (random) algorithms and their runtime. Now that we have defined these concepts and the breakdown
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epsilons, we state (i) and (ii) in Theorem in the precise SCI language. For m, N € N such that
m < N and a class of inputs 2 for any of the problems (L.I)) - (I.4), define

Qun =1{(y,4) €Q|(y,A) e R™ x R™*N1 My =R, (9.13)

In the case of linear programming, we set ¢ = (1,...,1) € R¥ for each fixed dimension N. We then

have the following.

Proposition 9.32. Let = denote the solution map to any of the problems (L.1) - (L4) with the regularisa-
tion parameters satisfying 6 € [0,1], A € (0,1/3], and T € [1/2,2] (and additionally being rational in
the Turing case) and let the metric on My be induced by the || - ||,-norm, for an arbitrary p € [1, x].
Let K > 1 be an integer. There exist a set of inputs

Q= |J Qun, sothat Z:Qpn = My, (9.14)

m,NeN
4<m<N

where Q,,, N and My are defined as in (9.13), and My is equipped with the || - ||, norm for some
p € [1,00], as well as sets of A-information A, n € LY (A, ) such that we have the following.
(i) For the computational problem {=, QmN,./\/lN,/A\m’N} withany m,N € N, 4 < m < N, we
have €5,,5(p) > 107K, forallp > 3. Hence {2, Uy n, My, Ay N 121 ¢ A
(ii) For the same {Z, Qm,N,MN,/A&m,N} as in (i) we have €55 (p) > 107X, for all p > % How-
ever, when considering the problems {E,Qm}N,MN,Am)N}Al = {E,QWN,MN,AWN},
there exists a randomised algorithm I'"*" (a randomised Turing machine or a randomised BSS

machine), with a non-zero probability of not halting, that takes the dimensions m, N and any
NS Qm N as input (see Remark and satisfies
. ~ 2
P; (dist aq (1" (m, N, 7),2(2)) < 107%) > 3
The statements above are true even when we require the inputs in (), N to be well-conditioned for all
m, N and bounded from above and below. In particular, for any input v = (y, A) € Q,, Ny we have
Cond(AA*) < 3.2, Cpp(t) <4, Cond(E) < 179, ||[Ylloc <2, and ||Al|max = 1.

9.8. Runtime of algorithms. In order to provide exact statements of the rest of Theorem[3.4]we need the
precise definition of the runtime of an algorithm, for which one has to specify a computational model. Re-
call that we want to prove results about algorithms for problems {Z, Q, M, A}21 with A;-information,
as such results are stronger than, say, the corresponding results for {Z, Q,,, v, M, ]\} with a particular
choice of A € £* (A). We have already discussed specific computational models in Definition and
Remark however, in order to make precise statements about complexity we need to specify such

models more closely. Concretely, we will consider the following models.

(1) (Turing model). We follow the classical setup in [55]], wherein the components of the inputs
i = {fjn(t)}jmesxn € Q are provided by an oracle tape that, at various times during the com-
putation, contains a binary string representing one of the dyadic numbers f; ,(¢). Specifically,
the Turing machine can make a query to the input oracle ¢, which then writes f; ,(¢) onto the
oracle tape at cost j + n, always choosing the unique finite binary string representing f; ,(¢).
Now, given a Turing machine T for the problem {Z, Q, M, A}21, we define its runtime on 7 as
follows:

Runtimer(7) = the number of steps performed by the Turing machine I before halting
+ the sum of costs of all the calls to the oracle for 7 (with the cost as above).

Note that this model accounts implicitly for the cost of all the calls to the oracle, as the output of

the oracle is printed on the work tape, and hence read by the machine.
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(Arithmetic Turing model). In the case where one only wishes to count the number of arith-
metic operations and comparisons that an algorithm performs, there is no canonical account of
the cost of calling the oracle, as opposed to the classical Turing model above. Hence, in this
model (as discussed in §2.1.T] and (see for example Lovasz [41, p. 36])), it is natural to adopt
the convention that the cost of calling the oracle & (as specified in item (i) above) is given by
pol(n), forall j € f,n € N, and ¢ € €, for some non-zero polynomial pol fixed beforehand.
Thus, we define the arithmetic runtime of an algorithm I' in the Turing model on 7 as follows:

Runtimer(7) = the number of arithmetic operations and comparisons

(iii)

performed by I' before halting
+ the sum of costs of all the calls to the oracle for 7 (with the cost as above).

(The BSS model). In this model, the BSS machine is equipped with an extra oracle node & for
L= A{fjn(t)}jnepxn € Q) that outputs fj,n on input (j,n) (see [42] for details). As discussed
in and in item (ii) above, it is customary to assume that the cost of calling the oracle
is polynomial in n, as in the arithmetic Turing model. Thus, given a BSS machine I' for the

problem {Z, Q, M, A}*1, we define its runtime on 7 as follows:

Runtimer(7) = the number of arithmetic operations and comparisons

performed by the BSS machine I'" before halting

+ the sum of costs of all the calls to the oracle for ¢ (with the cost as above).

9.9. Theorem [3.4] - Part (iii) - (v) in the SCI language. We follow the setup in Note that
with the definitions of runtime in §0.8] all satisfy (9.12), and hence we have that, for a given prob-
lem {Z,Q, M, A}»1 with A finite and a probabilistic weak breakdown epsilon €} (p) > r, for some

p,7r > 0, any randomised algorithm will require an arbitrarily long runtime in order to achieve accuracy

of at least r with probability at least p.

We are now ready to formalise the rest of Theorem 3.4}

Proposition 9.33. There exist Q and A, xy € L1 (A ) as described in (9:13) for which the conclusion
of Proposition holds with K > 2, and we additionally have the following.

(iii)

(v)

For the problem {E,QWN,MN,/AXWN} with any m, N € N, 4 < m < N, we have that
eds(p) > 107D, forall p > % However, when considering the problems {=, Qy, v, M,
Ap N2t = {é, Qm’N, My, Am’N}, there exists an algorithm T" (a Turing machine or a BSS
machine) that takes the dimensions m, N and any t € QW N as input (see Remark and
satisfies
dist v (C(m, N, 7),2(2)) < 10-F,

There exists a polynomial pol : R — R and an algorithm I (a Turing machine or a BSS machine)
that takes the dimensions m, N and any i € Qm N as input (see Remark and satisfies

dist o (D(m, N, 7),2(2)) < 107K,

Furthermore, in the Turing case, the arithmetic runtime and the space complexity of the Turing
machine are bounded by pol(nyay), where nyay = mN + m is the number of variables, and
the number of digits read from the oracle tape is bounded by pol(log(nyay)). In particular, the
runtime in the Turing model is polynomial in Ny In the BSS case, the runtime is likewise

bounded by pol(nyay).

In the proof of Proposition [9.33] we will additionally need the following concepts of the size of a

dyadic rational and the encoding length of rational vectors.
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Definition 9.34 (Size of dyadic rationals). For a dyadic rational d given by its binary representation
d=*+8,8,_1""-80.t1to - - - t,,,, we call m its precision, and we define its bit size as m + n + 3. The bit
size of a dyadic rational vector or matrix is defined as the sum of the bit sizes of its entries. We define the

bit size of a vector of dyadic rationals as the sum of bit sizes of its entries.

Definition 9.35 (Encoding length of rational numbers). We define the encoding length of an integer
n € Z as Len(n) = 1+ [logy(|n| 4+ 1)]. For a rational p/q € Q, where p and ¢ > 0 are coprime
integers, we define the encoding length of p/q as Len(p/q) = Len(p) + Len(g). Similarly, if w is a
vector of rationals, we define the encoding length Len(w) as the sum of the encoding lengths of the

components of w.

9.10. Theorem [7.1] in the SCI language. We recall the setup for Theorem Fix real constants
p€(1/3,1), 7 >10,b; > 3, and by > 6. For s,m, N € N such that m < N and € € [0, 1], define

Qv = {(y, 4) € R™ x R™N | (y, A) satisfies (0-16)}, (9.15)
where
A satisfies the RNP (7.1) of order s with parameters p and 7,
(9.16)
|y — Az||2 < e for some  that is s-sparse, and ||y||s < b1, [|A]l2 < byy/N/m.

Finally, define

= |J Q. 9.17)
s,m,NEeN
m<N

Proposition 9.36. Let =pp and Sy, denote the solution maps respectively to the £*-BP problem (1.2)
and the (*-Lasso problem (I.3), and consider the || - ||2-norm for measuring the error. If Q5 n and Q¢
are as in (9.13) and (9.17) the following holds.
(i) There exists a constant C' > 0, independent of p, T, by and by, such that if we fix s = 2* for some
k € N and any m, N such that N > m with m > C'slog?(2s) log(N), then we have the follow-
ing. For an arbitrary § € (0, 1] consider the computational problem {Epp, Qg)mw, M, A}A,
where M = RN Let
K > [logy, (25_1ﬂ .
Then, for any p > %, we have €, 5(p) > 1075, Hence {Egp, QSJ,L7N,M, A2 ¢ AG.
(ii) Let s, m, and N be as in (i), and for an arbitrary X € (0,1/(2+/s)] consider the computational
problem {Zyr,, Q90 , M, A} and

K> [log10 (25_1/2)\_1)—‘ .

Then, for any p > 3, we have €3, 5(p) > 10~%. Hence, {Zur, Q;m,N,M,A}Al ¢ A7,

(iii) There exists a polynomial pol : R?> — R and, for every § € [0, (1 — p)/(167)], there exists
an algorithm U5 (a Turing machine or a BSS machine) that takes any dimensions m, N, the
accuracy parameter K, and any i € Qg,m N as input (as described in Remark and satisfies

distuq(Ds(m, N, K, 7),2pp(7)) < 107K
forall K € N satisfying
K < |logy, (1 —p)(167)" 167 1) . 9.18)

In the case that 6 = 0, (]m) is to be interpreted as K < oo. Moreover, the runtime of '
(steps performed by the Turing machine, arithmetic operations performed by the BSS machine)
is bounded by pol(n, K), where n = m + mN is the number of variables. In particular, for
0 = 0, the runtime is bounded by pol(n, K) for all K € N.
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(iv) Consider the *-BP problem (I.2) with 6 = 0. For any fixed s > 3, there are infinitely many

pairs (m, N) and inputs . = (Ax, A) € Q°, where x € R™ is s-sparse and A € R™*N is a

subsampled Hadamard, Bernoulli, or Hadamard-to-Haar matrix such that

CRCC<L) = Q.

In particular, appreciating (iii) and (iv), there exist inputs in ) with infinite RCC condition

number, yet the problem is in P.
Remark 9.37. The independence of the runtime on ¢ in part (iii) is a consequence of (9.18).

Remark 9.38. One can strengthen the result in part (iii) in the following way: it is possible to use Ne-
mirovski’s surface-following method (concretely, the result in Section 4.2 in [57]) to devise an algorithm
that solves the basis pursuit problem with ¢! regularisation up to precision 10~% > 1675/(1 — p) to
obtain the explicit complexity bound O(1) - N35 - K - log (2 + %) in the arithmetic model of compu-
tation (more precisely, the BSS model with an oracle for the square root). We choose not to do so in this
paper and instead base our proof of part (iii) on the ellipsoid algorithm to obtain simple polynomial time

complexity bounds in both the BSS and Turing models of computation.

9.11. Computing the exit flag — Theorem in the SCI language. Let {=,Q, M, A} be a com-
putational problem and recall the definition of {=, Q, M, A}A1 = {é, Q, M, ]\} from Definition
Suppose that we are interested in finding an algorithm I that, for every i € {2, computes an approxima-
tion to Z() with s accuracy (i.e. so that dist v((I'(), 2(Z)) < ). If the breakdown epsilon €} is greater
than « then this task is impossible — there will be at least one input for which the algorithm fails to get
Kk accuracy. However, that does not mean that a given algorithm will fail on all possible inputs. There
may be a set of inputs for which the algorithm succeeds in producing an output that is x away from a true
solution. This leads to the following exit flag question:

Can we design an algorithm that identifies whether or not T" fails on a given input

(meaning that T fails to produce r accuracy on its input)?

Phrased more precisely in the language of computational problems, given a recursive (either in the
Turing or the BSS model) algorithm I for {=, Q, M, A}, we define

Qr = {i € Q| dist\(T'(2),2(0)) < &} C Q, (9.19)
then €}, > « implies that Qr is a strict subset of €2. Now, defining

s o~ 1 ifielr
Q30 o (9.20)
0 ifieQ\Qr,

(1]

the exit flag problem is to design an algorithm I'” to solve the computational problem

{E2F,0,{0,1}, A} = {EF,Q,{0,1},A}, (9.21)
where the metric on the space {0, 1} is inherited from R.
Remark 9.39 (Key assumption). Of course, this problem is trivial if the algorithm produces outputs that
are far away from the set Z(£2). This is a somewhat contrived scenario as such algorithms would not
be sensible candidates for attempting to solve the problems defined in equations (L.I)-(T.6). We thus

need to make a technical assumption on the type of algorithms we will analyse for the exit flag problem.
Concretely, we fix an o < x and assume that our algorithm I" defined on (2 satisfies

dist v (1'(2), 2(Q)) < a forall 7 € Q. (9.22)
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Given the computational problem {Z¥,Q, {0,1}, A}, one may ask where it lies in the SCI hierarchy.
We will provide results on this, however, in some circumstances we will actually prove stronger results
by considering the problem of computing the exit flag with additional access to an oracle that provides
an exact solution to the problem that I' is trying to solve. In particular, one can ask:

Given an oracle for the true solution, can we design an algorithm that identifies whether
or not I fails on a given input (meaning that I fails to produce K correct digits when
given the input)?

Concretely, we will assume that we are allowed to design the exit flag algorithm I'” so that I'” has
access to both and element p of é([) as well as the input 7. We will consider I'? to be successful only if
it correctly computes the exit flag for every such p. Indeed, it is reasonable to preclude the exit algorithm
from being able to access a “convenient” element of E(Z), as this would make it too powerful for any
nontrivial statements to be made.

9.11.1. Formalising the oracle computational problem. In order to make the concept of an oracle for the
true solution precise we need to formalise the definition of an oracle computational problem. Consider
two computational problems {Z1,Q, M1, A1} and {E3,Q, Mo, A3} with the same input set €2, and
assume that My C CM. Givenw > 0, suppose that functions { gk};@w:p gi : 1 — D, are such that

{on(W1ls € BE (1)), (9.23)
Then {gi(¢)}2L, is an w-accurate approximation of an element of Z(¢). We can thus define
L= (A = {MU{ge M lge - Q =D,k e {1,..., M}, satisfy (0.23)} (9.24)

Note that it is crucial to allow for the approximation parameter w since a Turing machine would be unable
to access the true solution if it has irrational entries.

Now, for a fixed A} € £9«Z2(A;), the computational problem {=;, 2, My, A]} would allow the
algorithm to access information about =5. However, as discussed above, a sensible algorithm relying on
“oracle information” ought to work with every choice of such an oracle. We thus define a new oracle
computational problem {Z¢, Q¢ My, AP} by analogy to Deﬁnition according to

00 = %) = (1€ = @ (g} |1 € Q. {ge} L, satisfy @23}, 9.25)

(1]

9% =Z1(1) and AP = {fO| f € Ay} U {9}, where the f© and g© are defined as

The dependency on w in the definition of Q (w) will usually be suppressed to lighten the notation. We
can now make the following formal definition.

Definition 9.40 (Oracle computational problem). Given two computational problems {=1, Q, M7, A1}
and {Z3, Q, Ma, Ao} as specified above, we say that

{El> QaMhAl}O,w’{E%Q’Mz’AQ} = {3?7 QO) Mla A?}

where 2°, =9, and A§ are as specified above, is the oracle computational problem with respect to
{E3,Q, M2, As}. Whenever it is clear which computational problem the oracle problem is relative to,
we will simply write {Z1,Q, M1, A1} for {Z1,Q, M, Al}o"*”{52’ﬂ’M2’A2} .
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9.11.2. Computing the exit flag with an oracle. Returning to the exit flag problem, one could also ask
the opposite question to what we asked above:

Given an oracle for the exit flag can we design an algorithm that produces w accurate

solution to the original problem?

A positive answer to this question and a negative answer to the original question can be seen as evidence
that the exit flag problem is strictly harder than the original problem, which is the topic of the following
proposition formalising Theorem [5.1]

Proposition 9.41 (Impossibility of computing the exit flag). Let = denote the solution map to any of
the problems (I.1) - (T4) with the regularisation parameters satisfying 6 € [0,1], A € (0,1/3], and
T € [1/2,2] (and additionally being rational in the Turing case) and let the metric on M be induced by
the || - ||, norm. Let K € N and fix o and w so that 0 < o < w < 107X Then, for any fixed dimensions
m < N with m > 4, there exists a class of inputs Q) such that, if I is a general algorithm for the
computational problem {Z,Q, M, A}*1 = {é, Q,M, /~\} satisfying (9.22)) (where we write A for Ay, N
to lighten the notation) and {Z¥,Q,{0,1}, A} = {EF] Q, {0, 1},[\} is the exit flag computational
problem defined in (9.21)), we then have the following.

(i) There exists a At € LO“E(A) such that, for {2F,,{0,1}, A+} we have iy (p) > 1/2, for

allp > %

(ii) The problem of computing the exit flag of T is strictly harder than computing a K digit approx-
imation to Z in the following sense: For the oracle problem {é, Q, M, ]\}O"*’ with respect to
{2F,Q,{0,1}, A} we have e%’A < 107K (see Remark . However, when considering the
oracle problem {Z¥ Q, {0,1}, A}O’w with respect to {é, Q, M, A}, we have €, > 1/2 (which
follows from (i)).

(iii) If 2 is the solution map to either linear programming or basis pursuit, there exists a class of
inputs QF # Q such that, if T is a general algorithm for the computational problem {Z, Q! M,
AYAY satisfying (0.22) with o, then there is a A € L1(A) so that for {ZF,QF, {0, 1}, A} we have
ebp(p) = 1/2, forallp > L. However, if we consider the oracle problem {EF, Qf, {0,1},A}0
with respect to {2, QF, M, A}21, then {2, QF, {0,1}, A}O € A{.

The statements above are true even when we require the inputs in (), n to be well-conditioned for all
m, N and bounded from above and below. In particular, for any input v = (y, A) € Q. N we have
Cond(AA*) < 3.2, Crp(t) <4, Cond(Z) < 179, ||[Ylloo < 2, and || Al|max = 1.

9.12. The full SCT hierarchy and the feasibility part of the extended Smale’s 9th problem. In order
to prove Theorem [6.1] we need the full SCI hierarchy. Building on the SCI hierarchy introduced in
Deﬁnition one may assume that the metric space M, say M = R or M = {0, 1} with the standard
metric, is equipped with extra structure, say a total order, that allows one to define convergence from
above or below of functions valued in M. By analogy to using the metric da in the approximation
property (9.6) of towers of algorithms, the extra structure on M allows us to define for a new type
of approximation. As we argue below, this is important, for example, in computer-assisted proofs and
scientific computing.

For simplicity of exposition, in this subsection we consider only computational problems whose solu-
tion map = is single-valued.
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Definition 9.42 (The SCI Hierarchy for a totally ordered set). Given the setup in Definition and
additionally assuming that M is totally ordered, we define the following sets:
25 =105 = A,
Yo = HE, QM Ay e Ap | Ftower {T'y,,, .. n, } of height ms.t. T, (¢) 7 E(2) Ve € QF,
Iy, = {{Z,Q,M,A} € A}, | Ftower {I',, ... n, }of height ms.t. Ty, (1) N\ E(¢) Ve € Q},

for m € N, where * and \, denotes convergence from below and above respectively, and the towers of

algorithms are assumed to consist of halting algorithms.

In the special case when M = {0,1}, Definition yields the full SCI hierarchy for arbitrary
decision problems, where 1 is interpreted as true and 0O as false. One can then naturally consider a
computational problem with A;-information {Z, Q, M, A}t and ask in which of the sets A%, X¢, or
I13 it lies.

9.13. Theorem in the SCI language. Recall that, for ¥ € N U {oco} and M € R, our decision
problem of interest is to decide whether there is an z € R™ such that

(w,c)r, < M subjectto Az =y, x > 0 coordinatewise, (9.26)

where (7, ¢)y, := |10%(x, c)]107* with c¢set to (1,...,1) € RY for each fixed N as in correspond-
ing to a computational problem with solution map
1, Jx € RY satisfying (9:26)

=k - Q— {0, 1}, Ek(b) = s 9.27)
0, else

and set € of inputs of the form ¢ = (y, A) € R™ x R™*, Now, for k € N, define the set
Si=J [(n+09)-107% "D (n+1)-10"*V), (9.28)
neNU{0}

in other words, S} is the set of positive real numbers whose k-th digit after the decimal point is 9. Note
that, for all £ € N, we have

McS) = {Z‘ERN|<$,C>kSM}={$ERN|<$,C>k_1SM} = B =ZL_1,

and therefore the computational problem (9.27) is indistinguishable for k = K and k = K — 1 whenever
M € SY. When this is not the case, the following proposition shows that the problem for ¥ = K and
k = K — 1 can have fundamentally different computational properties on the same set of inputs.

Proposition 9.43. Consider a real M > 0 and an integer K > 2. There exist a set of inputs

Q= U QN sothat  Zi : Qv — {0,1},
m<N

where Q, v is defined as in (9.13) and sets of Ay-information Ava € LY(Ap N) such that
(i) {2k, Yn.v, {0,1}, Ay n} & 25, for allm, N € Nwithm < N, and
(ii) for {Ek,Qm.~,{0,1}, Am,,N} with any m, N € N such that m < N, we have e} (p) > %,for
allp > %
Additionally, depending on whether M is in one of Sy or Sy, one or both of the following hold as
well:

(iii) For {Ex_1,m n, {0, 1},/A\m,N} with any m, N € N such that m < N, we have e}z (p) >

for all p > % However, when considering the problems {1, Qm n, {0, 1}, Ay v }A

o=
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{éK,l, Qm}N, {0, 1}, AmN} there exists an algorithm T (a Turing machine or a BSS machine)

that takes the dimensions m, N and any I € Q,, n as input and satisfies
F(ma Na Z) = EK—I(Z)

(iv) Considering the problems {Zx 2, QU n,{0,1}, Ay N }AT = {EK,% QWN, {0,1}, /N\va},
there exists a polynomial pol : R — R and an algorithm ' (a Turing machine or a BSS machine)

that takes the dimensions m, N and any i € Qm7 N as input and satisfies
F(’I?’L7 ]V7 Z) = EK,Q(Z)

Furthermore, in the Turing case, the arithmetic runtime and the space complexity of the Turing
machine are bounded by pol(nyay), where Ny = mN + m is the number of variables, and
the number of digits read from the oracle tape is bounded by pol(log(nya;)). In particular, the
runtime in the Turing model is polynomial in Ny,.. In the BSS case, the runtime is likewise

bounded by pol(nyay).
Concretely, (iii) holds whenever M ¢ S%, whereas (iv) holds whenever M ¢ S?(fr

9.14. Theorem [8.3)in the SCI language. Recall the setup in §8.2)as well as the definition of Ay, . in
(0:7). The formal statement of Theorem [8:3]is now as follows.

Proposition 9.44 (Non-existence of algorithms for deep learning). There is an uncountable family of
classification functions f : R? — {0,1} with d > 2 such that, for any neural network dimensions
N=(Np,=1,Nr_1,...,Ni,Ng=d) with L > 2 and anyr > 3(N1 + 1) --- (N1 + 1), there exist
uncountably many training sets T = {z',... 2"} € Sg(T) of size v (where £(n) := [(4n+3)(4n+4)]~1)
such that we have the following.

Let R € CF, be a cost function, let v < £(r), and consider the computational problem {=, Q1 ,, R",
Ay}, where 2 is given by ®.1) and Q1 ,, is given by ®.6). Then, there exits a set of Aq-information
Ad’m € LY(Agr) so that, for the computational problem {Z, Q1 ,,R", [\dmr}, we have €}, 5(p) >
1/4, forallp € [0,1/2).

10. TOOLS FOR PROVING IMPOSSIBILITY RESULTS — BREAKDOWN EPSILONS AND EXIT FLAGS

The main tools can be summed up in the following three statements. We commence with a proposition

describing the relationship between the different Breakdown epsilons.

10.1. The key mechanisms for the Breakdown epsilons. The connection between the different Break-
down epsilons can be summarised in Proposition [T0.1| further below.

Proposition 10.1. Given a computational problem {Z,Q, M, A} with A = {fi |k € N,k < |A|}, and
p,q € (0,1) with p < q, we have

pp(9) < Bp(p) < €p, (10.1)

epp(q) < epp(p) < €5, (10.2)

enp(P) < pp(p) < ep(p), and (10.3)

eg < €g. (10.4)

Proof of Proposition[I0.1] We start with (I0.1)), and observe that €3 (¢) < €3 (p) follows directly from
the definition. To see that e}5(p) < e we argue by contradiction and suppose that ej (p) > €. Then
there exists an € > 0 such that e35(p) > € > €5. Hence,

VI € RGA 3¢ € Q such that P, (dist p (T}, 2(¢)) > €) > p. (10.5)
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However, since € > €} there exists a general algorithm I' such that for all . € (), we have that
distpm(T(¢), E(¢)) < e. Since I' can be seen as an RGA with X = {T'} and P, (dist p(T'(¢), E(¢)) >
€) = 0, which violates (T0.3)). Note that the argument to establish is identical to the proof of (T0.T).
Finally, we notice that (T0.3)) and (10.4) follow directly from the definitions. O

As the next two propositions will rely on the use of Dr(¢), the minimum number of digits on the
input, together with randomised general algorithms, it will be opportune to immediately state and prove
that Dp(¢) is a random variable. Concretely, we have the following two lemmas:

Lemma 10.2. Let I'™" be an RGA for a computational problem {=, 0, M, A}, where A = {f; | j < |A]}
is countable, and let X, F, and {P,},cq be as in Definition Then,

(i) forevery. € Qandevery f € A, {T € X | f € Ar(¢)} € F, and

(ii) for every bijection 6 : N — N and every n € N, we have

{e X|Ar(v) C{fo),--»fom)}} € F.

In particular, T™" is an RGA for {E, ), M, A} independently of the enumeration of A.

Proof. Proof of ' Take arbitrary ¢ € Q and f; € A. The claim follows from in Definition
after observing that {I' € X | f; € Ap(¢0)} ={T' € X |Tr () < j}\{l' € X |Tr(¢) <j—1}.

Proof of [(ii)} Consider an arbitrary n € N and define the set S = {6(j)|j € N,j < n}. Then, for
every ¢ € (2,

{T'e X|Ar(t) C {forys- > fom}} =X\ |J {T € X|fj € Ar()},
JEN\S
which must be an element of F, since each of the sets {I' € X | f; € Ar(¢)} is in F, by the already
established item[(D)} and F is a o-algebra. O

Lemma 10.3. Let {Z,Q, M, A} be a computational problem with A countable and let A = { fy | k <
|A|,m € N} € LY(A) be arbitrary. Furthermore, let T*" be an RGA for {2, Q, M, A} with X and F as
in Definition Then, for each v € ), the function Drran (1) : X — N U {00} defined by T' — Dr (1)

is F-measurable.

Proof. Consider an arbitrary n € N and define the set S = {(k,m) € N?|k < |A|,m < n}. Then, for

each ¢ € (2, we have
{T € X|Dr(t) <n}= {I‘ € X|AF(L) CA{fum|(k,m) e S}}

=X\ |J {reX|fimeir(}eF
(k,m)EN2\S
since each of the sets {I" € X | fx,m € Ap(¢)} is in F, by item[(i)] of Lemma[10.2} and F is a o-algebra.
Then clearly {I"' € X | Dr(:) = oo} = X \ U,y € X |Dr(1) < n} € F, and thus Drran (1) is

measurable, as desired. O

Remark 10.4. It will be useful throughout the paper to note that any of the breakdown epsilons of a
computational problem {Z, 2, M, A} is at least as large as the corresponding breakdown epsilon of any
other computational problem {=, ', M, A’} with ' C Qand A" = {f | |f € A}.

The next proposition serves as the key building block in the impossibility results in all our main theo-
rems except for Theorem[5.1] Note that the proposition is about arbitrary computational problems, and is
hence also a tool for demonstrating lower bounds on the breakdown epsilons for general computational

problems.
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Proposition 10.5. Let {=,Q, M, A} be a computational problem with A = {fi |k € N,k < |A]}

countable, and let {11}, {12}°°, be sequences in Q. Consider the following conditions:

(a) There are sets S*, 5% C M and r > 0 such that inf,, cs1 4,es2 dpm(z1,22) > K and Z(1) C
ST forj =1,2.

(b) Forevery k < |A| thereis a c, € C such that | fx(i],) — cx| < 1/4™, forall j = 1,2 andn € N.

(c) Thereis an \° € Q such that for every k < |A| we have that is satisfied with ci, = fi(:°).

(d) There is an .° € Q for which conditionholds and additionally 1\ = 1°, for alln € N.

(e) = is single-valued, M is a totally ordered set, and inf Bs (Sl) > sup S2, for some 6 > 0.

Depending on which of the conditions — are fulfilled, there exists a Aert (A) such that some of
the following claims about the computational problem {Z,Q), M, A} hold:
(i) € = egp(p) = K/2 forp € [0,1/2),

(ii) € > &p(p) > k/2forp € [0,1/2) and €35 (p) > k/2 forp € [0,1/3),

(iii) epp(p) > k/2forp € [0,1/2).

(iv) {2,Q, M, A} ¢ 2.
Concretely, if[(a)land|(b) are fulfilled, then (i) holds, if[(a)-[(c) are fulfilled, then[(i)|and|[(ii)| hold, if[(a)]
—[(d)| are fulfilled, then|(7)|-[(ii]| hold, and finally, if[(a)]-[(e)|are fulfilled, then[(i)]-[(iv)] hold.

Proof of Proposition[I0.3] We begin by defining the inputs ¢, € €, for n > 1, according to to, =
Lt 1 tan—1 = 2 4. Now, if only |(a)| and |(b)| are fulfilled, we can assume w.l.o.g. Q = {¢, |n > 1}
(see Remark , and, in the cases when holds as well, we define ¢y := (° and assume wl.o.g.
Q={i,|n >0}

Our aim now is to produce the desired A;-information for Q. For m,n € Nand k < |A|, choose
d"™ € Dy, + iy, such that | fi(¢,,) — dp™| < 27™ as well as ¢} € Dy, + iDyy, such that | — ¢i] <
2_’”/\/5. Now, for k£ < |A| and m € N, define f , : @ — D,, + iD,, according to

™, ifl<n<m
from(tn) = , fore, € Q. (10.6)
e, ifn=0o0rn>m
We claim that A := {fr.m |k < |A|,m € N} provides A;-information for {Z, 2, M, A}. To this end,
first note that, due to assumption (b) and our construction of {¢,, },>1, we have |cx — fr(tn)] < 2~ (n+2)
for all n > 1. Now, for n, m € N with n > m, we have 2~ ("+2) < 2=(m+3) 'an( therefore

|fem(tn) = fe(en)| = |c§" = fa(en)| < |c§" = el + |k — fr(en)]
<272 427D < (1/V2 4 1/8) 27 < 27
Similarly, in the cases when[(c)|holds so that 1o € €2, we have | fi. m (t0)— fx (c0)| = " — fi(v0)| = | —
ck| <27™/v/2 < 27™. Finally, for 1 < n < m we have | fi,m(tn) — fu(tn)| = |dp™ — fr(tn)] < 27™
by the above definition of d;""". Therefore A provides Aj-information for the computational problem
{E,Q, M, A}, as desired.
Proof of[(a)} (b)) = [(i}} We argue by contradiction and assume that
epp(p) < K/2, for some p € (0,1/2). (10.7)

for the computational problem {Z, 2, M, A}. Therefore, there exist an N € N and a I'"™*" € RGA such
that

P, (dist p (T5*",2(2)) > £/2 or Trean(t) > N) < p, VieQ. (10.8)
Now, recalling the definitions of 7t and Dr, we see that there must exist an M € N such that

Dr(t) >M = Tr(t) > N, (10.9)
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for all algorithms T" for {=,, M, A} and all : € Q. Next, let the measurable space (X, F) and the
probability measures {P,  },, cq associated with """ be as in Definition of an RGA. We now define
the following sets that form the basis for the rest of the argument:

F; :={T € X |dist p(T(ear+j), E(ear+j)) = w/2 0or Dr(earyj) > M}, ji=1,2
and
Fy = {T € X |distp(I(tars2), E(tars2)) > £/2},
Fy={I € X | Dr(tary2) > M}.

Note that (Pi) in Definition the continuity of the metric d, and Lemma [10.3] together imply that
Fy, Fy, Fy and I, are measurable. Also observe that (T0:8) and (T0.9) imply that P (F;) < p for
j=1,2.

Claim 1: We now claim the following.

O X =F UE,.
ey PbMJrl (FQ n FQP) = PLIOsz(
(D) Poyyyy (F2) = Puyyn (F2)

To see[(I)] we argue as follows. Consider an arbitrary I' € X. Suppose by way of contradiction that

LM +j

EyNE).

¢ FyandT ¢ Fy. In particular, Dr(cpr41) < M. Consequently, whenever fi ., € AF(LM+1) we
must have m < M . Therefore, by (10.6) it follows that fi ,, (tar41) = fim(tar42) = ¢

Hence, by propertyin Deﬁnitionof a general algorithm, it follows that Ar (tprg1) = Ar (tar42)-
Thus, byin Deﬁnition T(tar+1) = T(epasr42). The assumption that T’ ¢ Fy and T ¢ F, yields

diStM(F(LM+1),E(LM+1)) < 5/2 and
distar((ear11), E(ear42)) = distm (T(eary2), E(eary2)) < 5/2.
Therefore infe, ez, 1), 6262 (ars0) M (§1,&2) < K, which contradicts and hence we conclude that

I'eFiorl € Fg, establishing (I).
To prove [(ID)] and [(TIT}] it suffices to demonstrate that

P, (ENF§) =P, (ENF5) VEecF (10.10)

Indeed, given (T0.10) (I1)| follows immediately since F € F, whereas follows by letting £ = X
i (F2) =1=P,,, (F5) =1-P,,, ., (F§) =P,,,,,(F2). To show (I0.10) consider any
E € Fwith ENFy # & (if instead E'N Fs were empty there is nothing to prove). Now, forI' € EN Fy
and fi m € AF(LM+2>, it follows from

since then P

F§ ={T € X | Dr(tar42) < M}

that m < M. Hence, by (10.6), we have fi ,,(¢tar+1) = fem(tar+2) = ¢, and thus (I0.10) follows
immediately by [(PiiD)| in Definition [9.24] of a randomised general algorithm, completing the proof of the
claim.

Armed with the claim we are ready to derive the desired contradiction. In particular,

>

L<Puy (F1) + Puyy (F2) by D)
Py (F1) + P, (Fo NES) + P, (B N EY)
<SPy (F1) + Py (B N ES) + Py, (F) by [}
= Prygy (F1) + Pry (B2 N ES) 4 Py (F) by (D)
<Py, (F1)+P,, ,(F2) <2p<1 since Fy C F,

which yields the final contradiction.



40 A. BASTOUNIS, A. C. HANSEN, AND V. VLACIC

Proof of [(a)] - = —[(@) : Ttem [(@)] holds by the argument above. For item we will
first show that €} (p) > x/2 for all p € [0,1/3) and then demonstrate that €§; > €}, 5(p) > /2

for all p € [0,1/2), for which it will suffice to show that €},5(p) > /2 for p € [0,1/2) because by
Propositionwe have that €}, > €5, 5 (p). To this end, first recall from the beginning of the proof that
the set €2 now contains the element ¢.

Suppose by way of contradiction that €5 (p) < k/2 for some p € [0,1/3), so that there exists a
Ir'»» ¢ RGA with the corresponding measurable space (X, F) and probability measures {P, }, cq
such that

P, (F")<p, forallneNUJ{0}, (10.11)

where we define
Fr:={T e X |distm(T(tn), ZE(tn)) > K/2}, n € NU{0}. (10.12)

Note that by (Pi) in Definition and the continuity of the metric d, it follows that the F™ are
measurable. Additionally, for ¢ €  and n € NU {0}, we define G"(¢) := {I' € X | Dr(+) < n}, ie.,
the collection of general algorithms whose number of required input digits is bounded by n € N when
applied to ¢, and note that these sets are measurable due to Lemma Now, X \ Ur2, G"(wo) C F°,
as every I' € X for which Dr(19) = oo must have |Ar(z0)| = oo (by Definition and therefore
I'(19) = NH (by Definition 0.3, which then implies dist x4 (I'(20), Z(z9)) = oo (by Definition (9:3) of
the extended metric on M U {co}). Therefore, P, (F°) < p implies

P, (X\ O Q"(Lo)) <p. (10.13)

n=1
We next make the following claim.

Claim 2: There is an n € N such that we have the following:

@M Py (G"(t0)) > 2p,
an) G™(1p) C FHL U Fnt2,
) P, (F" N G"(w)) = Pu,y (F" NG (10)), and P, (F"2 N G"(10)) = P
G" (v0))-

The contradiction arises by combining these results: indeed, by [(I)] and 2p < P, (G"(eg)) =
P, (F™ 0 G™(10)) U (F"*2 N G"(10))) and by [(TID)] we get that P, (F™+1 N G"(10)) + P,y (F"H2 N
G"(t0)) =P,  (F"1 NG (1)) + Po, oy (F™2 N G"(10)). Therefore

tn+2 (Fn+2 m

2p < P,y (G"(t0)) = Py, ((G"(10) N F™ 1) U (G™ (o) N F™T)) (10.14)
<Py (G (o) N F™) 4+ Py (G" (00) N F™H2) (10.15)
=P, (G () NVF") + Py, (G (o) N F"H?) (10.16)
<P, . (F"tH+P, ,(F"?) <2p by (T0.171), (10.17)

which is the desired contradiction establishing item [(iD)] It thus remains to prove Claim 2.
For [(D] suppose on the contrary that we have P, (G" (1)) < 2p for all n € N. Then, as G"(19) C
G"*1(49) for all n, monotone convergence implies

p>P, <X\ U g”(Lo)> = lim 1= P,(G"(t0)) > 1 - 2p, (10.18)

n=1
which is a contradiction since p € [0,1/3). Therefore, there exists an n € N for which ()] holds. We
now prove [(ID] and [(TIT)| for this n. To this end, we make the intermediary step of showing that

T(tns1) = T(tny2), forall T € G™(10). (10.19)
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Indeed, for ' € G"(1g), it follows immediately from the definition of the set G™ and the definition of Dr
that if fy, ., € AF(LO), then m < n < n+ 1 < n + 2. Thus, by the construction of A, it follows that
Frem(t0) = fom(tng1) = fk,m(l,n+22, for all fiﬁ,m c AF(LO). Hence, by propertyin DeﬁAnition
of a general algorithm, it follows that Ar(¢g) = Ar(t,41), and similarly we get that Ar(tg) = Ar(tnt2).
However, the fact that AF(LO) = AF(Ln+1) = AF(Ln+2) together with in Definition imply that
I'(to) = T'(tn+1) and T'(tg) = T'(tp42), and hence I'(y,41) = I'(ty42), establishing (T0.19).

We can now show [(ID] Consider an arbitrary I' € G"(19). We have shown that I'(¢,,11) = T'(n42).
Hence, if ' ¢ F" ™ and " ¢ F™*2 then dist v (T (tnt1), E(tnt1)) < £/2and dist pg (T (ns1), E(tnr2))
= distpm(D(tnr2), Z(tnra)) < /2 together yield infe cz(,,., 1) 062 (uns0) AM(E1,62) < K, which
would contradict[(a)} Therefore [(II)] must hold.

Finally, to prove we note that both G"(19) N F™*1 and G™(19) N F™ 2 are measurable because
G"™(19), F™T, and F™*2 are all measurable. We will show the result only for G™(1o) N F™*! as the
corresponding argument for G*(19) N F™*2 is similar. If T € G" (1) N F"*! then ' € G™ (1), which
by (10:19) implies that fi ,n(tnt1) = fim(to), for all fi ., € AF(LO). The result now follows
immediately from [(Piii)|in Definition[9.24] of an RGA.

The proof that €}, 3(p) > /2 for all p € [0,1/2) is almost identical to the argument above, and we
will point out the minor differences. We again argue by contradiction assuming that €3, 5 (p) < /2, and
the proof is identical up to (I0-13). At this point it follows by Definition [9.28] of a halting randomised
general algorithm that P, (I'}*" = NH) = 0. Hence, (T0.13) becomes

L <X\ U G"(Lo)) =0 (10.20)
n=1

and thus[T0.T8]is to be replaced by

0>P, (X\ U g"uo)) = lim 1-P,y(G"(10) > 1 -2,

n=1
which contradicts p € [0,1/2). The rest of the proof is identical to the argument above.

Proof of [(a)-[(d)] = [({)]{(ii} Ttems[(D)] and [(iD) have already been established. For [(ii)] the proof
stays close to the proof of Indeed, the proof is identical to the proof of up to and including
(TO.TT). Now, however, conditionimplies that 19, = 11 = 1% = 19 and thus F* = F?" foralln € N.
Next, instead of (T0.13)) we write

X=F'ulJG" () (10.21)

n=1
We then change Claim 2 to the following:

Claim 2’: There is an odd n € N such that we have the following:
1) By (FPUG"(10)) > 2p
') G™(wo) C F*HH U FH2,

'y P, (F" N G™ (1)) = P
G" (v0)).-
The proof of |(I')| follows from (T0.21]) and monotonicity of the sets £ U G"(1o): indeed, if by contradic-
tion P,, (F° U G"™(10)) < 2p for all odd n then

F"1 10 G (1)), and P, (F"2 N G" (1)) = P, (F"F2 N

Ln41 ( tn42 (

1=P(X) =P, (lm F*UG"(1)) = lim P,y (FUG"(t0)) < 2p

by the monotone convergence theorem, which contradicts p € [0,1/2). The proofs of part and |(IIT")
are then identical to those presented in the proof of Claim 2.
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The calculation in (T0.14), (10.13), (T0.16), (I0.17) is then changed to
2p <P, (FOUG"(10)) =Py (FOU(G"(t0) N F™ ) U (G™(0) N F™2))
<P, (F°) 4+ P, (G"(to) N F™2) < 2p since F¥ = F""! as n is odd,

which yields the desired contradiction that establishes that[(@)]—[(d)] = [D]{GiD}

Proof of [(a)] - = - Suppose by way of contradiction that there exists a tower of
algorithms {T',, },,en of height 1 for {Z,Q, M, A} such that T',, () * E(¢) as n — oo, for all ¢ € Q.
Thus, recalling that :° = ! due to condition and that Z(¢}) € S! by there exists an ng € N so
that an(LO) C Bs (E(Lo)) C Bs (Sl)

Now, let M be a sufficiently large odd natural number such that M > Dr,_ (o). It then follows im-
mediately from the definition of Dr,,  thatif fi ,, € Ar, (o), then m < M. Thus, by the construction
(T0:6) of A, it follows that f m(c0) = fi,m(tar), for all fy ., € Ar,, (t0), and hence by property |(iii)
in Deﬁniti of a general algorithm, it follows that Ar‘no (t0) = Ar‘ng (¢ar), which further by
Definition 9.3|implies that T, (¢ar) = Ty (t0) € Bs (Sl).

On the other hand, we have I';,,(tpr) < E(ipsr) as we assumed 'y, (ear) 7 E(ear) as n — oo,
and hence T',,,(tar) < E(ipr) = E (L%MH)/Q). Furthermore, by |(d)| 2 (L?MH)/Q) € 52 and thus
Ty, (ear) <supS 2 < inf Bs (S 1) where the last inequality follows from This stands in contradiction
to Ty (ear) € Bs(ZE(S)), thereby concluding the proof. O

10.2. Impossibility results for the exit flag. In this section we will state and prove a result that will be

useful when proving the negative results contained in Theorem [5.1]

Proposition 10.6. Suppose that I : Q= Misa general algorithm for a computational problem
{2, Q, M, A} = {é, Q,M, /N\} specified according to Remarkand assume that the assumption
holds. Furthermore suppose that there exists an 1y € Q and, for j = 1,2, there exist a set S C M
and a sequence {13 }2° , C Q satisfying the following:

(a) infe g1 ¢ es2 da(&r,&2) > 2k, for some k> 0.

(b) 2(1J) C S7 foralln € Nand j € {1,2}.

(c) There exists z7 € S7 such that dist p(27,2(id)) — 0 as n — oo for j = 1,2.

(d) Forevery f € Athen |f (1)) — f(to)| < 1/2" foralln € Nand j = 1,2.

(e) Z(Q) C B (E(10)) UB,_o, (ml) UB,—w (xQ),for some w € (0, k).
Then, for the exit flag problem {ZF Q. {0,1}, A} relative to T, as specified in (9.21), we have €5 (p) >
1/2. Furthermore, whenever M = RY, for some N € N, if we additionally assume that

(f) distpq(z7,2(:°0)) < w, for j € {1,2},
then there exits a At € EO*“’E(I\) such that, for the computational problem {ZF, Q, {0,1}, At }, we
have €;,5(p) > 1/2.

Proof. Using the sequences {¢}, {2} and the input :° € Q, we define the following inputs in €.

by = {(f500), £, F500), £ (), £i(6), - ) Y jess
Z721 = {(fj(LO)v fj(LO)v ceey fj(LO)v fj(L%)a fj(bi)a cee )}jeﬁv (1022)

= {(fj(l’o)v fj(LO)v B fj(LO)7 fj(LO)v fj(LO)’ s )}j€/3a

where 3 is the indexing set (recalling Definition[9.14). By assumption[(d)} each of i, 7% and 72 are in ©,
for every n € N. We will prove each of the following:

S
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A) There exists Ny € N such that, for all n > No, T'(7}) = I'(i2) = I'(:°) and at least one of the
following occurs:
Ai) distp(T(7}), Z(2L)) > & for all n. > No.
Aii) dist g (T(22 ) (i2)) > & for all n > Np.
B) There exists Ny such that at least one of the following occurs:
Bi> st (DY), E(7) < .
Bii) dist([(2}),Z(L)) < s forall n > Ny,
Biii) dist(I'(i2),2(i2)) < & forall n > Nj.
C) There exists a sequence {, }5°, C Q (constructed from ¢ and subsequences of {¢.} and {:2})

Z [I]l [I]z

satisfying the following:
Ci) Foralln € Nboth Z¥(i5,,) = 1 and ¥ (i, 1) =
Cii) Forall m < nand j € 3 we have fjn(in) = fjm(io), where the f;,, are as given in
Definition[0.14]
Ciii) Either 75, = iy for all n or z5,,_1 = iy for all n.
Moreover, under assumption [(f)] we have
Civ) There exists a dyadic vector v € D™ such that, for all n, dist y (v, 2(ip)) < w.

Proof of [AJ} The proof of this step is similar to the proof of Proposition[I0.3] Recall the definition of
the number of digits on the input

Dr(i) := sup{k € N|3j € Bwith f; » € Ar(0)}.

required by T, and set Ny = Tr(i®), which is guaranteed to be finite since the assumptionimplies
that I'(i°) # NH. Note that by the definition of the sequences {i}}°° ; and {72} ; and ¥ in (10.22),
we have that f(io) = f(iL) = f(z.) forall f € Ap(io) whenever n > Nj. Thus, byin Definition
of a general algorithm, it follows that Ap(Zy) = Ap(il) = Ap(72). Consequently, by [( m ande
Definition[9.3] we get that, for some z € M,

r=T() =T3G) =T3G2), forn > N. (10.23)
Suppose now that neither [AD)] nor [AiD)] hold. Then there are n; > Ny and ny > Ny such that both
distm (2, 2(2,)) = dista(D(E4,), 2(2k,)) < w and distm(z,2(i2,)) = distam(D(2), 2(2)) < &
But then by assumptionwe have dist v (7, S*) < &, dist (2, S?) < & and hence dist p( (S, 5?) <
2k, contradicting assumption [(a)]

Proof of BJ} By the assumption[9.22]on T, there exist a y € Z({2) and an € > 0 such that dp(z,y) =
a — e < w — € where z is the common value in (T0.23). Moreover, by assumption we have y €
Bi—w(E(19)) UBi—w(z') UB,— (2%). We now split into two cases:

Case 1: y € Bu—w(Z(:")). In this case, there exists y?> € Z(.°) (depending on ¢) such that
dist pq(y, y?) < k — w. Thus

dist v (T(°), (1)) = distu(T'(i%), 2(.°)) < dista(z, y%) < dist (2, y) + distr (y, v°)
<(w—¢€)+(k—w) <k,

and so[BI)]is satisfied.
Case 2: y € By—y,(x7), for some j € {1,2}. We take Ny > Ny, to be sufficiently large so that, for
every n > Ny, there is a v™ € Z(uJ)) with dpq(z7,v™) < €. The existence of such an N; is guaranteed
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by assumption ()} Then, for n > Ny,

dist u (D(i), 2()) = dist o (T(), (i) < distaq (2, v™)
< distaq (2, y) + dist g (y, 27) + dist o (27, 0™)

<(w—€)+(k—w)+e=x.

If j = 1 then we have shown that[Bii) occurs, whereas if j = 2 we have shown that[BiiD) holds.

Proof 0' To construct (,,)52 4, we distinguish two cases depending on whetheris true or false.

Case 1: dist o (T'(i%),2(i%)) < & occurs. We set ia,, = i° for all n so thatholds and 2 (iy,) =
1. To define i3,_1, we distinguish between whether [AD)] or[Aii)| holds. Suppose for now that[AD)|holds. If
assumptionadditionally holds, we let N > N be such that dist v (21, Z(1)) < w/2 forall n > N
(the existence of N, is guaranteed by assumption [(c)), and else we let N; = 0. Now, implies that
2F(il 4 n,) = 0, for all n, and so setting Ia,—1 = i, , establishes Moreover, follows by
(T0:22) and the definition of f;_,,. Under assumption [(f)l we use the density of the dyadic numbers in R
to choose a dyadic vector v satisfying both da(zt,v) < w/2 and dist v (2!, 2(:2)) + daq (2t v) < w.
Then dist u (v, Z(lon—1)) < distae(z', E(tp 4 n,)) + dm(@t,v) < w/2 + w/2 = w and similarly
dist pq (v, E(ign)) < dist (2!, 2(:°)) + daq(z!,v) < w, allowing us to conclude If instead
holds, we similarly let No > Nj be such that dista(22,2(:2)) < w/2 for all n > N, provided [(f)

holds, and else we set Ny = 0. Letting 2,1 = Z,QL N, and choosing v to be sufficiently close to 22 then
yields and[Civ)| by the same argument as above.

Case 2: distp(D(i%),2(i%) > & occurs. We set io,_; = i° for all n so that m holds and
EE(Zgn,l) = 0. To define iy, for all n, we distinguish between whether or holds, one of
which must occur since [Bi)|is false by the assumption dist v (I'(i°), 2(i°)) > . Suppose for now that
holds. Provided assumption |(f)| holds, we let No > Nj be such that dist (2!, Z(0))) < w/2,
for all n > N (the existence of N, is guaranteed by assumption [(c)), and else we set No = 0. Then,
setting Zon, = i} n,, we have 27 (2}, ) = 1 for all n, thus establishing [Ci), whereas follows by
(T0.22) and the definition of fjm Under assumption |(f)| we again the density of the dyadic numbers
in R to choose a v € DV so that both d (v, z') < w/2 and distp (2!, Z(:0)) + dp (v, 2t) < w.
Then dist u (v, 2(izn_1)) < distaq(z',Z(:0)) + daq(v,2') < w and similarly dist (v, Z(i2n)) <
dista (2!, By ) + dm(v, ') < w/2+ w/2 = w, establishing Similarly, if Biii){ holds, we
let Ny > Ny be such that dist y((Z(12), 2?) < w for all n > No, provided assumption holds, and else
we set Ny = 0. Letting ig,—1 = 2 1N, and v sufficiently close to x2 then yields andby
the same argument as before, thus completing the proof of [C)]

Now that we have shown [A)| to we can show ¢pg(p) > 1/2 for both the exit flag problem
{2E,),{0,1}, A} itself as well as the oracle problem {ZZ,, {0,1}, AT}, where AT € £O«=(A)
will be specified in due course. The two proofs are very similar so we will discuss differences only when

they occur. For the oracle problem (under assumption , wefixag* = (¢f,...,9%): Q — DM such
that, for i € Q, we have g*(i) = v if i = i,, for some n, and else g*(i) is assigned a value satisfying
dist p(g*(7),2()) < w, but is otherwise arbitrary. Then {gx (i)}, € B>(Z(7)), for all i € Q, and
thus, letting AT = A U {g;},, we have A+ € £LO“=(A).

Next, we will argue by contradiction and assume that, for some fixed p € [0,1/2),

3T ¢ RGAsuchthat Vi e Q P (I #£ ZF(1)) < p. (10.24)

Continuing with this " € RGA we define the failure sets F" by F" := {T'F ¢ X|I'®(i,) #
=P(i,)}, forn € N. Foreach . € Qand n € N we also define the set G (1) := {T'F € X | Tv= (1) < n}.
Note that it is clear from and in Definition of an RGA that F and G" (1) are measurable.
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By (10.24) it follows that
P; (F")<p YieQ,neN. (10.25)

We will show that this leads to the desired contradiction. From here the proof is very similar to the proof

of [(iD)] and [(ii1)] in Proposition[T0.5] Suppose we have the following.

D) There exits N3 such that if n > N3 then P, (F° U G"(10)) > 2p.

E) Foralln € N, G"(ip) = (F"1 N G"(ip)) U (F" 2N G"(iy)).

F) Forall n € N, P;, (F"*2 1 G"(io)) = ;. ., (F"+2 1 G"(ip))-
Assuming (D)-(F), we may choose an integer » > N3 so that r is even if 7y = i2,—1 for all n and r is
odd if iy = io, for all n (we know at least one of these occurs by . Then both iy = .41 and the
conclusion of [D) holds for this r. Thus, by arguing similarly to in (TI0.14), (TI0.15), (I0.16), (I0-17), we

obtain
2p < P, (FO UG (10)) = P, (FPU(G"(10) N ™) U (G (i0) N F"2)) by D) and [E}]
<Py (F°) 4 Py, (G (50) N F™T2) since FO = F™ ™ as iy = 7,44
=P; (F°) 4+ P;,,,(G"(v0) N F™2) <P (F°) + P, ,,(F"2) < 2p by [F)]and (10.25),

which yields the desired contradiction. Thus, to complete the proof, it remains to establish (D)-(F). To
this end, note thatfollows fromP,,(X) =1> 2p,

In42

X=r"ulJg"(w),
n=1
and the fact that {G" (o) }nen is an increasing sequence of sets. To show [E)| we start by assuming that
'Y € G"(ip) and then argue by contradiction. If T'¥ ¢ F"*l and T¥ ¢ F"*2 then I'¥(i,41) =
E8(i41) and TE(7,,42) = EF(i,42). Since ' € G™(iy) we have T'E (7,,1.1) = T'E(7,,42) (this almost
follows verbatim from the argument demonstrating (T0.19) — the only differences here are that we use
and, for the oracle case, the fact that g, (I,41) = v = ¢;(in42), forall j = 1,..., N and n € N).
Thus Z#(7,,41) = Z¥(i,42), which contradicts Finally, the proof of |F)|is verbatim from the proof
of (IIT) in Claim 2 in (iii) in Proposition [T0.3] O

11. GEOMETRY OF SOLUTIONS TO PROBLEMS (L.1)) - (T.4) — PART I

The purpose of this section is to provide some simple inputs and solutions of each of the problems
listed in (T.I)- (T.4) that will be used to show that the breakdown epsilons for such computational prob-
lems can be non-zero. The intent will be to use these inputs and solutions to prove Theorems [3.4] [5.1]
and We will separately address counterexamples for ¢! regularisation and TV regularisation as the
examples we construct are somewhat different in these two settings. As the results of this section are
simple consequences of elementary convex analysis, their proofs are deferred to Appendix [A]

11.1. Linear programming. Our counterexample relies on a family of matrices A(«, 8, m, N) € R™*N
and a family of vectors y*(y1, m) € R™ for positive parameters «, 3, y; where the dimensions m and
N satisfy m < N and N > 3. Additionally, where there is no ambiguity we write A = A(a, 8, m, N)
and y* = y®(y1,m) to simplify notation.

The families A(«, 8,m, N) and y*(y1,m) are defined as follows:

Aa, B,m,N) = (Oé B —1) ® (Im—l OmflxN7m72>

(11.1)
A

Y= (y1,m) = yrer.
where y; is always assumed to be positive.

We now state a lemma that relates these inputs to the corresponding solutions of the LP problem.
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Lemma 11.1. Let ¢ = 15 be the N-dimensional vector of ones. Then the solution =Zi,p to the linear

programming problem satisfies

{F5e1} ifa> B
Ep(y*, A) = {;’Jﬂ@} ifg>a. (11.2)
{5t +1-te)tep1} ifa=p

11.2. ¢! regularisation. Here, our counterexamples rely on a family of matrices L(c,3,m,N) €

R™*N and a family of vectors 3" (i1, m) € R™ for positive parameters «, 3, y; where the dimensions m

and N satisfy 4 < m < N. Additionally, where there is no ambiguity we write L = L(«, 8, m, N) and

y“ = y“(y1,m). Specific to constrained lasso, we also introduce the family of vectors y“*(y;,m) that

depend on the regularisation parameter 7 and again if there is no ambiguity we write 3 = 3% (3, m).
The families L(c, 3, m, N), y*(y1,m) and y©*(y;,m) are defined as follows:

L(a, B, m, N) = (a 5) ® (Im—l 0m71XN7m71>

Yy, m) = yier, y(y1,m) = yrer + Tea.

(11.3)
where y; is always assumed to be positive. We now state some simple lemmas that relate these inputs to
their solutions under unconstrained lasso, basis pursuit and constrained lasso.

Lemma 11.2. Assuming that vV 8 > \/(2y1), the solution Eyy, to the unconstrained lasso problem

satisfies

{2(!21/;;)‘61} ifa>p
EuL(y™, L) = {%62} ifa<p. (11.4)
{t(22) et -0 (22) ealt e 0.1} ifa=5
Lemma 11.3. Assuming that y, > §, we have
{le_éﬁ} fa>p
Zpeon(yt, L) = § {25726 } ifa<p. (11.5)
{tete + (1 - ey |t 0,1)) ifa=p

e

Lemma 11.4. Assuming that y1 > 0 is so that r = % satisfies r < T, the solution to the (!

constrained lasso problem =y, satisfies

{re; + (T — r)es} ifa>p
EcL(y" L) =< {res + (1 —r)es} ifa<p. (11.6)
{tres + (1 =t)rea + (r —r)esg|t € [0,1]} ifa=p

11.3. TV regularisation. Our counterexamples rely on a family of matrices T'(c, 3,m, N) € R™*N
and a family of vectors yTV (y;, m) € R™ for positive parameters c, 3, y; where the dimensions m and
N now satisfy 4 < m < N. As before, where there is no ambiguity we write T' = T'(«, 3, m, N) and
y™v =y(yr,m).
The precise definitions of the families T'(cv, 3, m, N) and yTV (y1, m) are as follows:
m—1

T:0461(X)el—i-ﬁel<X)(2N—i-em<}§ej\r,1—5—z:er(@ere}RmXN7

r=2

(11.7)
y™V =y €R™, y; > 0.
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To simplify the results that follow, we also define the value § = 6(«, 8, m) by
1
0(a, B,m) = ((m = 1) + (a+ B)*(m = 1)) *. (11.8)

We now present some important lemmas relating these inputs to the corresponding solutions of prob-
lems (T.2) to (T:4) under TV regularisation. In the following, we use the flipping operator Pp, : RY —
RY, defined as (Ppipv); = UN—it1-

Lemma 11.5. Assume that y; > 60/(m — 1). Then

{n(yhaaﬁ)} lfOé<B
Zeprv(y’ ", T) = S {Pupn(y1, o, B)} ifa>p, (119
{tn(ylaaaﬂ) + (1 - t)(PﬂiPn(ylaavﬁ)) |t € [Oa 1]} lfOé = 5

where
’rl(yhaaﬁ)l = n(yhaaﬁ)Q == n(yhaaﬁ)N—l = Ma
(11.10)
1) — 00 —
n(y17a7ﬂ)N = (a;B) + UL a</(’rﬁn 1)

Lemma 11.6. Let T and yTV be as above, let y; >

for TV Unconstrained Lasso with parameter \. Then

{w(ylaaaﬁ)} l:fa<5
Evuev (v, T) = {(Pupt(y1, . B))} ifa>p8, (L1
{tY(yr, a, B) + (1 = ) (Pt (y1, @, B)) [t € [0,1]}  ifa=(

2 —_ .
m. Let Eyrrv denote the solution map

where
V(i a, B =Yy, o, B)2 = = (y1, o, B)N—1 = m )
Mo+ B) 1

. ( - 62 )
o5m—1)(avp)  avi\"'T 2m—12Vvp))

11.4. Linear programming and basis pursuit examples for the exit flag theorem. For oo > 0 let

(11.12)

’(/}(y17a75)N =

AE(a7m7N) =ad (Imfl Omflfomfl)
(11.13)
Yy (y1,m) = yier.
where y; is always assumed to be non-negative (but not necessarily non-zero). Additionally, assume that
c is the N-dimensional vector of 1s. We then have the following:

Lemma 11.7. For basis pursuit and linear programming we have

(y1/a)er  ifa>0

ELp(y", A®) = Zpp(y", A7) = :
0 ifa=y1=0

11.5. Objective values for linear programming and Smale’s 9th problem. Our counterexamples used
when proving Theorem|[6.1]rely on the matrix and vector pairs defined as follows for a, 3 > 0:

AYPD(o B3 m,N) = (a —ﬁ) D (Im71 Omflfomfl) )

y“(y1,m) = yrer.

(11.14)

where y; is always assumed to be non-negative. We then have the following lemma:
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Lemma 11.8. For k € N and real M > 0, consider the decision problem (9.26) with ¢ = 1y (for each
fixed dimension N € N) and the corresponding solution map Zy, as defined in (0.277). Then, for y; > 0,
a > 0,5 >0, we have

1 ifyr/a<107%(|10°M ] + 1) (a1.15)

=4 (g (g1, m), AP (0, B, m, N)) =
k(Y (y1,m) (a, 8,m, N)) 0 ifyr/a>10"F([10"M] +1)

where 2y, is defined in (9.27). In addition, for all o, 3 € R, we have Zy(y"“(0,m), AYP"P (o, B,m, N)) =
1.

12. PROOF OF THEOREM [3.4]— PRELIMINARIES: CONSTRUCTING {)

12.1. Strategy for the proof. The proof of Theorem [3.4] formally consists of the proofs of Proposition
[09.33](corresponding to parts (i) and (ii) of the theorem) and Proposition[9.32](corresponding to parts (iii)
and (iv) of the theorem), which will be proved in §14]and §T5] respectively.

The strategy for these proofs is as follows. First, for each of problems (I.1) - (T.4), we need to con-
struct a suitable input set (which will depend both on K and any relevant regularisation parameters) of the
desired form, i.e., a set ) = UW ~N $m,~, where each ), n consists of inputs of fixed dimension. The
computational problem corresponding to each €2,,, y (for fixed m and N) will have a strong breakdown
epsilon exceeding 10~ as well as a weak breakdown epsilon exceeding 10~ %+, This will be achieved
by setting (1, nv = €0,y U ST , where 7,  is a set of input for which the computational problem
{&, @, N M, A} has a strong breakdown epsilon of size exceeding 10~ % and Qv is a set of input

K41 where the evaluation

for which {Z, QN M, A} has a weak breakdown epsilon exceeding 10~
set A will be provided by Proposition The whole construction will make heavy use of the results
presented in Specifically, our inputs will take the form of matrix vector pairs (y“, A), (y~, L) and
(yTV, T) presented in that section.

The algorithms whose existence is claimed in the statements of Propositions and will be

constructed with the help of various subroutines introduced in §T3]
12.2. Constructing the sets of inputs for Theorem 3.4}

12.2.1. The set of inputs. Each individual problem will require a separate input set. Moreover, they
will depend on the integer K from the statement of Theorem [3.4] as well as any relevant regularisation
parameters. We will denote the input sets for LP, ¢! BP, /! UL, CL, TV BP and TV UL by

QLP7 QBP,El 7 QUL,Zl ’ QCL,Zl 7 OBPTV 2nd QUL,TV7 (12.1)

respectively. We remark that these will depend on K and the regularisation parameters J, A, and 7,
however, in order to lighten the notation, we omit making this dependence explicit. For linear pro-
gramming and the ¢! regularised problems, the set £ C R? defined by £ = ([1/4,1/2] x {1/2}) U
({1/2} x [1/4,1/2]) will prove useful whereas for the TV problems we denote, for integers n (and for

given basis pursuit denoising parameter § and unconstrained lasso parameter \)

1— 30 if3.107" < 46

<
N[

Vg /130 if 3107 <4

ﬁ
3
Il
¥
3
Il

b

ENTEN
L N

otherwise otherwise

(12.2)
and define £BPTV:" = ([r,,, 1/2] x {1/2}) U ({1/2} X [rp,1/2]) and LY9%TV:" = ([s,,,1/2] x {1/2}) U
({1/2} x [sn, 1/2]). Recall the definitions of A(a, 8,m, N) and y* (y1,m) from (TT.1), L(c, 3,m, N)
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and y"(y1, m) from (TT.3), as well as T'(«v, 8, m, N) and y TV (y1, m) from (T1.7), and, for k > 1, define

Q% = { (" (m), Ale, B,m, N)) | (o, 8) € L},
i = { (4P ), L, .m, N) ) [ (0, B) € £}
Q= { (7 ), Lie, B,m, N) ) (0, 8) € £}, 123
QO = { (yV* (m), (o, B,m, N)) | (0, B) eﬁ}
i "= LT m), T, B,m, N)) (@, B) € £V,
QELNTXS _ {(yUL,TV,k(m) 67m N) | Oé,ﬂ c ﬁUL,TV,k}

where the superscript s notes that the input sets are designed for results concerning the strong breakdown
epsilon, and

YPE(m) = g (21075, m), B (m) = 42 (2. 107K 1 6,m),

ULk () =yl (21075 + A m) . yhR(m) == < (1074 m)
om 3 10F (12.4)
BP,TV,k v (P — )
y (m) =y <9(1/2,1/2’7n)+{7 9(1/2,1/2,7n)} 4 ’Tn>

7-107F 1 3-107F

UL, TV,k TV

=V = — A1+ — m

y (m) =y ( 4 [ m—l] 4(m —1)’ )’

where A € (0,1/3] is the regularisation parameter from the UL problem (I.3) and 6 € [0,1] is the
regularisation parameter from the BP problem (I.2). Where it is either clear or superfluous to the result
proven, we will omit the dependency on m in the definition of the y vectors.

To create input sets that capture the required weak breakdown epsilons, we use the superscript w and,
for k£ > 2, define

Q= {(" (m), A, Bom, N)) | (o, 8) € £\ {2°}}

Qiﬂéi;wz{(yw 1 m), Le, ,m. N)) | (@, B) € £ {=°}}

QUi —{(yUL” Y(m), Lo, ,m, N)) [(a,8) € £ {2} } 125
QS = (¥ (m), Lo, B,m, N)) | (@, 8) € £\ {=°}}
QE@PJ\FIPZW _ {(yBP STV k— 1 m) ﬂ,m N ) |(a’ c [:BP,TV,kfl \ {Za}}

QUETYS = [ (VTR (), T(a, B,m, N)) | (a, B) € LOTVE1\ {z9)],

where 2% is the corner point (1/2,1/2) of £, whereas for K = 1 we let each of Q%Pj\v,vk, Q]?nplf AR

QH@LAf flR QSLLA? 2 QiPNT ;’ WV and QiL]\? ,:/ " be the empty set. We now define the fixed-dimension

input sets as the union of the corresponding “strong” and and “weak ” sets:

LP,s LP,w CL,¢* CL,¢% s CL,0% w
Qme_Q NkUQme’ Qme Qlequm,Nk’

BP, ¢ BP,/ s BP,¢w UL, ¢t UL, s UL, 0w
Qme Qme UQme ’ QWLNk Qme UQm,Nk ’ (126)
BP, TV BP, TV:: BP, TV,w UL, TV UL, TV& UL, TV,w
Qme Qme Q7nNk ’ Q1nNk Q7nNk Qme ’
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foreach k > 1, m > 4, and N > m, and the combined input sets as the union of the fixed-dimension
input sets with the given value of K over all admissible dimensions:

LP _ LP CL,¢* _ CL,¢* BP,¢' _ BP,¢*
Q - U QWL,N,K? Q - U Qm,N,K’ Q - U Qm,N,K’

m,NeN m,NeN m,NeN

N>m>4 N>m>4 N>m>4
UL,¢! UL, ¢! BP, TV BP, TV UL, TV UL, TV (127)
Q= el oo e anre | ol

m,NeN m,NeN m,NeN

N>m>4 N>m>4 N>m>4

12.3. Size and conditioning of the inputs. In this section we will analyse the bounds on the inputs as
well as each of the condition numbers relevant to the input sets defined in §12.7}

12.3.1. Size of the inputs.

Lemma 12.1. For natural numbers m and N, let y € R™ and A € R™*N. Then for an integer k > 1
the following hold:

(1) If (y, A) is an element of one of the sets anP;,k, QELI’D]’\?I,;S, Qg}él,:, ngflks then ||y|loo < 2
and || A||lmax < 1.

(2) If (y, A) is an element onEfj\?:Z’s then ||y|lco < 3/2 and || Al|max = 1.

(3) If (y, A) is an element OfQin]’\;l:Z’s then ||y||co < 107/180 and || A]|max = 1.

Similarly, for an integer k > 2 the following statements hold:

. LP, BP, ¢!, UL, ¢, CL,¢*,
(4) If (y, A) is an element of one of the sets Q1 'y, Q-3 7™, Q0 7™ QU0 Y then yl|oo < 2

and || A||lmax < 1.
(5) I Q=Q7 3 then ||ylloo < 3/2 and || Al|max = 1.
(6) If Q2 =Q) 50 0 then ||ylloe < 107/180 and || Al|max = 1.

. - LP,s BP,/ts AUL s ~ACL,¢L s .
Proof. We start with the case that (y, A) is in one of /%, Q"% 7, Q0 2 Q=0 2. In this case,

we must have exactly one of A = A(a, 8,m,N) or A = L(«, 8, m, N). In any of these cases it is easy
to see that || A||max = 1 directly from the definitions. We also have [|yoo < max(2-107%,2- 107" +
6,2 107% + A, 10”“*1, 7) < 2, as each of these terms is at most 2.

Next, we analyse (y, A) € Qgﬁ;{’s: if (y, A) € Qslpj\,TZb then (writing 6 = 6(1/2,1/2,m) and by

the definition of 3yBF>TV:k)

sm 3\ 107% 1 3.107% 7-107F
Illee = 5=+ (7= 5 = m— +

0) 4 ~m-—1 4 4
_1+4—3-10—k+7-10—k <g+3-10—k
B 4(m —1) 4 —3 2

where the first inequality follows because 6 < 1 and # > m — 1 and the final inequality because m > 4.
Since k > 1 we obtain ||y||e < 3/2. By the definition of Qi?ﬁz’s, we have A = T'(«a, 8, m, N) for
some (o, 3) € LBPTV:k Thus from the definition of 7" and the fact that ., 3 < 1/2 we conclude that
[|Allmax < 1. Thus we have shown[2]

To analyse the case where (y, A) € Q4" Y%, note that if (y, A) € Q7' Y® then

Il 77'107k+x - 1 _3-107*
Ylloo = 4 m—1 4(m —1)
7-100% 1 1 3.-10°*k 1 3-107% 4
< —+ = - — < + =
= 4 3 3 4 m—1- 2 9

where the first inequality follows because A < 1/3 and the final inequality because m > 4. Thus for
k > 1 we obtain ||y||cc < 4/9 + 3/20 = 107/180. The argument that || A|lmax < 1 is identical to
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the analysis performed to prove the bounds on Q2BF>TV except now we replace all statements and sets
referring to basis pursuit with those referring to unconstrained lasso. This proves [3]
Finally, we can prove [4]to[6] by using|I]to [3]and noting the inclusions

LP,w LP,s BP.¢,w BP0t s UL, w UL,¢ s CL,¢%w CL,¢ s
Qme—Qme 1 Qme Qme 1 Qme Qme 1 Qme Qmel
BP, TV,w BP,TV,s UL, TV,w UL, TV,s
Qme CQme 1 Qme CQmel
that hold whenever k£ > 2. O

12.3.2. Condition of the solution map. We compute the condition of the solution map for the problems
LP, /! BP, /! UL, TV BP, and TV UL, with the input sets as specified in §12.2] Concretely, we prove the
following lemma.

Lemma 12.2. We have
cond(Zpp, Q*F) < 15, cond(Syp, QUM ) < 28, cond(Zcp, QM) < 2
cond(Zgp, QBPC) < 24, cond(Epprv, QBT TV) < 35, cond(Zurry, QVHTY) < 179, (12.8)
where QP OBP.C QULL OBPTV OCLL 4ng QULTY qre defined in Iz7).

This will give us the desired bounds on the condition numbers. Proving Lemma[T2.2] will be straight-
forward for linear programming and the ¢! regularised problems but will require a bit more effort for the
TV problems. We thus state and prove three simple lemmas that will be useful.

Lemma 12.3. Let o, 3 > 0, and let z = (24, 25) € R% Then
[(+20) V(B+25) —aV B < |2/

Proof. Suppose w.l.o.g. that & > 8. Then o — ||2]|cc S a0+ 24 < (@ +24) V (B + 23) < a+ 2] o>
and so |(a + zo) V (B + 23) — o] < ||2||co, as desired. O

Lemma 12.4. Let (o, 3) € LBPTV'™ for some natural number n and let m, N, 0 = 0(-, -), and
n = n(--,) be as defined in (11.8) and (I1.10). Let y, > 0 be such that p(y1,a, ) = y1 —
36(c, B,m)/(m—1) > 0and z = (zy, 2a, 28) € R3 with ||2]|cc < 8 §;L(y1, ,B). Then u((y1, o, B)+
z) > 0 and

Hn(ylvavﬁ) - 77(?/1 + 2y, + 2o, B+ ZB)HOO < 14(y1 + 1)”2”00

Proof of Lemma First note that, using the mean value theorem and the fact that o + 24, 8 + 23 €
[1/8,5/8], we have

0 =+ s + ’ -0 s Mo S vu va ) Uy e’}

00+ 20,8+ zpm) = B Bom) < o V(0. m) 2] .
20u +v)(m — 1) (12.
< S e < 2 o < =2][oo-
- (u,v)gla/}zis,s/s] 0(u,v,m) I2lloe < (u,v)nj[lSa/)é 5/8] (u )] 2 1=
since (u + v)(m —1)/0(u,v,m) = [1/(u +v)? + 1/(m — 1)]~Y/? < (u + v). We can now write
5(a+za+ﬂ+zﬁ)1N N((y17avﬂ)+z) en
O(a+ 24,8+ zg,m) (a4 2za)V(B+23)

where 15 € R¥ is the vector of all ones, so that

W(yl +Zy,Oé+Za,ﬁ+Z,8) =

[n(y1, . B) = n(y1 + 2y, & + za, B+ 28) [|oo
H a+za+ﬁ+zﬂ)1 (et D)

0(a+ za, B+ 23,m) 0(a, B,m)
‘ (atzatB+25) O (OH-ﬂ)’
O(a+za, B+ 23,m) O, B,m)

M((ylaa76)+2) en — (y17 ’6)6 H
(@+z)V(B+zs) " avp ¥

M((y17a7ﬁ)+z) _,u(yha,/ﬁ)’
(a4 24) V(B + 2p) avp |

1NH +

o0

o0

(12.10)
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We will bound each of the latter two terms separately. Write f(u,v) = wu/v, for v non-zero. Note
that, since (o, 8) € LBPTV:" we have a + 24 + 8+ 25 € (1/2,5/4): indeed, 1/2 = 3/4 — 2/8 <
a+LF—-2[z]|cc < a+zq+8+25and similarly a+zo+B+25 < a+,3—|—2||z||oo <1+42/8=5/4.In

asimilar way, m — 1 < \/(m —1)2+ (m —1)(a+ 20 + B+ 25) < /(m—1)2+5m—1)/4<m
so that §(a + 2o, 8+ 23, m) € [m -1 m} Thus, by the mean value theorem
§-(atzat+B+zp) (a+5)‘
Ola+za, B+ 2z3,m)  6( )
max IVf(u,0)ll1 - (|20 + 28| V |0(a + 24, B + 25,m) — 0(c, B, m)])

(u,v)€[1/2,5/4]x[m—1,m]

1 5/4
<5 (i ol )@l I+ 20084 20,m) —Ofa Bm)) <

85]|2 ([0
72
(12.11)

where in the final line we used (12.9), § < 1, and the assumption that m > 4. Next, again using (12.9),
we obtain |a((y1, s B)+ 2) — a(y1, 0, B)| < |2y + 25180+ 20, B+ 2, m) — 0, B,m)| < 1 J2]1
since § € [0,1] and m > 4. In particular, since u(y1,c, ) > 2||z|leo and p(yr, o, 8) < y1 we
obtain u((y1, @, 8) + 2) € [||z]leo/6, 41 + 11||2||cc/6] C [0,y1 + 1/4], establishing the claim that
1((y1, @, B) + z) > 0. Now, by Lemma|[12.3] (a + z4) V (8 + 23) € [3/8,5/8]. Therefore, using the
mean value theorem together with the bounds above we obtain

M((ylvavﬁ)_‘_'z) _ ,u(yl,a,ﬁ)

(a+2a) V(B +2p) avp | = ()l £ 31x(2,8) IV 7,0l
(1, 0, 8) + 2) = plyr, o, B) V[ + 20) V(B + 25) —a Vv B]) (12.12)

< (75 + D) (Rl v el = (220 + 2 o

Combining (IZ.10), (T2Z:TT), (IZ:12)) as well as the assumption § < 1 yields ||1(y1, ®, 8) —n(y1 + 2y, o+
Za, B+ 28) |l < 14(y1 + 1), as desired. O

Lemma 12.5. For some natural number n, let (o, 3) € LUETV:™ and let m, N, 6 = 0(-,-), and 1) =
U(,-,-) beas in subsection Suppose y1 > 0 is such that
S, B) = g1 = A0, B.m)* [2(m — 1)@V B)] ' >0
and z = (zy, Za, 23) € R? with ||2]oc < 3 A 755(y1, @, B). Then <((y1, v, B) + 2) > 0 and
[(y1. 0, B) = (1 + 2y @ + 20, B+ 28)[lo0 < 112(y1 + 1) |12 - (12.13)

Proof of Lemma([I2.5] As in the proofofLemma we first obtain |0(a+2zq, B+25, m)—0(a, B, m)| <
2)|2]|oc and 8(a+2q, B+25,m) € [m—1,m]. Moreover, using Lemmawe get (a+zq)V(B+2) €
[3/8,5/8]. Next, we write

A (a+zq + 5+ 23) 1 s((y1,, B8) + 2) ox
2m—1D((a+za) V(B+28))  (a+2za)V(B+2s)

where 15 € R¥ is the vector of all ones, so that
||¢(y17a7ﬁ) - 1/’(3/1 + Zya a+ Zas 6 + Z,B)”oo

V(1 + 2y, 0+ 2o, B+ 23) =

A (a+zo+ 5+ 28) A (a+p5)
= |2m D@+ v B+ 2(m—1)(a\/ﬁ)1Ho@+
+‘ s((y1, o, B) + 2) ex — s(y1, @, B) NH
(v + 2a) V(B + 28) aVvp -
_ Alatzat+B+tzs) A-(a+B) ‘ ((y1, @, B) + 2) _C(yucv?ﬁ)’.
2(m—=1D((a+za)V(B+25) 2(m—1(aVB)| |[(a+2)V(B+2s) aVvp

(12.14)
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We will bound both of these terms separately. The first term can be bounded as follows. Let f(u,v) =
u/vandnote that v + B+ zo + 23 € [1/2+1/4—2/8,1/2+1/2+2/8] = [1/2,5/4]. We thus obtain

’ A (a+zq + B+ 2p) A (a+B)

2m—1)((a+ za) V(B+25)) 2(m—1)(aVB)

€ T Tl (et 2V (0 2) V(B +2) —av ) (1215)
A 1 5/4 12)\[12]|o0 _ 4]2]loo

<5 (375 * oz ) - @l v lole) < e < 212

since A < 1/3 and m > 4.

For the second term, using the mean value theorem with the function g(u,v) = u? /v, we first obtain

the following bound
O(a+ za, B+ 25,m)? B O(a, B, m)?
(@ +2a) V(B + 25) avp
< omax Vg 0)l1- 6o+ 2,8+ 25,m) — 6o, B m)| V I(a+ 2a) V(5 + 25) = a v B
€[},

< (Bs ) (Bl v Boll ) <1800+ sl

and therefore, since A < 1/3 and m > 4, we find

2 2 2
A 0(a+ 2a, B8+ 25, m)°  0(a, B,m) <zl (14 2 < 25H2HOO'
2m —1)2 | (a+ za) V(B + 28) aVp m—1 3
Therefore,
A O(a+ 2o, B+ 25,m)*  0(a, B,m)?

(a4 2q) V(B + 23) aV B

(0 008) +2) =, A < [z + 50"

25
< (1 n 3> 2l < 28]2oo/3.

In particular, since y1 > <(y1,a, 8) > 10]/2]/c0, we must have ¢((y1,, 8) + 2) € [2]|2]leo/3, 41 +
28||zlo0/3] C [0,y1 + 7/6] and hence ¢((y1,a, §) + z) > 0. Using the mean value theorem together
with the bounds above and Lemma [[2.3] we obtain

s(y,0,8)+2) <(y17a,ﬂ)’
(a+2za) V(B+2s) aVvp

< max IV £(u,0)]1 - [ls((ya, e, B) + 2) — s(y1,0, B)| V [(a+ 20) V (B+ 25) —a V B]]
(u,v)€[0,y1+§] %[5 8]

g,
1 (y1+ 1)
< | —+——=2>1]-(10 \Y, <110 1 .
< (375 + e ) - (0helloc ¥ Ielloc) < 11000 + 1)l
(12.16)
Combining (12:14), (12:13) and (12:16) gives the desired inequality (12:13). O

With Lemma[12.3] Lemma[I2.4]and Lemma[T2.5]at hand, we are ready to prove Lemma[12.2]

Proof of Lemma(I2.2] We first establish that

—_ LP, - UL, ¢, —_ CL, ¢,
cond(:Lp,Qm,J\?k) < 15, cond(:UL,mevaS) < 28, cond(:CL7Qm7N7kS) <2,
_ BP,¢t s —_ BP,TV, —_ UL,TV,s
cond(:Bp,QmW’kb) <24, cond(Zgprv, R, Nk ) < 35, cond(Eurrv, 2, Nk %) <179
(12.17)

for integers £ > 1 and N > m > 4, and then argue via the inclusions between the “strong” and “weak”

input sets to prove (12:8).
We work through each of the problems in turn, calculating their condition numbers.
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Linear programming: The active coordinates of Q;P}; pare {(1,1),(1,2)} for the matrix part of

act
the input and {1} for the vector part. Thus ¢ is in the active set (QI;nP]\S,k) only if 1 = (y*PF +
zyer, A(a + zq, 8 + zg,m, N)) for some suitable z and ¢, 8 such that there is an ¢ € anpj’\s, x With

v = (y“PF, A(r, B,m, N)). For the sake of brevity, we will let y; = 3%

Let us assume first that ¢ is such that o # (. Then, for e € (O,yl/\%\afﬂ\) and z = (zy, 24, 25) € R?
such that 0 < ||z||cc < € we have both av+ 2z, # B+ 2zg and sgn(a + zo — (B + 28)) = sgn(a — (), and
so by Lemma|[IT.1]

Y1
aVp

Y1+ 2y
a+z4) V(B + 2)

v and ELP(L)Z

ELP(LZ) = ( v,

where v = ey ifa > B, and v = ey if a < .
Next, consider an input ¢ = (y, A(a, ,m, N)) € Q%lpj\s,K U QI;PAV,VK and let z = (2, za, 25) € R?
be such that 0 < ||z[|c < y1 A cv. It then follows by Lemmal(11.1that

fy z y1+zy
= L7) C
Le (%) {(a—i—za)\/(oz—kzﬁ)

Erp() = {% (ter + (1 —t)es) | £ € [0, 1]} .

(tel + (1 — t)eg) ‘t c [0, 1]} and

Therefore in all possible cases for ¢ and +* with e sufficiently small we must have

y1+Zy

. — ) z - yl
disteo (Srp(e): Zep () < max | G SV 6+ 23) avﬁ‘

a,BEL

Moreover, in all the cases above we have 0 < y; + 2, < 2y; < 4- 107%F < 1, and |[(a + z4) V (B +
z8) — aV B| < ||z]lsc by Lemma[12.3] Thus, for ||z||o sufficiently small (in particular insisting that
[Iz]loc < 1/8), the mean value theorem applied to the function fip(u,v) := u/v gives

yl+zy Y1 8 64
ma — < max ||V u,v)||1-||z <=4+ =)= < 10|z
g | B I < (9ol < (5 S )l < 2001
vel[$, 5]
We hence deduce that
disto, (2 = z
cond(ELp,Q}nP]’\s,k): sup sup limsup  sup { fstoc (SLp (1), et ))} < 10.
14V, N>m>4 ”eQ}nFj}s',k e—0t Lze(anpl}\srvk)ac( H’ZHOO

0<|zl| oo <e

1
Unconstrained lasso with ¢! regularisation: The active coordinates of Qg}}f Jare {(1,1),(1,2)}

1 act
for the matrix part of the input and {1} for the vector part. Thus ¢* is in the active set (QELL]\f ,;S) only

if 1 = (yUL*Zl*k + zye1, L(a + 24, B + 23, m, N)) for some suitable z and «, 8 such that there is an
L€ Qili]’\l,“],lk’s with ¢ = (yUL*Zl*k, L(a, 8, m, N)). For the sake of brevity, we will let y; = yPL’Kl’k.

For such an ¢ note that a« V 5 = % > ﬁ Let € € (0,y1) be small enough so that 'V 5 — € > m
and consider 2 = (zy, 24,23) € R? such that 0 < [|z[l < e. We then have 0 < y; + 2, < 2y <
2(14)) < & and again [(a+za)V(B+25)—aV| < [|z]ls by Lemma Thus an argument analogous
to the one presented when analysing cond(Zpp), but employing Lemma instead of Lemma
gives

disteo (Zun(e), Zun(t?))

max 2@V By =& 2((atza) V(B +25)) (Y1 +2y) — A
T (apec| 2(aV p)? 2((a+ 2a) V (B + 25))°

A U

1
v V2

< max  [Viwo@o)li-lole =  max (
(u,0)€[0,3]x[2,3] (u,0)€[0,8]x[2,2]

) llele

V3
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where fup o (u,v) = 2452 Noting that [A/v3 — u/v?| < ((A/v®) V (u/v?)) and A < 1/3 we obtain
dist oo (SuL (1), Zur (1)) < 8/3+(83/34v83/33) < 22 from which cond(Zy,, QU %) < 22 follows.

Constrained lasso with ¢! regularisation: The active coordinates of QS@%ZS are {(1,1),(1,2)} for

1 act
the matrix part of the input and {1} for the vector part. Thus ¢* is in the active set (QSLLAf ,;S> only

if ¥ = (y°“* + 2ye1, L(a + 24, 8 + 23,m, N)) for some suitable z and «, 3 such that there is an

L€ an%;jil,f with ¢ = (y°“* L(a, 8, m, N)). For the sake of brevity, we will let y; = 3=

For such an ¢ let r = % = 2y1/5 = 4- 107" and note that »r < 1/2 < 7 and so Lemma

applies. Next, let ¢ € (0,y; A 1/2) be small enough so that % < 7 and consider
z = (2y,%a,28) € R? such that 0 < ||z]lc < €. We then have 0 < y; + 2, < 2y; < 2 and
(a4 24) V (B + 23) —aV B] < ||z|lc by Lemma m Thus an argument analogous to the one

presented when analysing cond(Zyp ), but employing Lemma instead of Lemmal|l 1.1] gives

disteo (Ecr(t), ZEcL(4?))

< ( <av5>y12) (et ) VB a) 1+ 2)
(a.B)eL 1+ (aVp) L+ ((@+2a) V (B + 25))
1 u(l —v?) )
< v , . o = . 0o
= warebig g | Jet izl = s e (’mﬂ avop|) W

where fcr(u,v) = 175. Noting that |1/(1+0?)| + |u(l —v?)/(1+0?)?| < 2/(1 + v?)? for the
specified range of (u,v), we obtain diste, (EcL(t), Zcr(t?)) < 2/(1 + (3/8)2)2 < 2 from which we

1
deduce that cond(Zcr,, QgL]\ka) <2.

1
Basis pursuit with ¢! regularisation: As before the active coordinates of QELPA? Jare {(1,1),(1,2)}
1\ act
for the matrix part of the input and {1} for the vector part. Thus ¢ is in the active set (Qipj\f ,f) only

if 2 = (yBPER 4 zyer, L(a + 24, B+ 25,m, N)) for some suitable z and «, 3 such that there is an
= anf’;ff,j with « = (yBP¢ %, L(a, B, m, N)). For the sake of brevity, we will let y; = y>5¢ F.

For such an ¢ note that § < 6 +107% < y; < 2sofore € (0,y; — ) and z = (2ys Zas 25) € R3 such
that 0 < ||z[o < €, an argument analogous to the analysis of cond(Z,p) except employing LemmalT1.3|

instead of Lemma [[T.1]shows that

, _ _ y1— 0 Yy1+zy—90 ‘
dist (2 V), E %)) < —
(EpppN (1)), ZppON (7)) < | VB (atz)Vv B+ )
< max IV fep,er (u, v)[]1 - [|2]l 0o
(11,,1))6[0,2]><[%,g]
1 U — 8 2
<[z . o < | = — | < 17 00
= (U + 02 > ”Z” — (3 + (3/8)2> HZH
where fgp 1 (u,v) = “=2, from which we deduce that cond(EBpDN,Qil’Dj\(;’lk’s) <17.

Basis pursuit with TV regularisation: The active coordinates of QELPNT Z’s are {(1,1), (1, N)} for

act
the matrix and {1} for the vector. Thus ¢* is in the active set (Qipj\,T;/’b) only if 1* = (yBPTV:F 4
zye1, T(a + zq, 8 + z3,m, N)) for some suitable z and «, 3 such that there is an ¢ € QE@PNT,YB with

v = (yBYTV:E T(a, B,m, N)). For the sake of brevity, we will let y; = yFP’TV’k.

Suppose that « # (. For € € ((), %|a - Bl A % A %(yl — W)) and z = (zy, 24,25) € R®
such that 0 < ||z]|s < € we have « + 2z, # 3 + 25 and, by Lemma Y1+ 2y > W.
Suppose for now that & < /3. Then, by Lemma we have ZEpprv(1%) = n(y + 2y, @ + 24, B + 23)
and thus by Lemma we find diste (Epprv(2), EppTv (7)) = [IN(Y1 + 290 + 20, B + 25) —
(Y1, @, B)|loo < 14(y14+1)||2]lco < 35||2]|co Where the final inequality follows from y1 < ||y|leo < 3/2,

proven in Lemma In the case @ > 3, the same logic and an application of Lemma yields
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disto (Egprv(2), EBPTV(?)) = [|Paipn(y1 + 2y, & + 24, B + 238) — Paipn(y1, @, B)||oc < 14(y1 +
1)||2]lsc < 35]|2]|oc, as the flipping operator Py;p is an isometry.
Next, assume ov = 3 and let 2 = (zy, 2a, 23) € R? be such that 0 < ||z]|sc < § A 3 (y1 = M).

m—1
Then, by Lemma[TT.5] we have both
Epprv (%) N {N(y1 + 2y @ + 20, 8+ 25), Phipn(y1 + 2y, 5 + 2, + 2a)} # @

and Zgprv () = {tn(y1, o, B) + (1 — t) Puipn(y1, B, @) | t € [0, 1]}. Therefore,

diStoo (EBPTV (L) ), EBPTV (l’z))

<|n(yr + 2ys @+ za, B+ 25) — (Y1, @, B)llco V [ Paipn(y1 + 2y, & + 24, B+ 25) — Paipn(y1, @, 8) || o

and thus using Lemma [12.4] we obtain diste (Epprv(¢7), Zgprv(t) < 14(y1 + 1)[[2]lc < 35|12/ 00-
Since we have now shown that this bound holds in the cases & > 3, a < 8 and o = 3 we can conclude
that cond(EgpTyv, Qipjgxb) < 35.

Unconstrained lasso with TV regularisation: The active coordinates of Q;{LLNT Z’S are {(1,1), (1, N)}

act
for the matrix and {1} for the vector. Thus ¢* is in the active set (QELA}F ,\!b) only if 1* = (yYTV:k 4

zye1, T(a + za, B + 2, m, N)) for some suitable z and «, § such that there is an ¢ € QELNTZS with
v = (yV»TV:k T(a, B, m, N)). For the sake of brevity, we will let y; = yPL’TV’k.

For such an « we consider z = (2, za,25) € R? such that 0 < ||z]|cc < § A 155(y1, v, B), where
s(y1, o, B) = y1 — A(a, B)? [2(m - 12(avV ﬂ)] - By Lemmawe conclude that ¢(y1 + 2, v +
Za, B+ z3) > 0, and so Lemmaapplies to the input (y + zye1, T'(a + 24, 8 + 23,m, N)). An
argument analogous to the one presented for Basis Pursuit with TV regularisation employing Lemma

[12.5]instead of Lemma [I2.4]then yields

107
diStoo (EULT\/(LZ), EULTV(L)) S 112(y1 —+ 1) S 112 (]_80 —+ 1) S 1797
where the penultimate inequality follows from Lemma |(12.1} Hence cond(Zyrrv, Q}iLNT ;/3) < 179, as
desired.
This establishes each of the claims in (12:17). It remains to prove (12.8). We do this for linear
programming only as the argument for the other cases is analogous. If K = 1 there is nothing to prove,

1 .
so assume w.l.o.g. that K > 2. Note that the active coordinates for Qflpj’f i(b—1 are the same as the active

. BP,/t s
coordinates for 27" % ;. Thus

— BP,¢' s BP, /sy - BP,¢! s —_ BP,(' s
cond(ELp, Qm_’Nnyl U meN’K) = cond(Zp, Qm,N,Kfl) V cond(ELp, Qm,N,K)

and (12.17) implies that cond(Qi{Dj\f;’?_l) and cond(Qif’j\fj;(s ) are both bounded above by 10 since

BP,¢',w BP, /' s . - BP, ¢!
K > 2. Next, note that Qm,N,K - vaNyK_l. This allows us to conclude that cond(Zpp, QWN’K) =
1 1
cond(Zpp, QEzPi\f g u Qipj\f /2) < 10, and hence
= BP,ty _ BP,¢' s BP,/tw
cond(Zpp, Q2 )= sup cond(Q,, i UQ, i) <10
N>m>4

O

Lemma 12.6. For any natural numbers m, N, and k with k > 1 and 4 < m < N the FP condition
number of every input to any of the problems LP, {* BP, {* UL, CL, TV BP and TV UL with respective
input sets QLP QBP’Zl, QUL’el, QCL’el, QB2 TV and QULTY s bounded by 4.
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Proof of Lemma([I2.6] Suppose for now that the input is in one of the “strong” input sets, and consider

first an input (y, A) = (y, A(a, B, m, N)) € QﬁLP]\S,k Recall that Crp (y, A) = %, where

p(y, A) = sup{e| 3z = (2y, 2a, 28) € R3,[|2]|o0 < €
s.t. (y + zyer, A(la + zq, B+ 23, m, N)) is feasible for LP}.

Concretely, by recalling that c is the vector of ones of length /N and inspecting the explicit form of
A(a+ 2o, B+ 25, m, N), we see that it is necessary and sufficient for at least one of o+ z,, and 5+ 25 to
be positive for the LP problem to be feasible. As oV 5 = %, we deduce that p(y, A) = %, and therefore
Crp(y, A) = % =2

Next, note that, for z = (zy, 24, 25) € R?, the matrices L(a + 24,8+ 23, m, N) and T'( + 25, B +
zg, m, N) are onto as long as at least one of cv+ 2z, and /3 + zg is nonzero, and therefore p(y, A) > % for
the problems ¢! BP, CL, and TV BP with inputs (y, A) in Qil’jj\fjk’s, anLlélks, and QELPA? %, respectively.
By Lemma lylloo < 2 and ||A|lmax < 1, we deduce that Crp(y, A) < % = 4 in the case of /!
BP, CL, and TV BP.

Finally, inputs (y, L(a, 8,m, N)) and (y,T(c, 3,m, N)) are feasible for the /! UL and TV UL
problems for any values of y, «, and 3, and therefore Crp(y, A) = 0 in the case of ¢! UL and TV UL
for any input set. The proof is entirely analogous in the case when the input is in one of the “weak” input

sets, and thus the proof of the lemma is complete. (|

Lemma 12.7. Let (o, 8) € L. Then cond(AA*),cond(LL*) < 16/5. In addition, for k > 1 and
(v, B) € LEETVE or (o, B) € LYRTVE, we have cond(TT*) < 18

Proof of Lemma[I2.7] Note that M := AA* = LL* = TT* = (a? + 8?) & I,,_1. Therefore
cond(M) = [M|2|M 72 = (0> +B*) V1) ((e®+p%)7tvl) <18 =15 O
12.4. Inequalities to control the breakdown epsilons for the TV problems.

Lemma 12.8. Lerp € [1,00], n € N, and set

yr = om[0(1/2,1/2,m)]~" + [7 — 3(6(1/2,1/2,m))"1]107" /4.

Then
Lmn e, 8) = Ban(yr, o, 8l > 2107 (12.18)
(a/:ﬁ/)GEBRTV,n
and
In(y1, e, B)1 — nyr, ., B)n| < 5- 107" 12717 /6. (12.19)

max
(c,B) €L

Proof. We first prove the following inequalities for general y; > 0 and then specialise to the value of ¥;
in the statement of the lemma:

20m
i .o, B) — Py LN, > 2V |2y — 12.20
. (Y1, o, B) = Paipn(y1, o', 8)|lp = e CVERYERT (12.20)
(a,,ﬂ/)G[,BP'TV'n
(with the convention 2! /p = 1 when p = c0) and, recalling 7, from (12.2),
26 [4r2 + (m —1)
max [n(y1, @ B)1 =y, o, B)n| < 2y — [ ] (12.21)

(cr,B) € LTV 6(1/2,1/2,m)
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To this end, we have for (o, 3), (¢, 8) € LBPTV:" and p < 00

||77(y1704a3)—Pﬂip77(y17 75 HP [|77 Y1, 75) (Pﬂipn(y17a/7ﬁ/))1|p
/-1 p Up
+ 0,0, B = Pun(yr o )y ||

1/
:|:| (yla 76)1 _n(yla /aﬂ/)N|p+|n(y17a7/8)N_n(ylva/aﬁ/)1|p:| ’

. 1/p
2[2. () € LTV ‘”(yv“’“)N_”(yl’“/’v/h'p] ’
u,v o
(ul,v/)eﬁBP‘Tv’n
and therefore
( ﬁ)rgiﬁrgpm In(y1, o, B) = Paipn(yr, ', B)|lp > ( ﬁ)%?%mn 2% n(y1, o, B)n — n(yr, o, Bl
«, ’ L (e ’ ’
(a/,B/)EEBP’TV'n (a/,B/)EEBP,TV,n

where this inequality also holds for p = oo by an analogous argument. Next, by the definition of 7 we
have, for (a, B), (o/, 8') € [BPTV.n

S(a+pB) 200(e,B) 6(a’ +5)

"B >2 — — =2y1+6 Sh(a/+p5'

(ylv 75)]\7 ’r](yla 75 )1 2 21+ 0(@,5) m—1 9(0/,6,) Y+ g(a—i_ﬁ)—i_ (Oé +ﬁ)
- w _2¢/(m-1 u?+(m—1)2 - 1 .

where g(u) = Ny S and h(u) = Ny A simple

calculation yields, for u € [1/2,1],
o () = —(m—=1) [(2u — 1)(m — 1) 4 2u?] <0
[(m =12 +w2(m -1z =7
so that g(u) > g¢(1). It is also clear that h(u) is decreasing on [1/2, c0) and that if («, 3), (¢/, 8') €
LBETV:7 then (o + B), (o + ') € [3/4,1]. Thus
min 27|y, B)n — nyr @, B)1] = 277 (241 + dg(1) + 6h(1)) .

o, BELBPTY:n
al’BleﬁﬂﬁTv,n

Noting that g(1) + h(1) = =2y/m — 1 + (m — 1)2/(m — 1) = —2m/6(1/2,1/2,m) gives (12.20).
To obtain (12.21)), we note that n(y1, o, 8)1 < n(y1, o, 8)n and 0(«, 3, m) is increasing in its argu-
ments provided («, 3) € [0, 00)2. Thus

m) _ e(rn77an7m)
(a,ﬁ)nel%(”\’v" n(y1, @, B)1—n(y1, @, B)n| = (@, B)ELBPTV . |:2?Jl - 26 1 :| = 2y1—25ﬁ
We conclude (TZ.21)) by noting that 0(ry,, 7y, m) /(m—1) > 0(rp, 70, m)2 [0(1/2,1/2,m)(m — 1)] " =

[4r3 + (m — 1)][0(1/2,1/2,m)] !
With the specific choice y; = dm[0(1/2,1/2,m)]~1 + [7 — 3(0(1/2,1/2,m))~1]10~" /4 and using
m > 4, we calculate
26m 7 3 7 3
2P loy — ——— | >(-—-— "~ )10 ——— 2 10" >2-107"
STV 1/27m)} - (2 29(1/2,1/277%)) g (2 2(m1)> - ’
from which we conclude (12:18), as well as

26 [4r2 + (m—1)] 251 —4r2) (7 3 )10_n

0(1/2,1/2,m)  6(1/2,1/2,m) ' \2 20(1/2,1/2,m)

2y1 —
- 66 - 10~ ™ N 7 3 10-7
= 460(1/2,1/2,m) 2 20(1/2,1/2,m)
7-100"  5-107"tl  5.10-ntlo-1/p
< < ;
2 12 = 6
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where we used 1 — 4r2 < 3-107"/(46), which is by the definition (T2.2)). This concludes the proof of
[2.19). m

Lemma 12.9. Letp € [1,00], n € N, and
y=7-100"/4+ X1 +1/(m—=1)) —=3-107"/(4(m — 1)).

Then
(a,ﬁii%m,n [y, a, B) = Pipt(yr, o', '), >2-107" (12.22)
(al,ﬁ,)G[,UL’TV’n

and
max [Y(y1, . B)1 — (Y1, o, B)N| <5 10~ H2=1/r /6, (12.23)

a,BELULTV.n
Proof. As in the proof of Lemma[I2.8] we will first prove the following inequalities for general y; > 0,
and then specialise to y; in the statement of the lemma:
1
i _ P I g 1/p _ =

i 0 8) = Pl ol @), 2 27 -2 (10 )| a2

O/,ﬁ/E,CUL'TV‘"
and, recalling s,, from (12.2),
0(sn, Sn,m)?

Y (12.25)

ma |w(y17avﬁ)1 - q/j(ylaaa/g)N‘ S 2y1 — 2

X
(a,B)€LULTV,n

To this end, note that

min ,a, B) — Py o B, > min 21/p ,Q, - o 801
s, (1, e, B) = Paipt(y1, o, 8')p = .0 [ (y1, 0, B)n — ¥(yr, o, )]
(a/’ﬁ/)eﬁUL,TV,n (o/,,@')El:UL’TV’"

(12.26)

Next, a simple calculation and the definition of 1 yields, for (o, 3), (o/, 8') € LIVTV:1,

2+ p)*+2(m—1) = (a+p) N (a’+6’))

w(yhaaB)N - w(ylaa/76/)l = 2y1 - A (

(mfl) m— 1
=2y )\(2(0[4‘5—1/4)24—2(771—1)_1/8+ (o/—i—ﬂ’))
' (m—1) e
(12.27)

By noting that o + 3, o’ + 3/ € [1/2, 1] we see that the right hand side of this expression is minimised
when a + 8 = o/ + ' = 1. Applying these values of o + 3 and o’ + 8" in (12.27)) and combining with

T229) yields (I229).
For (12.23)), we note that ¢ (y1, o, 3)1 < ¥ (y1, @, )N and 0(«, 3, m) is increasing in its arguments
provided (c, ) € [0,00)2. Thus

_ g(avﬁvm)z Q(Snvsnam)2
(a,g)nel%%if‘/mw(yl’ o, B)1=Y(y1, a, B)n| ?a,/a)nel%%(mv,n {2311 _2>\W W

Now, with the specific choice y; = 7-10""/4+A(1+1/(m—1)) —3-10""/(4(m — 1)) and using
m > 4, we calculate

1 7 3
2oy —on 1+ ——)|>(-—-=—"——)10">2-107"
2 (10 )| (5 g ) 20

] <2y;—2X

as well as
0(sn, Sn,m)%>  7-107" 452 3-107"
2y1 — 2\ L = 2 — n) -
n (m —1)2 s T T T mot) T ame)
7-100"  5.107"t  5.10-ntl-l/p
< < <

- 2 12 - 6
since 1 — 4s2 < 3-107"/(4\) by the definition (12:2). This concludes the proof of (12:23). O
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12.5. The strong breakdown epsilons. Our aim will be to prove that, for each of the computational
problems under consideration, we have €, 5(p) > 107% for p € [0,1/2) and €35(p) > 107% for
p € [0,1/3). We do so in the following lemma:

Lemma 12.10. Let k, m, and N be natural numbers with N > m > 4 and k > 1, and consider
the computational problem {Z,Q05, n 1, M, Ay '}, where Q5 is one of (12.3) and = is the ap-
propriate solution map. Then there exists a A e LY (A, N) such that, for the computational problem
{E, Qme’k,M,fX}, we have €, 5(p) > 107F for p € [0,1/2) and €35 (p) > 107" forp € [0,1/3).

Proof. The proof is based on using Proposition [I0.5] Concretely, for linear programming, we will con-
struct input sequences {s1}2° , C O Nk {1232, C 7, k> an input W€ 7, .k as well as sets
S1 c R™ and S? C R™ such that the following hold:
() infzresr o2es2 ! — 22|, >2- 107,
(i) ¥ = (0, A% € R™ x R™*N and i) = (9", A7) € R™ x R™*N for j = 1,2 and n € N,
satisfy
157" = 4% lloos |47 — A%|lmax <47 (12.28)
(iii) Z(¢}) € St and Z(:2) C S?, foralln € N.
For the ¢! and TV problems we will do the same, except that we respectively write L and T instead of A.
Once we have done this, the result will follow by part[(iD)]of Proposition[I0.3] We thus work through each
of the computational problems {Zpp, anlf]’f,’k}, {EBp, Qi%]’\f)lk’s}, {EuL, QEL]\fl,:}, {EcL, QSLLA?I; ,
{Zsprv, U A and {Surrv, Qi p ") in turn,
Case {ZLp, 2 v}t We set

v = (y""F L(1/2,1/2,m, N)),

n

L= ("R L(1/2,1/2 — 47" m, N)), 2= (PR L(1/2—47",1/2,m, N)),

S'={4-107%¢;}, and S%={4-10""ey},

where e; is the i-th canonical basis vector of R™. We note that (I2.28)) immediately holds, hence estab-
lishing (ii). Next, we have inf 161 4252 |21 —2?[|, = [|[4:107Fe1 —4-10"es]|, > 2:107*, yielding (i).
Finally, to see (iii), note that Lemma implies Zpp(tL) = {4-107%¢;1} and Zpp(:2) = {4-10*es},
forj=1,2andn € N.
—_ BP,('s
Case {Egp, 2, v }: We set

O = (BPF L(1/2,1/2,m, N)),
Ll = (yBP’P’ka L(l/Qv 1/2 - 47”7 m, N))v L?L = (yBP’EI’kv L(1/2 - 47"7 1/27 m, N)),

n

S'={4-107%¢;}, and S%={4-10""ey},

from which (I2:28)) immediately holds, hence establishing (ii). Next, we again have inf, 161 42¢52 |21 —
22|, = [|4-107%e; — 4 - 107%ey||, > 2 - 107*, yielding (i). Finally, to see (iii), we use Lemma
11.3|to find that EBPDN(L}l) = {2(5 +2- 107 — 6)61} = {4 . 10_k€1} = S! and EBPDN(L%) =
{26 +2-107F = §)eg} = {4-107Fey} = S2.

Case {EUL»QEI%, 2°}: The argument is almost identical to that for {Egp, QE}? ]\f 7}, except that

1 1 .
yUTLF replaces yBP¢ *, and we use Lemma to obtain

Son() = {(A+2-107F = N)[2(1/2)F te1} = {4-107Fe;} = S*

and similarly Zyp,(12) = {4-107%ey} = 52,
1. 1.
Case {Zcr,, QS}; 7}: Here, the argument differs slightly from the argument for {Zgp, Qipj\f 2

BP,¢t k

Again, we replace y with y©F. As before, we immediately obtain (ii). We now define S* =
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{4-107%e1+(7—4-10"%)e3} and S? = {4-10 % ea+(7—4-107%)e3} and note that inf 1 c 51 p2e g2 |21 —
22|, = [|4-107%e; —4-107Fes||, > 2-107%, and thus (i) is satisfied. To establish (iii), we note that
for (o, 8) € L we have « V 8 = 1/2 and thus the parameter r given in satisfies

r=(aVB)y 1+ (avp)?]=2-10"""/5=4.10"" < 7.

Therefore Lemma applies and so Zcy, (11) = {re; + (7 —r)ez} = {4-107 ey + (7 —4-107K)e3}
and similarly Zcp,(12) = {4- 107 Fey + (1 — 4- 1075 )e3}, as desired.
1
Case {ZppTv, QE&VT’,CV’S}: We choose ng so that 1/2 — 47" € [ry, 1/2] and, writing y; = y?Re ok

we set
O = (BPTVE T(1/2,1/2,m, N)),
b= (yBPTVE T(1/2,1/2 — 47770) m, N)), 2= (BPTVE T(1/2 — 4777™0) 1/2,m, N)),

n n

St = {Puipn(yr, o, B) | (a, B) € LV} and - S? = {n(y1, , B) | (o, B) € LEFTVEY,

It then follows by the choice of ng that :°,:. and /2 are all in QE}? ]\;F V*. We also immediately have
(12-28) and hence (ii) holds. Now, by Lemma [I2.8] (where we choose n = k in Lemma[I2.8) and more
specifically equation (12.18) we have

: 1.2 _ : o . -V . —k
i ot =Pl = min s 8) = Pl a8l > 24107
22c 82 (a/7ﬂ/)€£BRTV,K

and thus (i) follows. Finally, using Lemma we immediately obtain Zgprv(t),) C S, for j = 1,2
and n € N, establishing (iii).

= UL, TV,sy, mps o - L = BP,TV s
Case {Eurrv, (2, i, }: This time the argument is very similar to that for {Egprv, (2, 37, "} We

list only the differences: first, we replace y2F>TV:* with yUMTV:k  Again, it follows immediately that
holds. The definitions of S and S? are also identical with one difference — we replace 1 with 1)
defined in Lemma[TT.6] The argument for (i) is the same except we replace all mentions of Lemma [T2.§]
with Lemma [T2.9] and inequality (T2.T8) with (IZ.22). Finally, part (iii) is identical except now we use

Lemmall 1.6linstead of Lemma/|l1.5] O

12.6. The weak breakdown epsilons. Similarly to the previous subsection, our aim will be to prove
that, for each of the computational problems under consideration, we have both €3} (p) > 10~F+1, for
p €[0,1/2), and €} > 10~F+1,

Lemma 12.11. Let k, m, and N be natural numbers with N > m > 4 and k > 2, and consider
the computational problem {Z, Q) \ 1, M, A n'}, where QY . is one of (12.3) and = is the ap-
propriate solution map. Then there exists a A e LY (A, N) such that, for the computational problem
{Z, an’N’k,M,fX}, we have e (p) > 107%1, for p € [0,1/2), and €} > 10~F+1,

Proof. The proof reads almost identically to that of Lemma[12.10] so we will only list the differences.
Concretely, for linear programming, the proof proceeds by constructing input sequences {t11%2, C Q,
{2322, € Q,an 0 = (y°, A%) € R™ x R™*N (a crucial difference from the proof of Lemmal[12.10]is
that we no longer require :° € €2) as well as sets S* C R" and S? ¢ R" such that the following hold:
(i) infyiegt p2ese |28 — 2% ]oo > 2- 107FFL
(ii) For j = 1,2 and each natural n, ¢J, is a tuple (y’", A>") for 7 € R™ and A7™. These tuples
will satisfy
7™ = 3P lloos [A7" = A%[lmax < 477 (12.29)

(iii) For each n, both Z(.}) C S' and Z(:2) C S2.
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Again, for the £* and TV problems we do the same, except that we respectively write L and 7 instead of
A.

These are the conditions required for us to apply part [(D)] of Proposition [10.3] and conclude that
¥z (p) > 107F*! for p € [0,1/2) and that € > 10~%*!. We go through the differences to the
proof of Lemma|[I2.10] for each of the computational problems in turn.

_ P . .. .
Case {Epp, ', }: in the definitions of «*, 1 and 12 we replace y“"* with y

k+1

LP.k=1"and every

instance of 10" is replaced by 10~

BP,¢t K BP, ¢! k—1

1
Case {Z=pp, Qipj’f 2}t we replace y with y and every instance of 10~* is replaced

by 107++1,
1
Case {Zyr, QELA? U} we replace y
by 10~ ++1,
1
Case {Zc1,, ngj’ék’w}: we replace y“F with y©*—1 We replace 4 - 10~ in the definitions of S*
and S% by 4 - 107**1 so that inf, 161 42¢52 |21 — 2%, > 2- 107 5*+1. Finally, the value of 7 now
becomes 2 - 107%+2 /5 = 4. 107++1,
Case {ZppTvV, QELPNT Z’W}: we replace y with y and every instance of 10 is
replaced by 107%+1, In addition, Lemma is applied by setting n to k — 1 instead of k.
Case {Zyrrv, QELA?ZW} we replace yYTV:F with yULTV:A—1 and every instance of 107% is

replaced by 10~%*1. In addition, Lemma is applied by setting n to k — 1 instead of k.

UL, ¢tk UL, k—1

with y and every instance of 10~ is replaced

BP,TV,k BP, TV, k—1

O

Note that in none of the cases in the proof of Lemma is 1 contained in (2, so these arguments are
not sufficient to prove that the strong breakdown epsilons are greater than or equal to 107**! (indeed,

this statement is not true).

13. PROOF OF THEOREM [3.4]— PRELIMINARIES: CONSTRUCTING THE SUBROUTINES

To construct the algorithms required to prove Proposition[9.33]and part (ii) of Proposition[9.32]and, we
require various subroutines. Throughout this section, we consider the computational problem {=, QN
My, A N }BY = {é, meN,MN, Am,N}, where Q,,, n is one of (I2.6) and = is the corresponding
solution map. For the linear programming case, we fix the notation for an element of Qm N by writing
i = ({yj(-”)}zozo, {A§nk) ?:o)jﬁk’ corresponding to an « = (y, A) € . For the ¢! and TV problems the
notation is analogous, except that we respectively write L and 7" instead of A.

We begin with a subroutine termed OutputEta which applies only to the basis pursuit with TV regu-
larisation problem. Informally, the purpose of this subroutine is to approximate the function n defined
in §TT.3] The exact specification of the subroutine is given below and a proof of its correctness and
complexity is given in Lemma[I3.T]

Subroutine OutputEta:

Inputs: Dimensions m, N, and natural numbers kx and a k..

Oracles: 0. and Oy, providing access to the components yj(-n) and Tj(z) of an input 7.

Output: n* € DV (in the Turing case) or n* € RY (in the BSS case).

1. Setn; = (4kc + Len(N) + 7) V (4kx + 1) and use the oracle O to obtain y| := y%”l) and
the oracle @, to obtain o/ := Tl(ﬁl) and B’ := Tl(j;\l,). We then compute a w € I so that

B ’ n2y\ —1/2
w%(m 1+“y+5)> (13.1)

m—1

to k. + Len (V) + 4 bits of precision.
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2. Next, set ne = ke + Len(N) + 2 and compute nf = 05 = --- = ny_; € D (or R, in the BSS

case) so that

. 0+ B w
i~ & ) (13.2)
m—1

to ng bits of precision, incurred by converting a rational to a dyadic (in the BSS case, we simply
assign the right hand side to n7).

3. Similarly we compute 13 € ID (or R, in the BSS case)

o(a + pHw n vi  bw m—1+ (o + p)?
m—1 (/v p) (ofVp) m—1

Ny~ (13.3)

to no bits of precision, again incurred by converting a rational to a dyadic (in the BSS case, we
assign the right hand side to 73,).

Lemma 13.1. Assume that the subroutine ‘OutputEta’ is applied to an input U corresponding to . =
(y,T) = (yBTV+¢ T(a, B,m, N)) € QE&&S, where (o, 3) € LEPTV'F for some natural number k
with k < kx. Then the output n* satisfies |n* —n(y1, o, B)||, < 107%<, and the number of digits needed
by the oracles as well as the BSS and the Turing runtime are all bounded above by some polynomial in
kx, ke, and log(N).

Proof. Let o and 3 be as in the statement of the lemma. For ease of notation we also write z,, = y] — 1,
Zo = ' —aand zg = B'—Bas well as z = (2, 24, 25). Note that then || z]| oo < 277 < 107 /(TON)A
10~*x /2, by definition of n;.

Our argument to prove the correctness of OutputEta will rely on bounding ||n* — n(y}, o/, 8')||1 and
I7(y1, 0, B) — n(yt, &', B')||1 separately. For the first of these two terms, we note that n(yj, o', 8') can
be written as

o(a’ ! 1 /L pn2\ 3
n(yll’a/7ﬁl)1 :n(yllval7ﬁl)2 = :n(yi7a/7ﬂ/)]\/—1 = (a +5) (m +(a +ﬂ) >

m—1 m—1

and

N

n(y,l o 6,)N:n(y,1 o ﬂ/)1+ yi _6<m—1+(a’+ﬁ/)2> (m—l-ﬁ-(a’—i—ﬁ/)z)

o' Vv (o/ vV ") (m —1) m—1

Thus, using the triangle inequality, we obtain

N

+N2

Hn*—n(y’l o ﬂ/)||1 Sé(N(a/—f—ﬁ/) m—1+(a’+ﬂ/)2>

1 T @vem-n )" <1+M)

m—1

Since (v, B) € LBPTV:F we must have a+ < 1and oV 3 = 1/2. Thus because z,, 25 < 107Fx < 1/4,
we note that both o’ + 5’ < 3/2 and, using Lemma(12.3| o/ vV 3’ > 1/4. Therefore

(S ) =t ()|

Furthermore, as § < 1 and N > m > 4 we obtain

3N 9 N 5N
o 7 )| <= < .
5{2(m_1)+4<1+4( )]2+4+3

m—1) 2

Therefore, as w is computed to precision k. + Len(N) + 4 so that 2~ (ketLen(N)+4) < 10—k /(10 N)
and 272 < 10~*< /(10N) by definition of n, we obtain

1
5N (of + )2\ 2
* I ol < _ o+ 5)"
I =ttt 800 < 25w = (14 1222

5N - 10k A 107k 107k

N2 <
+ - 20N 4N 2
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Next, we will bound ||n(y1,a, 8) — n(y], &, f)]|co using Lemma To apply Lemma we
must show that ||z||cc < (1/8) A (u(y1, v, 8)/2) where the function y is defined within the statement of
1
Lemma Because (yTV,T) € QELPJ’\?’,;S with k < kg and 0(1/2,1/2,m) > m — 1 > 1 we have

sm 3 107* sm (7—3)-107Fx
1= e+ (T > v
0(1/2,1/2,m) 0(1/2,1/2,m)) 4 = 9(1/2,1/2,m) 4
and thus, because (c, 3,m) is increasing in both o and 3 and (o, 3) € LBPTV:F < [1/4,1/2] x
[1/4,1/2],
om §60(1/2,1/2,m) (7—3)-107*x

= - =10"Fx
= B(1/2,1/2,m) m—1_ 1

M(ylvavﬁ)

Hence, as ||2]|oo < 10775 /2 < (1/8) A (u(y1, @, B)/2), the conditions of Lemma[12.4|are met.

We conclude, this time using ||zl < 107%</(70N), that ||[1n(y1, o, B8) — n(y}, ', B)|leo < 14(y1 +
D)|z[le < 107%(y1+1)/(5N). By Lemma[12.1lwe have y1 < 3/2s0 [|In(y1, o, 8) —n(y/;, o', 8') [0 <
10-* / (2). Therefore [|n(y1, o, 8) — (g, o/, 8)llp < 107 /2.

The proof of correctness completed by combining the already established inequalities ||n(y1, o, 5) —
0yl 3l < 1074 /2and [ —n(y}, ', )1 < 10~ /2. Indeed, we have [* —n(y}, o', 3, <
I = n(yi, o, 8l < Iy, @, B) = nyr, o Bl + [ln* = n(yi, o', )]l < 107

Next, we note that number of digits n; = (4k. + Len(N) + 7) V (4kx + 1) needed by the oracles is
polynomial in kg, ke, and log(N). All that remains is to bound the complexities. Note that it suffices to

show that the Turing runtime is polynomial in k., kx, and Len(IV), as this will then imply the desired
polynomial bound on the BSS runtime.

To this end, as noted in [58| Page 92-93], we recall that it is possible to use Newton-Raphson iteration
to compute the reciprocal square root of an u-bit number to v bits of precision at the same cost (up to
constants and asymptotically in « and v) as a multiplication operation on two integers each with number
of bits bounded above by u\v. Since we have already shown that (a/+/3 ’)2 < 4, the number of bits of the
numerator of %W is bounded above by a polynomial in k., kx, and Len(N) and the number
of bits of the denominator is O(log(m)). The length of k. + Len(NN) + 4 is clearly polynomial in k.,
kk, and Len(NV). Hence (since multiplication of b-bit integers can be done in O(blog(b)), the runtime
of computing w in the Turing model is polynomial in k., kx, and Len(N). In particular, Len(w) must
be bounded above by a polynomial in k., kx and Len(N).

The right hand sides of both and involve finitely many additions, multiplications and
subtractions of rational numbers each with lengths bounded above by a polynomial in k., kg, Len(N),
and Len(¢). Since J is assumed to be fixed, the numerator and denominator of the right hand side of both
(13:2) and (13.3) can be computed in Turing runtime polynomial in k., kx, and Len(N).

For each of equations (13.2) and (T3.3)) the conversion between the rational (say, g1 /=) right hand side
to a dyadic is done through integer division to ny bits of precision. Again, as noted in 58, Page 92-93]
this can be done in Turing runtime polynomial in Len(q; /q2) and ny. But we have already established
that both of these quantities are bounded above by some polynomial in k., k-, and Len(N), and thus the
Turing runtime of this step is also polynomial in the same quantities.

We have therefore bounded each of the steps of the subroutine by polynomials in k., kx, and Len(N).
But the subroutine itself only performs finitely many steps and thus the overall Turing runtime is also
bounded by a polynomial in k., kx, and Len(N). The proof is complete by noting that Len(N) =
O(log(N)). O

Similarly, we formulate OutputPsi, which applies only to the unconstrained lasso with TV regulari-
sation problem. Informally, the purpose of this subroutine is to approximate the function v defined in
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§IT3] Its exact specification is given below and a proof of its correctness and complexity is given in
Lemmal[l3.2]

Subroutine OutputPsi:

Inputs: Dimensions m, N, and natural numbers kx and a k..

Oracles: 0. and Oy, providing access to the components yj(-n) and Tj(;? of an input 7.

Output: 1)* € DY (in the Turing case) or 10* € RY (in the BSS case).
1. Setny = (4k. + Len(N) + 9) V (dkx + 3) and use the oracle & to obtain ¢} := gA’“) and
the oracle O, to obtain o’ := Tl(ﬁl) and 8’ := Tl(j}\l,).
2. Next, set ng = 4k, + Len(N) + 1 and compute )] = 93 = --- =% _; € D (or R, in the BSS
case) so that
R Gl
LR S = D v )
to nq bits of precision, incurred by converting a rational to a dyadic (in the BSS case, we assign
the right hand side to 7).
3. Similarly, compute 3, € D (or R, in the BSS case) so that

A + ) L, Al 48+ (m=1)]
2(m—=1)(/ vV B) o VP

(13.4)

Yy =~ (13.5)

Y 2(m — 1)(a/ V §')

to ny bits of precision, again incurred by converting a rational to a dyadic (in the BSS case, we
assign the right hand side to ¥3,).

Lemma 13.2. Assume that the subroutine ‘OutputPsi’ is applied to an input © corresponding to . =
_ (UL TV k UL,¢' s ULTV,k

(y,T) = (y V" T(a,8,m,N)) € Q. Ni where (a, B) € LYBIYSE for some natural number k

with k < krc. Then the output 1* satisfies ||{* —(y1, o, B) ||, < 107%<, and the number of digits needed

by the oracles as well as the BSS and the Turing runtime are all bounded above by some polynomial in

kk, ke, and log(N).

Proof. We start by proving correctness. Let o and [ be as in the statement of the lemma. For ease of
notation we also write z, = y] — y1, 2o = & —avand zg = ' — Jas well as z = (zy, 2q, 23). Note that
then [|z]|oo < 27" < (1077 /(512N)) A (107 /8), by definition of n;. Next, by definition of n, we
have 2772 < 107%< /(2N), and thus |[1)* — ¥(y}, o/, B')||, < N -27"2 < 107k /2. Tt thus suffices to
show that |[1(y1, , B) — ¥ (¥}, o, B)||, < 10~*< /2. We will accomplish this by using Lemma

As in the proof of Lemma let zy =y — Y1, 2 = & — o, and z3 = ' — (. To apply Lemma
we must verify the condition ||z]lcc < (1/8) A (s(y1, v, 8)/10) where the function ¢ is defined in
Lemma Because (y,T') € Qg“]\fl; aswellasm >4 and k < kg

_7-10—’€+A gL _3.10—k>3-10—’w<+/\ gL
n=y m—1) 4m-1)= 2 m—1)

Thus the definition of r from[T2.5]implies that

310k« 1 0(a, B, m)?
— A1+ — ) AT
s, 5) 2 + < Jrm—1> m—1)2
.10~ k& 2 2 C10—FkK
31078 001/2,1/2m)° (e, Bm)? 310
2 (m—1)2 (m—1)2 2
since once again §(«, 3, m) is increasing in  and 3, and («, ) € LBPTV-K Y LBPTV.E=1 — [1 /41 /2] x
[1/4,1/2]. Hence ||2]|oo < 10775 /8 < 3-107Fx /20 < (1/8) A(s(y1, @, 3)/10) and thus the conditions
of Lemma[12.5] are met.
We conclude that [[¢/(y1, o, 8) = (y1, o', B)[lee < 112(y1+1)|2]lec < 112(y1+1)-107%< /(512N)

where we used [[2]c < 107%</(512N). By Lemma[12.1} 3 < 107/180 so 112(y; + 1) < 112

Y]
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287/180 < 256. Therefore ||¢(y1,a, B) — w(y), o', B)||ee < 107F</(2N) and thus |1 (y1, o, B) —
By o', )l < Iy, 0, B) = ¥(wh ', ) oo - NP < 1075 /2, as desired.

Next, we note that number of digits ny = (4k. + Len(N) + 9) V (4kx + 3) needed by the oracles is
polynomial in kg, ke, and log(N). All that remains is to bound the complexities. Note that it suffices to
show that the Turing runtime is polynomial in k., kx, and Len(V), as this will then imply the desired
polynomial bound on the BSS runtime.

The right hand sides of both and involve finitely many additions, multiplications and
subtractions of rational numbers each with lengths bounded above by a polynomial in k., kg, Len(N),
and Len(\). Since A is assumed to be fixed, numerator and thee denominator of the right hand side of
both (13.2) and (13.3) can thus be computed in Turing runtime complexity polynomial in k., kr, and
Len(N).

For each of equations and the conversion between the rational (say, ¢1/¢2) right hand
side to a dyadic is done through integer division to ng bits of precision. Again, as noted in [58, Page 92-
93] this can be done with complexity polynomial in Len(q; /¢2) and no. But we have already established
that both of these quantities are bounded above by some polynomial in k., kf, and Len(N), and thus the
complexity of this step is also polynomial in the same quantities.

We have therefore bounded each of the steps of the subroutine by polynomials in k., kx, and Len(N),
and, as the subroutine itself only performs finitely many steps, the overall Turing runtime is also bounded
by a polynomial in k., kx, and Len(N). Noting that Len(N) = O(log(NN)) concludes the proof. O

Next, we need the following subroutine which operates in the case when the input  corresponds to an
¢ in one of QZP Nk Qﬁfj\f’lk’w lelj]’\fj,éw, ngj\fj,éw, QEQPNT ¥V or QELLNT Y. We title this subroutine Weak
as it is used in §12.6]to give lower bounds on the weak breakdown epsilons. The subroutine is defined as
follows:

Subroutine Weak:

Inputs: Dimensions m, N, and a natural number k..

Oracles: Oyec and Oy, providing access to the components yj(-") and Aﬁ)

(respectively L§"k) or Tj(y’;))
of an input 7.

Output: 2 € DV (in the Turing case) or z € R” (in the BSS case).

1. We execute a loop that proceeds as follows — at each iteration, we increase n, starting withn = 1.
What we do now depends on the problem at hand. In the linear programming case we use the
oracle O,y to read Agnl) and Ag"Q) and set d = Agnl) - A(lnz) . For the ¢' problems we likewise
read Lgnl) and L§"§ and set d = Lﬁ"f - L§"§ . For the TV problems we read Tl(ﬁ) and T1(7;\)/ and
setd = Tl(ﬁ) — TI(TE\), Next, we branch depending on the value of d:

a. If d > 27"*! then we output z € DV with ||z — 4 - 1075 +1e ||, < 107k« for linear
programming, basis pursuit with ¢! regularisation or unconstrained lasso with ¢! regular-
isation. For constrained lasso we output * € DY with ||z — 4 - 10~ K+le; — (7 — 4 -
10~ K+ 1)es||, < 10~F<. For basis pursuit TV we apply the subroutine OutputEta to obtain
n* = OutputEta(m, N, kx = K —1,k.) € DV, to which we apply Prip and output as x (so
that x = Ppipn*). Finally, for unconstrained lasso TV we apply the subroutine OutputPsi to
obtain ¢* = OutputPsi(m, N, kx = K — 1,k.) € DV, to which we apply Py, and output
the result as x (so that x = Pgip1p™). In all of the above cases we terminate execution after
outputting x .

b. Alternatively, if d < —27"*1 then we output z € DV with ||z — 4 - 10~ K+1ey |, < 107
for linear programming, basis pursuit with ¢! regularisation or unconstrained lasso with ¢!
regularisation. For constrained lasso we output z € DV with ||z —4-10"%+ley — (71— 4-
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10~ K+1)es)|,, < 10~*<. For basis pursuit TV we apply the subroutine OutputEta to obtain
n* = OutputEta(m, N, kx = K — 1,k.) € DV, which we output as . Finally, for uncon-
strained lasso TV we apply the subroutine QuiputPsi to obtain ¢* = OutputPsi(m, N, kg =
K —1,k) € DV, which we output as x. In all of the above cases we terminate execution
after outputting x.

If neither of these conditions are met then the loop continues by executing the next iteration.

We have presented the Turing version of the subroutine. For the BSS version, all instances of D are
replaced by R.

Lemma 13.3. Assume that the subroutine ‘Weak’ is applied to an input i corresponding to v in one of
1 1 1

anpj\v,v o Q?fjé PR QELL]\f Jos QSHL; Pl QELP]\;F Y or QSLLJ\;F V. Then the subroutine always terminates

with an output x such that dist y((z, 2(7)) < 10~ %, for the solution map = corresponding to the problem

at hand.

Proof. We start the proof by analysing the case where the problem is either linear programming or an ¢
regularisation problem. By the assumption that ¢ is in one of the “weak” input sets, it must be of one of
the following forms: (y“"*~1, A(a, 8, m, N)) for linear programming, (yBP7517K_1, L(a, B,m,N))
for basis pursuit denoising with ¢! regularisation, (yULle’K ~1, L(a, B, m, N)) for unconstrained lasso
with ¢! regularisation or (y“**~1, L(a, 3,m, N)) for constrained lasso with ¢! regularisation, where
(o, B) € L, o # B. Our argument for each of the cases & > [ and a < 3 is identical, so we will start by
assuming that & < . First, we fix an n and assume that the values of each of the variables accessed in
the statement of the loop are given at the n-th iteration. In particular, d < a+2""—(f—27") < o—n+l1
and hence the subroutine never exits atfal

By contrast, for n sufficiently large d < « — 8 + 27" < —27"1 since « is strictly smaller
than 8 and thus eventually the subroutine does exit at[b] Hence the output z of the subroutine satisfies
lz —4-10" K+ ey|l; <107 (or |z —4- 107K+ ey — (7 — 4 - 107K+ )ez||; < 107 %« if the problem
is constrained lasso). We now use Lemmal[11.1]in the case of LP, Lemmal[11.3]in the case of BP with ¢!
regularisation, Lemma in the case of unconstrained lasso with ¢! regularisation, or Lemma in
the case of constrained lasso with £! regularisation) to conclude that the subroutine is correct in the case
a < .

The case o > (3 is identical except now the value d will never be smaller than —2~"*1 and instead we
will eventually (after sufficiently many iterations, depending on ¢) have d > 27"*1. Thus the subroutine
always outputs z with ||z —4- 107K +tey||; < 107% (or |z —4-107E+ey — (7 —4- 107K+ )eg]); <
10~*< for constrained lasso), which for o > /3 is the correct output by one of Lemma Lemma
Lemma[TT.2]or Lemma[IT.4]depending on the computational problem being analysed.

The argument that the subroutine is correct for the TV problems is similar. This time ¢ is either
(yBETV-E=L T(a, B,m, N)) for basis pursuit or (yV=TV-5=1 T(a, 8,m, N)) for unconstrained lasso.
Once again, if @ < [ the subroutine will exit at E] (and never at . This time, however, the subrou-
tine OutputEta for basis pursuit denoising is called to find n* and then outputs x = n* (similarly, for
unconstrained lasso, OutputPsi is called to find ¢* and output x = /™). Note that in this case, for basis
pursuit denoising, by Lemma we have Z(¢) = {n(y1,a,B)} (or for unconstrained lasso we use
Lemmato obtain Z(1) = {+(y1, a, B)}), where y; is the first coordinate of yBF>TV:W or UL TV.w,
as appropriate. Lemma[T3.] for basis pursuit denoising (correspondingly Lemma[I3.2] for unconstrained
lasso) as well as the inclusion Qipj\fle C ngj\f;’(sfl (correspondingly QELKKW C Qg}f,;fl for un-
constrained lasso) now yields ||z — n(y1, o, 8) |, = 7" = n(y1, @, B)|lp < [In* —n(y1, o, B)|[1 < 107
(correspondingly ||z — ¥ (y1, o, 8) ||, < 107%<). Thus for the TV problems the subroutine returns = with
dist uq (x, 2(2)) = dist (2, 2(2)) < 107% in the case a < .
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The case a > [ for the TV problems is identical to the above except now the subroutine will ex-
ecute [a.| and never giving v = Pyipn™ or x = Pypep*. The same argument as before shows that
dist o (2, 2(7)) = dist aq(z, 2(2)) < 1075, O

Finally, we need a subroutine ‘IdentifyStrongOrWeak’ which determines whether the input 7 corre-
sponds to an ¢ in one of

LP,s BP,¢'s ~AUL,('s CL,¢',s ~ABP,TV,s UL, TV,s
Qm,N,K’ Qm,N,K’ Qm,N,K > Qm,N,K’ Qm,N,K > Or Qm,N,K )

(which we call the ‘InputStrong’ case) or an ¢ in of

LP,w BP, ¢} w UL, w UL/¢',w ~BP,TV,w UL, TV,w
Qm,NJ(’Qm,N,K ’Qm,N,K ’Qmw,K »Qmw,K , Or QrmN,K >

(which we call the ‘InputWeak’ case), provided either of these two cases occurs.
Subroutine IdentifyStrongOrWeak:
Inputs: Dimensions m, NN.

Oracles: O, providing access to the components y(")

;" of an input 7.

Output: Either ‘InputStrong’ or ‘InputWeak’.
1. We set two values, t( and 1, depending on the problem at hand:
a. For linear programming, we setty = 2- 10X and t; = 2 - 10~ K+1,
b. For basis pursuit with ¢! regularisation we setty = 2- 1075 4 §and t; = 2- 10~ 5+ 4.
c. For unconstrained lasso with ¢! regularisation we set tp = 2 - 1075 4+ Xand ¢t; = 2 -
1075+ 4+ X
d. For constrained lasso we set tg = 10~ %X+! and ¢t; = 107K +2,

—1/2

e. For basis pursuit with TV we compute [(m — 1)/m] to 4K bits of precision, yielding

some value w. We then set
3\ 107X 3 10~ K+1
e (1o ) g (1o )

m m—1 4

f. For unconstrained lasso with TV we set tg = 7- 1075 /4 + \(1 +1/(m — 1)) and t; =
3-107 K+ /2 + N1 +1/(m —1)).

2. Using the oracle O, we read y := y£4K). If y) < to+ 2 274K we output ‘InputStrong” and

terminate the subroutine. Else if y; > t; — 2 - 27*K we output ‘InputWeak’. The subroutine

then terminates.

Lemma 13.4. The subroutine ‘IdentifyStrongOrWeak’ correctly identifies the cases ‘InputStrong’ and
‘InputWeak’ as described above. Moreover, the number of digits needed by the oracles as well as the BSS

and the Turing runtime are all bounded above by some polynomial in log(m).

o s LP,s BP,'s ULl s CL,t's ~BP,TV,s

Proof. Suppose first that ¢ = (y, ) is in one of Qm7N7K, Qm7N7K, meNVK , QmN’K, meN,K , Or
UL. TV . . . . . . . . .

Qm N K’S. For linear programming, basis pursuit with A regularisation, unconstrained lasso with A

regularisation and constrained lasso we have y; = ¢y and so y; < to9 + 2—4K_ For basis pursuit TV, we

<67m+ 7_3 ﬁ<5 + 16 _$ +7_iﬁ
U= 912,172, m) m| 4 = YT 91/2,1/2,m) m| 4

have

—4K 31107 —4K
<Sw+8- 27 4 T 2| <42
m| 4
where the first inequality holds because 6(1/2,1/2,m) < m and the final inequality because § < 1. For
unconstrained lasso TV

710K

1 310K _7.107K
y1—4+>\[1+ —

<
m—1] 4(m—-1) — 4

1
+A[1+} =ty < to+ 274K,
m—1
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Thus in each of the cases i/} < y; + 274 < ¢y + 2 - 274 and so the subroutine outputs ‘InputStrong’.
1 1 1

We now consider the case where ¢ = (y, -) is in one of QLT rY , QBPLw QUL w qULL

QE&\ZX’W ,or QEnLI\;FXW We first show that y; > t; — 2745 and hence y} > t; — 2 - 27X, For linear

programming, basis pursuit with ¢! regularisation, unconstrained lasso (with both ¢! and TV regularisa-

tion) and constrained lasso we have y; = t; and thus the claim is true. For basis pursuit with TV, we

have

3 10~ K+1

> gu—g 2t |1 B s gy e

m—1 4

om { 3 } 10~ K+1
_|_ - -
m—1

>
= B1/2,1/2,m) 1
since § < 1, as claimed. Finally, for unconstrained lasso we have

1 73-10*K+1 6- 10" K+1
4m—-1) — 4

7107 K+
Y1 = 1

+/\{1+
m—1

YRR
m—1

since m > 4 and so the claim follows. Therefore the subroutine outputs ‘InputWeak’ provided we can

also show that 3] > to + 2 - 27*K (i.e. the subroutine does not branch and output ‘InputStrong”).

We thus will aim to show that y} > to + 2 - 27* for each of the computational problems. For
linear programming we have 3 > 2 107K+l — 274K 5 9. 107K 1. 2. 274K — ¢; + 2. 274K The
same argument for basis pursuit with ¢! regularisation or unconstrained lasso with ¢! regularisation gives
Y, > to + 2 - 274K Similarly, for constrained lasso we get v}, > 10~K+2 — 274K ~ 10=K+1 1 9.
10~5+ —5.1075 /4 > ¢y + 2 - 27*K For basis pursuit with TV, starting from y; > #; — 274K we get
3 } 10-K+1 {7 3 ] 10K 30 37110°K

= =274 e
4 4 0 +[63 m—1"m| 4

Y1 > tg—2" ¢ {7 —

m—1 m

and since —30/(m — 1) + 3/m is increasing in m, for m € [4,00) (as can be seen by analysing the
derivative), we obtain yy; > to—27*% (63 — 30/3 + 3/4) IO;K > tg—2"4K45.107K > tg43.274K

and thus ¢} > y; — 274K > g 42.274K, Finally for unconstrained lasso with TV we start from y; > ¢
and argue
30-107K 1 7-107K 1 2310~ K
>t = ————+A |1+ = +A |1+ + >to+4-27K,
2 m—1 4 m—1 2

sothaty] > y; — 274K > g+ 2. 274K,

Next, we note that the only call to the oracle 0., requires 4K digits, which is constant, as K is
assumed to be fixed. It remains to estimate the complexity. Note that it suffices to show that the Turing
runtime is polynomial in log(m), as this will then imply the desired polynomial bound on the BSS
runtime.

We do so by separately considering the different possible problems.

a. For linear programming, basis pursuit, unconstrained lasso with ¢! and constrained lasso, the
runtime of computing the numerator and the denominator of ¢q and ¢; is O(1) since K, §, A, and
T are all assumed to be fixed.

b. For basis pursuit with TV, the computation of w can be done as in Lemma([I3.1]- we use Newton-
Raphson iteration to compute w as in [58], Page 92-93]. The complexity of this operation, done
to 4K bits of precision, is polynomial in Len[m/(m — 1)] and 4K. Since Len[m/(m — 1)] =
O(log(m)) and K is fixed, the overall complexity of computing w is polynomial in log(m). Note
that such a w also has Len(w) bounded above by a polynomial in log(m). The computation of ¢,
and ¢; is then done by finitely many arithmetic operations on fractions each of lengths bounded
above by a polynomial in Len(§), Len(w), Len(m) and Len(10~%+!). Since § and K are
assumed to be fixed across all inputs and Len(w) is bounded above by a polynomial in log(m),
the overall complexity of this step is bounded above by a polynomial in log(m).
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c. For unconstrained lasso with TV the complexity of computing ¢y and ¢; is bounded above by a
polynomial in Len()), Len(m), and K. Since A and K are fixed, the complexity of this step is
bounded above by a polynomial in log(m).

In all the cases above both ¢y and ¢; are computed in Turing runtime bounded above by a polynomial
in log(m), so their length must also be bounded above by a polynomial in log(m). Furthermore, by
Lemma|[12.1] we must have Len(y}) < Len(y;) + 4K = O(1). Hence the comparisons in|step 2|can be
done in complexity polynomial in log(m). The final output of ‘InputWeak’ or ‘InputStrong’ can be done
as an O(1) boolean assignment.

We conclude that in the bit complexity model the subroutine ‘IdentifyStrongOrWeak’ takes at most
some polynomial in log(m) bit operations. Estimating the arithmetic complexity is simpler - there are
finitely many arithmetic operations done, except in[step I| where the number of Newton-Raphson iterates
required can be bound by a polynomial in log(m). Each Newton-Raphson iteration takes finitely many
arithmetic operations and hence the overall arithmetic complexity is bounded by a polynomial in log(m).

O

14. PROOF OF THEOREM [3.4} PARTS (1) AND (11)

Parts (i) and (ii) of Theorem 3.4]are formally stated in Proposition[0.32] which we now prove with the
set {2 being one of depending on the problem. Before proceeding to the breakdown epsilon bounds
and algorithm constructions, we note that Lemmas[T12.2} [T2.6] and[12.7] guarantee the desired bounds on
the condition numbers and Lemma|[I2.T]establishes the upper and lower bounds on the size of the inputs.

14.1. Proof of Proposition We consider the fixed-dimensional computational problems {Z, 2, n,
M, Am v}, where Q, v is one of (T2.6) with k = K. Writing Q,,, v = Q5, y U Q)7 . for the cor-
responding “strong” and “weak” components as defined in (12.3) and (12.5), Lemma [I2.10] establishes
the existence of a AS = { f313 < nvar,n € N} € LAy, ) such that, for the computational prob-
lem {Z, an,N,MN,/A\S}, we have €5, 5(p) > 107X, for p € [0,1/2), as well as €5(p) > 107X, for
p €1[0,1/3).

Similarly, Lemmaestablishes the existence of a AW = { Il < nvar,n € N} € LY (A n)
such that, for the computational problem {Z, Q% \, My, A"}, we have e}z (p) > 10~ for p €
[0,1/2) and €} > 10~ (K~1),

Now, defining Ay, n == {fjn|j < Nvar,n € N}, where we let f;.,() = fin@)if e e O v and
fin(t) = an(b) if o € Q) y, for j < ny, and n € N, we have that A,,, v provides A;-information
for {Z, Q. N, Mn, Ay N}, and in view of Remark we have that all the breakdown epsilon bounds
mentioned above also hold for {Z, Q,, n, My, JA\W ~ }- This already establishes part (i) of Proposition
[0.32)as well as the breakdown epsilon bound in part (ii) (and, indeed, the breakdown epsilon bounds in
Proposition[9.33] which will be useful later).

In order to complete the proof of part (ii) of Proposition [0.32] it remains to show the existence of a
recursive (i.e., implementable on a Turing machine) algorithm (which we will call Randomised K digit
algorithm) that returns K correct digits with probability greater than or equal to 2/3 on all inputs of the
problems {é, Qm,N, Mpy, Am,N} = {E, Q. N, My, Am,N}Al for varying m and NV, where Q,, v is
one of (12.6) and = is the corresponding solution map. As in the previous section, we fix the notation
for an element i of Q,,, . For the linear programming case, we write i = ({y](_n)}%ozo’ {AYZ}%‘LO)J-,,@
corresponding to an ¢ = (y, A) € Q,,, n. For the £* and TV problems the notation is analogous, except
that we respectively write L and 7T instead of A.

To construct this algorithm, we need a randomised subroutine, which we call BiasedCoinFlip, that

takes a natural number n and returns ‘true’ with probability 1/n and ‘false’ with probability 1—1/n. Note
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that this subroutine halts with probability 1, and, for each execution of the subroutine, the probabilities of
returning ‘true’, respectively ‘false’, are assumed independent of previous executions of the subroutine.
Such a subroutine can easily be constructed using a randomised Turing machine with access to coin flips
that return true with probability 1/2 and false with probability 1/2.

To construct the desired Randomised K digit algorithm, we first need to design a subroutine Guess
that randomly chooses between K digit approximations to two plausible solutions, each with probability
1/2. Concretely, we define:

Subroutine Guess:

Inputs: Dimensions m, N.

Oracles: Oy and O 4 providing access to the components y§") and Aﬁ) (respectively LE”,C) or Tj(z))
of an input 7.

Output: A potential solution vector x € DV (in the Turing case) or 2 € RY (in the BSS case).

1. First, we make a random coin flip that returns ‘true’ with probability 1/2 and ‘false’ with prob-
ability 1/2.

a. If the coin flip outputted ‘true’ then the output of Guess depends on the problem at hand:
for linear programming, basis pursuit with ¢! regularisation or unconstrained lasso with
¢* regularisation we output z € DV with ||z — 4 - 107 %e;||, < 107X, for constrained
lasso we output z € DV with [z — 4 - 107 %e; + (7 — 4 - 107 F)es]|, < 1075, for
basis pursuit with TV regularisation we output the result of OLtt]mtEta‘ﬁve"‘ﬁ“‘at (m, N, ko =

K, k. = K) and for unconstrained lasso with TV regularisation we output the result of
OutputPsi®vec:Omat (m,N, kg = K, k. = K).

b. If the coin flip outputted ‘false’ then our output depends on the problem at hand: for linear
programming, basis pursuit with ¢! regularisation or unconstrained lasso with ¢! regular-
isation we output z € DV with ||z — 4 - 10 Key||, < 107X, for constrained lasso we
output x € DV with ||z — 4 - 10" Key + (7 — 4 - 107K)es)|, < 107, for basis pur-
suit with TV regularisation we output the result of Pﬂip014tputEtaﬁV“”ﬁr“at (m,N,ky =
K,k. = K) and for unconstrained lasso with TV regularisation we output the result of
PripOutputPsi® %= (m, N, ko = K, k. = K).

With the subroutine Guess and the subroutines constructed in we are ready to specify the desired
Randomised K digit algorithm. In accordance to the claim of part (ii) of Proposition[9.32] this algorithm
does not necessarily halt.

Randomised K digit algorithm

Inputs: Dimensions m, NN.

Oracles: Oyec and Oy, ,; providing access to the components y§") and AYQ (respectively LS'Q or T].(;',?)
of an input z.

Output: With probability at least 2/3, some vector - € RY with dist u (, 2(7)) < 107X,

1. We execute IdentifyStrongOrWeakﬁ“"C’ﬁ‘“at (m, N). If this evaluates to ‘InputWeak’, we execute
the subroutine Weak?vec:@mat (m, N, k. = K) and terminate. Otherwise, we continue to

2. Initialise n = 1 and execute the following loop: First, execute BiasedCoinFlip(2"~! + 2). If
this subroutine returns ‘true’ then we execute Guess?ves“mat (m, N) and terminate. If instead
BiasedCoinFlip returns ‘false’ then we increment n. Next, in the linear programming case we
use the oracle O,y to read Agnl) and Ag"Q) and set d = Ag"l) - Ag"Q) . For the ¢! problems we
read Lﬁ"f and LYQ and set d = L§"1) - LYLQ) , and for the TV problems we read Tl(ﬁ) and T1(7}\),
and setd = Tl(ﬁ) - T1(7;\)1 We then branch depending on the value of d:
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a. If d > 2-27" then we choose z € DV with ||z —4-10"%e; ||, < 10~ for linear program-
ming, basis pursuit with ¢! regularisation or unconstrained lasso with ¢! regularisation. For
constrained lasso we choose 7 € DX ||z —4-107Ke; + (7 —4-107%)ez]|, < 107X, For
basis pursuit TV, we set x to be the result of PﬂipOutputEtaﬁv“’ﬁ“‘“t (m,N, ko = K, ke =
K). Finally, for unconstrained lasso with TV regularisation we set x to be the result of
Pﬁip0utputPsiﬁve°’ﬁ"‘f‘t (m, N, ko = K, k. = K). In all cases, we output 2 and then termi-
nate the procedure.

b. Alternatively, if d < —2 - 27" then we choose x € DV with ||z — 4 - 10~ ey, < 107K
for linear programming, basis pursuit with ¢! regularisation or unconstrained lasso with ¢!
regularisation. For constrained lasso we choose z € DV with ||z — 4 - 107 Key + (7 —
4-107)es|, < 107K, For basis pursuit TV, we set z to be the result of the subroutine
OutputEtaﬁveC’ﬁ“‘“t (m,N,ky = K,k. = K). Finally, for unconstrained lasso with TV
regularisation we set x to be the result of OutputPsiﬁV“’ﬁ‘““t (m,N, kg = K, ke = K). In
all cases, we output x and then terminate the procedure.

If neither of these conditions are met then the loop continues by incrementing n and executing
the next iteration.

We need to prove that this algorithm does indeed achieve what is stated in its preamble, i.e., we need
to show that, for each given input, the algorithm terminates with probability greater than or equal to 2/3
with a correct output, i.e., a vector x at most 10~X away from a true solution. To this end, we let ¢ be the
element of (2 that 7 corresponds to, and consider the following four cases separately:

Case 1 : For this case, ¢ is of the following form: (y“"*, A(a,1/2,m, N)) for linear programming,
(yBP’Zl’S, L(a,1/2,m, N)) for basis pursuit denoising with ¢! regularisation, (yUL*Zl*s, L(a,1/2,m,
N)) for unconstrained lasso, (yCL’S, L(a,1/2,m, N)) for constrained lasso, (yBP’TV’S, T(a,1/2,m,
N)) for basis pursuit denoising with TV regularisation and (yV™TV* T(a,1/2,m, N)) for uncon-
strained lasso with TV regularisation, where 1/4 < a < 1/2 for the ¢ problems, 7, < a < 1/2 for
basis pursuit with TV, and s,, < o < 1/2 for unconstrained lasso with TV.

In this case, Lemma [TT.1] (respectively Lemma [I1.3] or Lemma [T1.2) show that the solution is 4 -
10~%e, for linear programming (respectively, basis pursuit with ¢! regularisation or unconstrained
lasso with ¢! regularisation). For constrained lasso, applying Lemma shows that the solution is
4-107Key + (1 —4-10"Key). Similarly, Lemma shows that the solution is 7(y1, a, 1/2) for basis
pursuit with TV regularisation and Lemma shows that the solution is ¢ (y1, «, 1/2) for unconstrained
lasso with TV regularisation. Therefore, for linear programming, basis pursuit with ¢! regularisation or
unconstrained lasso with ¢! regularisation the algorithm is correct whenever it outputs € D” within
10~5 of 4 - 10~ ¥ ey, and is likewise correct for constrained lasso whenever it outputs 2 € DV within
1075 of 4 - 107 Key + (7 — 4 - 10~ Fey). The correctness of QutputEta (Lemma thus implies
that the algorithm is correct for basis pursuit TV whenever the output is 0utputEtaﬁV“ﬁm“ (m, N, ko =
K, k. = K) and similarly the correctness of OutputPsi (Lemma implies that the algorithm is correct
for unconstrained lasso TV whenever the output is OutputPsi Ovec Omat (m,N,ky = K, k. = K).

By Lemma [I3.4] the subroutine IdentifyStrongOrWeak in of the algorithm will evaluate to
‘InputStrong’, and hence the algorithm will proceed with the loop in[step 2] We therefore proceed with
an analysis of this loop.

Next, let F), be the event that the subroutine Guess is executed in the n-th iteration of the loop and note
that, on the event ({J!'_, F})", the value of d after n iterations satisfies d < o + 27" — (1/2 —27") <
2-27" (since @ < 1/2) and hencenever results in the termination of the algorithm. By contrast,
d<a+2""—1/2+ 2™ and since « is independent of n and strictly smaller than 1/2 this expression
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will be smaller than —2 - 27" for sufficiently large n. Now, define
nog = inf{n € N| F,, does not occur and d < —2-27"}.

Note that the value of ng depends on ¢ through d.

Then P(F,,) = 0, for n > ng, whereas for n < ng, P(F,,) is equal to the probability that the algorithm
has executed n— 1 iterations of the loop without terminating and the execution of BiasedCoinFlip(2" '+
2) returns ‘true’. Note that these two events are independent since the result of BiasedCoinFlip(2"~1 +2)
is independent of all prior calls to the subroutine BiasedCoinFlip. Thus P(F,,) = {1 ~-P(UrZ) FT)} (2n14
2)_1 for n < ng and, since the events F,., forr = 1,...,n — 1, are disjoint, we obtain the recurrence
P(F,) = [1 -y ]P’(Fr)} (27~ +2)~! for n < ng and P(F,,) = 0 for n > ng. Using strong
induction one can show that this implies that P(F,,) = 37! - 27"~V for n < ngy and P(F,) = 0 for
n > ny.

We have argued that ng is finite — this implies that the algorithm halts with probability 1. Be-
cause the algorithm is correct if it outputs an  within 10~ of 4 - 10~ % e, for LP and ¢! problems or
4-10"Key + (7 —4-107 5 )es for the constrained lasso case, as well as QuiputEta® <%= (m, N, ko =
K,k. = K) in the basis pursuit with TV case or QuiputPsi®*< = (m, N ky = K, k. = K) for
the unconstrained lasso with TV case (and we have already argued that Weak is never executed) we
conclude that the only possible incorrect outputs are an z within 1075 of 4 - 107%¢; (in the lin-
ear programming or ¢! cases) or 4 - 107 Ke; + (r—4- 107K)€3 (in the constrained lasso case), or
r = PﬂipOutputEtaﬁV““"ﬁm"‘t (m,N,ky = K,k. = K) (in the basis pursuit TV case), respectively
T = PﬂipOLthLttPsz'ﬁV“ﬁ‘"at (m,N,ky = K, k. = K) (in the unconstrained lasso TV case). Each of
these can occur only if the subroutine Guess returns ‘true’. Since Guess returns ‘true’ with probability
1/2, an incorrect output occurs with probability > - | P(F,)/2 < >°°° 37! .27 = 1/3. Thus, with
probability at least 1 — 1/3 = 2/3, the algorithm produces a correct output.

Case 2: For this case, ¢ is of the following form: (y™", A(1/2,1/2,m, N)) for linear program-
ming, (yBP"}l’S, L(1/2,1/2,m, N)) for basis pursuit denoising and (yULvL]l’S, L(1/2,1/2,m, N)) for
unconstrained lasso, (y“*, L(1/2,1/2,m, N)) for constrained lasso, (y®"*V-*,T(1/2,1/2,m, N))
for basis pursuit denoising with TV regularisation and (yUL’TVVS, T(1/2,1/2,m, N )) for unconstrained
lasso with TV regularisation.

As in the proof of Case 1, and again by Lemma [13.4] the algorithm proceeds to execute the loop in
This time, however, the algorithm never terminates at either[step 2alor[step 2b|— indeed, in the n-th
iteration we haved < 1/24+27"—(1/2—2"") =2-2 " and similarly d > 1/2—-2""—(1/2+27") =
—2 - 27", Thus the algorithm only terminates in the n-th iteration if the subroutine Guess is executed.
As in the proof for Case 1, we let F, be the event that the subroutine Guess is executed in the n-th iter-
ation. The same argument as before shows that P(F,,) = 3~ - 2~ ("=1) (and this occurs for all n since

[step 2a] and [step 2b] never result in the termination of the algorithm). Hence the probability the algo-
rithm terminates with the execution of the subroutine Guess is given by P(U;~, F,) = .2, P(F,) =
Yoo 37Tt =2/3

Note that, whenever Guess is executed by the algorithm, then, for each of linear programming, basis

pursuit with ¢! regularisation and unconstrained lasso with ¢! regularisation, the output of the algorithm
is an € DY within 10~ % of either 4 - 10~ % ey or 4 - 10~ K ey, which, by Lemma , Lemma
or Lemma satisfies dist o (2, 2(7)) = distaq(x, 2(:)) < 107K, Similarly, for constrained lasso
the output of the algorithm is an x € D~¥ within 1075 of either 4 - 107 %e; + (7 — 4 - 107 K)es
or4-10"% ey + (7 — 4- 1075 )e; and this time Lemma [11.4] implies that dist v((2,Z(2)) < 107,
The situation is only marginally more complicated for basis pursuit with TV regularisation — indeed,
Lemma|[11.5|shows that n(y1,1/2,1/2), Paipn(y1,1/2,1/2) € Z(¢) and thus, writing z for the output of
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Guess, we have by Lemmathat dist v (2, 2(2)) < 10~ Finally, for unconstrained lasso with TV
regularisation Lemma [T1.6] shows that ¢(y1,1/2,1/2), Puipth(y1,1/2,1/2) € Z(¢) and thus, writing 2
for the output of Guess, Lemmaimplies that dist v (z, 2(2)) < 107K,

We conclude that, with probability 2/3, the algorithm produces a correct output.

Case 3: For this case, ¢ is of the following form: (y"*, A(1/2,3,m, N)) for linear programming,
(yBP’[l’S, L(1/2,3,m, N)) for basis pursuit denoising with ¢! regularisation, (yULll’S, L(1/2,3,m,
N)) for unconstrained lasso, (y“*, L(1/2, 8,m, N)) for constrained lasso, (y®""TV-,T(1/2, 8, m,
N )) for basis pursuit denoising with TV regularisation and (yUL*TV’S,T(l /2,8,m, N )) for uncon-
strained lasso with TV regularisation, where 1/4 < < 1/2 in the ¢! case, r,, < 8 < 1/2 in the basis
pursuit with TV case and s,, < § < 1/2 in the unconstrained lasso with TV case.

In this case, the argument for correctness proceeds as in Case 1, with the only exceptions being that
now [step 2b| never results in the termination of the algorithm (as opposed to Case 1 where never
results in the termination of the algorithm) and that now the correct solution is 4 - 10~¥¢; for linear
programming and basis pursuit with ¢! regularisation, 4 - 10~¥e; + (7 — 4 - 10~%)e3 for constrained
lasso, Pyipn(y1,1/2, B) for basis pursuit with TV, or Ppipt)(y1,1/2, 3) for unconstrained lasso with TV.
Similarly to the argument for Case 1, the algorithm will only provide the wrong answer or fail to halt if
Guess is called and outputs an x € DV within 10~% of 4 - 10~ e, for linear programming and basis
pursuit with ¢! regularisation, 4- 10~ ¥ eq + (7 —4- 1075 )e3 for constrained lasso, 7(y1, 1/2, 3) for basis
pursuit with TV, or ¢(y1, 1/2, 8) for unconstrained lasso with TV. This occurs with probability bounded
above by > °  P(F,)/2 = 1/3 and thus the algorithm produces a correct output with probability at
least 2/3.

Case 4: For this case, ¢ is of the following form: (yLP’W, Ala, B, m, N)) for linear programming,
(yBP’fl’W7 L(a, 8,m, N)) for basis pursuit denoising with ¢! regularisation, (yULvéle, L(a, B,m,N))
for unconstrained lasso, (y“™", L(c, 8, m, N)) for unconstrained lasso, (y2™V", T'(«, 8, m, N)) for
basis pursuit denoising with TV regularisation and (y"™™V¥ , T(«, 3,m, N)) for unconstrained lasso
with TV regularisation, where (o, 3) € L in the ¢* case, (a, 8) € LBFTV-E~1 in the basis pursuit with
TV case and («, ) € LY%TV-K =1 in the unconstrained lasso with TV case.

By the correctness of IdenifyStrongOrWeak (Lemma [13.4), the algorithm proceeds immediately by
executing Weak¥vee: Omat (m, N, k. = K) . The correctness of Weak (Lemma then shows that the
algorithm always outputs some x with dist o¢(2, 2(7)) < 10~%. Therefore, in this case the algorithm is
correct with probability 1.

These are the only possible cases for ¢, and thus, with probability at least 2/3, the algorithm halts and
outputs an x such that dist v (x, Z(2)) < 1075, as desired.

15. PROOF OF THEOREM [3.4} PARTS (III) AND (1V)

Parts (iii) and (iv) of Theorem[3.4]are formally stated in Proposition[9.33] which we now prove. Recall
that the breakdown epsilon bounds in Proposition [9.33] were already proved in Thus, all that
remains to prove in part (iii) is the existence of a deterministic algorithm that achieves at least 10~ (¥ —1)
accuracy on the problems {é, Qm,N, My, 1~\m7N} ={Z, Qm.n, Mn, Ay n }21 for varying dimensions
m and N, where €,,, x is one of (I2.6) and = and A,,, x are the corresponding solution map and set of

evaluations.

15.1. Proof of part (iii) of Proposition[9.33] As in the previous two sections, we fix the notation for an
element 7 of ,,, y, writing i = ({y§”)}fbozo, {Agnk) ;l.o:())j,k;’ corresponding to an ¢ = (y, A) € Q, v, in
the linear programming case, and analogously for the ¢! and TV problems, writing respectively L and T
instead of A. The desired algorithm makes use of the subroutines established in [I3]and is specified for

each of the computational problems as follows:
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Deterministic K — 1 digit algorithm
Inputs: Dimensions m, V.

Oracles: Oyec and O, providing access to the components y§n)

and Ag-) ) (respectively L( T or T("))
of an input Z.

Output: A vector z € DV (in the Turing case) or z € R (in the BSS case) with dist v (, 2(7)) <
10~ K+1,

1. We execute IdentifyStrongOrWeak? <> (m, N). If this evaluates to ‘InputWeak’, we execute
the algorithm Weak?ve=>?m2 (m, N, k. = K — 1) and terminate. Otherwise, we continue to

2. For each of linear programming, basis pursuit with ¢! regularisation and unconstrained lasso
with ¢! regularisation we output an z € DV with ||z — 2107 %e; +2- 107 Key||, < 107K
and terminate. For constrained lasso we output an € DV with ||z — 2 - 107 ey + 2 -
107 Key + (1 —4-107%)es]|, < 107K, For basis pursuit with TV regularisation we set n* =
OutputEta® 7= (m N, ko = K, k. = K) and output z = (Pgipn* +1*)/2 and terminate and
finally for unconstrained lasso with TV regularisation we set ¢)* = OutputPsiﬁV“ﬁmat (m, N,
ko = K, k. = K) and output z = (Pgipt0* + ¥*)/2.

Unlike the algorithm described in the proof of part (ii) of Proposition[9.32] it is clear that this algorithm
always terminates. Hence it suffices to show that if z is the output of the algorithm then dist v (z, E(Z)) <
10~ 5+1, We do this by separately considering the following two cases for ¢ € (2 that i corresponds to.

Case 1: For this case, ¢ is of the following form: (y™"*, A(a, 3,m, N)) for linear programming,
(yBP’fl’s, L(a, B, m, N)) for basis pursuit denoising with ¢! regularisation, (yUL’el’s, L(a, 8, m, N))
for unconstrained lasso, (yCL’S, L(a,1/2,m, N)) for constrained lasso, (yBP’TV’S, T(a, 8, m, N)) for
basis pursuit denoising with TV regularisation and (y"™TV* T(«, 3,m, N)) for unconstrained lasso
with TV regularisation, where («, 3) € L for the £* problems, (a, 3) € LBPTV-K for basis pursuit with
TV, and (a, ) € LUY-TV-K for unconstrained lasso with TV. By the correctness of IdentifyStrongOrWeak
(Lemma([I3-4), in this case the algorithm will execute step 2]

By Lemmall 1.1](respectively Lemma[l I.3Jor LemmalI 1.2) we have Z(¢)N{4-10 Ke;,4-10 Kep} #
@ for linear programming (respectively, basis pursuit with £! regularisation or unconstrained lasso with £*
regularisation). Thus for any of linear programming, basis pursuit with £* regularisation or unconstrained
lasso with ¢! regularisation we conclude that dist (7, Z(¢)) < max{da(x,4 - 10~ Key), dpq(, 4 -
10-Keg)} < 12-10Key +2- 10 Key|, +2 - 107K = (2 + 2141/7)10-K < 10-K+1. The same
argument but this time with Lemmanand the addition of (7 — 4 - 10~ ¥)e3 where appropriate shows
that dist o (z, 2(¢)) < 1075+ for constrained lasso.

Similarly, Lemma shows that =(¢) N {n(y1, @, B), Paipn(y1,, B)} # @ for basis pursuit with
TV regularisation. Thus if x is the output of the algorithm and n = 7(y1, v, 8) we have

)

By Lemma [13.1| we obtain ||n* — ||, < 10_K < 10~ K+1/6. Moreover, ||(m — nn)(e1 — en)llp, =
21/P|p; — ny| and by applying Lemma [12.8| (equation with n = K we obtain |n; — ny|
max, g)eceerv.x [1(y1, a, B)—n(y1, ,ﬂ)N| <5 1O‘K+12 /P /6. We conclude that dist v (z, Z(1))
10-K+1 /64510 K+1 /6 = 10-K+1,

dist (2, 2(¢)) < max{da(z,n), da (2, Paipn) }

+max{
p

§ 1
<" =nll, + ||77 Paipnllp = 1" = nll, + II(m—nN)(el—eN)Ilp

4+ Paipn®  n — Paipn
2 2

n+ Pupn
2

1+ Paipn
2

- Pﬂipn

)

p

<
<
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Finally, for unconstrained lasso with TV regularisation, applying Lemma shows that Z(¢) N
{1, @, B), Paipt(y1,, )} # . Therefore if « is the output of the algorithm and ¢ = 9 (y1, @, §)
then an argument similar to the above establishes

distn(, 20)) < max{daa(, ), dua(e, Pugth)} < [0 6l + 516~ )(er — en)ly

This time, by Lemma 13.2 we obtain |[1)* — ¢[|, < 107K < 1075+ /6. Moreover, ||(11 — ¥n)(e1 —
en)|lp, = 2YP|4hy — 1n| and by Lemma(equation with n = K we obtain |¢); — ¢¥n| <
max (o g)ecsrv.x [Py, o, B) — ¥y, o, B)n| < 5 - 10~ K+12-1/P /6. We therefore conclude that
dist (2, 2(2))) < 5-10K+1 /6 4 10~ K+1 /6 = 10~ K+1,

We have thus established that for any of linear programming, basis pursuit or unconstrained lasso (with
either ¢! or with TV regularisation), the output z satisfies dist v((, 2(Z)) = dist pq (2, 2(2)) < 107K +1,

Case 2: For this case, ¢ is of the following form: (yLPvW, Aa, B, m, N)) for linear programming,
(yBP’el’W, L(a, B, m, N)) for basis pursuit denoising with ¢! regularisation, (yUL’el’W, L(a, B, m, N))
for unconstrained lasso, (y“™", L(«, 8,m, N)) for constrained lasso, (y®"™V:", T'(«, 8,m, N)) for

basis pursuit denoising with TV regularisation and (yV=TV-¥ T

(o, B,m, N )) for unconstrained lasso
with TV regularisation, where (o, 3) € L for linear programming and the ¢! regularised problems,
(o, B) € LBPTV-E=1 for basis pursuit with TV, and (o, 8) € LUSTV-E~1 for unconstrained lasso with
TV.

By the correctness of IdenifyStrongOrWeak (Lemma [13.4), the algorithm proceeds immediately by
executing Weak?vee:Omat (m, N, k. = K — 1). The correctness of Weak (Lemma then shows that
the algorithm always outputs some z with dist v (, 2(7)) = dist vq (2, 2(¢)) < 10~ K+,

These are the only possible cases for each of the inputs, and we can thus conclude that the algorithm
halts and outputs an 2 € R such that dist v (2, 2(7)) < 107+, completing the proof of Proposition

[0.33] part iii).

15.2. Proof of part (iv) of Proposition The desired algorithm that achieves 10~ (5 ~2) accuracy
and has polynomial Turing arithmetic and BSS runtime, as well as Turing space complexity, and requires
at most a polynomial in log(n.,,) digits form the oracles, where ny,, = mN + m is the number of
variables, is specified as follows:

Polynomial time K — 2 digit algorithm

Inputs: Dimensions m, N.

Oracles: Oyec and O, providing access to the components y§") and Aﬂ) (respectively Lgnk) or Tj(f,i))
of an input .

Output: A vector z € DV (in the Turing case) or z € R¥ (in the BSS case) with dist v (1, é([)) <
10~ K+2,

1. We execute IdentifyStrongOrWeak 7~ mat (m, N') and branch depending on the result:

a. If the output of IdentifyStrongOrWeak was ‘InputWeak’ then we output depending on the
problem at hand. For each of linear programming, basis pursuit with #! regularisation and
unconstrained lasso with ¢! regularisation we output an z € DV with ||z —2-10~K+1l¢e; +
2107 K+1ey[|, < 10~ =1 and terminate. For constrained lasso we output an = € DV
with ||z —2-10"%+1e; +2.10 K +ley + (71— 4- 107K+ )ez|, < 107K~ and terminate.
For basis pursuit with TV regularisation we set n* = OutputEtaﬁve“’ﬁ‘““ (m,N,kg = K —
1,k. = K —1) and output x = (Ppipn* +n*)/2 and terminate and finally for unconstrained
lasso with TV regularisation we set ¢)* = OutputPsiﬁV“"ﬁ“"“t (myN,kg = K — 1,k. =
K —1) and output = (Pyiptp* + ¢*)/2 and terminate.
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b. If the output of IdentifyStrongOrWeak was ‘InputStrong’ then we output depending on the
problem at hand. For each of linear programming, basis pursuit with ¢! regularisation and
unconstrained lasso with ¢! regularisation we output an x € DV with ||z — 2 - 107 %e; +
2107 Fey, < 10~ (%=1 and terminate. For constrained lasso we output an = € DV with
|z —2-107%e; +2-107Key + (1 — 4 - 107K)es|, < 10751 and terminate. For
basis pursuit with TV regularisation we set n* = OutputEmﬁV“’ﬁ"‘at (m,N, kg = K, k. =
K — 1) and output = (Ppipn* 4+ n*)/2 and terminate and finally for unconstrained lasso
with TV regularisation we set ¢* = OQutputPsi®vec:Omat (m,N,kg = K,k = K — 1) and
output = (Paiptp™ + 1¥*)/2 and terminate.

We show that the algorithm outputs a vector = with dist ¢ (x,Z(Z)) < 10~5+2 by analysing the
following two cases for ¢ € € that 7 corresponds to:

Case 1: For this case, ¢ is of the following form: (y™*, A(a, 3,m, N)) for linear programming,
(yBP’Zl’S7 L(a, B, m, N)) for basis pursuit denoising with ¢! regularisation, (yUL’el’S, L(a, 8, m, N))
for unconstrained lasso, (yCL’S, L(a,ﬁ,m,N)) for constrained lasso, (yBP’TV’S,T(a,ﬁ,m,N)) for
basis pursuit denoising with TV regularisation and (y"™TV* T(«, 3,m, N)) for unconstrained lasso
with TV regularisation, where (o, 3) € L in the ¢! case, (o, 3) € LBPTV-K in the basis pursuit with TV
case and (o, 3) € LY-TV-K in the unconstrained lasso with TV case. By the correctness of IdentifyS-
trongOrWeak (Lemma|[13.4), in this case the algorithm will execute [step 1b)|

We have already shown in the proof of part (iii) that this will result in an output 2 with dist v (, 2(Z))
< 105+ It thus remains to analyse the complexity of the algorithm. To this end, first note that
Lemmas [13.1} [13.2] and [13.4] imply that OutputEta, OutputPsi, and IdentifyStrongOrWeak request at
most a polynomial in log (7., ) digits from the oracles, and therefore so does the algorithm overall. Next,

it suffices to show that the Turing and BSS runtime of the algorithm is polynomial in n,,, as this will then
imply the desired polynomial bound on the Turing arithmetic runtime and the Turing space complexity as
well. Note that Lemma([T3.4]implies that the Turing and BSS runtime of executing IdentifyStrongOrWeak
is bounded by a polynomial of log(m), whereas Lemmas and imply that the Turing and BSS
runtimes of executing OutputEta and OutputPsi are bounded by a polynomial of K and log(N). This, in
particular, means that Len(n*) and Len()*), and hence the Turing runtime of computing z, are bounded
by a polynomial of log(N). As K is fixed, we deduce that the the overall Turing and BSS runtime of the
algorithm is bounded by a polynomial of log(m) and log(N), which is itself bounded by a polynomial
of Nyar, as desired.

Case 2: For this case, ¢ is of the following form: (yLP’W, Ala, B, m, N)) for linear programming,
(yBP’fl’W7 L(c, B, m, N)) for basis pursuit denoising with ¢! regularisation, (yULvéle, L(a, B,m,N))
for unconstrained lasso, (y“™", L(c, 8, m, N)) for unconstrained lasso, (y2™V", T'(«, 8, m, N)) for
basis pursuit denoising with TV regularisation and (y"™™V¥, T(«, 3,m, N)) for unconstrained lasso
with TV regularisation, where (o, 3) € L in the ¢* case, (a, 8) € LBFTV-E~=1 in the basis pursuit with
TV case and (a, ) € LU-TV-E =1 in the unconstrained lasso with TV case. In this case, the correctness
of IdentifyStrongOrWeak (Lemma[I3.4) implies that the algorithm will execute [step Ta)] Our analysis is
very similar to that of part (iii) Case 1.

By Lemma (respectively Lemma or Lemma we have Z(¢) N {4 - 107 K+1e; 4 -
10~ 5+1ley} # @ for linear programming (respectively, basis pursuit with ¢! regularisation or uncon-
strained lasso with ¢! regularisation). Thus for any of linear programming, basis pursuit with ¢! regular-
isation or unconstrained lasso with ¢! regularisation we conclude that dist o (z, Z(¢)) < max{d(x,4 -
107K+ ey), dpqg(,4 - 107K+ ey)} < |2 107K F ey + 2 107K F ey, + 2 - 10-K-D = (2 +
9U+1/p)10~K+1 < 10~ K+2,
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The argument for constrained lasso is identical but now we add (7 — 4 - 10~ %*1)e3 to both the
true solution and the output value of the algorithm. Applying Lemma [TT.4] allows us to conclude that
distaq (2, Z(1)) < 107 K+2,

Similarly, Lemma shows that =(¢) N {n(y1, @, B), Paipn(y1, o, B)} # @ for basis pursuit with
TV regularisation. Thus, writing n = 7(y1, «, ), we obtain as in the proof of part (iii), case 1 that
distp(2,2(1) < " = nllp + Im — v |24/7/2.

Next, by Lemma [13.1] we obtain [|n* — n], < 105~ < 10~%+2/6. Moreover, Lemma [12.§]
(equation withn = K — 1 gives |1 — nn| < max, gyecoerv.c—1 [0(y1, o, B) — n(y1, o, B)n| <
510~ K+22-1/7 /6. We conclude that dist o (z, Z(2)) < 5-1075+2/6 4 10 K+2 /6 = 10~ K+2.

Finally, for unconstrained lasso with TV regularisation Lemma [IT.6]shows that Z(¢) N {¢(y1, «, 8),
Pript(y1, o, B)} # @. Therefore, writing ) = 1 (y1, o, §), we obtain as before that dist y(z,Z(¢)) <
4* — ||, + |1 — ¥n|2'/7/2 Thus applying Lemma (equation with n = K — 1 gives
|91 — N | < max,, gyeceerv.c—1 [Y(y1, @, B) —Y(y1, o, B)n| < 5- 10~ 5+22-1/P /6. We conclude that
distp(z,2(0)) <5-1075+2/6 4 107 5+2 /6 = 10~ K+2.

Therefore, in all cases we have dist o¢(z, 2()) = dist (2, Z(¢)) < 107K ~2), Finally, the com-
plexity analysis is entirely analogous to the one presented in Case 1. As these were the only possible
cases for ¢, the proof of part (iv) of Proposition[9.33]is complete.

16. PROOF OF THEOREM [3.1]

Theorem [5.1]is formally stated in Proposition[9.41] which we now prove.

16.1. Constructing the sets of inputs. The constructions here will be similar to those in the proof of
Theorem [3.4] As before, each computational problem will require a separate input set. We will denote
the input sets for LP, ¢! BP, ¢! UL, CL, TV BP and TV UL by

1 1 1
QLP-E BP.LE ULLLE CLLLE BPTV.E ULTV.E (16.1)

respectively. These input sets may depend on K, w, w, the dimensions m, N, and any relevant regu-
larisation parameters. As in the proof of Theorem [3.4] we will omit this dependency in order to avoid
cluttered notation.

For the ¢! problems, there is no dependence on w or w and we simply set

QLPE _ QI;S}\S/,K, OBP.LE _ QE@PKKS, QULLE _ leLAfle, OCL.LE _ Qngéle
where the sets Qf]\s, o Qipj\fl[? , QSTLAfIKS and QzL]\fil[; are defined as in

The situation is slightly more complicated for the TV problems: starting with basis pursuit TV, we
recall 7 from §11.3|and 7 as defined in and choose 1 € (rx,1/2) so that if o € [r, r] and
y1 € [0,3/2], then ||n(y1, o, 1/2) — n(y1,1/2,1/2)|l, < 107K — w. The existence of 7/ is guaranteed
by the continuity of 77 and the assumption that 10~% — w > 0.

For unconstrained lasso TV we recall 1) from and sk as defined in and choose s €
(sk,1/2) so that if o € [, 7] and y1 € [0,107/180] then ||¢(y1,, 1/2) — ¥(y1,1/2,1/2)||, <
107K — w. Again, the existence of s’ is guaranteed by the continuity of 1) and the assumption that
1075 —w>0.

We then set

LBPTVEK _ ([0 1/2] x {1/2}) U ({1/2} x |1, 1/2))
LUVTVEK — ([sh.1/2] x {1/2}) U ({1/2} x [sh,1/2]).
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and
QBPIV.E _ {(yBP,TV,s’T(a’ﬂ’m,N)) |(a,B) € LBP,TV,E,K} ’

QUL,TV,E — {(yUL’TV’S,T(OL,ﬂ,m,N)) | (a”@) c ﬁUL,TV,E,K}

Note then that QPP TV-E C QPFIVS and QULTVE € QUL TS 50 once again the statements about the
condition and size of the inputs follows from Lemmas[12.1} [12.2} [12.6} and [12.7]

16.2. Proof of Proposition |91T| part (i). Note that part (i) is an immediate consequence of part (ii)

as discussed in Remark [5.2] Therefore we will focus on proving part (ii). To do this we will employ

Proposition with k = 10~ For each of the input sets Q discussed above, we will construct an

input 19 € €, sequences of inputs {1} ; and {:2}22; in €, subsets S! and S? of RY and vectors

x! 2?2 € RV satisfying requirementstoin Proposition with k£ = 10~% To do so, we present

an argument similar to the one used in Lemma [I2.10] covering each computational problem separately.
Case {Z1p, O'PF}: We recall A from (TT.1) and y"“** from (T2.4) and set

W0 = (ytP=  A(1/2,1/2,m, N)),

=y, A(1/2,1/2 =47, m,N)), 2 = (y*"% A(1/2 - 47", 1/2,m, N)),

at =4-10"Fe, 22 =4-10"Fey, St ={z'}, and S? = {z?},

L

3= 3

—

from which Proposition [T0.6][(d)] immediately holds. Arguing as in Lemma [T2.10] gives us Proposition

[T0.6](a)} Lemma|[TT.T] gives Proposition[I0.€[(b)] It is then obvious that Proposition [T0.6](c)|holds. Now,
by Lemmal|l 1.1} we have that, for a € [0,1/2), Zrp(y"F 5, A(a, 1/2,m, N)) = {22} and similarly, for
B€0,1/2), Zrp(y“Fs, A(1/2,8,m, N)) = {x'}, and thus

Erp(PF) C {2} U {22} UBLp(0). (16.2)

which implies Finally, to show we note that Lemma implies 2!, 22 € Z(.0).

Case {Epppn, 2BPC B} We recall yBP+*' from (12Z:4) and set
O = (PP L(1/2,1/2,m, N)),
L= (B D(1/2,1/2 — 47" m,N)), 12 = (yBPC S L(1/2 — 47" 1/2,m, N)),

zt =4-10"Fe, 22 =410 ey, St ={z'}, and S?={2?}.

The remainder of the argument is identical to the LP case except we use Lemma [IT.3]instead of Lemma
[[T1land obtain
EBPDN(QBP’Zl’E) - {xl} U {$2} U EBPDN(LO) (16.3)

instead of (16.2).

Case {Eyp, QU4 B} : We recall 3" from (T24) and set
O = (yUe L(1/2,1/2,m, N)),
L’}L = (yUL’el’Sv L(]-/Qa 1/2 —47" m, N))’ L721 = (yUL,Zl,s7 L(1/2 —47", 1/2’ m, N))a
ot =4.10"Ke, 22 =4-10"Fey, St ={z'}, and S%={2?}.

The remainder of the argument is identical to the LP case except we use Lemma [IT.2]instead of Lemma
[[TTland obtain

Sun QUL E) € {21} U {2%} UL () (16.4)

instead of (16.2).
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Case {Ecr,, Q% EY: We recall y©&* from (T2.4) and set
v =y, L(1/2,1/2,m, N)),
b= (55 L(1/2,1/2 — 47", m, N)), 2=y L(1/2 — 47", 1/2,m, N)),
2t =4-107%e; + (71 —4-107%)es, 22 =410 ey + (1 —4-107%)es,
St ={z'}, and S*= {27},

from which Proposition [T0.6][(d)] immediately holds. Arguing as in Lemma [T2.10] gives us Proposition

[10.6](a)] Lemma|[IT.4]gives Proposition[I0.6](b)] It is then obvious that Proposition[I0.6](c)|holds. Next,
by Lemma|1 1.4} we have that, for a € [0,1/2), ZcL(y“™*, L(a, 1/2,m, N)) = {2?} and similarly, for
B€10,1/2), Zcr.(y°™5, L(1/2, B,m, N)) = {x'}. We thus obtain

ZeL (Y F) C {2'} U {2?} U B () (16.5)

which implies Finally, to show we note that Lemma implies z!, 22 € Z(.°).

Case {Zpprv, QPP TV-E}: We recall T from (T1.7) and yBFTV>* from (12.4), and choose ng € N

so that 1/2 — 470 € [rh.,1/2]. Now, writing y; = y1" ", we set

O = (BT T(1/2,1/2,m, N)),
o= (PP TVS T(1/2,1/2 = 477" m, N)), 1= (yPTVS T(1/2 =477 1/2,m, N)),

n n

xl - Pﬂipn(yhl/za 1/2)a .132 :n(ylal/Z’ 1/2)’
S = {Pupn(y1, @, 1/2) |a € [r,1/2]},  and  S* = {n(y1,1/2,8) |8 € [, 1/2]}-

By the choice of ng and the definition of 7% we have that :°, .. and (2 are all elements of QBFTV-E and
we also see immediately from the definition that Proposition [T0.6][(d)| holds. Next, by Lemma [T1.5| we
get Proposition [T0.6][(b)] whereas the continuity of 7 together with Lemma [TT.3] yield Proposition [10.6]
The same argument as in the proof of Lemma[T2:10] gives us Proposition [T0.6[(a)]

Now, by Lemma we have that y; € [0,3/2], and so, by Lemma and the definition of
4. we obtain that, for « € [r},1/2] and ¢ = (yBPTVS T(a,1/2,m, N)) we have ||Zgprv (L) —
oo = In(y1,,1/2) — n(y1,1/2,1/2)||ec < 107K — w. Similarly, for 3 € [r},1/2] and + =
(yBY Vs T(1/2, 8,m, N)) we obtain ||Egprv (1) — 22|l < 107K — w. Hence

Epprv(QPPTVE) C Big-x_, (2') UBio-x o (2%) UBig-x _, (Egprv(i?)) (16.6)
We conclude that Proposition [T0.6][(¢)| holds. Finally, to show [T0.6][(f)] we note that Lemma [T1.3]implies
zl 2? € 2(.0).

Case {Zyrry, QU TV-E}: We recall yU Vs from (12.4) and choose ng € N such that 1/2—47"0 €

[s%,1/2]. Writing y; = ;""" V%, we set

= (T T(1/2,1/2,m, N)),
= (T T(1/2,1/2 =470 m, N)), g = (TS T(1/2 - 477, 1/2,m, N)),
xl = Pﬂip¢(ylal/2v 1/2)7 :CQ :1/’(11171/2»1/2),

S' = {Puipt(y1, @, 1/2) | o € [s%,1/2]}, and S = {¥(y1,1/2,6)| 8 € [sk, 1/2]}.

The remainder of the argument is very similar to that in the case {Egprv, QP TV-E} with the major
difference being that we replace 7 by 1), 1} by s, references to Lemma by references to Lemma
1.6 yBPTV:s by UL TVss “and the bounds y; € [0,3/2] by y1 € [0,107/180]. This then yields

EULT\/(QUL’TV’E) - EIO_K—w ($1) U ElO_K—w (322) U ElO_K—w (EULTV (LO)) (16.7)

instead of (I6.6). As before, we are able to conclude that assumptions [(a)] to ()] in Proposition [I0.6]hold.
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Therefore, for each computational problem we have shown that assumptions [(a)] to [(f)] in Propo-
sition m hold, and thus there exits a AT & £0’“’7é(1§) such that, for the computational problem
{2F,0,{0,1},A*}, we have e5(p) > 1/2, as desired, completing the proof of part (i) of Proposi-
tion[9.41]

16.3. Proof of Proposition part (ii). The fact that for the oracle problem {ZF Q, {0,1}, A}~
with respect to {é, Q, M, 1~\} we have €}, > 1/2 follows directly from part (i) of the proposition. It
thus suffices to show that the oracle problem {é, O, M, A}OW with respect to {ZF, Q, {0,1}, /~\} can be
computed in the arithmetic model to within 10~% accuracy. The first step of our recursive algorithm that
achieves this will make use of the exit flag to determine if the input is a representation of . — if not, the
algorithm proceeds by executing a loop similar to the algorithm Weak defined in §13]

To this end, for the linear programming case, we recall (9.25) and fix the notation for an element of
Q° by writing i = ({y](.”)}ffzo, {Aﬁ) ;L.O:O)j’k @® =F(7), corresponding to an ¢ = (y, A) €  and the
solution Z¥(7) to the exit flag problem, i.e., (i) = 1 if dist »((T'(2),Z(2)) < 1075 and E2¥(7) = 0
else. For the /! and TV problems the notation is entirely analogous, except that we respectively write L
and T instead of A. The exact specification of the algorithm is now as follows:

Algorithm ComputeTrueSolution:

Inputs: Dimensions m, N.

Oracles: Oyec, Omat, and Oy, providing access to the components yﬁwl), Agnk) (respectively Lgnk) or
Tj(z)), and 2 (7) of an input .

Output: A vector z € DV (for the Turing machine) or z € R (for the BSS machine) with
dist a (2, £(7)) < 107K,

1. If =2¥(7) = 1, we run I on 7 and output I'(7). Otherwise, we proceed to the next step.

2. We execute a loop that proceeds as follows — at each iteration, we increase n, starting with n = 1.
What we do now depends on the problem at hand. In the linear programming case we use the
oracle Oy to read the values Agnl) and A§"2) and set d = Ag"l) - Ag"z) . In the ¢! case we use
the oracle Oy, to read the values Lgnl) and Lgnl) and set d = Lgtll) — Lg"Q) For the TV problems
we similarly read the values Tl(ﬁ) and Tl(';\), and set d = T1(H) - Tl(TJL\),

Next, we branch depending on the value of d:

a. If d > 227" then we output an x € DV with ||z — 4 - 107 %e¢;||, < 107X for linear
programming, basis pursuit with ¢! regularisation or unconstrained lasso with ¢! regular-
isation. For constrained lasso we output an x € D¥ with ||z — 4 - 107 %ey + (7 — 4 -
10~ 8)es]|, < 107%. For basis pursuit TV we apply the subroutine OutputEta to obtain
n* = OutputEta® % (m, N, kg = K,k. = K), to which we apply Ppip and output
as x (so that x = Pgipn*). Finally, for unconstrained lasso TV we apply the subroutine
OutputPsi to obtain 1/* = OutputPsi® %= (m, N, ki = K, k. = K), to which we ap-
ply Prip and output as x (so that x = Pg;ptp™). In all of the above cases we terminate the
algorithm after outputting x.

b. Alternatively, if d < —2-27" then we output an z € DV with ||z — 410" K ey, < 107K
for linear programming, basis pursuit with ¢! regularisation or unconstrained lasso with
¢! regularisation. For constrained lasso we output an z € DV with ||z — 4 - 107 K¢y +
(1 —4-107%)es||, < 10~%. For basis pursuit TV we apply the subroutine OutputEta to
obtain n* = OQutputEta®% (m, N, kg = K, k. = K, which we output as z. Finally,
for unconstrained lasso TV we apply the subroutine OutputPsi with parameter ¢ to obtain
Y* = OutputPsi® %= (m N, ki = K,k. = K), which we output as z. In all of the
above cases we terminate the algorithm after outputting z.
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If neither of these conditions are met then the loop continues by executing the next iteration.

Lemma 16.1. For every input i in Q, ComputeTrueSolution outputs a vector = with dist v (z, 2(1)) <
107K,

Proof. First, observe that if ‘ComputeTrueSolution’ exits at[step 1|then ‘ComputeTrueSolution’ outputs
a value within 10~ of the true solution — this follows from the definition of the exit flag oracle.

Next, for each of the computational problems, let 0, 21, and 22 be as in the proof of part (i). Now,
for any 7 corresponding to .°, we claim that the algorithm always terminates at[step 1] Indeed, we proved
there that 2(Q) C Byg-x _, (z') U Byg-x _, (2?) U E(.?) and that z', 22 € Z(.°). Consequently, we
have Z(2) C Big-x_,(Z(:°)). Furthermore, by assumption we have dist v (I'(2), 2(2)) < w.
Hence

dist o (T(2), 2(2)) = distp(0(2), 2(:°)) < distag(T(1), E(Q)) + sup  dist g (w, Z(°))
weE(Q)
<w+107E —w=10"%,

completing the argument that the algorithm always exits at[step 1]

All that remains is to prove that ‘ComputeTrueSolution’ is correct whenever ¢ corresponds to an
element © € € other than (° as well as Z¥(7) = 0. The proof of this step is very similar to the
proof of Lemma Indeed, since ¢ # (°,  has to be of one of the following forms for the ¢!
problems: (yLP’S, L(a, B,m, N)) for linear programming, (yBP7€1’S, L(a, B,m, N)) for basis pursuit
denoising with ¢! regularisation and (yUL’ZI’S, L(a, 8, m, N)) for unconstrained lasso with ¢* regular-
isation where o, 8 € L, o # (. Similarly, for the TV problems . must be of one of the following
forms: (yBP*TVVS,T(a,B,m,N)) for basis pursuit TV where o # 3 and (o, 3) € LBPTVEK and
(yUL’TV’S, T(«a, 8, m, N)) for unconstrained lasso TV where o # 3 and (a, 8) € LY“TVEE The re-
mainder of the proof from here is identical to that of Lemma[T3.3] except that all references to the value
10~ 5+ are now replaced by 10X, O

The above construction establishes that, given an oracle for the exit flag, one can compute Zto preci-
sion 10~ %, concluding the proof of part (ii).

16.4. Proof of Proposition part (iii). We recall the definition of A¥ from (TT.13)), define the input
set QF according to

Q% = {(y"(y1,m), A¥(a,m,N)) [y1 =3-100%-a and a€[0,1/2)},

and let = be either Zpp or Zgppn With & = 0. We first construct a A e L’l(A) such that, for the
computational problem {Z¥ Qf {0,1},A} and p > 1/2, we have €35(p) > 1/2 and second, we de-
sign an algorithm that outputs a solution to the oracle problem {Z7,QF, {0,1}, A} with respect to
(2,00 M, AL
To accomplish the first task, we will use Propositionwith x = 107X Concretely, we set
O = (¥~ (0,m), AB(0,m, N)), L =@"@3- 1075 .27 m), AE(27" m, N)), 2 =40

n
2t =3-10"%e; e RY, 22=0ecRY, S'={2'}, and S%={z?}.

We now prove that conditions [(a)] to [(e)] of Proposition [T0.6] hold. Starting with [(a)] we note that
distpq (S, S?) = dpm(21,0) = 3- 107K By Lemma Z() = {z/} foralln € Nand j = 1,2.
This gives us both(b)]and[(c)} We also have .* = ¢2 and |f(z}) — £(:°)] < max(3-10-52-" 277) =
27" forall f € A, and thusholds. Finally, for . € ¥ we can use Lemmato see that Z(¢) = {z'}
or Z(¢) = {2} and hence [€)] holds. An application of Proposition [10.6] therefore establishes that
epp(p) > 1/2, for p > 1/2, as desired.
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Next, we construct the desired algorithm, which will be identical for both basis pursuit and linear
programming. Similarly to the proof of part (ii), we write 7 = ({yjn 0 {AJ oo 0>J . @ {gk( )}
for an input i € ) corresponding to an ¢ = (y, A) € Q and a solution oracle {gx ()}, € B>(Z(7)). We
now define:

Algorithm ComputeExitFlag:

Inputs: Dimensions m, NN.

Oracles: U, providing access to the components gy, of an input ¢

Output: Either 1 if dist v((T'(2), £(2)) < 1075 or 0 if dist p((T'(2), Z(2)) > 107K,

1. We use Oy to read g1(7): if [g1(Z)] < 107X then we set z = 0 € RY, otherwise we set

x=3-107%

2. We output 1if [|T(7) — z||oo < 1075 Otherwise, we output 0.
To prove the correctness of ‘ComputeExitFlag’, we will prove that (i) = {z} for every input i €
Q. Indeed, let ¢ be the element of Qf that i corresponds to. There are two cases to consider: either
v = (y*(3-107Ka,m), AE(a, m, N)) for some a > 0 or ¢ = (y"(0,m), AE(0,m, N)). In the first
case Lemma m tells us that Z(:) = {3 - 107}, In particular, since {gx(7)}r € BX(Z(0)), we
must have |g;(7)| > 3-107% — w > 107X and hence ‘ComputeExitFlag’ sets z = 3 - IO*K which
is the only element of Z(¢). If instead ¢« = (y"“(0,m), A®(0,m, N)) then Lemma [11.7| tells us that
Z(¢) = 0. Hence |g1(7)] < w < 107K, Thus ‘ComputeExitFlag’ sets x = 0, which is the only element
of Z(¢) = Z(7). We have thus shown that Z(7) = {z}. Therefore T¥ () = 1 if |[T'(0) — /|0 < 107K
and T'F(7) = 0 otherwise. But this is exactly the output of ‘ComputeExitFlag’ in and thus the
algorithm ‘ComputeExitFlag’ computes the exit flag as claimed.

17. PROOF OF THEOREMI[6.1]

Theorem [6.1] is formally stated in Proposition [0.43] which we now prove. Our strategy is similar to
that for the proof of Theorem [3.4] We begin by defining the input set Q2 and then verify the conditions of
(T0.3). This, together with an additional algorithm we write to prove part (iii) will complete the proof of

Proposition[9.43]

17.1. Constructing the input and evaluation sets. Let A/ and K be as in the statement in the proposi-
tion, recall the definition of S} from (9.28) and define M}, = 10~%(|10*M | + 1), for k € NU {0}. Note
that My, < My _1, for all k € N, with equality if and only if M € S,?.

We recall the definitions of y* and A™"P from (TT.14) and for natural m and N with m < N define
the sets €, and Q7 as follows:

QLR = {(y* (Mg, m), AYPP(a,1,m,N)) | € [0,1]}
O = {(y (Mg —10,m), APP (0, 0,m, N)) | o € (0,1]}
U{(y"(0,m), A¥""P(=a,0,m, N)) |a € (0, 1]}

LPs | oLP
andset Q@ = U <oy Qo ¥ U &

17.2. Proof of Proposition@parts (i) and (ii). Fix m, N € N with m < N and define the constant
sequence {¢}}o° QLPN and input .° QLP ¢ by il =0 = (y(0,m), ALP:P (47" 1,m, N)), as
well as the sequence {¢12}5°, C QL% by 12 = (y“(47"My), A¥®P (47" 1,m, N)). If we define

= {1} and S = {0}, then (4~"Mp)/4~" = 10-K (| 105 M| + 1), and so by Lemmal[l1.8|we have
_K( 1) =Zx(:%) € S* and Ex(:2) € S2, forall n € N. The conditions [(a)] - [(e)] of Proposition [10.3]
are readily seen to hold with for these sequences and the sets S* and S2, allowing us to conclude that
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there exists a AS € L'(A,, n) such that {Eg, anpj\b,, {0,1}, A%} ¢ %¢ as well as i (p) > 1/2, for
p € [0,1/2).

Next, consider the sequences {¢1}°° ; and {12}2 ; givenby 1L = (y%(0,m), ALP:P (=477 0,m, N))
€ QEFAV,V and 2 = (yU“(Mg_1 -47",m), ALPP(47" 0,m, N)) € QI;PAV,V Defining ° ¢ Q according
to (0 = (y“(0,m), A¥""P(0,0,m, N)), we have |f(:]) — f(:°)] < 47" for f € Apn, j € {1,2},
and n € N, whereas by Lemma[[1.8] we obtain Z(:1) € S = {1} and £(:2) € S? = {0}, and thus
Proposition implies the existence of a Av € LY (A, N) such that, for the computational problem
{Ex -1, &' {0,1}, A™}, we have e} (p) > 1/2, forp € [0,1/2).

Now, defining Ay n = {fjn|J < Nvar,n € N}, where we let f;,() = fin@)if v e O v and
fin(t) = e () ife € O, ns for j < nyar and n € N, we have that A, N provides A;-information
for {Zx, Q. N, Mn,Am N}, and in view of Remark we have that all the breakdown epsilon
bounds mentioned above also hold for {Ex, Q. ~, {0, 1}, AmN}. This establishes parts (i) and (ii) of
Proposition[9.43|as well as the weak breakdown epsilon bound in part (iii).

17.3. Proof of Proposition M ¢ 8% = (iii). To complete the proof of part (iii) under the
additional assumption M ¢ S, it remains to construct an algorithm that, for each m and N withm < N,
outputs an approximate solution to {Ex 1, 2., {0, 1}, A v 12 = {Ex 1, Y, {0, 1}, Ay v} Of
accuracy 10~%~1. Our construction is similar to the one used in Concretely, the algorithm is
constructed as follows. First note that Mk < Mg _1, since we are assuming M ¢ S?(. Now, writing
i= ({y](_n)}%ozo’ {Agflk)}ffzo)j,k for an input 7 € Q,, y corresponding to an ¢ = (y, A) € Q,, v, We
define:

Algorithm K — 1 digit Smale’s 9th problem

Inputs: Dimensions m, N.

Oracles: Ot providing access to the components Agn,g of an input ¢ € Qm, N-

Output: Either 1 or 0.

(1) We use Opyq to read Ag It Agz% > 3/4 then we output 1 and terminate the algorithm, otherwise
we proceed to the next step.

(2) We execute a loop that proceeds as follows — at each iteration, we increase n, starting withn = 1.
Use oracle Opat to read Ag”f If Ag”f > 27" we output 0 and terminate the algorithm. If instead

Ag"l) < —27" we output 1 and terminate the algorithm.

To show the correctness of this algorithm, we consider three cases depending on which ¢ € €),,, v the
input ¢ corresponds to:

Case 1: The input ¢« = (y“(Mga,m), A¥*'P(a,1,m, N)) € Q%lpjs for some «[0,1]. Observing
that (Mga)/a = Mg < Mg_1 whenever o € (0,1], Lemma [11.8] yields Zx_1(¢) = 1, for all
@[0,1]. On the other hand, since A*""P(a,1,m,N);» = 1 by the definition of A“":P, we obtain
A% >1—1/4 = 3/4 and hence the algorithm also outputs 1.

Case 2: The input ¢ = (y*(Mg_1a,m), AYF'P(a,0,m, N)) for some a € (0,1]. In this case we
have (Mk_1a)/a = Mg _1, and thus by Lemma we obtain that Zx_1(¢) = 0. To analyse the
output of the algorithm, note first that since AY""P(«,1,m, N); 2 = 0 by the definition of ALT:D we
obtain A?% < 0+ 1/4 < 3/4 and hence the algorithm proceeds to step We have Aﬁ”l) >a—27">
—27™ since « is positive. Hence the loop never terminates by outputting 1. However, again using that o
is positive, for sufficiently large n we have A(ffl) > o — 27™ > 27" and hence the algorithm eventually
outputs 0.

Case 3: The input ¢ = (y"(0,m), AY*>P(—a, 0,m, N)) for some a € (0, 1]. In this case, by Lemma
we obtain that Zx _1(¢) = 1. Our analysis of the output of the algorithm is similar to Case 2 and
we once again proceed to step [2] This time the loop never terminates by outputting 0 since for all n



COMPUTATIONAL BARRIERS IN ESTIMATION, REGULARISATION AND LEARNING 85

we have A§"1) < —a + 27" < 27" because « is positive. Instead for sufficiently large n we have

Aﬁ"f < —a— 27™ < —27" and hence the algorithm eventually outputs 1.
These are the only possible cases for ¢ and so the algorithm always returns Zg 1 (¢), as desired.

17.4. Proof of Proposition M ¢ 8% | = (iv). The assumption M ¢ Sy , implies that
My 1 < Mg _5 and therefore, as (Mg a)/ao = Mg < Mg_1 < Mg_sand (Mg_1a)/a = Mg_1 <
My o, forall @ € (0, 1], Lemma implies that Ex_5(¢) = 1 for all ¢ € Q,, n. Our construction of
an algorithm to compute =5 5 is thus trivial — we simply create an algorithm that immediately outputs

the value 1.

18. GEOMETRY OF SOLUTIONS TO PROBLEMS (1.2)) - (I.3)) — PART I

18.1. A (5s — 1) x 55 matrix with the RNP of order s = 2" for non-unique minimisers of /! BP
and /' UL. We construct a family of robust nullspace matrices which have a line segment of minimisers

when performing basis pursuit denoising or unconstrained lasso with ¢! regularisation.

Proposition 18.1. Fix a natural number s = 2"~' and real numbers o,y > 0 with o > y(a? +1). Then
there is a matrix A € R™*N withm = 5s — 1 and N = 5s such that the following properties hold:

2
(1) 44"z < \/ (1+252) + 250 1 35, A4 e < 14+ 202 + & (44 a29?)’,
(2) A obeys the robust nullspace property of order s with parameters p = 1/3 and

7= /414l (447) o
(3) Forany § > 0 there is ay = Ax for some s-sparse x with ||ylla < 6v'1 + o2, such that

ZeroN(Y, A) = {t (c1l2s ® 025 & c215) + (1 — t) (025 B —c112s B c215) |t € [0,1]},

where

§ (=v—ra*+a) 20 (ay—1
= —— = — 1 - 2 1— 2. 1.1
a=s c e T T OVt l-a) (18.1)

(4) Forany X\ > 0, there is a y = Ax for some s-sparse x with ||y||2 < %ﬁ\/ 1+ a2, such that

EUL(%A) = {t (61125 ) 025 &) é215) + (1 - t) (023 ©® _61125 ©® 6215)}7

where now
LA 9 L 2A 3 5
01:;(—7—704 +a), czzﬁ(om—l—i—C)7 C=vy?+(1—-ay)?2 (18.2)

Proof. Let H,, be the 2" x 2" dimensioned Hadamard matrix in ‘natural ordering’ (see[B.2]for a defini-
tion). Set m = 5s — 1 and N = 5s, and let A be the R™*" matrix defined by

A

1 H H,, H,_
—__p ([ EH A (0,0,a9,0)7
2\/§ Os><4s ’Yanl

Pej =€5-1, P61 :07
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where {e;} represents the canonical basis, so that P is the projection from 1,2,...,Nt02,3,...,N. To
show (T)) we first compute

H®H, n®H,_ H®H, n®H,_
Os><4s ’}/Hn—l 05><4s ’}/Hn—l

B < 4slis +n@n* @sl, ~(n® Hp_1)H;_, )

Y((n® Ho 1) Hi_ )" v2sl;
4 Is 22 * Is 2 IS
_ 34+2‘7§®€*®8 a’y§®s :48(]25@(5@)[5))7
oy (E @ s) 778l

where £ = (0,0,1,0)7 and

2.2 O("Y2

(1 -+ a4’y ) 0 2 0 —Q
S = 0 1 0|, s't=]10 1 0 . (18.3)
2 2
o= (U —a 0 7—12(4 + a?4?)
Thus, by the definition of P it follows that
AA* =Dy 1 ®(S®1,), (AAY) ' =Leae(S7'el), (18.4)

and so to prove (T) we only need to estimate ||.S|| and ||S~!|| from (T8.3). To do that, note that for a sym-
metric matrix M € R**Z we have | M|| < |[M||p = (M3 +2M3E, + MQQQ)%, and we therefore find
14472 < 1V (1 + 0292/ + 021 /8 4 41/16, [(AA") Y2 < 1V, [T+ 207 + & (4 + a292)%
establishing (T).

To prove , take an arbitrary vector let v € RY and write v = £ + A*w where ¢ € ker(A). Note that
ker(A) consists exactly of vectors of the form 5(145 @ 05) , for 3 € R. Now let K = {1,2,...,4s} and
consideraset S C {1,..., N} of cardinality s. We then have ||{s||2 = Sv/s and ||€senx |1 = B]S°NK].
Consequently

Vs Vs .
[€sll2 = m”fsumKﬂl < S NE| (lvsenr i + (A% w)senx 1)
< _Slvsel n s [(A*w)senx |1
T VslSen K| |5eN K| SN K|
/)||USC S «
< T A sl

with p = % where the last line follows because |S° N K| > 4s — s = 3s. Hence,

pllvsells . . pllvse|lx .
lvs|l2 < +Voll(A*w)senrll2 + [[(A%w)s||2 < — + 1+ pl|A"w|2

Vs
where the last inequality follows by applying the Cauchy-Schwartz inequality with the vectors (,/p, 1)
and (|| (A*w)senk |2, ||(A*w)s]|2). To bound || A*w||2, we see that

1A% wll2 < [ All2[|(AA)TH(AA ) wl2 < Al (AAT) T 2 AA W]z = [|All2](AA") 7 |2]| Av]l2

where the last inequality is due to Av = AA*w + A = AA*w (recall that £ € ker(A)). We conclude
that

fuslla < A4 T A 0l < A ol

where 7 = \/gHAHgH(AA*)_ng. This establishes (2).
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We next prove (E[) with the vector y = 0951 @ ad @ 0951 P 6 & 0,7 = Az, where z =
7253 (045 @ 15) is s-sparse. A simple calculation shows that ||y||2 < dv/1 + «2. With the aim of proving
(3). define z°P! = 15, & (— S 125) @ 21, and note that then

1)
Azt —y = ol (0251 ® (—7) ®025-1 @ (y = 1) ®05-1).

Thus || Az°P* — y||2 = §, and so z°P! is a feasible point for the BP denoising problem.

Next, we define a dual vector p = %}/‘E(Ax"pt —y) = 2¢/5(025-1 ® (—1) ® 0251 B (o — %) @
0,-1) € R™, and note that then by some simple calculations (Az°P* — y,p) = §||p||2 and —A*p =
1o @ (—1g,) @ 1,. Itis easily seen that ay — 1 4+ C > 0 and hence c; > 0. Moreover a > y(a? + 1)

by an assumption in the statement of the proposition so that ¢; > 0. Hence —A*p € 9| - ||1(z°P").

Therefore, for arbitrary z € RY satisfying || Az — yl|2 < &, we have

Cc-S
Izl > llzll + (Az —y,p) — dllpll2 = [|zll1 + (Az — y,p) — (Az"P" —y,p)

=ll2lls = (z = 2", =A*p) > [Ja°"|1.

(18.5)

As x°P! is feasible for the BP denoising problem, we deduce that z is a minimiser if and only if the
inequalities in (I823)) hold as equalities. This is the case if and only if Az — y = dp/||p|l2 = Az°P* — vy,
zj > 0forj e {1,...,2s} U{4s+1,...,N},aswellas z; < Oforj € {2s+1,...,4s}. In
particular A(x°P* — z) = 0, and so, recalling that ker(A) = {(14s ® 05) |3 € R}, we must have
Pt — z=f (145 ® 0;), for some 8 € R. It now follows that the minimisers are exactly as claimed in
the statement of the proposition.

We finally establish with y = 0g95_1 P % D 021D %‘/g ® 0,_; = Ax, where z =
2?—:? (045 @ 15) is s-sparse. Note that such a y satisfies ||y||2 = %ﬁm To this end, we define
2%t = D15, & (— L 1s5) @ é21, and the dual vector

opt _ , _ )‘\/g
v

b= Az Yy (02571 @ (_’Y) 2] 02571 @ (a’V - 1) @ 0571> .
Note that then by some simple calculations — % A*p = 15, ® (—12,) ® 1,. Since o > v(a? + 1) by the
assumption in the theorem we must have ¢; > 0 and furthermore C' > |1 — a~y| so that é&; > 0. Hence

p € 9| - ||1(x°P"), and so for arbitrary z € RV we have
1 A 1 A
214z — gl + 2zl > (A — g, p) — SIpl3+ Slelh

1 A
= (Az — Ax°P' ) p) + (Az°P' —y,p) — 5“?“% + 5”2”1
(18.6)

1 A 2
2 - 2 - _ _ .opt _Z A
Ipl3 gmu+QQMh (2 — a7, 2 pQ

%

1 A
SIAP — |+ 2 e

where the first line follows by expanding || Az — y — p||3 > 0.

We deduce that z is a minimiser if and only if the inequalities in (T8.6) hold as equalities. This is the
case if and only if || Az — y — p||3 = 0 (ie. Az —y = Az°P' —y), z; > 0forj € {1,...,2s} U {4s +
1,...,N},aswellas z; < Oforj € {25+ 1,...,4s}. In particular A(z°* — z) = 0, and so, recalling
that ker(A) = {B(14s ® 05) | B € R}, we must have P! — z = 3 (145 & 0Oy), for some 3 € R. It now
follows that the minimisers are exactly as claimed in the statement of the proposition. t

18.2. Perturbing ¢! BP and /' UL with several minimisers. Before stating the main result of this

section, we need to introduce the concept of the set of minimisers with minimal support.
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Definition 18.2 (Minimisers with minimal support). Let {Z, Q} denote the computational problem of
either basis pursuit or unconstrained lasso with ¢! regularisation. For feasible inputs (y,U) € Q we
define the set of minimisers with minimal support by

E™(y,U) :={x € Z(y,U) | V2’ € E(y,U), supp(z’) C supp(z) = = = z'}. (18.7)

Lemma 18.3. Let {E,Q} denote the computational problem of either basis pursuit or unconstrained
lasso with €' regularisation with dimensions m and N. Suppose that (y,U) € ) is input data such
that =" (y, U) contains two distinct points x' and x2. Then, for every ¢ € (0,1), there exist positive
semidefinite matrices E* = E'(¢) and E* = E?(¢) with |E'||oc < € and ||E?||oo < € such that
Sy U — BY) = {21} and Z(y, U — B2)) = {2?}.

Proof of Lemma(I8.3] We define the N x N diagonal positive semidefinite matrices

Ej(e) := diag(e X{1¢supp(zi)}s € X{2¢supp(zi)}s - - -,EX{Ngsupp(zj)}), j=12,

X{igsupp(z7)} i 1 if i ¢ supp(x7) and 0 otherwise. We proceed to show that z7 is the unique vector
in {(y,U — UEY), for j = 1,2. It suffices to argue for j = 1, as the proof for j = 2 is analogous.
Additionally, we will discuss basis pursuit and lasso separately.

Basis pursuit: Firstly, as (U — UE')v = Uv for v € RY with supp(v) = supp(z'), we have
|(U—~UEY)x! —y||2 < 6. Let us suppose that #* € R¥ is a vector such that || (U — UEY)#! —y|l2 < 6
and |7ty < ||2Y]:. Set #' = ' — E'Zl. Then |[Uz! — y|l2 < 6, and, for every k € supp(i?)

with k ¢ supp(z!) we have |#1| = (1 — €)|Z1| < |Z1|, whereas for k € supp(z') we have &} = 7}.
Therefore, unless supp(2!) C supp(x!), we have ||2||; < ||#!||; < ||z!||1, contradicting the fact that
2! € Zpppn(y,U). Hence supp(2') C supp(x!) and so #! = z!, by definition of =™ (y, U). We
deduce that 7' = !, and so ! is the unique vector in Zgppn(y, U — UEY).

Lasso: Let us suppose that 7! € RY satisfies ||(U—~UEY)#! —y||3+\||2t |1 < [(U-UEY 2z —y|3+
Allzt||1. As in the basis pursuit case, we set £* = 7! — E'#1. As before, unless supp(#!) C supp(z?)

we have ||#1]|; < [|Z![]; in which case

IUE" —yl3 + A&t < |(U = UEY)Z" = yl5 + Az
<0 =UEY2" —yl3 + Ao 1 = [U" = yl3 + All=" [

contradicting the fact that ! € Zyy,(y, U). We thus must have supp(#') C supp(z?), and so 2! = x!

by the definition of =™ (y, U). It follows that #' = =1, and so z! is the unique vector in Zyr,(y, U —
UEY). O

19. PROOF OF THEOREM [7.1} PARTS (I) AND (II)

Parts (i) and (ii) of Theorem [7.1] are formally stated in Proposition [9.36] which we now prove. We
choose the constant C' mentioned in Proposition tobe C' = (C5 + 3) V 5 where Cj is the universal
constant in Theorem [B.6

19.1. Proof of part (i) of Proposition [9.36|

Proof. We will establish this part using Proposition[I0.5] Concretely, we will construct input sequences
[ = (4% AV}, C 00, v (12 = (40, AP}, € 00, and an input o = (4, A) €
Q9 ,,, n such that the following hold:
(i) there exists z!,22 € RY such that Z(:}) = {z!'} and Z(:2) = {22}, for all n € N, and
|zt — 22|z > 6.
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(ii) the inputs satisfy
A" — A% max < 477, (19.1)

forallm € Nand j € {1,2}.

Once we have done this, the result will follow by applying item (iii) of Proposition [I10.3] to obtain
enp(P) > 0/2 > 107K, Proposition comes close to constructing a suitable A°. However, the
dimensions used in Proposition [T8.1] are fixed as soon as s is chosen. To construct the desired matrix
A of dimensions m and N satisfying N > m and m > C'slog?(2s)log(NN), but otherwise arbitrary,
we will concatenate a matrix provided by Proposition[I8.T]and a matrix satisfying the nullspace property
provided by Theorem [B.6]
We begin by applying Proposition [I8.1] with the constants « = 1.4 and v = 0.37 to obtain A €
R(Gs=1)x5s o« R%~1 and 2z € R5* such that the following hold.
a) By item (1) of Proposition as well as the choices of « and v, both ||AA*||s < 31.3 and
|[(AA*)~1|]2 < 1.2. In particular, || Al]2 < 6.
b) By item (2) of Proposition A satisfies the £2-RNP of order s with parameters p4 and 74,
where

pa:=1/3<p and 74 :=+/4/3||Al2][(AA*) |2 <1.2:6-12<9.

¢) By item (3) of Proposition @ we have y = Az with z an s-sparse vector. Furthermore,
llyll2 < 8v/1+ a2 < 2 where we have used the choice of a and the bound 6 < 1 assumed in the
statement of Theorem [7.1]

d) Again, using item (3) of Proposition[18.1} 2™ (y, A) = {#, #2} where

&t = c11as @ 025 D 215, 3% = 095 ® —c1125 @ co1s,
and the constants ¢; and ¢, are as given in (T81).
Next, since s > 2 and N > m > 5s > 10 we must have

2
55— 1< 5s < 5slog(N) log[slog(N)]log=(s)

= log(10) log[2log(10)]log?(2) < 3slog(NV) log[s log(N)] log™(s)

so that m — (55 — 1) > (C' — 3)slog(N) log[s log(N)]log?(s). In particular, since (C' — 3) > C5 and
(C —3) > 2 we have

m — (55 — 1) > Csslog(N) log[s log(N)] log?(s)

(N —5s) > (55 — 1) > 4log(10) log[21og(10)]log®(2) > 3.

Therefore we can apply Theorem to conclude there exists a matrix F' € R(m~(5s=1)x(N=5s)
such that || F||2 < \/N/m and F obeys the robust nullspace property with parameters (pr, 7r) satisfying
pr < 1/3and 7p < 2.

At this stage we can finally define (°, ¢} and (2: using Lemma and|d), we can find sequences of
diagonal positive semidefinite matrices { E*"}22 , and {E?"}2 ,, with ||EY™||max, |AEY |2 < vn
and || E?" || max, |AE*"||2 < 7, such that Z(y, A(I — EY™)) = {#'} and Z(y, A(I — E*")) = {72}
where the positive real numbers +,, are chosen so that

2 WS-l T 10)
[10(y/s+1)] * 30(v/s+ p) 107
We define the matrices A = A @ F, A" = A(I — EM") @ F, A2" = A(I — E?>") @ F € RN
as well as the vector §° = y & 0,,_(5,_1) € R™, and set .* = (3°, A%), o}, = (3°, A7) for j € {1,2},
n € N.

0<v, < ([47"A
s (174
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64/ N/m < by/N/m where we have used the bound || F'||2 < /N/m from Theoremand the bound
[All2 <6 from Set2° = x® 0N _5, where x is taken from Note that A%2° = y&0,,,_(55—1) = ¥°
so that y° = A%2Y with 20 an s-sparse vector.

Next, we establish that .* is an element of QY . Firstly, note that [|A%]y < [JA[| V [[Flz <

The last condition that we will check to ensure that . € ng  1s the robust nullspace property. Let v
be an arbitrary vector in RY and write v = v4 @ v € RY with v* € R®® and v € RV 755, Next, let S
be asubset of {1,..., N} of cardinality s, and write S4 = SN{1,...,5s},Sp = SN{bs+1,...,N},
Sy ={1,...,5s}\ Sa,and S = {5s+1,...,N}\ Sp. Then, as A (respectively F)) satisfies the
¢2-RNP with constants pa and 74 (respectively pr and 1), we have

Ioslle < N )sall + 10 )se e < 215yl + mallAvl + S0 )y o+ e Fola
pPAN pF
< PAPE (105 + 107 )5y ) /75 +72/ 14018 + P13
0
< P Juse 1 + 70 A%,

NG
where pao := paVpr < 1/3and 740 := /73 + 72 < V92 + 22 < 10, and so A satisfies the ¢2-RNP
of order s with parameters 1/3 and 10 (and in particular, A° also satisfies the £2-RNP with parameters p

and 7).

Next, we argue that «J, € Q  \, wheren € Nand j = 1 orj = 2. We have ||[A7"]; <
[|AC[|2]|(I — EF™)||la < ||A%|l2 < ba+/N/m since EF™ is a positive semidefinite diagonal matrix with
entries bounded above by ,, and ~y,, < 1. Setting 27" = ((I — E9"™)~1x)®0x_5s where z is taken from
[o)]gives y© = A7z for each n. Because I — FJ*™ is a diagonal matrix we conclude that y° = A" z7"
and that 27>" is an s-sparse vector.

All that remains to prove that tJ € ngm  1s to check that the robust nullspace property is satisfied
with parameters p and 7. We have already shown that A° satisfies the RNP with parameters (1/3,10). We
then use Lemma as well as the definition of ~,, to see that A7™ obeys the robust nullspace property

with parameters (p?,, /) where

1 3p—1
= L+ 107/ 3 +10+/s (‘30(\/54 p>) oy = 0 _ 10 .
T 1=10y T _qo( 3=l T 110y, T 1 - 00—10)
30(\/5+p) 107

We have therefore shown that .0 € Q) | as wellas ¢, € Q) . forj € {1,2} andn € N.
Furthermore, by the definition of 7,,, A7™ and E/" we have || 47" — A%||pax < 47 By the block
diagonality of A7™ and the fact that the last m — (5s — 1) entries of y° are zero, it follows that the
solution to the £* basis pursuit problem with input ., € Q2 is the unique point 2/ := 27 ® Oy _ss,
for j € {1,2} and n € N. Now, recalling (I8:I)) and our choice o = 1.4 and v = 0.37, we find

—y — ya? 20

T re 0y
7+ (1l-ay)? 2

We have thus verified the conditions of Proposition and so we deduce that €§; > €}, 5(p) > /2 for

p € [0,1/2), completing the proof of part (i) of Proposition

||.’E1 — .’E2||2 = Hi‘l — A2||2 = HCl].QS @01123 () 05”2 = Cl\/48 = 2(5 .

O
19.2. Proof of part (ii) of Proposition[9.36,

Proof. 1t suffices to show that €5, > €5, 5(p) > A\/s/2 for p € [0,1/2), for the ¢! unconstrained lasso
problem with input set ng ~- We proceed similarly to the proof of part (i), i.e., we will construct
input sequences {1, = (y°, AV")} 2, € QF, N, {th = (¥°, A%}, € QF,, v and an input
10 = (y°, A%) € Q7 v such that the following hold:
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(i) there exists z!, 22 € RY such that 2(:}) = {z'} and 2(:2) = {2?}, for all n € N, and
ot — 2?ls > A5,
(i1) the inputs satisfy
A7 — A%||max < 477, (19.2)
forallm € Nand j € {1,2}.

Our choice of A° and A?™ for j € {1,2} and n € N is identical to part (i). This time how-
ever, we choose y using part (iv) of Proposition with @ = 1.4 and v = 0.37 and set 3° =
Y ® 0,,_(55—1) € R™. In part (i) we showed that || A°||2, ||A7"|2 < boy/N/m. By the bound on
y given in part (iv) of Proposition as well as the choices of a and v we have [|3°]]2 = [lyl2 <
MWy W2+ (1 —ay)2VI+a2 < A\/s-3<2.

We also showed in part (i) that the matrices AY and A7 satisfy the ¢ RNP of order s with parameters

(p, T) and almost identical argument shows that A7"27" = 4% and A°z° = ¢ for some s-sparse vectors
2P" € RY and 2° € RV, Thus (%, ¢}, and «2 are each elements of ngm’ ~- Moreover, we also showed
in part (i) that || A9" — A%|| 0, < 477

It again follows that the solution to the £* unconstrained lasso problem with input ¢/, € ng, N 1s the
unique point 27 := &/ @ O _ss, for j € {1,2} and n € N. Recalling (T8.2) and the choices o = 1.4
and v = 0.37, we find that

1 - . . . —y—va?+a  2\/s
ot =22y = |3 —32||2 = [|é1125 D81 Lo B0, |2 = é1V/4s = 2M/5-— 77 > ;fzwg.

We have thus verified the conditions of Proposition|10.5] and so we deduce that €} > €5, 5(p) > A\y/s/2
for p € [0,1/2), for the £* unconstrained lasso problem with input set Qg’m’ x> completing the proof of

part (ii) of Theorem O

20. PROOF OF THEOREM 7.1} PART (III)

20.1. Preliminaries - results from the literature. The ellipsoid algorithm will be the main driver in
the proof of part (iii) of Theorem Even though it is well known that this algorithm neither has the
optimal theoretical complexity nor performs well in practice, it is a powerful and flexible tool to establish
the “in P” statements rigorously.

We start by presenting the framework necessary to implement the ellipsoid algorithm in the context
of /' BP as necessitated in the proof of the theorem. We refer the reader to Appendix |C| for detailed
definitions, and here we only list the notation assuming familiarity with the underlying concepts. For a
compact convex set K C R" and real ¢ > 0, write S(K, —¢) = {z € R"|B¢(z) C K} and S(K, () =
{x € R"|B¢(x) N K # @}. For the same K, we write SEPc for the weak separation oracle for K.

The theorems we will cite can only be stated for compact convex sets that are contained within a ball

of known radius R, so we introduce the following definition for conciseness.

Definition 20.1 (Circumscribed class). We call a set J# a circumscribed class if it is a subset of
{(K,n,R)|n € N,R € Qn(0,00), K compact and K C Br(0) C R™}.

We state the following result which combines [37, Cor. 4.2.7] on the existence of an ‘oracle-polynomi-
al’ algorithm for the weak optimisation problem with the observation on pages 101 and 102 of [37] that if
a separation oracle for a compact convex set KC can be implemented on a Turing machine whose runtime
is polynomial in Data™ (K, n, R), then ‘oracle-polynomial’ implies that the weak optimisation problem
can be solved in time polynomial in Data™"" (X, n, R) as well.

Theorem 20.2 ([37, Cor. 4.2.7] Ellipsoid algorithm , Turing case). Suppose & is a circumscribed class
equipped with a Turing encoding function Data™ : # — A* (as in Definition , and assume that
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K is Turing-polynomially separable with respect to Data™™ (according to Definition . Then there
exists a Turing machine that takes in DataTur(IC, n,R) € A*, for (K,n,R) € #,ac € Q", and a
rational { > 0 as input and solves the weak optimisation problem (IC, R, ¢, ) (see Definition|C.I|for the
definition of a weak optimisation problem), such that the runtime of the Turing machine is bounded by a
polynomial in

Len(DataTur(IC,n,R)), Len(R), Len(c), Len(¢), and n.

The other result we will need is an analogue of Theorem[20.2]in the BSS model for convex bodies that
are specified as the intersection of the level sets of several convex functions. This will be sufficient for

our needs.

Theorem 20.3 ([57, Thm. 1.1] Ellipsoid algorithm, BSS case). Suppose ¢ is a circumscribed class
so that, for every (KC,n, R) € J, there exist convex functions f, ..., fj\'}(,c) : R — R such that
K={zeR"|ff(z) <0,j=1,...,M(K)}. Furthermore, assume that J is equipped with a BSS
encoding function Data®¥S © ¢ — V (as in Definition and assume that ¥ is BSS-polynomially
separable with respect to DataP58 (. according to Definition . Then there exists a BSS machine that
takes in Data®>(KC,n, R) € V, for (K,n,R) € X, ac € R", and a real ¢ > 0 as input and solves
the weak optimisation problem (K, R, c, (), such that the runtime of the BSS machine is bounded by a
polynomial in

dim (DataBSS (K,n,R)) and log (24 V(K,n,R)/¢),

where the scale factor V (KC,n, R) is defined according to

. K
— min f(2)| V R||c]2.
HZHQSRJZ() llell2

V(IKin,R)= m max fX(z

ax g
1<G<M(K) [llzllz<R

20.2. Proof of part (iii) of Proposition[9.36 Part (iii) of Theorem [7.1]is formally stated as part (iii) of
Proposition[9.36] which we now prove. To do so, we will make use of are Theorems[20.2and [20.3]on the
complexity of the ellipsoid algorithm. In addition, we will make use of the standard compressed sensing
result Theorem [B.7]and the easy Lemma [B_g]stated in Appendix [B]

As in we fix the notation for an element  of Q, writing 7 = ({yén)},iozo, {Ag"k) }224) . .. corre-

J.k’
sponding to an v = (y, A) € QF , n.

Proof of Proposition[9.36|part (iii). To start with, we mention the following quantities that the algorithm
stores in a lookup table

167
L= ’710g2 (1 — ,0)-‘ , Lo =Tlogy(ba)], Ls=47by (20.1)

The algorithm computes the following quantities, which (for the convenience of the reader) are listed

alongside a brief description of their purpose:

+4K +5+ Ly

[Len(m)w The number of digits of precision for the input
n=|—-=

vector requested from the oracle

The number of digits of precision for the input ma-

2

— Len(N) + Len(m)
> trix requested from the oracles.

-‘+1+L1

The solution precision for the reformulated opti-

ng = [Len(N)] + 4K +6 + Ly + Ly misation problem (20.3)

The precision used when converting algorithm

Len(N)
= +K+3 i
" [ 2 —‘ output to a dyadic vector.
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1075 (1 — . .. .
§ = % 42743k 4 yp, N 278 The denoising parameter used in (20.3)
-

Used as a bound on solutions of the refor-
R=NL;j s (20.2)
mulated optimisation problem.
Note that these quantities are functions of m, N, K, however we suppress making this dependence
explicit to lighten the notation.
For. = (y,A) € €25 . N instead of directly solving the basis pursuit problem with ¢ ! regularisation,

S

our algorithm will be based on the solution of the following reformulated optimisation problem:

min (Lo, 2) st 2> 0oy, [[Az —¢/[la <&, |I2]l2 < R, (20.3)
ZE]RZN

where A = (A’ —A’) € R™*2N_and 3 and A’ are approximations to i, A. More formally, for
v=(y,4) € Q;, n, we write

Z() = {(/,A) e R™" x R™N ||l —yll2 <27, |A" — Al|lmax <272} . (20.4)

Next, for ¢ € Qf, y and (y', A") € Z(¢), define the compact convex set K,y 4r = {z € RNV |z >
Oon, |Az — o/ |l2 < &, ||2]l2 < R}, where A = (A’ —A'), and set

H ={(Ky.a,2N,R)|m,N e Nym < N,. € Q;, n, (', A") € Z(1)}.

As each of the K,y 4/ are compact convex sets with K,y 4 C Br(0) C R?Y, ¢ is a circumscribed
class.

An important observation that will be useful throughout is the following: the bound on K in (9.18)
and the assumption that 167§ < (1 — p) yields

167(5 +¢) - 327e
1—p “1—-p
We are now in a position to precisely define our algorithm, where the instructions whose labels end with

1075 >

(20.5)

a ‘T’ are only executed by the Turing model and those whose labels end with a ‘B’ are only executed by
the BSS model:
Algorithm for basis pursuit with 1 regularisation:
Inputs: Dimensions m, N and an accuracy parameter K with (m, N, K) € N3,
Oracles: Oy and Oy, ,¢ providing access to the components yj(-”) and Ag"k) of an input 7 € Q;m’ N-
Output: Zoy; € DV (in the Turing case) or Zoy; € RY (in the BSS case) with dist v (Zout, EBPDN(Z)) <
10X,
1T. Using the inputs m, [N and K as well as the stored values L1, Ly and L3, compute the quantities
n1, na, N3, ng, 0’ and R in (20.2). We encode the integers n1, . ..n4 using their dyadic expan-
sions. The rational numbers 6’ and R are stored as pairs of integers each encoded using their
dyadic expansions.
1B. Using the inputs m, N and K as well as the stored values L1, Ly and L3, compute the quantities
ni, N2, N3, Ny, 0’ and R where we encode nq, . . .ny as integers and §’, R as real numbers.
2. Call the oracles to obtain (y/, A’) € Z(:) with ¢ = y(™1) € R™ and A’ = A("2) ¢ R™M*N,
3. Use the ellipsoid algorithm provided by Theorem [20.2] (in the Turing case) or Theorem [20.3] (in
the BSS case) to solve the weak optimisation problem (K, 4+, R, 1o, 27 "%), yielding the point
z*.
4. Compute x* according to x} = 27 — 27, y,forj € {1,...,N}.
5T. For the Turing machine, approximate x* by a vector of dyadic rationals so that every component
has precision n4 by means of Newton-Raphson iteration and output the resulting vector as qyt.-

5B. For the BSS machine, output x,y := x*.
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To prove the correctness and polynomial bound on the complexity of the algorithm, we will do each
of the following

I) We will show that the set S(K, 4/, —27"3) is non-empty. We will do this by defining
T = (($)+, (—.’L‘)+) + 2—”312N (206)

and showing that & € S(K,/ a1, —27"3), where ()" = max{0, z} coordinate-wise.

II) We will to show that the conditions for Theorem [20.2] (in the Turing case) or Theorem [20.3] (in
the BSS case) are met. With the result that & € S(KCy 47, —2773), this will imply that 2* is well
defined

II) We need to show that the algorithm is correct i.e. that dist pq(2out, Z(2)) < 107X,
IV) We need to show that the algorithm has bit complexity (in the Turing model) bounded above by
a polynomial in N and K.

V) We need to show that the algorithm has arithmetic complexity (in the BSS model) bounded above

by a polynomial in N and K.

For the purpose of simplifying the proof, we also introduce the following quantities

ey = 94K =5 —[loss(A)] o, _ g=1—Tlos(A)]

Using these definitions, we note that the ' and A’ defined in Instruction 2 of the algorithm will satisfy

logg (m)

ly—¢lle <vm-27" <272 .27 <g (20.7)

logg (m)+logo (N)
2 — .

JA— A'lls < J|JA - A'llp < VN - 272 < 2 972 < gy, (20.8)

where we have used the fact that log,(n) < Len(n) for any integer n. We see from these definitions that
& can be written as &' = 1075 (1 — p)/(327) + 2€; + 4bg N2 "5,

Step I - Showing that 2 € S(Ky 4/, —27"3)

Using (20.7) and (20.8)) we obtain

Y/ [l2 < e1+biV/N/m <2b1y/N/m and |[|A'||2 < &2 + ba/N/m < 2byy/N/m. (20.9)

Furthermore, by LemmaB.8] the definition of 27, , and (20.5) we get

10-%(1 - p)

2z < 7 (g + blx/N/m) <2rbiN and [|Aw—yl; Se 425 < ——
-

+ 2e2 (20.10)

Using this, we obtain the following for u € By (0),
[:i’+u]j >27" —qu; >0, forallje {1,...,2N},
IA@ +u) = o[l = |4z -y + Aul|2
10771 - p)

321
& +ulla < [[((2)", (=2) )2 + 27" 1an |2 + [ull2

< 2rb N 4+ 27"V2N 4+ 27 < 27b N + 7b1V2N/2 + 7b1 /2 < R

<Az =y |2+ 21 A 2 - |fullz < + 261 + 26y /Njm - 27" < &'

where the penultimate inequality follows because 277 < 1and 7,b; > 1.

Therefore, we conclude that By-ns (£) C K,y 4/ and thus & € S(KCyr ar, —2772).

Step II - Showing that the conditions for Theorem (in the Turing case) or Theorem (in
the BSS case) are met

We will show that % is Turing-polynomially separable and BSS-polynomially separable (as specified
in Definitions and |C.7) with appropriate encoding functions Data™ : # — A* and DataPSS :
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4 — V. Concretely, in the Turing case we define

Data™ ((Ky 4, 2N, R)) = m; 2N 5 85 R i v -+ 5 U5 Algs Alp oo 5 A v € A”
(20.11)
where A = {0, 1,—, ., ;} and all the dyadic rationals are written out in their binary representation,

whereas in the BSS case we define
DataBSS((K:y’,AU 2Na R)) = <m7 2N7 617 R7 ylla e ay;na All,lﬁ A/1,2> e aA{m,N) eV.

where V is defined in Definition

We now present a polynomial-runtime subroutine that acts as a weak separation oracle for ICys 4+ in
both the Turing and BSS cases. We term this subroutine ‘WSS’.

Subroutine WSS
Input: Data™" (K, 4/,2N, R)) (in the Turing case) or DataPSs ((Ky,a/,2N, R)) (in the BSS case)
specifying the set KO,/ 4+, a vector w with 2N entries, and £ > 0 (rational in the Turing case and real in
the BSS case).
Output: either a d € RV (rational in the Turing case) such that ||d||.. = 1 and (d, z — w) < &, for all
z € S(Ky  ar, —&), or the assertion that w € S(ICyyr a7, §).

1. Compute || Aw —y/||3 and ||w]|3 and verify whether or not w € K,/ s by testing the inequalities
w > 0y coordinate-wise, the inequality || Aw — /|3 < 6’2, and the inequality ||w||3 < R? in
the definition of /C,/ /. If the inequalities all hold then assert w € S(Ky 4/,&) and exit this
subroutine.

2. If the subroutine has not terminated, one of the following must be true.

a. w; <0, forsome j € {1,...,2N}. In this case, we set d = —e;.

b. [|Aw — ¢/||3 > &’ In this case and assuming that a. does not hold, we set g = V(|| A -
/1) = 247 (Aw — o) and d = g/ ||

c. |lw||3 > R2. In this case and assuming that neither a. nor b. hold, we set d = w/||w|| .

Remark 20.4. Strictly speaking, ‘WSS’ is in fact a subroutine that solves the strong separation problem
for ICyr 4+ (see [37, Def 2.1.4]). However, for the purpose of applying either Theorem [20.2]or Theorem
[20.3]it is sufficient to show that ‘WSS’ is a weak separation subroutine.

This subroutine is well defined except for one potential issue with the execution of the division
9/|lg]lso in instruction 2b if g = 0. We will first argue that this cannot be the case by showing that
if w is such that || Aw — ¢/||3 > 62 then g # 0.

Assume otherwise (i.e. that g = 0) for the sake of a contradiction. Then (decomposing y as 3’ =
y° 4+ Av where 31° € ker(A*)) we obtain from g = 0 that A* A(w — v) = 0. Hence ||A(w — v)||2 =
(A*A(w — v),w — v) = 0 so that A(w — v) = 0. Therefore &' > ||[Aw — /|l = ||y°||2. But this
contradicts the already established fact that £ € S(KCys -, —27"3) - in particular, £ € S(KCyr ar, —2773)
implies that | Az — y//||2 < ¢’ and we derive a contradiction from the following argument:

1513 < 1A — v)II3 + llyoll3 = | A& — )13 — 2(A@ — ), 50) + llwol3 = |42 —¢/|I3 < 6

where the equality follows from the fact that 3 € ker(A*).

We have therefore shown that “WSS’ is well defined. To show that this is indeed a weak separation sub-
routine for /C,s 4/, we first show that ‘WSS’ exits either with the correct assertion that w € S(Ky as, )
or by constructing d with (d, z —w) < 0 < &, forall z € ICyr, ar. To see this, note first that if “WSS” exits
inline 1 then w € K 4+ and that ICpy 4+ C S(KCy 4/, ). Hence if “WSS’ exits in line 1 then it correctly
asserts that w € S(ICpy a/, £).
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If ‘WSS’ does not exit in line 1, we examine the three possible cases for line 2, assuming that z is a
vector in S(ICyr a1, =€) C ICy ar.
a. If w; < 0forsome j € {1,...,2N} then the output d of ‘WSS’ satisfies (d,z — w) = —z; +
w; < 0 where we have used that z € K\ 4 implies that z; > 0.
b. If | Aw — ¢/||3 > 6" then

(AT(Aw — y), 2 —w) = (Aw — ¢/, Az — y) + (Aw — o/, y — Aw)
< (J[Aw — o/ ||2 — [|Az — yl2)|[ Az — yll < 0

where we have used that z € K,/_as implies that || Az—y||2 < 8. Thus (d, z—w) = ||g||= (g, 2—
w) = 2)lg AT (Aw — /), z — w) < 0.
c. If |w||3 > R? then (w,z — w) < ||w|2(]|z]l2 — [|w|l2) < ||w||2(R — R) where we have used
that z € K4/ implies that ||z]|2 < R. Hence (d, z — w) < 0.
In all three cases we have constructed a d € R?Y (rational in the Turing case) such that ||d||o, = 1 and
(d,z—w) <0< forall z € S(Ky ar, —E).

It is easy to see that the runtime of ‘WSS’ is bounded by a polynomial in Len(DataT‘“(ICyg A7, 2N,
R)), Len(R), Len(w), Len(§), and N in the Turing case, and, in the BSS case, by a polynomial of
dim((Data”® (K 4, 2N, R))). We hence deduce that .#” is both Turing-polynomially separable and
BSS-polynomially separable with respect to the encoding functions Data ™" and Datal55,

We are now in a position to apply Theorem to the weak optimisation problem (/C,/ 4/, R,
1on,277¢), for all (ICyr 4/,2N, R) € J to complete the argument for this step in the Turing model.
For the BSS case, in order to apply Theorem [20.3] to the same weak optimisation problem, however,

we need to establish the existence of convex functions f¥ A e 13(/[’(3, an R2NY — R such that

Ky oar = {z € R¥| ff”"“'(z) <0,j=1,...,M(y', A"}, forall (K, a,2N,R) € ¥ . Recalling

the definition of IC, 4, this is achieved easily by setting

K:y’,A’ ’Cyl,A/

f;‘cy/’A/ (2) ==z Jj=1,....2N, foi1 (2) = |4z —y/||5 — 8", fan iz (2) = [12[15 — R*.
(20.12)
Step I1I - Proof of correctness
We will show that dist v (Zous, Z8ppN (L)) < 107X, Since z* is a solution to the weak optimisation
problem (K ar, R/, 1on,277¢)
a) There exists a 2 € K,/ 4/ such that ||2* — 2| < 27"3. In particular, such a Z must have
non-negative entries and must satisfy || A2 — 3/||o < &
b) Forall z € S(KC,—27"3) we have (1an, 2*) < (1lan, z) + 2775,
By [a)] we obtain

[(Lan, 2%) = [I2" 1] < [(Lan, 2%) — (Qan, 2)| 4 [(Qan, 2) — [I2]1] + [ 12]1e — [127]]1]
<|(Qan,2* = )| + |12 — 2*|l1] < 2V2N|z* — 2|2 < 2V2N27"  (20.13)

Combining (20.13) with [b)|as well as the previous result that & defined in (20.6) satisfies & € S(K,/ -,
—27"3) gives the following

el < 12530 + {25 v b @ VN2 4 (1o, 2) < (lon, &) + (2V2N 4+ 1)277
= ||&[l + (2V2N +1)27" < ||zf|y + (2N + 2V2N +1)27™ < ||z||; + 6Nby2 "
(20.14)

where we have used the definition of & in the penultimate inequality and the final inequality uses the fact
that by > 1.
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Next, returning tofa)|and using the definition of ¢’ and (20.9) we can estimate
142" =yl = [|Az" = y/llz = |42 =y + A(z" = 2)]|2 < |42 = /|l + 20| A'[|2]1=" — 2|2

1075 (1 - p)

<" +4by/N/m 27" <
327

+ 2e1 + 8o N2772. (20.15)
Therefore
[Az — Az*|ls < |A = All2llz — 2% (l2 + 14"z = o/[l2 + [[ 42" — ¢/
10751 - p)
167
where the bound from || A — A’||, comes from the definition of A’ in the algorithm I"¢vec:@mat  the bound

for ||[A’x — y/||2 comes from (20.10) and the bound for ||A’z* — y/||2 from 20.13).
We now use Theorem applied to x and z* as well as the fact that = is s-sparse to obtain

< 62”13 - l‘*HQ + +4e; + 8y N27 ™3 (20.16)

1 21 3
o= 2l < S22 = o) + ST
47 . *
< 7 (27l = izl + [ Az — Az7]l2)
—p
since 7,5 > 1 and p € [0,1). Therefore employing equations (20.14) and (20.16)) gives
4 10-5(1 -
o= s < 7 (14Nb2 4 gz — a*]ls + LR g Y (20.17)
1—p 167
From the definitions of €1, €5 and n3, we also obtain
-K
9—n3 < 9—4K —log,(N)—log,(64)—logy(87/(1—p))—logy by 1077 (1 —p)
- —  b512NboTr
and
-K
167¢1 _ 167 o ax—5-Tiogy(87/(1-p))] < 10 A2 AT o1 fegy(sr/-o)] < L
1—p 1-p - 167 1—-p 1-0p !
Therefore (20.17) can be written as
107X Tz —x* 107K 107K z—x* 7-107K
lz — 2%l < .1 2 + | l2 (20.18)

8 4 4 16 4 16

Since € < 4, the set Zgppn(¢) is non-empty. Fix a solution £* € Egppn(¢). Then, as ||Az — y|2 <
¢ < 4, we have that z is feasible for the basis pursuit problem with ¢! regularisation with parameter §
and input (y, A). In particular, since £* is optimal for this problem, we have ||£*||; < ||z||1, and thus
Theorem [B.7]applied to £* and z yields

. (3+p)T .
_ < 77 — — <
" =zl < 2T (IAg" —yll 1Az —yl) € T2 < =

where we have once again made use of (20.3).

47(6 + €) < 10~%

(20.19)

Next, we note that x,,; = =™ in the BSS case, whereas

en 107K
|[Zous — %[]2 < 27"/ N = 27|—LT(N)—|*K*3\/N < —

in the Turing case, where we have used the fact that Len(n) > log,(n) for a natural number n. Combin-
ing this with (20.18)) and (20.19) finally yields

10~ % N 4.7-107K N 10-K
8 3-16 4 =

[Zout = € [l2 < [Tout — 2" [l2 + [z — 27|z + [I€" — 22 <

Hence diStM (.%‘(mt, EBPDN(L)) < onut — f*Hg < 10_K.
Step IV - Establishing a polynomial upper bound on the computational complexity of the algo-
rithm in the Turing case
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The initial computation of the integers n1, n2, ng and ny4 can be analysed as follows: firstly, computa-
tion of both Len(N)/2 and Len(m)/2 can be established in O(Len(N) V Len(m)) bit operations. After
that, we note that we require only finitely many multiplications and additions involving the quantities
Len(N), Len(m), K and the fixed quantities L, and Lo. Thus the complexity of computing 11, ng, ns
and n4 can be bound by a polynomial in Len(Len(N)), Len(Len(m)) and Len(K). This immedi-
ately implies that nq, na, ng and n4 each have lengths polynomial in Len(Len(N)), Len(Len(m)) and
Len(K).

&' is the sum of three fractions: the first, 10~% (1 — p)/(327), can be computed as a pair of integers
in bit complexity polynomial in K (as (1 — p)/(327) is fixed. The second, 2745 =3=L1 can also be
computed in bit complexity polynomial in K as L; is fixed. Finally, 4b4N2~"% can be computed in
bit complexity polynomial in N, Len(m) and K as b, is fixed and we have already established that
the length of ns is polynomial in Len(Len(N)), Len(Len(m)) and Len(K). Thus the overall cost of
computing the rational number ¢’ expressed as a pair of two integers is polynomial in /&, N and Len(m).

Finally, R involves a multiplication between N and the fixed value L3 and can thus be computed in
time polynomial in N. Therefore the overall complexity of the first instruction is polynomial in K, N
and Len(m).

Since n; and ny are both bounded from above by a polynomial in Len(m), Len(N) and K, the cost
of accessing the oracle to produce each y; and A;y . 1s bounded above by a polynomial in j, k, Len(m),
Len(N), and K (in both the arithmetic and standard Turing complexity models). As this process is
repeated for j € {1,2,...,m}and k € {1,2,..., N} to obtain 3’ and A’, the overall complexity of the
second instruction for the algorithm is bounded above by a polynomial in m, N and K.

Moreover, we have already shown that n; and ny are such that both Len(n4 ) and Len(ns) are bounded
from above by a polynomial in Len(Len(N)), Len(Len(m)) and Len(K'). Furthermore, (20.9) tells us
that 4’ and A’ are bound above by polynomials in \/m Thus the resulting lengths of y;, and A;’ L 18
also polynomial in Len(N), Len(m) and Len(K).

By Theorem[20.2] the bit-complexity of the third instruction is polynomial in

Len(DataT“r(le/’A/, R,155,27"%)), Len(R), Len(12,), Len(27") and 2N.
Because of the way Data™" has been defined in (20.11) we have

Len(Data™" (K 4r, R, 12x)) = Len(m) + Len(NN) + Len(¢s")

m N
+Len(R) + Y (Len(yé) +> Len(AW)
j=1 k=1

and we have already established that each term on the right hand side is polynomial in m, N and Len(K).
Furthermore, Len(R) is polynomial in Len(NV), Len(12y) is linear in IV and Len(27"3) = —ng which
is polynomial in Len (V) and K. Thus the bit-complexity of the third instruction is polynomial in m, N
and K. The length of each component of the resulting vector z* must therefore also have Len(z*)
polynomial in m, N and K.

Since the fourth instruction involves a subtraction between two portions of z*, the bit-complexity of
executing this instruction is polynomial in m, N and K. Finally, the division to convert the rational
vector z* € QY into the output z,,,; expressed as a vector of dyadic rationals can be done in complexity
polynomial in Len(z*), Len(n4) and N using Newton-Raphson iterations (see [58, pp. 92-93]). As each
of these quantities are bound above by a polynomial in m, NV and K, we see that the bit-complexity of
executing this final step is polynomial in m, N and K.

We have therefore shown that each instruction can be executed in bit complexity bound above by a
polynomial in m, N and K and thus as there are only five instructions executed in the algorithm the
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overall complexity can be bound above by a polynomial in m, N and K, completing the proof in the
Turing case.

Step V - Establishing a polynomial upper bound on the computational complexity of the algo-
rithm in the BSS case

For a natural number n, it is possible to compute Len(n) on a BSS machine by incrementing a value k
(starting at k = 1) and stopping when 2% > n. This can be done in Len(n) arithmetic operations and thus
the BSS complexity of computing n; through n4 is bounded by a polynomial in Len(N) and Len(m).
The computation of ¢’ can be done with BSS complexity bounded above by a polynomial in K and ns.
Since ng is itself linear in K and Len(N), the BSS complexity of computing ¢’ is bounded above by
a polynomial in K and Len(N). Finally, computing R requires a single arithmetic operation. Thus the
computational cost of executing the first instruction on a BSS machine is polynomial in Len(V), Len(m)
and K.

In the same way as in the arithmetic Turing case, the cost of calling the oracles in the second instruction
of the algorithm is polynomial in m, N and K. In the context of our application of Theorem [20.3in the
third instruction of the algorithm, the parameter V' is equal to

Ky/ LAY (Z)

’C ’ 7 .
V =R|1lon|2V max g;, where g;:= 4 (2) = min ]
llzll2<R

max_f

1<j<2N+2 Izll2<r "7
and fXv.4" are defined as in (20.12). From these definitions, it follows that g; = max,|,<pz; —
minHszSR zj =2Rforj =1,2,...,2N, that

= max ||[Az — |2 — min |4z —¢'||
v = max 4z —y/f— min_ 4z~ /|3

2
N N
< (1472 20lzll2 + 11y ll2)* < (462\/ m T2y m> < 16NRP (b + b)”

and that goyio = max),|,<g |23 — minj,,<r[|z|3 = R? Therefore V. < RV2N V 2RV
16N R?(by + b2)? V R? = 16 NR?(by + be)?. Thus V < CpssN? where the real number Cgss ex-
ceeding 16 depends only on by, bo, 7 (crucially, Cgss is independent of m, N and K).

Thus log(2 + V/27"3) < log(2Cpss N327"2) = nglog(2) + 3log(N) + log(2Cgss). In particular,
using the definition of ng, we note that log(2 + V//27"3) can be written as a polynomial in Len(N) and
K. The dimension of Data”% (K, a/,2N, R)) is 4 +m + mN and thus we conclude via Theorem
[20.3] that the BSS complexity of the third instruction of the algorithm is polynomial in m, N and K.

The fourth instruction takes /V arithmetic operations and the final instruction is constant time on a BSS

machine. Thus the overall complexity of the algorithm is polynomial in m, N and K, as claimed. O

21. PROOF OF THEOREM 7.1} PART (IV)

21.1. Preliminaries - distance to several minimisers for the /' BP problem. We begin by proving the
following lemma that allows us to create examples of problems with infinite condition number for the
basis pursuit problem with § = 0.

Lemma 21.1. Let {E,Q} be the computational problem of basis pursuit with § = 0. Suppose that
A € R™*N s a matrix such that for every y' € R™, (y', A) € Q4. Furthermore, suppose that there is a
non-empty set S C {1,2,..., N} and a vector v in the row span of A such that the following conditions
hold:

(1) there is a non-zero & € RN such that supp(é) C Sand A =0, and
(2) ||vselloo <1, and |v;| = 1 foralli € S.
If T C Sis a set such that
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(3) if Ap = 0 and supp(p) N T # & for some vector p € RY, then there is a non-zero p' with
supp(p) N'T C supp(p’) C S and Ap’ =0,

then there exists an x € RN with supp(z) = T so that disto[(Az, A), XR°C U Q4 = 0 and that
|Az||2 < 1. Note that condition @) is trivially satisfied if S = {1,2,...,N} (withp' = p)orT = &

(where there is nothing to show).

Proof. Let & € RY be a vector such that A¢ = 0, supp(¢) C S, and & has maximal support in S, in the
sense that

If ¢ € RY is such that, if A¢ = 0 and supp(¢) C supp(£’) C S, then supp(¢’) = supp(€).  (21.1)

The existence of ¢ is guaranteed by condition in the statement of the lemma: indeed, the set of
supports of all vectors in the nullspace of A is a finite, non-empty (here we use|[I)), partially ordered set
under the set inclusion ordering and thus such a set of supports contains at least one maximal element

(one of which we choose arbitrarily and call R). Thus there must exist a vector ¢ in the nullspace of A

with support R satisfying (21.1)).
Next, set ¢ = (V/N|[Al2) " A (VN||€]lso | All2) " (note that ¢ is well defined as both & and A are

non-zero) and partition R = supp(&) into sets J, and J_ according to

Jr ={i€supp(§) |vi& >0}, J- = {i € supp(§)|vi&i <O},
and let

sgn(vi§i> Cé-i ifieTn Supp(é-)
S ifi € T\ supp(&)
0 otherwise

Then clearly supp(z) = T and ||Az|s < [|All2VN||z[lse < 1. We now proceed to establish the
following for every sufficiently small € > 0:

D Alz +€§s,) = Az — €€ ),
(D) ||5FA+ ey =z — EEJ_A 1, and )
() if £ € RY issuch that A(§ +z + €€y, ) = A(z + €€y, ), then ||z + €5, +&|l1 > ||z + €€s, |1

This will imply that {z+€£;, ,z+e£;_} C E(A(z+€,,), A) and thus that (A(z+€;, ), A) € BREC,
Indeed, from (T} « + £, is a minimiser, whereas [(D]implies that = — € _ is feasible and [(T)]implies
that z — e£;_ is also a minimiser. Consequently, using the assumption that (A(a: +€e7,), A) € 0™, we

obtain
dista[(Az, A), B0 N QY < ||A(z + €€, ) — Axllz < €l|€]l2]| U2

and, as ¢ was arbitrary and £ and A are independent of €, we must have Crcc(Ax, A) = oo.

It hence suffices to establish [(D} [ID] and [I)] in order to complete the proof. To this end, note that
0=A¢ =A(&y, +&5) = A&y, +AE, ,and sofollows immediately. Next, since € is in the nullspace
of A and v is in the row span of A, we have (v,&) = 0 and, as v; = sgn(v;) for ¢ € supp(§) C S, we
obtain

0= 3 we= 3 sesen)lal= S sen(i)lel = Il — €l

i€supp(§) i€supp(§) i€supp(€)
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i.e. that [[£, [|1 = [|€s_||1- Next, we have

(c+e& ifieTnJy c&; ifieTndJy
—c&; ifieTNdJ_ —(c+¢€& ifieTnJ-
(v+€€r), = { e ifieT\supp(¢), (wi—esr), = e ifi €T\ supp(¢)
€&; ifie J \T —€&; ifie J_\T
0 otherwise 0 otherwise
(21.2)

and therefore ||z + €€, |1 = [|z|l1 + €l|l§s, |1 = |z]|1 + €[[€s_[[1 = ||z — €£s_]|1, establishing (II)
Now consider an arbitrary £ such that A = 0. We claim that supp(§) C (7" \ supp(§))©. To prove

this, suppose by way of contradiction that there exists a ¢ € supp(¢) N (T"\ supp(€)). Then property

(3) implies that we can find a p’ # 0 such that Ap’ = 0 and supp(§) N T C supp(p’) C S. But then
A(E+kp") = 0and supp(§+kp") D supp(§)U{t} 2 supp(€), for sufficiently small x > 0, contradicting

(21.1)). Therefore supp(€) C (T \ supp(&))©.

Next, by inspecting the explicit expression for « + €£;, in (21.2) and recalling that [|v]|oc < 1, we
see that (z + €€, +€); = (¢ + €&y, )i = ¢, fori € T \ supp(€), and sgn((z + €€, );) D {v;}, forall
1 € (T \ supp(&))©, and therefore

lz+ s, +élh —lle+eér =" > l@+ebr +E)l =@+l )il
i€(T\supp(¢))©
Z Z éz’vi = <£, U) = 07
i€(T\supp(£))*
where the last equality is due to the fact that v is in the row span of A and Aé = 0. This establishes
and concludes the proof. (I

For the purpose of proving part (iv) of Theorem[7.1} we will apply Lemma[21.T]to both the case where
A is a subsampled Hadamard matrix and the case where A is a subsampled Hadamard to Haar matrix, as
in §B-2] We do this in the following result:

Lemma 21.2. Let {Z, Q} be the computational problem of basis pursuit with § = 0, and let A € R™*N
with 1 < m < N be either
(i) a row-subsampled Hadamard matrix, or
(ii) a row-subsampled Hadamard-to-Haar matrix as given in (B.10), with S; # @, fori =1,2... , n—
1.
Additionally, assume that (y', A) € Q™ for all y' € R™. Then, for every set T C {1,2,..., N}, there is
avector x € RN with support T so that dists[(Ax, A), SRCC N Q* = 0 and ||Az||2 < 1.

Proof of Lemma[21.2] Our aim will be to verify that A satisfies the desired conditions of Lemma[21.1]

It suffices to verify the conditions (1)) and to construct a suitable v satisfying (2) with S = {1,..., N},
noting the observation that (3) holds trivially for such an S and any T as defined in this lemma. To this
end, we first observe that (T)) holds simply as m < N.

Next, in order to establish , we construct a vector v € R in the row span of A4 such that |v;| = 1,
foralls = 1,..., N. If A is a row-subsampled Hadamard matrix, we can simply take v to be the first
row of A. Suppose now that A is a row-subsampled Hadamard-to-Haar matrix as given in (B.10), with
S; # @,fori =1,2...,n — 1. In this case we select an arbitrary j; € S;, foreveryi =1,2...,n—1,
and letv = (1)@@}~, V27(X):, where (X?)’ denotes the j;-th row of X". Since |(X%); x| = 1/v/2i,
fori =0,1,2,...,n — 1 we have |v;| = 1fori =1,2,...,N.

We can now apply Lemmato complete the proof, where we use the assumption that (y’, A) € Q*
for all y € R™. O
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We are now ready to prove part (iv) of Theorem[7.1] The argument proceeds as follows - first, we use
existing results from the literature (Theorem[B.3]and Theorem[B.3) to argue that if IV is sufficiently large
and provided m is sufficiently large relative to [V, then, with strictly positive probability, a randomly
subsampled Hadamard or Hadamard-to-Haar matrix will satisfy the RIP and hence the robust nullspace
property. This will, in particular, imply the existence of at least one such matrix A, to which Lemma[21.7]
will be applied to conclude the proof.

21.2. Proof of part (iv) of Proposition [0.36] In the language of the SCI hierarchy, Theorem [7.1] part
(iv) is written as Proposition part (iv). We will prove this proposition.

Proof of Proposition[9.36|part (iv). Fix an s as in the theorem statement and set K = 1. Let Cy be the
constant in Theorem corresponding to K. We proceed assuming that N = 2" for some natural
number n > 2 satisfying N — 2 > 2Cyslog(N)log(slog(N))log(s)? and we set m = N — 1. Clearly,
there are infinitely many such pairs (m, N).

Next we let U € RV*N = R2"*2" pe either a Hadamard matrix or a Hadamard to Haar matrix.
We will produce a subsampled matrix A, a vector z € RV and a vector y € R™ with the following
properties:

(1) y = Az with |supp(z)| = s
(2) A satisfies the /2-RNP of order s with parameters (p, 7).
3 lyll2 < 1and 4] < /%
@) dista[(y, A), 2RC N (Q2,, )] = 0.
This will complete the proof. Indeed, if we set ¢ = (y, A) then (1)-(3) proves that ¢ € ng N and (4)
proves that Crcc(t) = oo.
We divide into two cases depending on whether U is a Hadamard matrix or a Hadamard to Haar

matrix.

e If U is a Hadamard matrix, we start by noting that
m=N—1>N —2>Cyslog(N)log(slog(N))log(s)?

and thus we can employ Theorem to conclude that there exists a set .S with |\S| = m such
that A := Pg/ %U satisfies the RIP of order 2s with constant do5 < 1/5. Moreover, note that

since U is unitary, || A2 = /N/m < byy/N/m.

e If U is a Hadamard-to-Haar matrix then U can be decomposed as U = (1) & @?;01 X' by the
argument in (B.10). By observing that

2"l 1= N/2 — 1> Cyslog(N)log(slog(N))log(s)?

we can employ Theorem [B.5| to see that there exists a set S,,_; of size 2"~ ! — 1 such that
cn_ngnle”‘l with ¢,—1 = 4/ 23?;11 satisfies the RIP of order 2s with constant do; < 1/5.

We choose
n—2
A=(1)o@PX ®cu1Ps, X"
i=0
Since X* are unitary for i = 0,1,...,n — 2 and ¢,_1Ps,_, X"~ ! obeys the RIP of order 2s

with constant d, < 1/5 the matrix A also obeys the RIP of order 2s with constant do5 < 1/5.

Furthermore,
on—1 2n N
Allg =cpq =) ——— < V2 < boy| —
14ll2 = e \/271—1—1—\[\/%— =2\
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In either case, we deduce that there is a matrix A € R"™*¥ subsampled from U such that A obeys
the RIP of order 2s with constant dos < 1/5 and ||Al|2 < bay/N/m. By Theorem A satisfies the
(2-RNP of order s with parameters

1/4 1 1+1/4
/ - <p and +1/

< <10<T. (21.3)
1—(1/4? = (1/4)/4 3 1—(1/4)* = (1/4)/4

Furthermore, the construction of A is such that A contains a non-zero entry in both the Hadamard
case or the Hadamard to Haar case (here we have used the fact that S,,_; is non-empty and that every
element of X" is non-zero). For a given j € {1,2,...,m}, letk € {1,2,..., N} be such that A, #
0. Using and the bound |[Al|2 < bo+/N/m, we note that for sufficiently small ¢ > 0 both
(eAer, A), (—eAex, A) € Q0 v

Since the jth entry of the vectors A(ee) and —A(eey) are not equal, we have shown that the jth
coordinate of the input vector is an active coordinate of ng - 1.€. the jth coordinate of the input vector
isin A(Q7,, y) (see O-I)). We have thus shown that for every 3/’ € R™, we have (y', A) € (Q0,, )™

Thus the conditions of Lemmaapply and we obtain z such that || Az||o < 1, dista[(Az, A), SRCC
N (Qg,myN)aCt] = 0 and |supp(z)| = s. Setting y = Ax completes the proof.

O

22. PROOF OF THEOREM [§. 1] AND THEOREM [8.3]

We first prove Theorem [8.3]and then Theorem [8.1] For both theorems the proof relies on the points
2#9 € RNo, defined for k € N, § > 0, x € [1/4,3/4], and a € [1/2,1] as follows:
(a(k+1-x)71,0,...,0), if k is odd

k= ) (22.1)
(a(k+1—-k)"16,0,0,...,0), ifkiseven

The following two lemmas will be useful in both proofs.

Lemma 22.1. Let a € [1/2,1] and define f, : RNo — {0,1} by f.(x) = 1if [a/x1] is an odd integer
and f,(z) = 0 otherwise. Let k € [1/4,3/4] and § > 0, and consider the points *° as given in @2.1).

Then, for every K € N, we have {x', ..., 2%°} C Sg,"'(K), where €'(n) := [(4n + 3)(4n + 4)] %

Proof. We must verify that min;z; |29 — 27%||o, > 2¢(r) and that for ¥ < K and vectors y € RN
with [|y||ee < &'(r) we have f, (2% +y) = fo(zF?).
For the first part, note that for distinct ¢, j < K we have

a a _ la(j —9)| N 1

i+1—r j+l-nr| (+1-rk)(+1-r) = 2(K+1-k)(K—r)
(22.2)

since alj — 4| > a > 1/2 and the condition that ¢, j < K with at least one bounded by K — 1 implies
that (i+1—k)"1(j+1—k)"1> (K+1—r)"1(K —k)"". Since k > 1/4, we get |27 — 279, >
[2(K +1—1/4)(K —1/4)] " > 2¢/(K).

Next, we let k < K and y € R™0 be such that ||y||o < &'(K). We will establish that f,(z%° + y) =
fa(xk"s). Since k < K, we have

a(l — k) 1 -1 —ak
>y > > .
(k+1—-r)k = (4K +3)(2K +2) (AK +3)2K+2) — (k+1—k)(k+1)

8 = 2] >

We claim that this implies a(:clf"s + 1)t € (k, k + 1]. For the upper bound, note that

Y1 —K 1 1 1 :U’f’5
- > = — = — .
a " (k+1—-r)(k+1) k+1 k+1—-x k+1 a
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Similarly, for the lower bound, we have

Y1 1-«k (k1= k _limlf"s
E+1—rx k+1-k

a <k(k+1—l€)7

ok a
Therefore [a/(2¥°+y;)] = k+1. Thus, forall ||y||s < &'(K), we have f, (259 4y) = f, (%) = 1 for
even k and f, ("% 4+y) = f.(2*?) = 0 for odd k, therefore establishing{z? ... %9} Saf;’(K). O
Lemma 22.2. Fixm,n € N, A € RV*No B ¢ R™*N gnd w € RY. Suppose that

R = {9 g9t g9%2  gotr=1y c RN

is a set such that | R| is divisible by N + 1, the sequence {x’f}ziz_l is strictly increasing and xf = 0 for

7 > 1 and all k. Then there exist a matrix C € R™*No g vectorv € R™, and a set S C R of the form
S = {x%, x5t ... 2T} such that |S| > |R|/(N + 1) and Bp(Ax + w) = Cz + v, forall z € S.

Proof. Write B = (bj,k)gjl’?,;’fl]v, A= (aj,k)giv;f::l%. We claim that the set S'S defined by

SS = {(sgn(ai 171 + w1),sgn(ag 171 + wa), . ..,sgn(ay171 + wy)) |z € R}.

contains at most N + 1 (unique) elements, i.e., |SS| < N + 1, where we define sgn(z) = 1 forz > 0

and sgn(z) = —1 for x < 0. To see this, note that if we allow z to vary over R, then each of the lines
Y=a1,121+wWi,Y = a21T1+W2, ...,y = an,1Z1 +wy intersect the line y = 0 at most once. Between
each of these intersections the vector (sgn(ai 121 + w1),sgn(az, 121 + wa), ..., sgn(ay 121 + wn)) is

constant. As there are at most N such intersections, the proof that |S'S| < N + 1 is complete by noticing
that partitioning a line by at most NV intersections gives at most N + 1 regions between the intersections.

We can now define S. By the pigeonhole principle and the fact that |SS| < N + 1, there exists a
subset of R with cardinality at least |R|/(NN + 1) such that the vector

sgn(a.1 o1 +w) = (sgn(ar 171 + w1),sgn(az, 121 + ws),...,sgn(an,121 +wN))

is constant over x in this subset. Let .S be a subset of R of maximal cardinality satisfying this constant
sign condition. Then clearly |S| > |R|/(N + 1). To see that S = {z®, 251 ... 2°T=1}, for some
s and t, suppose by way of contradiction that no such s and ¢ exist. Then there are j; and k; such that
g1+ 1< ky, 2/, 2% € Sand 211! ¢ S. But then, as S is assumed to be of maximal cardinality, there
must be an ¢ for which sgn(a&lx{l +wy) = sgn(agylx’fl +wy) # sgn(amx{ﬂrl + wy). However, since
{le }flz j, 1s a strictly increasing sequence by assumption, we see that if a1 > 0 then amx{ +w; <
ag71x{+1 +wp < a“x’f +w; and similarly if a1 < O then a“x{ +wy > amx{H +wy > amx’f +wq
which is a contradiction. This establishes that S = {z%, x5t ... 25Tt=1} for some s and .

We now show how to construct C' and v. Recall that, forallz € S, 2o =23 =--- =z, =0, and
so the i-th row of Bp(Ax + w) is given by Z;vzl b; jp(aj 121 +wj). Since sgn(a; 121 + w;) is constant
over x € S, we must have that for each j either p(a; 121 +w;) = 0 or p(a; 121 + w;) = aj121 + wj,
for all z € S. In the former case, we define d; ; = 0 and y; ; = 0 and in the latter case we define

d; ; = b; ja;1 and y; ; = b; jw;. Therefore, by construction, the i-th row of Bp(Ax + w) is given by

(2]
Z;-V:l (dijx1 + yi,;). Thus, defining the matrix C' = (c”)i;njj::lN" and the vector v € R™ according
to

N N
Ci1 = Z dig, ci;=0,forj>1, and v; = Zyi,k
k=1 k=1
immediately yields that the i-th row of Bp(Ax +w) satisfies ZkN:1 (dipzr1+yik) = ZkN:1 Ci kT ;.
Asiand x € S were arbitrary, this implies that Bp(Az+w) = Cx+v, forall z € S, thereby concluding
the proof of the lemma. (]
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Proof of Theorem[8.3] Theorem [8.3] is formally stated in Proposition [9.44] which we now prove. Let
a € [1/2,1] and define f, : RNo — {0,1} by f,(z) = 1if [a/z;] is an odd integer and f,(z) = 0
otherwise. Note that this definition of f, yields uncountably many unique classification functions. As
with the other non-computability results, the result will follow by verifying the conditions (a) — (c) of
Proposition [10.5] To this end, fix arbitrary £ € [1/4,3/4], r > 3 (N1 + 1)+ (N1 + 1), and for
§ € [0,€/(r)) define GF := {2z, 222, ... 2™}, where the z¥° are as given in (22:I). We will prove
the claim of the proposition with 7 = Gfj. As « is chosen from an interval, this will provide uncountably
many sets 7 for which the proposition holds. First notice that, due to Lemma wehave G € S g;"'(r).
Now, fix a 6 € (0,&'(r)) and consider an arbitrary neural network ¢9 € NN L as well as an
arbitrary
¢s € argmin R ({¢(«"*) oy, {fa(”)}j1) (22.3)
PENNN, L
‘We now make three claims about such ¢y and ¢;s. The first relates to ¢gs.
Claim I: ¢5(2"%) = f,(2%9) for all k € {1,...,7}. To see this, we start by defining the neural
network
o=WEpwrt=lowt=2__ pw!
where Wz = A’z +b" and A* € RNe>*Ne—1 pf € RN are defined as follows: let A} ; =0, Af , =6+
and A} ; = 0 otherwise, and, for £ > 1, A ; = 1and A{ ; = 0 otherwise, and b* = 0 for every £. Clearly

e; € RN if kis even

0cRM ifkisodd

W1$k76 —

and it is therefore easy to see that ¢(z*°) = 1 if k is even and (z*°) = 0 if k is odd. Now, as
[|z%0 — 2F|| o < < '(r), it follows from G§ € S'E’C,“(T) that f,(z%9) = 1if k is even and f,(2%%) =0
if k is odd, and therefore ¢(25°) = f,(x*?) for all k. Since R(v,w) = 0 if v = w, we must have that
the objective function of (22.3)) at the minimiser is at most 0. Thus, since R is non-negative, the objective
function at a minimiser is exactly 0. However, since R(v,w) # 0 if v # w, if there is a k such that
¢s(xF9) # f,(2*?) then the objective function evaluated at ¢s would be greater than 0, contradicting
the assumption (22.3) that ¢s be a minimiser. This concludes the proof of Claim L

The other two claims are about ¢q. In the following we write z-* for 2*° to lighten the notation.

Claim II: There exist a set

S = {2,251, 2572} C G&
for some s € N with s < r — 2, a matrix M € R*™No and a z € R such that, for all z € S, we have
éo(x) = Mx+z. We proceed inductively by showing that there are sets Sy C {z', 2%, ..., 2"}, matrices
M*¢ e RNexNo and vectors z¢ € RN for ¢ = 1, ..., L such that
A [Se| >3- (Ne+1)---(Np—1+1),
(i) Sp = {x%, x5t ... 2Tt} for some sy, 1 € N.
(i) @(z) = WEpWE—LpWE=2 Wl p(M*x + 2*) whenever x € Sy, where the W' are affine
maps and p is applied coordinatewise.

The induction base is obvious by taking S! = G, M = A!, and z! = b'. The induction step will
follow with the help of Lemma Indeed, assuming the existence of Sy, M ¢ and 2! for some ¢ < L,
we apply Lemma with B = A1 A = M R = S, and w = 2’ to obtain some set Sy, a
matrix M1 and a vector v**! for which A“H1p(M*z + 2°) = M1z + v, for x € Sy 1, and thus
WL (M 2 + 2%) = M1z 4 25+, where we set 2T = v*+1 4+ b1 This completes the proof of
Claim II.

Our final claim is as follows:
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Claim III: There exists a € G§ such that |¢o(z) — fo ()] > 1/2. Suppose by way of contradiction
that no such x exists. Then, using Claim II, we have ¢o(2*!) = aM; 1(s+2—k) "' +2 € [a, 3] where

a:=(aMy1(s+1— /43)_1 +2) A (aMy1(s+3— /i)_l +2) = ¢o(z®) A ¢0(x5+2)
B :=(aMy1(s+1- /s)_l +2)V(aMy1(s+3— /<a)_1 +2) = ¢o(z®) V ¢()(x5+2)

since the function ¢ — aM; 1t~ + y; is monotonic on (0, c0). Recall that f,(z*) = 1 if k is even and
fa(z¥) = 0if k is odd. We now consider two cases depending on the parity of s. Suppose first that s
is even. Then we have f,(z°) = f,(2°%2) = 1 and thus |¢o(x) — fu(z)| < 1/2 for z € G§ implies
that ¢o(2°) > 1/2 and ¢g(2°T2) > 1/2. But then o > 1/2 and so ¢o(x*T!) > 1/2, contradicting
fa(z%1) = 0. If instead s is odd, we have f,(2°) = f.(2*T2) = 0 and thus |¢g(z) — fa(z)| < 1/2 for
x € G implies that ¢ (z*) < 1/2 and ¢o(2°+?) < 1/2. Therefore 8 < 1/2 and so ¢o(z°T!) < 1/2,
contradicting f, (2**1) = 1. This completes the proof of Claim III.

Recall that we chose 7 = Gf. Now, in order to apply Proposition [10.5| for n € N we define 1} =
O = ({22} {a7}2)) € Qrp as wellas 2 = ({xdv/m}r_) {x3¥/"}7_) € Qr,. Moreover,
define S1 = Z(10), and Sy = [,y E(¢7). Note that for any {¢o(z?)}7_, € Si we have by Claim IIT
that maxg;egr |¢o(?) — fa(27)] > 1/2. However, for any {gbu/”(xj’”/”)};:l € Sz we have that ¢, /,,
satisfies (22:3) with § = v//n, and hence Claim I implies that ¢, ,, (z9*/™) = f,(x*/™), for all j and
n. Since G € 8’¢ and |29/ — 27| < v/n < € (r), it follows that f,(x37/") = f,(27), for all j

e’(r)
and n, and hence

inf d , >1/2.
5163111,152652 M(& 52) - /

Hence, the conditions (a) — (c) of Proposition hold, implying the existence of a f\dmr e[t (Agrr)
so that for the computational problem {Z, Q7 ,,R", Ay, } one has €}, 5(p) > 1/4, forallp € [0,1/2),
thereby concluding the proof. U

Lemma 22.3. For~y € (1,2), define the probability distribution P = {p;}32, on N by paj_1 = paj =
%CC (7)ji7, for j € N, where C¢ () = (2]011 j*V)fl is a normalising factor.

Fix r € N and let X1, Xo,..., X, be i.i.d. random variables in N distributed according to P.
Next, consider the random set whose elements are the values of X1, Xo, ..., X, and enumerate it as
S ={Z) < Zy < --+ < Zn} (note that N, the number of distinct elements of S, is an integer-valued
random variable such that N < r). Then, setting ¢; = (1 — e~ /2 and cy = C¢(v)/(y — 1), we
have

(i) P(N > e;rt/7) > 1 — 2= @/=0),
(ii) P(max S <n)>1—cyr|n/2)' ", foralln € N, and

(iii) P (Z;V:_ll X{Zj41—7; oddy < n/5 ’ N = n) < e—"/loo,forall integers n such that 10 < n <.

Proof. For item (i), define the random variable M,. to be the number of different unique values taken
by the random variables [X;/2] ,..., [X,/2] and note that P (N < m) < P(M, < m), form € N.
Now, as the random variables [X,;/2], j = 1,...,r, are ii.d. and distributed according to the zeta
distribution with parameter +, it follows from [59, Lem. 4, Lem. 3] that E[M,] > (1 — e~ %<("))71/7 and
0? := Var[M,] < E[M,] < r, and hence Chebyshev’s inequality yields

_ = Cc() — = Cc()
P (N < 162<r1/7> <P (Mr < lezrl/v)
2

1—e G | 1 — e Cc(v) - 4r—(2/7=1)
< M, — S YA < (—= -,/ < -
<P < r— BIM][ > 20 " U) - ( 20 " ) ~ (1 —eCcm)2’

which implies item (i).
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The proof of item (ii) is simple. Note that {max S < n} = ();_,{X; < n} and, for each j,

/2] oo

PG <m =Yz Y )i 2 1-Ce) [ ez 1= S0 g2y,

n/2] -1
and hence, as the X; are independent,
P(max S <n) =P(X; <n)" > (1 - CC(WBLTL/ZP‘”) >1- Cci(vl)ﬂn/%l_"*
v Y

where the last inequality follows by Bernoulli’s inequality.

Item (iii) is somewhat more involved. We start by outlining the strategy: the set .S may contain pairs
of the form (Z;, Z;41) = (2i — 1,2i), i.e., an odd natural number followed by the next even one. We
will condition on the set of j where (Z;, Z;41) is such a pair, as well as the specific value of Z;.

More precisely, for fixed sets Z and 7 with |Z| = | 7|, enumerated by

= {ilviQa“'ai’m} and] = {j17.j27"~7.jm}a

let A={1,...,N}\ (JU(J +1)). We will condition on the event Fr7, ; which occurs precisely when
N =n,(Z;,, Zj,+1) = (2i¢ — 1,21,) for £ € {1,2,...,m}, and, on the indices in A, the set S contains
no odd-even pairs, i.e., (Z¢, Zo41) ¢ {(2¢ — 1,24) | i € N} for all £ € A. With varying Z and J, these
sets F'7, 7 partition the event { N = n}.

The intuition behind this construction is as follows: conditional on Fz 7, whenever j € J we have
Zjt1— Zj=1andhence x(z,,, 7, oaay = 1. Thus for sets J with |J| > n/5, we are done. If instead
| 7| is small then |.A| will be relatively large. For a € A, we will argue that every Z,, has equal probability
of being an odd number or the even number following it, owing to the assumption that ps;_1 = ps; and
the assumption that (Z,, Zo41) ¢ {(2i —1,24) |7 € N}, for all ¢ € N. This will allow us to conclude that
the indicators Xz, oda} for a € A are independent symmetric Bernoulli random variables. The desired
bound will follow by an application of Hoeffding’s inequality.

We are now ready to present the formal proof. If » < 10 there is nothing to prove, so assume that
r > 10 and fix an n such that 10 < n < r. Consider arbitrary sets Z C Nand J C {1,...,n — 1} so
that

Z| =|Jl=m<nand TN(J +1) =0, (22.4)

where 7 +1:={j+1|j € J},anddefine A = {1,...,N}\ (JU(J +1)). Enumerate Z = {i; <
e <dmb T ={j1 < <jm}p.and A = {a; < -+ < ap_2m } and define the event

Frg ={N=n}0({(Ze, Zes1) = Qie = 1,2} 0 (| {(Zas Zayr) # (20 — 1,20)}.
=1 a€EA,a<n
ieN

Note that, for every n € N, we have

{N=n}= U Fr. 7, (22.5)

ICN,JcA{1,....n—1}
satisfying (22.4)

i.e., the events Fr, 7 for different 7 and J partition the event { N = n}, and thus our strategy will be to
prove the bound P (Z;V:_ll X{Z,41—2; odd} < 1/5 ’ FIJ) < e~™/190 for each of these events.

The argument relies on bounding from below the number of indices j such that Z; ; — Z; is odd. For
Jj € J this will be easy, as Z; 1 — Z; = 2i; — (2i; — 1) = 1 is always odd, by definition of Fz ;. For
j € A, we will need the following claim which we prove last.

Claim: For any 7, J, and A as above, the indicator random variables Xz, oaa}» @ € ‘A, conditional

on [’z 7 are independent symmetric Bernoulli variables.
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Armed with the claim, the counting argument is as follows. Note that, on the event Fz 7, for k €
{1,...,n — 2m} such that a1 > a; + 1, we have that {Z,,,..., Z4, ,} = {Za, <20y —1 <20y <
gy — 1 <20y <0 < 2045 — 1 < 2ipqs < Zgyy, ) for s = [T N{ag, ..., ar41 — 1}] and some
t € {1,...,m}, and hence

ap41—1 s
Z X{Zes1—20 0dd} = X{2i,—1—Z,, odd} T Z X{(2irge)—(2ir1e—1) 0dd} T X{Za, | —2isy . odd}
Z:ak (=1

> |j N {ak7 ceey Q41 — 1}| + X{Zak+1—Za _even}s (22.6)

k

where we used the simple observation that X 2;,—1-z

ap 0dd} T X{Za, | ~2irsi0dd} 2 X{Za, | ~Za, even}:

This motivates defining random variables E,, , k € {1,...,n —2m — 1} on the event Fz 7 according to

1, Zi.+1 — Z,, isodd
E,, = ’ , forkst agy1 =ar+ 1, and
0, Za,+1— Za, iseven

0, Zapyr — Za,, is 0dd

E, = , forks.t agyr > ar+1,

k .
Zay i1 — Za,, is €ven

which, as a consequence of the Claim, are themselves independent symmetric Bernoulli random vari-
ables. Thus, writing U := ZkN:_ll X{Zy11— 2, odd}» ON the event F7 7 we have

n—2m—1aky1—1

U= Z X{Zes1—Zs odd} T Z Z X{Zes1—Z0 odd}

{<ayor £>an—2m k=1 l=ay
>170{1,...,a1 — 1} + 1T N {an—2m,-..,n}]

apt1—1
+ E X{Zys1—Zk odd} + E E X{Zo41—Zq 0dd}
1<k<n—2m-—1 1<k<n—2m-—1 f=ay

apt1=ar+1 ap41>ap+1

>|Tn{l,...,a1 = 1} +|T N {an—2am,.-.,n}|
+ > Ea+ > (190 {ak...ak -1} + Ea,)

1<k<n—2m-—1 1<k<n—2m-—1

ak+1=ar+1 agt+1>ak+1
n—2m—1 n—2m—1
=1Jl+ > Ea=m+ Y E,, (22.7)
k=1 k=1

where the second inequality is due to (22:6).
Now, forsets Z C Nand J C {1,...,n — 1} satisfying 22.4) as well as m = |Z| = |J| < n/5, we
have that (22.7) implies U > Z;’;lz =1 E, , which together with Hoeffding’s inequality yields

n—2m-—1

P(U<n/5|Fry) <P( Y Fa <n/5|Frs)
j=1

1 n/5

< exp (—2(2 - mY(n —2m — 1)) < exp (—n/100)

where in the last inequality we used n — 2m — 1 > n/2 (recall that n > 10). On the other hand, in the
case when m = |Z| = |J| > n/5 we have ]P’(U <n/5 ‘ FIJ) = 0 directly from @22.7).
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Therefore, we have shown that for any Z, 7 satisfying (22.4), IP’(U <n/5 ‘ Fl’ﬂ_’]) < exp(—n/100)

and so using (22.3)

P(Ugn/5,zv=n) - 3 P(USn/S‘FIJ)P(FLJ)
ICN,Jc{1l,....n—1}
satisfying
< exp (—n/100) P( U F173> =exp (—n/100) P(N = n),
ICN,Jc{1,....n—1}
satisfying

which yields the desired bound after dividing both sides by P(N = n).

It remains to prove the Claim. To this end, fix n, Z = {i; < -+ < i}, T = {j1 < -+ < jm}>
and A = {a1 < --+ < ap_oy} satisfying (22.4). Then, conditional on Fr ; we can write Z, =
2[Za/2] = X{z, oaa}, for a € A, where the x{z, oaa} are random variables taking values in {0, 1} and
the [Z,/2] are random variables taking values in N \ Z and moreover [Z,, /2] < -+ < [Z,, _,,. /2].

Now, foraset U = {u; < -+ < p_9m} C N\ Z denote Fy, = ﬂ?;fm{[Zaj /2] = u;} so that

P ({X{Zul odd} = b1, - X{Z,, . odd} = bn—2m} ‘ FI,J)

= Z P ({X{Zu1 odd} =01, - X{Z. , odd} = bn—2m} ‘ Frgzn ﬁu) P(Fy | Fr.7)
UCN\T

= > P10, 000y =00 o Xz, oy = OF| Frg 0 B ) Py | Frg)  (228)
UCN\T

=P ({X{Za1 odd} =0, ... X{z, , oda} =0} ’ FI,J) )

for all b € {0,1}"~2™, where in (22.8) we used the fact that p2j_1 = pzj, for all j € N. It hence
follows that the X{Za. odd}» 1 < J < mn—2m, conditional on F7 7 are independent symmetric Bernoulli
variables, establishing the Claim. O

Lemma 22.4. Fix an even K € N and let {aj}fil be such that 0 < a1 < aj < 1foralll < j <
K — 1. Furthermore, let Ng € N. Then there exists a neural network ) : RNo — R with the ReLU
nonlinearity p(t) = max{0, t} such that

0 whenever x1 € |aigp—a, 0igp—

¥(x) = 1€ [z, aaes] . forallz € RN, (22.9)

1 whenever x1 € [qap, qo—1]
Proof. We may w.l.o.g. assume that K is divisible by 4. Indeed, if K is not divisible by 4, we can extend
the sequence {a; }5(:1 by adjoining two new elements (say a /2 and i /4) at the end of the sequence.
We additionally set a1 = O for convenience. Now, for ¢ € {1,..., K/4}, define the single-layer
neural network

Po(x) = (aar—s — aae—1) " (plaae—s — x1) — plase_1 — 1))
— (age — a4g+1)_1 (p(aar — 1) — plagesr — x1)), forz € R™No.

One now easily verifies that ¢;(x) = 1 whenever 21 € [c4s, aq,—1] and ¥y(z) = 0 whenever x; €
R\ (c4¢+1, a0—2). Hence, setting 1(x) = Zf:/f 1e(x) yields the desired network. O

Proof of Theorem[8.1] The proof relies on the use Lemma [22.3]to show that the training and validation
sets have various desired properties with large probability, after which the proof stays close to the proof
of Theorem B3]

To start with we define the uncountable collection of functions f, : R¥o — {0,1} for a € [1/2,1]
by fo(z) = 1if [a/z1] is an odd integer and f,(x) = 0 otherwise. For § € (0,¢), x € [1/4,3/4], and
k € N define 29 according to 22.1).
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Let c1, ¢2, and C¢(3/2) be the constants defined in Lemma with v set to 3/2. We choose the
constant C' so that the following hold:

C > 4c®, (22.10)
C > (2001og(8)*2c;*/?), and (22.11)
C>4-(8c)?. (22.12)

Next, let paj_1 = p2; = C¢(3/2);5 /2, for j € N, and define the distribution D on [0, 1]¥° according
to

P, ifx=akd

X~D < PX=2z)-=
0, else

As k and § are selected from intervals, this gives us uncountably many distributions.

Let 7 ={a',...,2"} and V = {y',...,y*} be the random multisets drawn from this distribution as
in the statement of the theorem.

Since C/2 > 2 - (8c)? (by @2.12)) and Cr2/(2p?) > 4c;%/2 > 2 (by @2.10) and the facts that
r/p > 1and c;' > 1) we obtain C272/p? > 2[(8cor/p)? + 1] and thus item (ii) of Lemma[22.3 with
~v = 3/2 yields

P(max{k € N|z* € T} < [C(r/p)?]) > IP’(maX{k: eN|zFl e T} < 2((8car/p)* + 1))

CorT
>1-— (G /o E T 1] >1—p/8s. (22.13)

On the other hand, 22.11)) yields C%t* > (4[t] +3)(4[t] +4), for all t > 1. Applying this inequality
with t = C(r/p)? > 1, we deduce

el(r v s)/p] < C2(C(r/p)*) 72 < [(4[C(r/p)*] + 3)A[C(r/p)*] + 4] 7" = £'(C(r/p)?),

where ¢’ (n) = [(4n + 3)(4n + 4)] 1. Therefore, on the event {max{k € N|2%? € T} < [C(r/p)?]},
Lemma 22,1 yields T < {a',... alC0/®"16y < Sl o€ 8, 0. and hence @ZT3)
implies

P(T €8 yem) = 1—D/8. (22.14)

A completely analogous argument also yields

f
PV e SE((WS)/p)) >1—-p/8. (22.15)
Now, let S = {z1,..., les\} denote the set of (unique) first coordinates of the elements of 7, enumer-
ated so that 2{ > 27 > --- > les\’ and define 2/ = 2] ® Oy,_; € R0, forj = 1,...,|S|. Note that,

for every j € {1,...,r} such that 2 = 27, we have f,(27) = f,(27). By item (i) of Lemma with
v = 3/2, we have

P(|S] > e17?/3) > 1 — ;213 > 1 - p/4, (22.16)

where the final bound follows because r > Cp~3 (which, in turn, is due to the assumption (8.3)) and

@2.10).

Now, writing Nprod := (N1 + 1) - -+ (N_1 + 1), by the assumption (8:3) and (2Z.TT)), we obtain

Lerr®/3] > |C?/3¢1 Nproa| = [1000%/% 10g(8) Nyroa | > 15Nproa.
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Therefore we can apply item (iii) of Lemma[22.3]to see that
1S|—1
P( Z X{fa(zi+1)#£Fa(29)} > 3Npmd>

i=1

T

n—1
> P( D X A} > g ‘ S| = n)P(\TI =n)

n=|ci172/3] Jj=1

(1= exp (= Lerr®/2]/100)) - B(IS] = [exr®?]) = (1= €/ "%p/8) (1= p/4) > 1~ p/2
(22.17)

Y

Y

where the penultimate inequality follows from (22:16) and the bound r > Cp~3 > (100¢; ' log(8/ p))g/2

(which, in turn, is due to (22:11)), the bound log(8/p) < 21log(8) log(p) and the bound log(t) < t for
t>1).
Therefore, combining (22.16), (22.14), (22.15), and (22.17), the probability that all of
1S|—1
|S| > ar?3, T,Ve Sg((r\/s)/p), and Z X{fa(23+1)2fu(23)} > 3Nprod (22.18)

j=1

occur is at least 1 — (p/4 4+ p/8 + p/8 +p/2) = 1 — p. We assume this this event occurs throughout the
remainder of the proof.

We are now ready to construct ¢ satisfying (8:4). As in the proof of Theorem [8.3] we set ¢ =
WLowl=1owl=2__ pW?! where Wz = A’z + b* and A* € RNe*New1 bt ¢ RN are given as
follows: A, = 0, A}, = 1/6 and A} ; = 0 otherwise, A{ ; = 1 and Aj ; = 0 otherwise, for £ > 1,
and finally b* = 0 for every /. Clearly

e; € RM if kiseven
Whah) = ¢ :
0 RM ifkisodd
and therefore we have as before that ¢(x) = f,(x) for all z € T UV, thereby establishing (8:4).

Our next task will be to show that if qAS € N'N'n L then there exist uncountably many v € R™0 such

|6(v) = fa)] > 1/2, || —2]jos < € for some z € T.

To this end, note that @ implies that there exist natural numbers k1 < ko < --- < k3n,,, such
that 2% € T, forall i € {1,...,3Nyoa}, as well as 27° = 21 > 2i*1 = 2%+% and moreover
fa(@F0) = fo(2%) # fa(21T1) = fa(zbi+10), foralli € {1,...,3Npoa — 1}.

Now, consider x" € [1/4,3/4] for which v* := (a(k+1—x")"1,0,...,0) satisfy [Jo* — 2% < e,
for all k < r. The existence of such v* is guaranteed by the assumption that § € (0, ¢). Then clearly
Hvki _ wki,é

loo < € forall i < Npoq. Moreover, for every such «/, since Nprog = (N1 +1) -+ (Np—1 +
1) we can argue exactly as in Claim III in the proof of Theorem to see that there exists a k' €
{k1,..., k3N, } (depending on x') such that |p(v*") — fa(v*")| > 1/2. As there are uncountably many
such «/, this gives us uncountably many v € R satisfying (8.5).

Finally, we must show the existence of ), which we do with the help of Lemma To this end, we
set K = [C(r/p)?], define {c;}75| by a1 = 2 4 e((r vV s)/p), age = 2%° — ((r v s)/p), for
k=1,...,K,and claim that a; > ag > -+ > ask.

To show this, it suffices to prove that x{“"s +e((rvs)/p) < x{’é —¢&((r v s)/p) for each j =
1,..., K—1. To see this, we use (22.2)). Indeed, from this equation we must have z{"s 7I{+1,6 > (2(K+
1—#)(K —k))~L. On the other hand, once again employing the result that C*¢? > (4[¢] + 3)(4[t] +4),
for all t > 1, (which is a consequence of (22.11))) we obtain

2((r v 8)/p) < 202(C(r/p)*)* < 2[(4K +3)(4K +4)] " < [2(K +1 - r)(K — 0)] ",
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falz) forallz € B, 4,y (T U V), note that, for every @ € B,y (T U V), there exists either an
2R € T UV such that [|2%% — 2|l < e((rV 5)/p). Then, as max{/ € N|z%% € T} < [C(r/p)?]

and max{¢ € N|2%% € V} < [C(r/p)?] occur, we have k < K, and so

Now, let 1/ be the network provided by Lemma with this sequence {oy;}75,. To see that ¢(z) =

o) = x’f"s —e((rvs)/p) <ap < x]f"s +e((rVvs)/p) = agg_1.

Now, as 1) is constant on [vay,, aop—1] and equal to f, (2F°) by (22.9), the definition of £, and the def-
inition of z¥-9, and f, is constant on the same interval and equal to f, (z*°) by (22.18) and the definition

of Sef((NS)/p), we deduce that ¢)(z) = fa(), as desired. As this holds for every « € B, 4 ) (T UV),
the proof of the theorem is complete. ]

APPENDIX A. EXACT SOLUTIONS TO SIMPLE CONVEX PROBLEMS

In this section we derive the exact solution to the introductory Lasso example {#.2) and prove the
lemmas given in §IT]on the solutions of the convex problems used in Theorems[3.4] 5.1} and[6.1} We use
standard tools from convex analysis, most extensively the subdifferential 9f(z) := {v € RV | f(y) —
f(z) > (y —z,v), Yy € Dy}, forx € Dy, where f : Dp — (—00,+00] is a lower semi-continuous
convex function on a closed convex domain Dy C R™. For a more detailed account of convex analysis
see [60].

A.1. Solution to (£2).

Lemma A.l. Letm = 3, N = 2and \ € (0,1/v/3), as well as

1 1
vio ¢ T
A=|-L -0 —L|er¥ y:<1/\/§ VNG, 0) € R®.
2a 0

where a > 0. Then if w® € R and w' € R? are such that
1
(W, wh) € argmin —||AD2' — 2°1,, — y||3 + A|z*|1
(z0,z1)cRxR2 4T
where D is the unique diagonal matrix such that every column of AD has norm /m, we have w° = 0,
Dw' = (1 —+/3)\)es.
Proof. Note that
1
(', w') € argmin = [|ADz" — a1, — yll3 + Al
(0,21)eRxR2 2T
if and only if

. . 1 _
(w®, ') € argmin  —|| Az’ —2°1,, —y|3 + N|D 2!y,
(z0,z')ERXR? 2m

where w! = Dw!. Now, for all (2, z!) € R x R?, we have

1 z 177 1 z) 1
Azt — 291, —y|3 = [(—a) m1+2—x0—} + [(—Fa) T+ = +12° - —
| vle= |\ & DRI NG) NG) RN V2

+ (2axi — 2% = (z] + 25 — 1)? 4+ 6a*(x1)* + 3(2°)?

2

Note also that by definition of D = diag(di1, d22) we have

di zﬁl(\}i—a>2+ (\}5+a>2+4a2

N

=V3(1+6a%)"2 <3
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and dos = V/3. Hence

1 - 1 e
Az' — 2°1,, —y||2 + N|D 712t > = ||Azt — = 2
——llAat — 2%, — yl3 + AID ey 2 | A AR
1,4 1 2 2, 12 . L/ 02 ||x1||1 L 4 1 A
=—(r74+x3—1D*+a“(z) + (") + X > —(x7+x3—1 —(x7 +
6(1 2 ) (1) 2( ) \/g —6(1 2 ) \/g(l 2)

é{(ﬂs%+x%(l\/§)\))2(l\/§>\)2+l > 1= (1— V3N

These inequalities hold as equalities if and only if 2} = 2° = 0, 3 > 0, and ] + 2} = 1 — V3.

Therefore, we must have w® = 0 and Dw! = @' = (1 — \/g)\)ez, as desired. O
A.2. Proofs of results in §T1}

Proof of Lemmal(I1.1] Since both o and 3 are assumed to be positive, we have that for any feasible
(that is, x with z > 0 and Ax = yA),

(e0) > o fay+1> 20 TAT2 o

aVp T aVvp

Thus min{{c, =) |x > 0, Az = y*} > y1/(aV3) +1. Moreover, all claimed minimisers in the statement

+1. (A.1)

of the lemma obey (A-T)) as an equality and furthermore such z are feasible for the LP problem. Therefore
min{(c,z) |z > 0, Az = y*} = y1/(a V (), and thus the solutions to Zrp(y*, A) are precisely the
vectors x for which every inequality in (A-T) is obeyed as an equality. More specifically, the following
must occur:

e For the first inequality to be an equality we must have z3 = 0,24 = 1,and z5 = --- = 2y = 0.
e For the second inequality to be an equality we must have 2 = 0 in the case « > S and 1 = 0
in the case a < §. In the case o« = f3 this is always an equality.

It is easy to verify that the x satisfying these properties as well as the conditions z > 0 and Az = y* are

exactly the claimed minimisers in the statement of the lemma. (]

Proof of Lemma[T1.2] Let x°P* = 2(’5“_)‘6 if @« > B, and 2°Pt = 289-2¢) if B > . Define a dual

/82
opt _ 3@y €1l € R™, and note that then

vector p = Lx yt = 2(av13

2rp= (1 4 Z) at (1 " ﬁ) es € - [ (7).

Therefore, for every € RY we have
1 1 1 A
Lz =" 15+ SAlellh > (Lo =y, p) = S lpl5 + Sllzlh

O A *
= (La ) = Sl + 5 (lelh — oo - 20))

Y

1
2L opt _ , L2 M1 ,.0pt )
L2 — g 3+ Sl

It follows that x is a minimiser if and only if this string of inequalities holds with equality. This is the
case if and only if L:U yb =p= LaoPt —y and ||z, — (z — 2P, =2 L*p) = ||x°P*1, or equivalently

t t
azy + Bz = azi? + Bzt =y — 2(75)7 {‘rj}j:P, = {xi” ;y:s’

O a o O /8 O
|x1|—(x1—x1pt)<1/\6> \a:pt|, and |xo| — (;vg—xzpt) <1Aa):x2pt.

It is now straightforward to verify that the minimisers are precisely those as in the statement of the
lemma. O
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Proof of Lemma[T1.3] From the definition of L and y", if || Lz — y" |2 < & then |az1 + Bz — y1] < 0.
Thus

(@V Pzl = (aV B)(|lz1] + [22]) = alai] + Bloe| = awy + Brs = y1 — 0. (A2)
Thus min{||z||1 | | Lz — y"||2 < §} > (y1 — §)/(a V B). Note that all claimed minimisers x in Lemma
[IT3] obey (AZ2) as an equality and furthermore such z are feasible for the BPDN problem. Therefore
min{||z||1 | ||Lx —y"||2 < 6} = (y1 —§)/(aV B). Thus the solutions to Zgppx (¥, L) are precisely the
vectors z for which every inequality in (A2) is obeyed as an equality. More specifically, the following
must occur:

e For the first inequality to be an equality we require x3 = x4 = --- = zny = 0.
e For the second inequality to be an equality we require x2 = 0 in the case « >  and z; = 0 in
the case o < (. In the case o = [ this is always an equality.
e For the third inequality to be an equality we require x1 and x2 to be non-negative.
e For the final inequality to be an equality we need azy + Sz = y; — 6.
Itis easy to verify that the z satisfying these properties are exactly the claimed minimisers in the statement
of the lemma. O

Proof of Lemma([IT4] Suppose that x is such that ||z||; < 7. Then

ajxy| + plz ar; + px
S l > S o
1<i<N @ @
i£3
and in particular since |ax; + Bx2| > 0 we conclude that (7 — 23)% > (ax; + Bx2)?/(a V §)?. Thus
for such = we have

(A.3)

“ ary + )2
I~y = om0+ 4 Yot 2 s+ By =i LT

(aV B)?
_[lever+ayr oo eV yi yi
_[ (@v B H N N PV } T avArT1C @V R+l
(A4)

Therefore min{||Lz — y||o | ||=]1 < 7} > y1[(a V B)? + 1]71/2. Note that all claimed minimisers x
in Lemma obey (A-4) as an equality and furthermore such x have ||z||; < 7. Therefore min{|| Lz —
Y2 | lzll1 € 7} > wi[(aV B)? + 1]~ /2. Thus the solutions to Zcy, (¥, L) are precisely the vectors
x for which every inequality in (A.4) is obeyed as an equality. More specifically, the following must
oceur:

1. We require each of the equalities in (A-3)) to hold as equality. Thus
a. The first inequality in (A3) is an equality if and only if x5 = 7 — > |ay].
1§i;§3N
b. The second inequality in (A.3) is an equality if and only if x4 = 25 = --- = xy = 0.
c. The third inequality in (A3) is an equality if and only if 2o = 0 if @ > S or x; = 0 if
a < . If @ = f3 then the third inequality in (A23) is always an equality.
d. The final inequality is an equality provided x; and x5 both have the same sign.
2. We require axy + Bz = y1(aV B)?[(a Vv B)? +1]7L.
It is now simple to check that the claimed minimisers in (TT.6) are the only vectors which satisfy these
conditions.
O

Proof of Lemma[IT.3] Let z°P* = n(y1, o, B), if 8 > «, and z°P* = Pyipn(y1, o, B), if & > S. In both
cases we find TzoP! —yTV = — 2o, 4 PO 2etB e and 50 | Tope —y ™ ||2 = 6, by definition
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of 6. Next, define a dual vector according to p = — {5 e1 + W% ditae; € R™ so that
D= W(Tﬂm —yTV) whenever § > 0. This in particular implies (T'z°P* — yTV p) = §||p||2
and 6p/||p||lz = TxPt — y*V, forall § € [0, 1].

Next, write D € RV=DXN for the matrix corresponding to the pairwise differences operator: Da: =

T|—T9,To—3,...,TN_1—TN), SO that ||| v = || Dz||, forx € R¥. Defining an auxiliary vector
g y
1= 33 (Zjv:_f (a — —(QW)({,,AL(_?)_D_D) e; —Ben—1) € RV~ we have
« a+p
1> -=-A1= > > > 1= = _9 = Nt > 1= - > —1.
3 Q> q2 Gm—1 gN-2 = qN—-1 (v B (m—1) qN-1 avp =
(A.5)
Note that Dz°P* = —ren_; in the case B > «, and Dz°P* = re; in the case o > 3, where
%(ﬁmfl) > 0 by the assumption in the statement of the lemma. We therefore deduce ¢; €

o=
i

9| - [1((Dz°P);), forall j = 1,..., N — 1. Furthermore,

—I"p= a\iﬁ(ael_ a—'—ﬁ(zeg‘i'ezv 1>+ﬁ€N> =D%q

TV”2

and we thus have, for arbitrary € R” such that ||Tz — y < 9, the following inequalities

;s TV
lz[lrv > lzllrv + (Tz —y~ ¥, p) —dllpll2 (A.6)
= ||lz|lrv — (@ — 2", =T*p) + (Tz°"" — y™V ,p) — ||pl|2

=0
Nl N-1

|(Dx);| — (Dz — Da);q;) > > |(Da");] = |||l oy (A7)
Jj=1

J:1

A feasible z is therefore a minimiser if and only if the inequality in (A:6) as well as the inequalities in
(A.7) (for each 7) all hold with equality, that is to say

e By the Cauchy-Schwarz inequality, (A.6) holds with equality iff Tz — y™ = &p/||pll2 =
TxoPt —y™V ie. if Tx = Tx°P'. By the definition of T this occurs when each of ax! + Bz =
ary + fry = azi? +ﬁxom =y — 5(”;_1),{ itita 1 = {z] oPiym=land x4 —x}’\’,’tl

e The inequalities in (A7) hold with equality iff for each j = 1, 2, cees N — 1 we have |(Dx);| —

(Dx — Dx°PY);q; = |D(x°P);|.

Let = be a minimiser. Suppose for now that 8 > a. Since D{z}" t}jv 52 = 0and |qj| < 1, for all
jed{2,.. 2} the requirements for (A.7) to be an equality imply that D{xj = 0 and hence
Ty = a3 = x4 = --- = xn_1. It thus follows that {z; };\;21 ={x ;pt}jz . Furthermore, the inequalities

in (A7) hold with equality only if
|.2?1 — .132| — (1‘1 — l‘z)ql = 0, and
leny—1 —2zn| — (N1 — 2N +T)gN_1 =T

As qp = % and gny_1 = —1, it follows that the second of these inequalities is satisfied provided xn >

xn_1, whereas the first is satisfied provided 1 = x5 in the case a > 3, or £; > x5 in the case

a=p.Aszy_1 =z =n(y1,, )1 < n(y1, @, 3)n, and appreciating that x must additionally satisfy

_ é(m—l)

ary + By =y1 — —5—

Similarly, if @ > 3, we once again {z;}75 = )= = {z¥ t} N=! but now the inequalities in (A.7) hold
with equality only if

, we find that x must have the form claimed in the statement of the lemma.

|z1 — x| — (21 — 22 — 7)1 =7, and

ltn—1 —2n| — (xN—1 —2N) gn—1 = 0.
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Then, as ¢ = 1 and qy—1 = —f3/a, these are satisfied only if z1 > x5 and 2 = x_1. Again appre-

ciating xxy_1 = 2 = n(y1, @, B)1 and w1 + By = y1 — %

every x of the claimed form satisfies (A.6) and (A.7) as equalities, and is therefore a minimiser.

establishes = 2°P*. Conversely,

O

Corollary A.2. Write f(§) = min{||z|tv | [Tz — y*V||2 < 6}. Then

—60/(m— .
Y1 a/v(;;n 1) ifyr > 53

. 50
0 ify1 < -5

_

f(0) =

Proof of Corollary[A.2] Assume first that y; > 66/(m — 1). Then, using Lemma [[1.5] we see that
f(8) =n(y1,a,8)n —n(y1, o, 8)1 = n=00/(m=1) ", prove the result in the case y; < 06/(m — 1),

aVp
we note that by the definition of f, f is a non-negative decreasing function, and hence we have 0 <
f(8) < flyr(m —1)/0) < inf{f(6") | 8" <y1(m —1)/6} = 0 and thus f(5) = 0. 0

Proof of Lemma([IT.6] We can write the unconstrained lasso problem as

arg min min{6% + A|z| v | | Tz — y*V |2 < 6}. (A.8)
z€RN 020

Let us analyse arg mings o min,egny {62 + Allz[lov | |72 — y™V|]2 < 6}. Note that this is equivalent

to arg ming (52 + mingepn { 2|7y | [|[T2 — 3TV |2 < 5}) = arg min520{52 + Af(9)} where f(9)

is defined in Corollary Using Corollary for y; < 80/(m — 1) the function § — 62 + Af(4)

is strictly increasing since f(§) = 0. Thus we can write arg ming., min,cpy {6 + Mz||lov | | T2 —

y™V2 <dtas  argmin 62 + Af(§). Noting that f(§) = (a V B)"L(y1 — §6/(m — 1)), we get
§>0,y12660/(m—1)

argmin 0% 4+ \f(d) = argmin 0% = Ao0(m — 1) Ha Vv B) T+ Ay(av )
520,y1>66/(m—1) §20,91>56/(m—1)

which is minimised when § = &, where 6 := A(m — 1)~'(a V 3)~1/2 (we have used here that § is
feasible for the problem since y; > A62[2(m — 1)%(a'V 8)] "' and so y; > 66/(m — 1)).
We can use this result in (A-8) to get

Evrrv (T, yTV) = arg min {52 + AMz||Tv ‘ | T2 — yTVH2 < 5}
zcRN

A0
= argmin < ||« Tx —ytV <}
sgin { ooy | 1T~ ™Vle < 5o
Noting that 5 <3 0 ni\Tl)l < 3X < 1, and so Lemmam can be applied in each of the cases a < (3,
4

«a = f and o > f to reach the desired conclusion.
d

Proof of Lemma(IT.8] Suppose first that y; > 0, « > 0, and 3 > 0. Simple gaussian elimination shows
that the set of 2 for which z > 0 and AM""Px = ¥ is exactly

N
{IGR |04I1 +pry =y, 23 =24 =" =Zm = Tmt1 = 0, Tiny2, Tmys, -, TN 20}

sothat (z,c) = vazl x; > 1 > (ax1+Pra)/a > y1 /. Therefore as (z, ¢y, is increasing as a function
of (z, c) we have that any z > 0 such that AYP"Pz = y must satisfy (x, ¢)r > |10¥y; /a]107* and this
equality is attained when = = y; e /. The proof of (TT.13)) is complete by noting that 10~% | 10*y; /o] <
107k 10* M| < M ify1 /o < 107%([10*M | + 1) and 107% [ 10*y; /o] > 107F([10FM | +1) > M if
y1/a>107%(|10* M| +1).

Now suppose that y; = 0. Then 2 = 0 satisfies A“P"Pz = ¢y and 2 > 0. Moreover, (0,c) = 0 <
M. This concludes the proof of the lemma. O
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APPENDIX B. STANDARD SPARSE RECOVERY RESULTS

The concept of sparsity has been dominating modern signal and image processing over the last few
decades. Sparsity is a crucial element to this paper and we use this appendix to cover some standard

concepts and tools that we will make use of.

B.1. The basics of sparsity. Recall that we say that a vector # € CV is s-sparse if = has at most s
nonzero entries. One of the key mainstays in the theory of sparse recovery is the £2-robust nullspace
property (RNP).

Definition B.1 (Robust Nullspace Property). A matrix U € R™ ¥ satisfies the ¢2-robust nullspace

property of order s with parameters p € (0,1) and 7 > 0 if

Ioslla < L= lsell + 7lUol (B.1)
forall sets S C {1,..., N} of cardinality s and all vectors v € R".

Directly showing that a matrix has the RNP is often difficult. Thus, one usually attempts to instead
establish the restricted isometry property (RIP) that implies the RNP, recalled next.

Definition B.2 (RIP). A matrix U € C™* is said to satisfy the restricted isometry property (RIP) or
order s if there is a § € [0, 1) such that

(L=8)=l3 < U3 < (1+6)|=]3, (B.2)

for all s-sparse © € RY. The restricted isometry constant of order s, denoted by J,, is defined to be the
smallest such § so that is satisfied. Equivalently, d, is given by

(55 = sup ||PTU*UPT—IT||2
TC{1,2,...,N}
IT|<s

where Pr denotes the projection onto the coordinates indexed by 7.
We thus have the following result linking the RIP and RNP.

Theorem B.3 (|61, Theorem 6.13]). If the restricted isometry constant 025 of order 2s of a matrix A €
R™*N obeys 095 < 4/+/41, then A satisfies the (-robust nullspace property of order s with parameters

p= 625 S \/1+625
V1 =02, — 0y, /4 V1 =02, —6y,/4

It is generally difficult to construct deterministic matrices with the RIP. Instead, one often resorts to

and

random matrices, such as provided by the following result taken from [|62]] and adapted to fit the notation
of this paper.

Theorem B.4 (62, Theorem 3.9]). For every K > 0, there exist constants C1,Co and Cs depending

2

only on K such that the following occurs. Let 2%, 2%, ... xN be N-dimensional complex vectors with

N > 3and ||2%|| < K, for all i. Assume that vazl ' @' = NIy and that m is a natural number with
N >m > Cyslog(N)e 2 log[slog(N)e 2] log? s

where € € (0,1) and s is an integer with s > 3. Let R be a random subset of {1,2,..., N} chosen
according to a Bernoulli model with probability m/N, that is, each entry of R is chosen independently
and i € R with probability m/N. Set X := sup pj<, [[Ir —m™" 3, p o @ x4
vector x* restricted to a setT'. Then

o, where x' is the

P(X > Coae) < 3exp (—Czaems ') + 2exp(—a?), foralla > 1. (B.3)
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We can use Theorem B.4]to show the existence of matrices that satisfy the RIP, as follows:

Theorem B.5. For every K > 0, there exists a constant Cy depending only on K so that for all natural

numbers m, N and s, each at least 3 and satisfying
N > m > Cyslog(N)log[slog(N)]log? s, (B4)

as well as any unitary matrix U with ||U ||max < K/\/'N, there exists a set S of size exactly m such that
/N/m PsU has the RIP of order s with 6 < 1/5.

Proof. Fix K > 0 and let Cy, C and C3 be the constants from Theorem [B.4] We set
1 1 1 5C;s
= As, a=——, Cy=[Cie?(1+2loge ')]V
¢ 1002 2 @ 5026 4 [ 1€ ( + g€ )] €2C3

These choices of parameters ensure that 0 < ¢ < 1/2 < 1, that o > % = 2 and, using that

m > Cyslog(N)e ?log[slog(N)] [1 + 2loge™"] log? s > Cyslog(N)e 2 log[slog(N)e 2] log? s.
(B.5)
since both s and IV are at least 3. Furthermore, our choice of Cy, a and € depend only on K.

Next, we choose the vectors 2!, 22, ..., 2V so that 2 is the ith column of U multiplied by v/N. Such
a choice of 2 gives ||#7]|. < K. Moreover, Y1\ | 2% @ ' = NU*U = Iy by the assumption that U
is unitary. Therefore, TheoremB.4]applies and we conclude that for a random set R chosen according to
the Bernoulli model equation (B-3)) holds.

The choice of the parameters made in (B.3)) ensures that Coe < 1/5. Because log(s),log(N) and
log(slog(N)) are each at least 1, condition implies that m > Cy > i’%; Therefore, again
using (B-3), we see that Csaem/s > e~ 2. Finally, our choice of z° ensure that X can be written as
X = ||Ir — m~'NPprU*PsU Pr||2. By the definition of the restricted isometry constant this is in fact
05 for the matrix \/W PsU. Thus implies that the random variable §; corresponding to the
random matrix \/N/m PsU satisfies P(35 > 1/5) < 3exp(—e~2) + 2exp(—a?) < 5exp(—4).

At this point, the proof would be done if the cardinality of S were fixed since 5exp(—4) < 1 and

hence there must exist at least one such R with 5 < 1/5. Unfortunately, the cardinality of R is a random
variable since S is selected according to the Bernoulli model. We will therefore consider random sets S’
chosen as follows: let X be the set of all subsets of {1,2,..., N} with cardinality m. We take S to be
an element of X chosen uniformly at random. Using an argument similar to the one presented in [[61}
p. 468] we will bound the probability that the random variable §, corresponding to the random matrix
\/N/m Pg:U exceeds 1/5.

To this end, let E}% be the event that there exists an s-sparse unit vector z such that || /N/m Ps/Uz||3 >
6/5 and let EY; be the event that there exists an s-sparse unit vector z such that ||/N/m Ps: Uz |3 < 4/5.
Similarly, for the random sets S chosen according to the Bernoulli model, let E, be the event that
there exists an s-sparse unit vector « such that ||/N/m PsUz||2 > 6/5 and let EY; be the event that
there exists an s-sparse unit vector = such that ||/N/m PsUz||3 < 4/5. We have shown already that
P(Ep U Ej) < 5exp(—4).

For a given i, let B; denote the collection of sets S with S C {1,2,..., N}, |S| = 7 and such that
there exists an s-sparse unit vector o such that ||\/N/m PsUz||3 > 6/5. Because the Bernoulli model
selects elements independently and with equal probability, P (E'; ’ |S| = i) = |B;|/(). By an argument
originally used by Sperner to prove Sperner’s theorem [63} p.3], the shade V B; of B; defined by

VB; ={SC{1,2,...,N}|,||S| =i+1and 35S € B; with § C 5}

satisfies [VB;| > (n — 4)|B;|/(i + 1). Moreover, if S is in B; and S is such that |S| =  + 1 and
S C S then ||\/ X PgAz||3 > ||/ X PgAz|? and hence S € Bj41. Thus VB; C B;i1. Therefore for
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7 < N — 1 we have

\B;J (Z:‘ 1)|V3i| _ \Vfﬁ < |Bil+1| —P(EL||S] = (i+1).
() (D —1i) (1) (i41)

Let A; denote the collection of sets S with S C {1,2,..., N}, |S| = ¢ and such that there exists an
s-sparse unit vector z such that ||\/N/m PsUz||3 < 4/5. A similar argument to the preceding one for
B; this time using the fact (also proven by Sperner) that the shadow A A; of A, defined by

P(EY| 15| = i) = 28 <

AA; ={SC{1,2,...,N}|,||S| =i—1and 3S € A; with S C S}
satisfies |AA;| > (i|A;])/(n — i+ 1) gives P (EY | |S| =4) <P (EY ||S| = (i — 1)). Thus

N N
P(ER) =Y P(ER||S| =) P(S| =1i) > Y P (Ep|[S| =i)P(S| =)
1=0 1=m

P(EY)
5

N
>P(Eg||S|=m) > P(S|=i)>

i=m

(B.6)

where the final inequality follows because m is the median of the random variable |S|. Similarly we
obtain

m l
BU) 2 D (B8] =) P8I =) = Z5

Combining (B.6), (B.7) and the already established result P(EY U E%) < 5exp(—4) gives

(B.7)

P(E; U EY) <P(Bl) +P(EY) < 2[P(EY) + P(Bg)] <4P(EL U ER) < 20exp(—4) < 1

Hence P(§, > 1/5) < 1 where J, is the random RIP constant associated to the random matrix Pg/ U
such that S’ a uniformly randomly chosen subset of {1,2,..., N} with |S’| = m.

Thus there exists a set S with |S| = m such that the matrix PsU has §; < 1/5, as otherwise we would
have P(6s < 1/5) = 0 and this would be a contradiction. O

We can apply this result to the discrete cosine matrix to derive the following:

Theorem B.6. There exists a constant Cs with the following property: for any natural numbers m, N,
and s with N > m > 3 and s > 2 obeying

N >m > Csslog(N)log[slog(N)]log? s, (B.8)

there exists a matrix F € R™*N with the RNP of order s with parameters p < 1/3 and T < 2 that also

satisfies ||F||2 < v/N/m.

Proof. LetU € RY*N be the matrix corresponding to the second variant of the discrete cosine transform,
i.e., its entries are given by

VEcos (GG - D@k —1) forj ke {l,...,N},j#1

Ujr, = N _
N forj=1

Note that U is an orthonormal matrix with ||U||max < 1/2/N. Take C5 = 16C4 where Cy is taken from

the statement of Theorem with K = v/2. Then condition implies that
N >m > 2C,slog(N)(2log(slog(N))) (2log(s))* > 2C,slog(N)(log(2slog(N))) (log(2s))?

since s > 2. Thus, we can apply Theoremto obtain a set S so that F' := /N/m PgU obeys the RIP
of order 2s with d3; < 1/5. Hence, by Theorem the matrix F' satisfies the RNP with parameters

p = 1/5 <1 and 7 := L+1/5 <2
L VI-(/E)2-(1/5)/4 3 VI (1/5)2 - (1/5)/4
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The proof is complete by noting that || F||2 < /N/m ||U||2 < /N/m.

This paper also makes use of the following results:

Theorem B.7 (61, Theorem 4.25]). Suppose that A € C™*N satisfies the RNP of order s with parame-
ters p € (0,1) and 7 > 0. Then, for all x,z € CN, we have

(1+p)? 1
lz = 2]z < S—=—= (2l = llzlls + 205(2)1) +

L—p /s

where o,(z); = min{||z — y||1 | s-sparse y € RV}

B+p)7

P A - Azllp, (BO)
—p

Lemma B.8. Let b,,e, > 0 and suppose A € R™ N satisfies the RNP of order s with parameters
p € (0,1) and T > 0. Suppose we are given y € R™ such that ||y||2 < by+/N/m and ||Ax — y||2 < ¢,
for some s-sparse x € RN . Let A" and v/’ be such that

[
ly—9'lla < ey, A=Az < z ‘
T <5+by\/N/m)
Then
Hﬂbgr@+%de0 and ||A'z — 3|2 < € + 2,

Proof of Lemma Let S = supp(z). Now, by applying to « we have

lall2 < 7ll Azl < 7 (142 = yll2 + lyll2) < 7 (= +b,3/N/m)

and thus
[Az —y'lla < A= All2llzl2 + [[Az — yll2 + [ly — ¥/l|2

<|JA-A2-7 (5+by\/N/m) +e+ey <e+ 2.
O

Lemma B.9 (64, Lemma 8.5]). Suppose A € R™*N has the RNP of order s with constants p € (0, 1)
and T > 0. If A’ € R™*N satisfies |A" — Al < € where € is a non-negative real number with

€< ﬁ then A’ satisfies the RNP of order s with constants p' and 7' satisfying

gobtres T
1—7e€ 1—7e
B.2. Standard matrices used in the theory of sparsity. We recall here two types of matrices that are

frequently used in compressive sensing and sparse regularisation applications:

Hadamard matrices. In this paper we will only consider Hadamard matrices of size 2" x 2™, forn € N.
We define a ‘naturally ordered’ Hadamard matrix H,, with entries +1 of dimension 2" x 2™ by the
recurrence relation

1 1

Hiy=H ®H;_,, H = (1 1

) Hy = 1, je€ N.

where ® denotes the Kronecker product. H,, has orthogonal rows, columns and the property that
H'H, = 2"Iy» where Ion € R?"*2" is the identity matrix. We also consider Hadamard matrices
in the ‘sequency ordering’: that is, the rows of [,, are ordered so that the number of sign changes in a

given row is increasing. We shall make the distinction clear where important.
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Hadamard-to-Haar matrices. Let H, € R?"*?" be the Hadamard matrix in the sequency ordering
and let W,, € R2"%2" pe the 1D discrete Haar wavelet transform matrix. Then, by [65, Lemma 1 &
Lemma 2] we have H, W, ! = (1) & @}, X’ where the matrix X’ € R? %" is unitary and satisfies
(X" x| = 1/V2¢, foralli=0,...,n—1and j,k = 1,...,2". Now, a row-subsampled Hadamard-to-
Haar matrix is any matrix of the form

n—1
A= (1) o @eiPs, X7, (B.10)
=0
where the S; are subsets of {1,...,2071},Pg : RZ" ' — RIS are the corresponding projection op-

erators selecting the coordinates in .S; and ¢; = \/% for nonempty S; and ¢; = 0 if S; = @. Ma-
trices formed by taking the product of a Hadamard transform with an inverse wavelet transform, like
the Hadamard-To-Haar matrices defined above, have proven to be very effective in compressive sensing,
particularly on imaging applications [[66].

APPENDIX C. SEPARATION ORACLES AND THE ELLIPSOID ALGORITHM

In this section we define the concepts needed in the statements of Theorem [20.2] and Theorem [20.3]
namely those of the weak optimisation problem, weak separation oracle, encoding functions and polyno-
mially separable classes. We start with the weak optimisation problem, which we define as a minimisation
problem (rather than a maximisation problem as in [37]]) for convenience.

Definition C.1 ([37, Def. 2.1.10], Weak optimisation problem). Let Z C R™ be a compact convex set,
and suppose that R > 0 is a rational such that X C Br(0). Furthermore, let ¢ € Q™ and ¢ € Q. The
weak optimisation problem (IC, R, ¢, €) is the task to either

(a) finda z* € Q™ such that z* € S(K,¢) and (¢, 2z*) < (¢, z) + (, forall z € S(K, —(), or

(b) assert that S(K, —() = @.

The following is the definition of a weak separation oracle, which we present as a synthesis of [37]
Assump. 1.2.1], [37, Def. 2.1.13], and the discussion on pages 54 and 55 of [37]] on the description of
compact convex sets by means of a separation oracle.

Definition C.2 (Weak separation oracle). Let X C R™ be a compact convex set. We say that a procedure
SEP is a weak separation oracle for K if, given a vector w € Q™ and a rational £ > 0,
(a) SEPi either outputs a d € Q™ with ||d||c = 1 and such that (d,z) < (d,w) + &, for all
z € S(K,=£), or
(b) SEP asserts that w € S(K, ).
Moreover, in the Turing case, we insist that there exist a polynomial P : R — R such that, whenever
SEPx outputs a vector d as in item (i), we have Len(d) < Pic(Len(w) + Len(€)).

Note that by the separating hyperplane theorem [29] applied to the convex sets K and {w}, at least one
of (a) and (b) in Definition[C.2]are satisfied whenever K is non-empty. Moreover, (a) is trivially satisfied
for any d € Q" with ||d||c = 1 if K is empty.

Remark C.3. When considering the BSS instead of the Turing model, all quantities in Definitions [C.1]
and [C.2] specified to be rationals are allowed to be (not necessarily rational) real numbers.

Next, we introduce Turing encoding functions which represents the encoding of the various sets K in

a form that can be presented to a Turing machine as input.

Definition C.4 (Turing encoding function). Let A* denote the set of finite-length strings in a finite
alphabet A. A Turing encoding function for .# is an injective function Data™™ : #" — A*.
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Note that the explicit form of Data™" depends on the particular class .# under consideration. The
condition on Data™" in Definition simply states that the sets are encoded uniquely. For example,
for basis pursuit denoising where our compact convex sets will be of the form {z € RY | [|A'z — ¢/ |2 <
&, ||zllz < R'}, where ', R’ € D,y € D™, and A’ € D™*¥ one possible encoding in the alphabet
A={0,1,—, ., ;}is

mi N3 R yns g5 s Ay Alg oo Ay €A
where all the dyadic rationals are written out in their binary representation.

We are now ready to define polynomially separable classes in the Turing model.

Definition C.5 (Polynomially separable class — Turing case). Suppose % is a circumscribed class
Tur ¢ — A*. We say that 7 is Turing-polynomially
separable with respect to Data ™" if there exist a Turing machine that takes in Data™"" (K, n, R) € A*,

equipped with a Turing encoding function Data

aw € Q", and a rational ¢ > 0 as its input and acts as a weak separation oracle for /C, i.e., it either
(a) outputs a d € Q" with ||d||coc = 1 and such that (d, z) < (d,w) + &, forall z € K, or
(b) asserts that w € S(K, §),

such that the runtime of the Turing machine is bounded by a polynomial of Len(DataTur(lC, n,R)),
Len(R), Len(w), Len(&), and n.

Finally, we present analogues of the concepts above for the BSS model of computation, following the
ideas in [57, Sec. 1.1, Sec. 1.2].

Definition C.6 (BSS encoding function). We define V = U?;l R¥, i.e., the set of real vectors of ar-
bitrary length. A BSS encoding function for J# is a function Data® : # — V so that, for all
(K1,n,R), (Ko,n,R) € 2, K1 # Ko implies DataBSS(ICl, n, R) # DataBSS(ICg, n, R).

BSS gerves to encode K as a vector of reals, which

In analogy to the Turing encoding function, Data
can be accepted as input by a BSS machine. For basis pursuit denoising, the convex set {z € RV | || A’z —

y'll2 <&, ]]2]l2 < R}, where ' € R™ and A’ € R™*Y can be encoded as
(m’ N’ 6/7 R/7 yi? e ay:mAll,la A/1,27 T 7A;1)N) S R4+m+mN c V.

Definition C.7 (Polynomially separable class — BSS case). Suppose .#" is a circumscribed class equipped
with a BSS encoding function DataPSS : ¢ — V. We say that 7 is BSS-polynomially separable with
respect to DataP5S if there exists a BSS machine that takes in DataBSS(IC, n,R)€V,aw € R", and a
real £ > 0 as its input and acts as a weak separation oracle for C, i.e., it either

(a) outputs a d € R™ with ||d||oc = 1 and such that (d, z) < (d,w) + &, forall z € K, or

(b) asserts that w € S(K, &),
such that the runtime of the BSS machine is bounded by a polynomial of dim(Data®% (K, n, R)), i.e.,
the dimension of the real vector Data®3% (K, n, R).

Note that, unlike in the Turing case, we now have no concept of the length of the encoding of a convex
set, but instead the separation oracle must be executable in runtime which is polynomial only in the
dimension of the data vector encoding the convex set.
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