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Abstract

In this paper we study the identification of a time-varying linear system whose response is a
weighted superposition of time and frequency shifted versions of the input signal. This problem
arises in a multitude of applications such as wireless communications and radar imaging. Due
to practical constraints, the input signal has finite bandwidth B, and the received signal is
observed over a finite time interval of length T only. This gives rise to a time and frequency
resolution of 1/B and 1/T . We show that this resolution limit can be overcome, i.e., we can
recover the exact (continuous) time-frequency shifts and the corresponding attenuation factors,
by essentially solving a simple convex optimization problem. This result holds provided that the
distance between the time-frequency shifts is at least 2.37/B and 2.37/T , in time and frequency.
Furthermore, this result allows the total number of time-frequency shifts to be linear (up to
a log-factor) in BT , the dimensionality of the response of the system. More generally, we
show that we can estimate the time-frequency components of a signal that is S-sparse in the
continuous dictionary of time-frequency shifts of a random (window) function, from a number
of measurements, that is linear (up to a log-factor) in S.

1 Introduction

The identification of time-varying linear systems is a fundamental problem in many engineering
applications. Concrete examples include radar and the identification of dispersive communication
channels. Radar systems and wireless communication channels are typically modeled as linear
systems whose response is a (continuous) weighted superposition of delayed and Doppler shifted
versions of the input signal. In general, the response of such a system H to an input signal x is
given by

(Hx)(t) =

∫∫
sH(τ, ν)x(t− τ)ei2πνtdνdτ

where sH(τ, ν) denotes the spreading function which characterizes the system. Identification of H
amounts to estimate the (unknown) spreading function from an input-output measurement. The
input signal x(t) is known and can be controlled by the system engineer. We assume that the
spreading function consists of S point scatterers. In radar, those point scatterers correspond to
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moving targets. Mathematically, this means that the spreading function is of the form

sH(τ, ν) =
S∑
n=1

bnδ(τ − τ̄n)δ(ν − ν̄n).

Here, bn ∈ C is a (complex) attenuation factor associated with the time-frequency (delay-Doppler)
shift (τ̄n, ν̄n) ∈ R2. With this spreading function, the general input-output relationship above
reduces to

(Hx)(t) =

S∑
n=1

bnx(t− τ̄n)ei2πν̄nt. (1)

In order to identify H we need to estimate the attenuation factors bn and the corresponding (con-
tinuous) time-frequency shifts (τ̄n, ν̄n) from an input-output measurement.

In practice, such an input-output measurement can only be performed under the constraints
that the input signal x(t) has finite bandwidth B and the output signal (Hx)(t) is observed over
a finite time interval of length T only. This time and band-limitation determines the “natural”
resolution of the system of 1/B and 1/T in τ - and ν-direction, respectively. Specifically, as we shall
explain in more detail in Section 4, the response (Hx)(t) is essentially L := BT dimensional1, and
described by its samples yp := (Hx)(p/B), which take on the form

yp =

S∑
n=1

bne
i2πpνn 1

L

N∑
`,k=−N

e−i2πkτnei2π(p−`) k
La`, p = −N, ..., N. (2)

Here, N := BT−1
2 , τn := τ̄n/T , νn := ν̄n/B, and a` = x(`/B) are the samples of x(t) at t = `/B,

assumed to be L-periodic. Thus, identification of H under the proviso that x(t) is band-limited
and (Hx)(t) is time-limited, amounts to estimating (bn, τn, νn) from the samples in (2).

In this paper, we consider the problem of recovering the triplets (bn, τn, νn), (τn, νn) ∈ [0, 1]2 from
the samples yp, p = −N, ..., N , in (2). We call this the super-resolution radar problem, as recovering
the exact time-frequency shifts (τn, νn) “breaks” the natural resolution limit of (1/T, 1/B).

Alternatively, one can view this estimation problem as the recovery of a signal that is S-sparse
in the continuous dictionary of time-frequency shifts of a L-periodic sequence a`. In order to see
this, and to better understand the super-resolution radar problem, we next consider two special
cases.

1.1 Time-frequency shifts on a grid

If the time-frequency shifts lie on a ( 1
B ,

1
T ) grid, the super-resolution radar problem reduces to a

sparse signal recovery (compressive sensing) problem with a Gabor measurement matrix. To see
this, suppose that the time-frequency shifts lie on a ( 1

B ,
1
T ) grid, i.e., τ̄n = mn

B , ν̄n = qn
T , where

mn, qn ∈ {0, ..., L−1} are the positions of the time-frequency shifts on the grid. With τn = mn
BT = mn

L
and νn = qn

BT = qn
L , (2) reduces to

yp =

S∑
n=1

bne
i2π qnp

L ap−mn , p = −N, ..., N. (3)

1For simplicity we assume throughout that BT is an odd integer.
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Writing (3) in matrix-vector form yields
y = Gb

where G ∈ CL×L2
is the Gabor matrix with window a` (cf. (7)), [y]p := yp, and the non-zeros

and the positions, indexed by (mn, qn), of the non-zeros of b ∈ CL2
correspond to the bn and the

(τn, νn), respectively. Thus, recovery of the (bn, τn, νn) amounts to recovering the S-sparse vector
b ∈ CL2

from the measurement y ∈ CL. This is a sparse signal recovery problem with a Gabor
measurement matrix. A—by now standard—recovery approach is to solve a simple convex `1-norm-
minimization program. From [20, Thm. 5.1] we know that, provided the a` are i.i.d. sub-Gaussian
random variables, and provided that L ≥ O(S log2(S) log2(L)), with high probability, all S-sparse
vectors b can be recovered from y via `1-minimization.

1.2 Only time or only frequency shifts

We next consider the case of only time or only frequency shifts, and show that in both cases recovery
of the (bn, τn) or (bn, νn), is equivalent to the recovery of a weighted superposition of spikes from
low-frequency samples. Specifically, if τn = 0 for all n, (2) reduces to

yp = ap

S∑
n=1

bne
i2πpνn , p = −N, ..., N. (4)

The yp above are samples of a mixture of S complex sinusoids, and estimation of the νn corresponds
to determining the frequency components of those sinusoids. Expressed differently, the yp are the
lowest L Fourier series coefficients of a signal x that is a weighted (by the bn) superposition of Dirac
measures at locations νn. In this sense, the yp correspond to the low-frequency components of x.
Estimation of the νn is a line spectral estimation problem, and can be solved using approaches such
as Proney’s method [12, Ch. 2]. It has been shown recently [8] that recovery of the (bn, νn) can be
accomplished by solving a convex total-variation norm minimization program, provided that the
minimum separation between any two νn is larger than 2/N . This result is interesting as it shows
that the positions of the spices can be identified exactly by solving a (simple) convex program.

An analogous situation arrises in the case of τn = 0 for all n: taking the discrete Fourier
transform of yp yields a relation exactly of the form (4).

1.3 Main contribution

In this paper, we consider a random probing signal x(t) by taking its samples a` to be i.i.d. Gaussian
(or sub-Gaussian) random variables. We show that, with probability at least 1− δ, the (bn, τn, νn)
can be recovered perfectly from the L samples yp by essentially solving a simple convex program
provided that the (τn, νn) ∈ [0, 1]2, n = 1, ..., S, satisfy the minimum distance condition

min(|τn − τm|, |νn − νm|) ≥
2.38

N
, for all n 6= m, (5)

where |τn− τm| is the `∞-distance (i.e., the wrap-around distance on the unit circle), and provided
that

L ≥ Sc log3

(
c′L6

δ

)
where c and c′ are numerical constants.
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Translated to the continuous setup, our result implies that, with probability at least 1− δ, we
can identify the (bn, τ̄n, ν̄n) perfectly provided that

|τ̄n − τ̄m| ≥
4.77

B
and |ν̄n − ν̄m| ≥

4.77

T

and

BT ≥ Sc log3

(
c′(BT )6

δ

)
.

This is essentially optimal, as the number S of unknowns can be linear—up to a log-factor—in the
dimensionality BT of the observation (Hx)(t).

Finally note that (τn, νn) ∈ [0, 1]2 translates to (τ̄n, ν̄n) ∈ [0, T ]× [0, B], i.e., the (τ̄n, ν̄n) can lie
in a rectangle of area L = BT � 1, i.e., the system H does not need to be underspread2.

1.4 Notation

We use lowercase boldface letters to denote (column) vectors and uppercase boldface letters to
designate matrices. The superscripts T and H stand for transposition and Hermitian transposition,
respectively. For the vector x, xq and [x]q denote its qth entry, ‖x‖2 its `2-norm and ‖x‖∞ =
maxq |xq| its largest entry. For the matrix A, Aij and [A]ij designates the entry in its ith row and
jth column, ‖A‖ := max‖v‖2=1 ‖Av‖2 its spectral norm, and ‖A‖F := (

∑
i,j |Aij |2)1/2 its Frobenius

norm. The identity matrix is denoted by I. For a complex number b with polar decomposition
b = |b|ei2πφ, sign(b) := ei2πφ. Similarly, for a vector b, [sign(b)]k := sign([b]k). For the set T , |T |
designates its cardinality and T is its complement. The sinc-function is denoted as sinc(t) = sin(πt)

πt .
For vectors r, r′ ∈ [0, 1]2, |r− r′| is the ∞-distance. Here, the distance on each coordinate is
understood as the wrap-around distance on the unit circle. Throughout, r denotes a 2-dimensional
vector with entries τ and ν, i.e., r = [τ, ν]T . Moreover c, c̃, c′, c1, c2, ... are numerical constants that
can take on different values at different occurrences. Finally, N (µ, σ2) is the Gaussian distribution
with mean µ and variance σ2.

2 Recovery via convex optimization

In this section we present our approach for the recovery of the parameters (bn, τn, νn) from the
samples yp in (2). Before we proceed we note that (2) can be rewritten as

yp =
S∑
n=1

bn

N∑
`,r=−N

DN

(
`

L
− τn

)
DN

( r
L
− νn

)
ap−`e

i2π rp
L , p = −N, ..., N (6)

where

DN (t) :=
sin(πLt)

L sin(πt)

is the Dirichlet kernel. Our signal model is a sparse linear combination of time and frequency
shifted versions of the sequence a`. A regularizer that promotes such a sparse linear combination
is the atomic norm induced by these signals [10]. We define atoms a ∈ CL2

as

[a(r)](`,r) = DN

(
`

L
− τ
)
DN

( r
L
− ν
)
, r = [τ, ν]T , `, r = −N, ..., N.

2A system is called underspread if its spreading function is supported on a rectangle of area much less than one.
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Rewriting (6) in matrix-vector form yields

y = Gz, z =

S∑
n=1

|bn|ei2πφna(rn)

where bn = |bn|ei2πφn is the polar decomposition of bn and G ∈ CL×L2
is the Gabor matrix defined

by

[G]p,(`,r) := ap−`e
i2π rp

L , `, r, p = −N, ..., N. (7)

The atoms in the set A := {ei2πφa(r), r ∈ [0, 1]2, φ ∈ [0, 1]} are the building blocks of the signal z.
The atomic norm ‖·‖A is defined as

‖z‖A = inf {t > 0: z ∈ t conv(A)} = inf
bn∈C,rn∈[0,1]2

{∑
n

|bn| : z =
∑
n

bna(rn)

}
where conv(A) denotes the convex hull of the set A. The atomic norm can enforce sparsity in A
because low-dimensional faces of conv(A) correspond to signals involving only a few atoms [10, 27].
A natural algorithm for estimating z is the atomic norm minimization problem [10]

AN(y) : minimize
z

‖z‖A subject to y = Gz. (8)

3 Main result

Our main result, stated below, provides conditions, under which atomic norm minimization per-
fectly recovers z =

∑S
n=1 bna(rn). Once we obtain z, recovery of the time-frequency shifts is a 2D

line spectral estimation problem which can be solved with standard approaches such as Proney’s
method see e.g. [12, Ch. 2]. We also present a more direct recovery approach in Section 6.2. When
the time-frequency shifts rn are identified, the coefficients bn can be obtained by solving the linear
system of equations

y =

S∑
n=1

bnGa(rn).

At first sight, computation of the atomic norm involves taking the infinimum over infinitely many
parameters. However, since the atomic norm can be characterized in terms of linear matrix inequal-
ities, (8) can be formulated as a semidefinite program, which allows to recover z efficiently. Instead
of taking that route, and explicitly stating the corresponding semidefinite program, we show later
that the time-frequency shifts rn can be identified directly from the dual solution of the atomic
norm minimization problem (8). As shown later, the dual of (8) has a semidefinite programming
formulation as well.

Theorem 1. Let T = {r1, r2, ..., rS} ⊂ [0, 1]2 be any set of points obeying the minimum distance
condition

|rj − rk| ≥
2.38

N
, for all rj , rk ∈ T with rj 6= rk,

assume that N ≥ 512, and let the coefficients a`, ` = −N, ..., N be chosen i.i.d. from N (0, 1/L),
L = 2N + 1, and let the sign(bn) be i.i.d. uniform on {−1, 1}. Finally, let y be the vector with
entries yp as defined in (2), i.e.,

y = Gz, z =
∑
rn∈T

bna(rn).
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Suppose that

L ≥ Sc log3

(
c′L6

δ

)
.

Then, with probability at least 1− δ, z is the unique minimizer of AN(y).

The proof of Theorem 1 is based on analyzing the dual problem, specifically we will certify op-
timality by constructing a dual certificate (see Section 6). The construction of this dual certificate,
formalized by Proposition 3 in Section 8, is the main technical contribution of this paper.

The random sign of the coefficients bn essentially assumes that the time-frequency shifts in (1)
have random phase. To keep the proof simple, we assumed that the bn are real, however the result
continues to hold for complex bn (only the constant 2.38 in (5) changes slightly). The random-phase
(i.e., sign) model is in line with standard models in wireless communication and in radar [4], where
the bn are assumed complex Gaussian. Nevertheless, we believe that the random sign assumption
is not needed for our statement, and leave a corresponding result to future work.

Finally note that Theorem 1 continues to hold for sub-Gaussian a`.

4 Detailed problem formulation

In this section we derive the input-output relation (2). As mentioned previously, radar and wireless
communication channels are typically modeled as linear systems whose response is a weighted
superposition of delayed and Doppler shifted versions of the input signal. In general, the response
of the system to the input signal x(t) is given by

y(t) =

∫∫
sH(τ, ν)x(t− τ)ei2πνtdνdτ (9)

where sH(τ, ν) denotes the spreading function associated with the system. The input signal x(t)
can be controlled by the system engineer and is known in the channel identification and radar
problems. The spreading function depends on the scene and is unknown. We assume that the
spreading function consists of S point scatterers. In radar, those point scatterers correspond to
moving targets. Mathematically, this means that the spreading function specializes to

sH(τ, ν) =
S∑
n=1

bnδ(τ − τ̄n)δ(ν − ν̄n). (10)

Here, bn, n = 1, ..., S, is a (complex) attenuation factor associated with the time frequency-shift
(τ̄n, ν̄n). Owing to path loss and finite velocity of the targets or objects in the scene, we may assume
that [26]

(τ̄n, ν̄n) ∈ [0, τmax]× [0, νmax] (11)

for some constants τmax, νmax. With (10), (9) reduces to (1), i.e., to

y(t) =

S∑
n=1

bnx(t− τ̄n)ei2πν̄nt.

The goal is to identify the triplets (bn, τ̄n, ν̄n) from the response y(t) to a (known) probing signal
x(t), as those parameters characterize the system. For the radar application, this yields the position
and relative speed of the objects.
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sH(τ, ν) sH(τ, ν)

Figure 1: Illustration of the spreading function sH(τ, ν) and the corresponding smeared spreading
function sH(τ, ν).

In practice, the input signal x(t) has finite bandwidth B and the received signal y(t) can only
be observed over a finite time interval of length T . As shown next, this time and band-limitation
leads to a discretization of the input-output relation (9) and determines the “natural” resolution
of the system of 1/B and 1/T in τ - and ν-direction, respectively. Specifically, using that x(t) is
band-limited to [0, B), and y(t) is time-limited to [−T/2, T/2) (9) becomes [4] (see Appendix A for
details)

y(t) =
∑
`∈Z

∑
r∈Z

sH

(
`

B
,
r

T

)
x

(
t− `

B

)
ei2π

r
T
t (12)

where

sH(τ, ν) :=

∫∫
sH(τ ′, ν ′) sinc((τ−τ ′)B) sinc((ν−ν ′)T )dτ ′dν ′ (13)

is a smeared version of the original spreading function. For points scatterers, i.e., for the spreading
function in (10), (13) specializes to

sH(τ, ν) =
S∑
n=1

bn sinc((τ − τ̄n)B) sinc((ν − ν̄n)T ). (14)

Imagine for a moment that we could measure sH(τ, ν) directly. We see that sH(τ, ν) is the 2D
low-pass-filtered version of the signal sH(τ, ν) in (10), where the filter has resolution 1/B in τ
direction and resolution 1/T in ν direction, see Figure 1 for an illustration. Estimation of the
triplets (bn, τ̄n, ν̄n), n = 1, . . . , S, from sH(τ, ν) is the classical 2D line spectral estimation problem
(see [12] and references therein). In our setup, the situation is further complicated by the fact that
we can not measure sH(τ, ν) directly. We only get access to sH(τ, ν) after the application of the
Gabor linear operator in (12).

4.1 Sampling the output

Since y(t) is exactly time-limited to [−T/2, T/2) and approximately band-limited to [0, B) (we
assume νmax � B) it is well-described by its samples

y
( p
B

)
=
∑
`,r∈Z

sH

(
`

B
,
r

T

)
x

(
p− `
B

)
ei2π

rp
BT , p = −N, ..., N (15)
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where N = (BT − 1)/2 (recall that we assume for convenience that BT is an odd integer). Substi-
tuting (14) into (15) yields

y
( p
B

)
=

S∑
n=1

bn
∑
`,r∈Z

sinc(`− τnB) sinc(r − νnT )x

(
p− `
B

)
ei2π

rp
BT . (16)

We next specify the probing signal x(t) by specifying its samples x(`/B). We take the samples of
x(t) to be

x(`/B) = a`

where a` is a L-periodic sequence (recall that L = 2N + 1 = BT ). With yp := y
( p
B

)
, (16) becomes

(see Appendix B for details)

yp =

S∑
n=1

bn

N∑
`,r=−N

DN

(
`

L
− τn

)
DN

( r
L
− νn

)
ap−`e

i2π rp
L , p = −N, ..., N (17)

where τn = τ̄n
B
L = τ̄n/T , νn = ν̄n

T
L = ν̄n/B and

DN (t) :=
sin(πLt)

L sin(πt)
.

Rewriting the input-output relation (17) yields (2) (see Appendix B for details).

5 Discrete super-resolution radar

An obvious approach to estimate the time-frequency shifts (τn, νn), from the samples yp in (2) (recall
that once the time frequency shifts are known, estimation of the bn is trivial) is to suppose the
time-frequency shifts lie on a fine grid, and solve the problem on that grid. This leads to a gridding
error that becomes small as the grid becomes finer. Our results have immediate consequences for
the corresponding (discrete) sparse signal recovery problem, which are discussed in this section.

Suppose we want to recover a sparse discrete signal sm,n ∈ C, m, n = 0, ...,K − 1, K ≥ L =
2N + 1, from samples of the form

yp =
K−1∑
m,n=0

ei2πpmK 1

L

N∑
`,k=−N

e−i2πk
n
K ei2π(p−`) k

La`

 sm,n, p = −N, ..., N. (18)

To see the connection to the continuous setup in the previous sections, note that recovery of the
S-sparse (discrete) signal sm,n is equivalent to recovery of the (τn, νn, bn) from the samples yp in
(2) under the proviso that the (τn, νn) lie on a (1/K, 1/K) grid3 (the non-zeros of sm,n correspond
to the bn). Writing the relation (18) in matrix-vector form yields

y = Rs

where [y]p := yp, [s](m,n) := sm,n, and R ∈ CL×K2
is the matrix with entry in the pth row and

(m,n)th column given by the term in the bracket in (18). The matrix R contains as columns

3The discussion in this section could analogously be conduced for a signal on a grid with different spacing in τ
and in ν-direction, i.e., {(m/K,n/K̃)} with m = 0, ...,K − 1, n = 0, ..., K̃ − 1, and K 6= K̃.
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partial time-frequency shifts of the sequence a`. If K = L, R contains as columns only “whole”
time-frequency shifts of the sequence a` and R is equal to the Gabor matrix G defined by (7). In
this sense, K = L is the natural grid (cf. Section 1.1) and the ratio K/L can be interpreted as
a super resolution factor. The super resolution factor SRF := K/L determines by how much the
(1/K, 1/K) grid is finer than the original (1/L, 1/L) grid.

A standard approach to recover the sparse signal s from the underdetermined linear system of
equations y = Rs is to solve the following convex program:

minimize
ŝ

‖ŝ‖1 subject to y = Rŝ. (19)

Theorem 2. Let T ⊆ {0, ...,K − 1}2 be the support of the vector {[s](m,n)}K−1
m,n=0, obeying

min
(m,n),(m̃,ñ)∈T : (m,n) 6=(m̃,ñ)

1

K
max(|m− m̃|, |n− ñ|) ≥ 2.38

N

and suppose that the non-zeros of s have random signs, i.e., sign([s](m,n)), (m,n) ∈ T are i.i.d. uni-
form on {−1, 1}. Suppose that N ≥ 512 and let the coefficients a`, ` = −N, ..., N be chosen i.i.d.
from N (0, 1/L), L = 2N + 1, and suppose that

L ≥ Sc log3

(
c′L6

δ

)
.

Then, with probability at least 1− δ, the solution to (19) is equal to s.

Theorem 2 is proven by constructing a dual certificate (see Appendix C for details). The dual
certificate is obtained directly from the dual certificate for the continuous case in Proposition 3 in
Section 8.

5.1 Implementation details

The matrix R has dimension L ×K2, thus as the grid becomes finer (i.e., K becomes larger) the
complexity of solving (19) increases. However, the complexity of solving (19) can be reduced as
follows. The matrix-vector multiplication Rs can be implemented efficiently using the fast Fourier
transform. This allows to accelerate first-order solvers such as TFOCS [3]. Second, and more
importantly, in practice we know that by (11), we have (τ̄n, ν̄n) ∈ [0, τmax]× [0, νmax], which means
that

(τn, νn) ∈
[
0,
τmax

T

]
×
[
0,
νmax

B

]
. (20)

It is therefore sufficient to consider the restriction of R to the K2

Lτmaxνmax
= K2

BTτmaxνmax
columns

corresponding to the (τn, νn) satisfying (20). Since typically τmaxνmax � BT , this results in a
significant reduction of the problem size.

6 Dualization and identification of time-frequency shifts

We next study the dual problem of the atomic norm minimization problem (8). Our proof of Theo-
rem 1 is based on analyzing the dual problem, specifically we will certify optimality by constructing
a dual certificate. We will also show that the time-frequency shifts can be obtained from a solution
to the dual problem.
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The dual norm of ‖·‖A is defined as

‖v‖A∗ = sup
‖z‖A≤1

Re 〈v, z〉 = sup
r∈[0,1]2,φ∈[0,1]

Re
〈
v, ei2πφa(r)

〉
= sup

r∈[0,1]2
|〈v,a(r)〉| .

The dual problem of (8) is [7, Sec. 5.1.16]

maximize
q

Re 〈q,y〉 subject to
∥∥GHq

∥∥
A∗ ≤ 1 (21)

where q = [q−N , ..., qN ]T .

6.1 Semidefinte programming formulation of the dual problem

We next show that the dual can be cast as a semidefinite program. The corresponding formulation
is similar to the related convex programs in [6, Sec. 3.1], [8, Sec. 4], and [27, Sec. 2.2]. We first
show that the constraint in the dual is a 2D trigonometric polynomial that is bounded by one, and
can therefore be formulated as a matrix inequality.

The constraint in the dual (21) is∥∥GHq
∥∥
A∗ = sup

r∈[0,1]2

∣∣〈GHq,a(r)
〉∣∣ ≤ 1.

The vector a(r) can be written as
a(r) = FHv(r)

where FH is the (inverse) 2D discrete Fourier transform matrix, i.e., [FH ](`,r),(k,q) := 1
L2 e

i2π k`+qr
L

and the entires of the vector v are given by [v(r)](k,q) = e−i2π(kτ+qν), where `, r, k, q = −N, ..., N .
With these definitions,

〈
GHq,a(r)

〉
=
〈
GHq,FHv(r)

〉
=
〈
FGHq,v(r)

〉
=

N∑
k,q=−N

[FGHq](k,q)e
i2π(kτ+qν). (22)

Thus, the constraint in the dual (21) says that the 2D trigonometric polynomial in (22) is bounded
in magnitude by 1 for r ∈ [0, 1]2. The following form of the bounded real lemma allows to express
this constraint as a matrix inequality.

Proposition 1 ([11, Cor. 4.25, p. 127]). Let P be a bivariate trigonometric polynomial in r ∈ [0, 1]2

P (r) =
N∑

k,q=−N
p(k,q)e

i2π(kτ+qν).

Then supr∈[0,1]2 |P (r)| ≤ 1 holds if and only if there exists a Hermitian matrix Q ∈ CL2×L2
,

L = 2N + 1, such that[
Q p
pH 1

]
� 0 and ∀k, q = −N, ..., N, trace((Θk ⊗Θq)Q) =

{
1, (k, q) = (0, 0)

0, otherwise

where Θk designates the elementary Toeplitz matrix with ones on the k-th diagonal and zeros
elsewhere.
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By Proposition (1), the constraint of the dual program (21) is satisfied if and only if there exists
a matrix Q such that[

Q FGHq
qHGFH 1

]
� 0, trace((Θk ⊗Θq)Q) =

{
1, (k, q) = (0, 0)

0, otherwise
. (23)

Thus, the dual program (21) has the following equivalent semidefinite programming formulation:

maximize
q,Q

Re 〈q,y〉 subject to (23). (24)

6.2 Estimation of the time-frequency shifts from the dual solution

Since the primal problem only has equality constraints, Slater’s condition holds which implies strong
duality [7, Sec. 5.2.3]. The following proposition is a consequence of strong duality and provides a
way to certify optimality of a solution z to (8). The proof, provided in Appendix E is standard,
see e.g., [27, Proof of Prop. 2.4].

Proposition 2. Let y = Gz with z =
∑

rn∈T bna(rn). If there exists a dual polynomial

Q(r) = 〈q,Ga(r)〉

with complex coefficients q = [q−N , ..., qN ]T such that

Q(rn) = sign(bn), for all rn ∈ T , and |Q(r)| < 1 for all r ∈ [0, 1]2 \ T (25)

then z is the unique minimizer of AN(y). Moreover, q is a dual optimal solution.

The proof of Theorem 1 is based on constructing a dual polynomial satisfying the conditions of
Proposition 2, see Section 8.

Proposition 2 suggests that an estimate T̂ of the set of time-frequency shifts T can be obtained
from a dual solution q by identifying the rn with the r for which the dual polynomial Q(r) =
〈q,Ga(r)〉 achieves magnitude 1. In general, a solution q̂ to (24) is not unique but we can ensure
that

T ⊆ T̂ := {r : | 〈q̂,Ga(r)〉 | = 1}.
This is seen as follows. Assume that T \ T̂ 6= ∅. We then have that

Re 〈q̂,Gz〉 = Re

〈
q̂,G

∑
rn∈T

bna(rn)

〉
=

∑
rn∈T ∩T̂

Re(b∗n 〈q̂,Ga(r)〉) +
∑

rn∈T \T̂

Re(b∗n 〈q̂,Ga(r)〉)

<
∑

rn∈T̂ ∩T

|bn|+
∑

rn∈T \T̂

|bn| = ‖z‖A

where strict inequality follows from |〈q̂,Ga(r)〉| < 1 for r ∈ T \ T̂ , by definition of the set T̂ . This
contradicts strong duality, and thus implies that T \ T̂ = ∅, i.e., we must have T ⊆ T̂ .

In general, we might have T 6= T̂ . However, in “most cases”, standard semidefinite programming
solvers will yield a solution such that T = T̂ . Specifically, the following can be established (not

11
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Figure 2: Localization of the time-frequency shifts via the dual polynomial Q(τ, ν): Q(τ, ν) satisfies
|Q(τ, ν)| = 1 if (τ, ν) ∈ {(0.2, 0.5), (0.8, 0.5)} and |Q(τ, ν)| < 1 otherwise. The red lines show the
actual positions of the time-frequency shifts.

shown here; the proof is analogous to that of [27, Prop. 2.5], see also [8, Sec. 4]). Provided there
exists a solution q̃ to the dual (24) such that

〈q̃,Ga(rn)〉 = sign(bn), for all rn ∈ T , and | 〈q̃,Ga(rn)〉 | < 1 for all r ∈ [0, 1]2 \ T

and we use an interior point method such as SDPT3 to solve (24) we have that T̂ = T .
We next provide a numerical example where the time-frequency shifts can be recovered perfectly

from a solution to the semidefinite program (24). We choose N = 8, consider the case of two time-
frequency shifts, specifically T = {(0.2, 0.5), (0.8, 0.5)}, and let the coefficients a`, ` = −N, ..., N
and the bn, n = 0, 1, be i.i.d. uniform on the complex unit sphere. In Figure 2 we plot the dual
polynomial Q(r) = 〈q,Ga(r)〉 with q obtained by solving (24) via CVX, a Matlab package for
specifying and solving convex programs [13], which calls SDPT3. It can be seen that the time-
frequency shifts can be recovered perfectly, i.e., T̂ = T .

6.3 Recovery in the noisy case

In practice, the samples yp in (2) are corrupted by additive noise. In that case, perfect recovery of
the (τn, νn, bn) is in general no longer possible, and we can only hope to identify the time-frequency
shifts up to an error. In the noisy case, we solve the following convex program:

minimize
z

‖z‖A subject to ‖y −Gz‖2 ≤ δ. (26)

The semidefinite programing formulation of the dual of (26) takes on the form

maximize
q,Q

Re 〈q,y〉 − δ‖q‖2 subject to (23) (27)

and we again estimate the time-frequency shifts rn as the r for which the dual polynomial Q(r) =
〈q,Ga(r)〉 achieves magnitude 1. We leave theoretical analysis of this approach to future work,
and only provide a numerical example demonstrating that this approach is stable.

We choose N = 5, consider the case of one time-frequency shift at (τ1, ν1) = (0.5, 0.8) (so that
the dual polynomial can be easily plotted in 3D) and let the coefficients a`, ` = −N, ..., N and b1

12
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Figure 3: Localization of the time-frequency shifts via the dual polynomial Q(τ, ν) from a noisy
measurement (10dB noise): Q(τ, ν) achieves magnitude 1 for (τ, ν) = (0.4942, 0.7986) (marked by
×) which is very close to the original time-frequency shift (0.5, 0.8) (marked by ⊕).

be i.i.d. uniform on the complex unit sphere. We add 10dB additive complex Gaussian noise to
the samples yp in (2). In Figure 3 we plot the dual polynomial Q(r) = 〈q,Ga(r)〉 with q obtained
by solving (27) (with δ = 0.8) using CVX. The time-frequency shift for which the dual polynomial
achieves magnitude 1 is (0.4942, 0.7986) which is very close to the original time-frequency shift
(0.5, 0.8).

7 Relationship with previous work

The general problem of extracting the spreading function sH(τ, ν) of a linear time varying system of
the form (9) is known as system identification. It has been shown that LTV systems with spreading
function compactly supported on a region of area ∆ in the time-frequency plane are identifiable
if and only if ∆ ≤ 1 [18, 5, 19, 23]. If the spreading function’s support region is unknown, a
necessary and sufficient condition for identifiability is ∆ ≤ 1/2 [15]. In contrast to our work, the
input (probing) signal in [18, 5, 19, 23, 15] is not constraint to be band-limited, and the response
to the input signal is not constrained to be time-limited. In fact, the probing signal in those works
is a (weighted) train of Dirac impulses, which neither decays in time nor in frequency.

Tauböck et al. [28] and Bajwa et al. [2] considered the identification of LTV systems with
spreading function compactly supported in a rectangle of area ∆ ≤ 1. In [28, 2], the time-frequency
shifts lie on a (coarse) grid. In our setup, the time frequency shifts must not lie on a grid and may
in principle lie in an rectangle of area L = BT that is considerably larger than 1. Herman and
Strohmer [16], in the context of compressed sensing radar, and Pfander et al. [22] considered the
case where the time-frequency shifts lie on a ( 1

B ,
1
T ) grid, cf. Section 1.1. Baiwa et al. [1] considered

the identification of an LTV of the form (1). The approach in [1] requires the time frequency shifts
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(τn, νn) to lie in a rectangle of area much less than 1, i.e., the system needs to be underspread, and
requires (BT )2 ≥ cS in general, both assumption are not required here.

In [8], Candès and Fernandez-Granda study the recovery of the frequency components of a
mixture of S complex sinusoids from L equally spaced samples (cf. (4)). As mentioned previously,
this corresponds to the case of only time or only frequency shifts. Tang et al. [27] study a related
problem, namely the recovery of the frequency components from a random subset of the L equally
spaced samples. Both [8, 27] study convex algorithms analogous to the algorithm studied here,
and the proof techniques of the corresponding performance results inspired the analysis presented
in this paper. In [25] Soltanolkotabi improved the results of [8] with simpler proofs by building
approximate dual certificates. We believe that one can utilize this result to simplify our proofs
and/or remove the random sign assumption. We leave this to future work.

8 Proof of Theorem 1

Theorem 1 is established by constructing a dual polynomial which satisfies the conditions of Propo-
sition 2. This construction is formalized by the following result.

Proposition 3. Let T = {r1, r2, ..., rS} ⊂ [0, 1]2 be any set of points obeying the minimum distance
condition

|rj − rk| ≥
2.38

N
, for all rj , rk ∈ T with rj 6= rk,

and assume that N ≥ 512. Let the coefficients a`, ` = −N, ..., N be chosen i.i.d. from4 N (0, 1/L),
L := 2N + 1, and let the entries of u ∈ {−1, 1}S be i.i.d. uniform on {−1, 1}. Suppose that

L ≥ Sc log3

(
c′L6

δ

)
.

Then, with probability at least 1 − δ, there exists a trigonometric polynomial Q(r), r = [τ, ν]T , of
the form

Q(r) =

N∑
p=−N

e−i2πpν N∑
k,`=−N

a`e
i2π(p−`) k

L e−i2πkτ

 qp (28)

with complex coefficients qp such that

Q(rj) = uj , for all rj ∈ T , and |Q(r)| < 1 for all r ∈ [0, 1]2 \ T .

We provide a proof of Proposition 3 by constructing Q(r) explicitly. Our construction of the
polynomial Q(r) is inspired by that in [8, 27], and builds on results derived in [8, 27]. We will
construct the polynomial Q(r) by interpolating the points (rj , uj), j = 1, ..., S, with shifted versions
of the kernel G(r) (defined below) and its partial derivatives according to

Q(r) =
S∑
k=1

αkG(r− rk) + β1kG
(1,0)(r− rk) + β2kG

(0,1)(r− rk) (29)

4The proposition continues to hold for the a` zero mean sub-Gaussian with variance 1/L.
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where G(m,n)(r) := ∂m

∂τm
∂n

∂νnG(r). We will choose the coefficients αk, β1k, β2k later in such a way
that

Q(rj) = uj , Q(1,0)(rj) = 0, and Q(0,1)(rj) = 0, for all rj ∈ T (30)

and then show that the resulting polynomial, with high probability, satisfies |Q(r)| < 1 for all
r /∈ T . Requiring the partial derivatives of Q(r) to be zero on T implies that the magnitude of
Q(r) reaches local maxima on T , which will be important to establish Q(r) < 1 for all r /∈ T .

The polynomial Q(r) is of the form (28), if the kernel G(r) (and its partial derivatives G(1,0)(r)
and G(0,1)(r)) are of the form (28). To satisfy this, we construct the kernel G(r) as follows.
Define the vectors f(r) ∈ CL2

and g ∈ CL2
as [f(r)](k,p) = ei2π(kτ+pν) and [g](k,p) = g(p)g(k),

k, p = −N, ..., N , where the g(k) are the coefficients of the squared Fejér kernel, defined in
(33) below. Note that, for convenience, we will frequently use a two-dimensional index, e.g.,
we use (p, k) to index the coefficients of g and f . For example g can simply be written as
g = [g(−N,−N), g(−N,−N+1), ..., g(−N,N), g(−N+1,−N), ..., g(N,N)]

T . The matrix A ∈ CL×L2
is im-

plicitly defined for a vector f̃ with entries [f̃ ](p,k) by

[Af̃ ]p :=
N∑

k,`=−N
a`e
−i2π (p−`)k

L [f̃ ](p,k), p = −N, ..., N. (31)

With this notation, the kernel G(r) is defined by

G(r) :=
1

M2
fH(r)AHAg (32)

where M := N/2 + 1.
First note that, by construction, G(r) (and its partial derivatives G(1,0)(r) and G(0,1)(r)) satisfy

(28), as desired, since the entries of the vector fH(r)AH are the terms in the bracket in (28). Due
to E[AHA] = I (shown later, cf. (36); expectation is with respect to the a`), we have

Ḡ(r) := E[G(r)] =
1

M2
fH(r)g = K(τ)K(ν)

where K(t) is the squared Fejér kernel, defined as

K(t) :=

(
sin (Mπt)

M sin(πt)

)4

=
1

M

N∑
k=−N

g(k)e−i2πtk. (33)

Note that K(t) is a trigonometric polynomial of degree N with coefficients g(k). K(t) decays rapidly
around the origin t = 0 (K(0) = 1), thus Ḡ(r) also decays rapidly around the origin r = 0. We
will show later that G(r) concentrates tightly around Ḡ(r), which implies that Ḡ(r) decays rapidly
around the origin as well. In Figure 4 we plot G(r) and Ḡ(r)/Ḡ(0) for N = 60 and N = 300. Note
that close to r = 0, the random Kernel Ḡ(r) and the deterministic Kernel Ḡ(r) are very close.

We will establish that (30) holds and that Q(r) < 1 for all r /∈ T by showing that Q(r) is close
to the (deterministic) polynomial

Q̄(r) =

S∑
k=1

ᾱkḠ(r− rk) + β̄1kḠ
(1,0)(r− rk) + β̄2kḠ

(0,1)(r− rk)
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Figure 4: Plots of the random kernel G(r) along with the deterministic kernel Ḡ(r).
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where Ḡ(m,n)(r) := ∂m

∂τm
∂n

∂νn Ḡ(r), and the coefficients ᾱk, β̄1k and β̄2k are chosen in a certain way
that guarantees that

Q̄(rj) = uj , Q̄(1,0)(rj) = 0, and Q̄(0,1)(rj) = 0, for all rj ∈ T (34)

and additionally Q̄(r) < 1 for all r ∈ [0, 1]2 \ T . That such a construction is indeed possible (for
any choice of uj ∈ {−1, 1}) is proven in [8] in the context of super-resolution in two dimensions.

The remainder of the proof is organized as follows.

1. We will start by showing that, with high probability, for a fixed r, the kernels G(r) and Ḡ(r)
(and its partial derivatives) are close, i.e., |G(m,n)(r)− Ḡ(m,n)(r)| is small.

2. Next, we will show that (with high probability) there exists a choice of coefficients αk, β1k, β2k

such that (30) is satisfied.

3. Finally we establish that Q(r) < 1 for all r /∈ T (with the coefficients chosen as in Step 2).
This is accomplished using an ε-net argument:

(a) Let Ω ⊂ [0, 1]2 be a (finite) set of grid points. We will show that Q(r) is close to Q̄(r)
for all r ∈ Ω (with high probability).

(b) Next, we extend this result to hold for all r ∈ [0, 1]2 using Bernstein’s polynomial
inequality.

(c) Combining this result with a result in [8] showing that Q̄(r) < 1 for all r /∈ T , we can
conclude that Q̄(r) < 1 for all r /∈ T (with high probability).

8.1 Step 1: Concentration of G(m,n)(r) around Ḡ(m,n)(r)

In this subsection we establish the following result.

Lemma 1. For a fixed r, for all α ≥ 0, and for all (m,n) with m+ n ≤ 4,

P
[

1

κm+n
|G(m,n)(r)− Ḡ(m,n)(r)| > c112

m+n
2

α√
L

]
≤ 2 exp

(
−cmin

(
α2

c4
2

,
α

c2
2

))
(35)

where κ :=
√
|K ′′(0)| and c, c1, c2 are numerical constants.

We first show that E[G(m,n)(r)] = Ḡ(m,n)(r). Lemma 1 is proven by expressing G(m,n)(r)
as a quadratic form in a := [a−N , ..., aN ]T , and showing that it does not deviate much from its
expectation Ḡ(m,n)(r) using the Hanson-Wright inequality below.

Theorem 3 (Hanson-Wright inequality [24, Thm. 1.1]). Let a ∈ RL be a random vector with
independent zero-mean K-sub-Gaussian entries (i.e., the entries obey supp≥1 p

−1(E[|a`|p])1/p ≤ K),
and let V be an L× L matrix. Then, for all t ≥ 0,

P
[
|aTVa− E[aTVa]| > t

]
≤ 2 exp

(
−cmin

(
t2

K4‖V‖2F
,

t

K2‖V‖

))

where c is a numerical constant.
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We first show that E[AHA] = I, which implies

E[G(m,n)(r)] = Ḡ(m,n)(r). (36)

To this end, note that the partial derivatives of G(r) are

G(m,n)(r) =
1

M2

N∑
k,p=−N

(−i2πk)m(−i2πp)ne−i2π(kτ+pν)[AHAg](k,p) (37)

and the partial derivatives of Ḡ(r) are

Ḡ(m,n)(r) =
1

M2

N∑
k,p=−N

(−i2πk)m(−i2πp)ne−i2π(kτ+pν)g(k)g(p).

The matrix AHA ∈ CL2×L2
is block diagonal, with the pth block on its diagonal, Bp ∈ CL×L,

given by

[Bp]k,k̃ =
N∑

`,˜̀=−N

e−i2π
(p−`)k
L ei2π

(p−˜̀)k̃
L a`a

∗
˜̀, k, k̃ = −N, ..., N.

Using that E[a`a
∗
˜̀] = 1/L for ` = ˜̀and E[a`a

∗
˜̀] = 0 for ` 6= ˜̀we obtain that E[Bp] = I and therefore

E[AHA] = I. Plugging this into (37) yields (36).
We next express G(m,n)(r) as a quadratic form in a. To this end, first note that by (31),

Ag = Aga, where Ag ∈ CL×L is defined as

[Ag]p,` :=

N∑
k=−N

e−i2π
(p−`)k
L g(p)g(k).

Next, define f (m,n)(r) := ∂m

∂τm
∂n

∂νn f(r), r = [τ, ν]T . We have

[Af (m,n)]p =
N∑

k,`=−N
e−i2π

(p−`)k
L (i2πk)m(i2πp)nei2π(kτ+pν)a`

thus (f (m,n))
H

AH = aHAH
f where AH

f ∈ CL×L is defined by

[AH
f ]˜̀,p =

N∑
k̃=−N

(−i2πk̃)m(−i2πp)nei2π
(p−˜̀)k̃
L e−i2π(k̃τ+pν).

We therefore obtain the desired representation as a quadratic form

G(m,n)(r) =
1

M2
(f (m,n)(r))

H
AHAg =

1

M2
aHAH

f Aga = aHV(m,n)(r)a (38)

where V(m,n)(r) := 1
M2 AH

f Ag ∈ CL×L has coefficients

[V(m,n)(r)]˜̀,` =
1

M2

N∑
p,k,k̃=−N

(−i2πk̃)m(−i2πp)ne−i2π
(p−`)k
L ei2π

(p−˜̀)k̃
L e−i2π(k̃τ+pν)g(p)g(k).

In order to evaluate the right hand side (RHS) of the Hanson-Wright inequality, we will need the
following upper bound on

∥∥V(m,n)(r)
∥∥
F

.
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Lemma 2. For all r, and for all (m,n) with m+ n ≤ 4,∥∥∥V(m,n)(r)
∥∥∥
F
≤ c1(2πN)n+m

√
L.

Proof. We start by upper-bounding |[V(m,n)(r)]˜̀,`|. By definition of K(t) (cf. (33))

[V(m,n)(r)]˜̀,` =
1

M

N∑
p,k̃=−N

(
1

M

N∑
k=−N

g(k)e−i2π
(p−`)k
L

)
(−i2πk̃)m(−i2πp)nei2π

(p−˜̀)k̃
L e−i2π(k̃τ+pν)g(p)

=

N∑
p=−N

K

(
p− `
L

)
(−i2πp)ne−i2πpνg(p)

1

M

N∑
k̃=−N

(−i2πk̃)me
i2π

(
p−˜̀

L
−τ

)
k̃
.

Using that |g(p)| ≤ 1, for all p, we obtain

|[V(m,n)(r)]˜̀,`| ≤ (2πN)n
N∑

p=−N

∣∣∣∣K (p− `L

)∣∣∣∣
∣∣∣∣∣∣ 1

M

N∑
k̃=−N

(−i2πk̃)me
i2π

(
p−˜̀

L
−τ

)
k̃

∣∣∣∣∣∣
= (2πN)n

N∑
p=−N

∣∣∣K ( p
L

)∣∣∣
∣∣∣∣∣∣ 1

M

N∑
k̃=−N

(−i2πk̃)me
i2π

(
p+`−˜̀

L
−τ

)
k̃

∣∣∣∣∣∣
where we used that the absolute values in the sum above are L-periodic in p (recall that K(t) is
1-periodic). Using that

|K(t)| =
∣∣∣∣sin (πMt)

M sin(πt)

∣∣∣∣4 ≤ min

(
1,

1

(2Mt)4

)
for t ∈ [−1/2, 1/2] (from | sin(πt)| ≥ 2|t|) we have∣∣∣K ( p

L

)∣∣∣ ≤ min

(
1,

1

(2Mp/L)4

)
≤ min

(
1,

16

p4

)
≤ 16 min

(
1,

1

p4

)
where we used that L

2M = 2N+1
N+2 ≤ 2. We thus obtain

|[V(m,n)(r)]˜̀,`| ≤ (2πN)m+n 16(2πN)−m
N∑

p=−N
min

(
1,

1

p4

) ∣∣∣∣∣∣ 1

M

N∑
k̃=−N

(−i2πk̃)me
i2π

(
p+`−˜̀

L
−τ

)
k̃

∣∣∣∣∣∣︸ ︷︷ ︸
U
(
τ− `−˜̀

L

)
:=

where U(t) is 1-periodic and satisfies U(t) ≤ cmin(1, 1
L|t|) for |t| ≤ 1/2 as shown in Appendix D.

Thus

|[V(m,n)(r)]˜̀,`| ≤ (2πN)m+nU

(
τ − `− ˜̀

L

)
which yields ∥∥∥V(m,n)(r)

∥∥∥2

F
=

N∑
`,˜̀=−N

∣∣∣[V]˜̀,`

∣∣∣2 ≤ (2πN)2(n+m)
N∑

`,˜̀=−N

U2

(
τ − `− ˜̀

L

)
. (39)
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Using that U(t) is 1-periodic, and upper-bounded by cmin(1, 1
L|t|) we obtain

N∑
`=−N

U2

(
τ − `− ˜̀

L

)
≤

N∑
`=−N

(
cmin

(
1,

1

L|`/L|

))2

≤ c2

1 + 2
∑
`≥1

1

`2

 = c2

(
1 +

π2

3

)
︸ ︷︷ ︸

c2

. (40)

Substituting (40) into (39) yields∥∥∥V(m,n)(r)
∥∥∥2

F
≤ (2πN)2(n+m)

N∑
˜̀=N

c2 ≤ (2πN)2(n+m)c2L (41)

where c1 =
√
c2. This concludes the proof.

We are now ready to establish Lemma 1 by application of the Hanson-Wright inequality. With
K ′′(0) = −π2

3 (N2 + 4N) [8, Eq. 2.23] we have (recall that κ =
√
|K ′′(0)|) that

(2πN)n+m

κm+n
=

(2πN)n+m

(π
2

3 (N2 + 4N))(m+n)/2
≤ 12

m+n
2

which yields

P
[

1

κm+n
|G(m,n)(r)− Ḡ(m,n)(r)| > c112

m+n
2

α√
L

]
≤ P

[
|G(m,n)(r)− Ḡ(m,n)(r)| > c1(2πN)n+m α√

L

]
≤ P

[
|aTVa− E[aTVa]| > ‖V‖F

α

L

]
(42)

≤ 2 exp

(
−cmin

(
‖V‖2Fα2

L2K4‖V‖2F
,
‖V‖Fα
LK2‖V‖

))
(43)

≤ 2 exp

(
−cmin

(
α2

c4
2

,
α

c2
2

))
(44)

where (42) follows from ‖V‖F ≤ c1(2πN)n+m
√
L (cf. Lemma 2), and from G(m,n)(r) = aHVa

and E[aHVa] = E[G(m,n)(r)] = Ḡ(m,n)(r) (cf. (36)). To obtain (43), we used Theorem 3 with
t = ‖V‖F α

L , and (44) follows because the sub-Gaussian parameter K of the random variable

[a]` ∼ N (0, 1/L) is given by K = c2/
√
L (e.g., [29, Ex. 5.8]) and ‖V‖F /‖V‖ ≥ 1.

8.2 Step 2: Choice of the coefficients α, β1k, β2k

We next show that, with high probability, there exists a set of coefficients α, β1k, β2k such that Q(r)
satisfies (30). To this end, we first review the result in [8] with ensures that there exists a set of
coefficients ᾱ, β̄1k, β̄2k such that (34) is satisfied. Writing (34) in matrix form yields D̄0,0

1
κD̄1,0

1
κD̄0,1

− 1
κD̄1,0 − 1

κ2
D̄2,0 − 1

κ2
D̄1,1

− 1
κD̄0,1 − 1

κ2
D̄1,1 − 1

κ2
D̄0,2


︸ ︷︷ ︸

D̄

 ᾱκβ̄1

κβ̄2

 =

u
0
0

 (45)

where [D̄m,n]j,k := Ḡ(m,n)(rj − rk), [ᾱ]k := ᾱk, [β̄1]k := β̄1k and [β̄2]k := β̄2k. Here we have scaled
the entries of D̄ such that its diagonal entries are 1 (K(0) = 1, κ2 = |K ′′(0)|, and K ′′(0) is negative).
Since D̄0,0, D̄1,1, D̄2,0, D̄0,2 are symmetric while D̄1,0, D̄0,1 are antisymmetric, D̄ is symmetric.
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The following result, proven in [8, Eq. C6, C7, C8, C9], ensures that D̄ is invertible and thus
the coefficients ᾱ, β̄1k, β̄2k can be obtained according to ᾱκβ̄1

κβ̄2

 = D̄−1

[
u
0

]
= L̄u (46)

where L̄ is the 3S × S submatrix of D̄−1 corresponding to the first S columns of D̄−1.

Proposition 4 ([8, Eq. C6, C7, C8, C9]). D̄ is invertible and∥∥I− D̄
∥∥ ≤ 0.19808 (47)∥∥D̄∥∥ ≤ 1.19808 (48)∥∥D̄−1
∥∥ ≤ 1.24700. (49)

Proof. Since D̄ is real and symmetric, it is normal, and thus its singular values are equal to the
absolute values of its eigenvalues. Using that the diagonal entries of D̄ are 1, by Gershgorin’s circle
theorem [17, Thm. 6.1.1], the eigenvalues of D̄ are in the interval [1 −

∥∥I− D̄
∥∥
∞, 1 +

∥∥I− D̄
∥∥
∞],

where ‖A‖∞ := maxi
∑

j |[A]i,j |. Using that
∥∥I− D̄

∥∥
∞ ≤ 0.19808 (shown below), it follows that

D̄ is invertible and ∥∥D̄∥∥ ≤ 1 +
∥∥I− D̄

∥∥
∞ ≤ 1.19808∥∥D̄−1

∥∥ ≤ 1

1−
∥∥I− D̄

∥∥
∞
≤ 1.2470.

The proof is concluded by noting that∥∥I− D̄
∥∥
∞ = max

{
‖I−D0,0‖∞ + 2

∥∥∥∥1

κ
D̄1,0

∥∥∥∥
∞
,

∥∥∥∥1

κ
D̄1,0

∥∥∥∥
∞

+

∥∥∥∥I− 1

κ2
D2,0

∥∥∥∥
∞

+

∥∥∥∥ 1

κ2
D̄1,1

∥∥∥∥
∞

}
≤ 0.19808

where we used [8, Eq. C6, C7, C8, C9]:

‖I−D0,0‖∞ ≤ 0.04854∥∥∥∥1

κ
D̄1,0

∥∥∥∥
∞

=

∥∥∥∥1

κ
D̄0,1

∥∥∥∥
∞
≤ 0.04258∥∥∥∥ 1

κ2
D̄1,1

∥∥∥∥
∞
≤ 0.04791∥∥∥∥I− 1

κ2
D0,2

∥∥∥∥
∞

=

∥∥∥∥I− 1

κ2
D2,0

∥∥∥∥
∞
≤ 0.1076.

We next show that with high probability there exists a set of coefficients α, β1k, β2k which
satisfies (30). To this end, we write (30) in matrix form: D0,0

1
κD1,0

1
κD0,1

− 1
κD1,0 − 1

κ2
D2,0 − 1

κ2
D1,1

− 1
κD0,1 − 1

κ2
D1,1 − 1

κ2
D0,2


︸ ︷︷ ︸

D

 ακβ1

κβ2

 =

u
0
0

 (50)
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where [D0,0]j,k := G(m,n)(rj − rk), [α]k := αk, [β1]k := β1k, and [β2]k := β2k and show that D can
be inverted with high probability. Specifically, we show that the probability of the event

Eτ = {
∥∥D− D̄

∥∥ ≤ τ}
is high, and on Eτ , with τ ∈ [0, 1/4], D is invertible. The fact that D is invertible on Eτ , with
τ ∈ [0, 1/4] follows from the following set of inequalities:

‖I−D‖ ≤
∥∥D− D̄

∥∥ +
∥∥D̄− I

∥∥ ≤ τ + 0.1908 ≤ 0.4408.

Since D is invertible, the coefficients α, β1k, β2k can be obtained as ακβ1

κβ2

 = D−1

[
u
0

]
= Lu (51)

where L is the 3S × S submatrix of D−1 corresponding to the first S columns of D−1. On Eτ with
τ ∈ [0, 1/4], the norm of L is bounded as well:

‖L‖ ≤
∥∥D−1

∥∥ ≤ 2
∥∥D̄−1

∥∥ ≤ 2.5 (52)

where the first inequality follows since L is a submatrix of D−1, and the second inequality follows
from the first part of the lemma below applied to B = D and C = D̄ (by

∥∥D− D̄
∥∥ ≤ 1/4 and∥∥D̄−1

∥∥ ≤ 1.247, cf. (49), the conditions of the corollary are satisfied). The third inequality again
follows (49).

Lemma 3 ([27, Proof of Cor. 4.5]). Suppose that C is invertible and ‖B−C‖
∥∥C−1

∥∥ ≤ 1/2. Then

i)
∥∥B−1

∥∥ ≤ 2
∥∥C−1

∥∥ and ii)
∥∥B−1 −C−1

∥∥ ≤ 2
∥∥C−1

∥∥2‖B−C‖.

By the second part of the lemma above and again using (49), we obtain that, on Eτ with
τ ∈ [0, 1/4], ∥∥L− L̄

∥∥ ≤ ∥∥D−1 − D̄−1
∥∥ ≤ 2

∥∥D̄−1
∥∥2∥∥D− D̄

∥∥ ≤ 2.5τ. (53)

Lemma 4. For all τ > 0
P[Eτ ] ≥ 1− δ

provided that

L ≥ S c4

τ2
log2(18S2/δ) (54)

where c4 is a numerical constant.

Proof. We will upper-bound
∥∥D− D̄

∥∥ by upper-bounding the largest entry of D− D̄. To this end,
first note that the entries of D− D̄ are given by

1

κm+n
[Dm,n − D̄m,n]j,k =

1

κm+n
(G(m,n)(rj − rk)− Ḡ(m,n)(rj − rk))
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for m,n with m+ n ≤ 2 and for j, k = 1, ..., S. We now have

P
[∥∥D− D̄

∥∥ ≥ τ] ≤ P
[√

3s max
j,k,m,n

1

κm+n
|[Dm,n − D̄m,n]j,k| ≥ τ

]
(55)

≤
∑

j,k,m,n

P
[

1

κm+n
|[Dm,n − D̄m,n]j,k| ≥

τ√
3s

]
(56)

=
∑

j,k,m,n

P
[

1

κm+n
|[Dm,n − D̄m,n]j,k| ≥ 12c1

α√
L

]
(57)

≤
∑

j,k,m,n

P
[

1

κm+n
|[Dm,n − D̄m,n]j,k| ≥ 12

m+n
2 c1

α√
L

]
(58)

≤ 2(3s)2 exp

(
−cmin

(
τ2L

c4
2c

2
33s

,
τ
√
L

c2
2c3

√
3s

))
. (59)

Here, (55) follows from upper bounding
∥∥D− D̄

∥∥ by
√

3s times the maximum absolute value of

D−D̄. Furthermore, (56) follows from the union bound, (57) follows by setting α = τ
√
L√

3s12c1
, where

c1 is the constant in Lemma 1, and (58) follows from 12
m+n

2 ≤ 12, for m + n ≤ 2. Finally, (59)
follows from Lemma 1 (here we set c3 := 12c1).

The RHS of (59) is smaller than δ, as desired, if

log(18S2/δ) ≤ cmin

(
τ2L

c4
2c

2
33S

,
τ
√
L

c2
2c3

√
3S

)
which is implied by (54) with c4 = 3c4

2c
2
3 max(1/c2, 1/c).

8.3 Step 3a: Q(r) and Q̄(r) are close on a grid

The goal of this section is to prove Lemma 5 below which shows that Q(r) and Q̄(r) (and their
partial derivatives) are close on a set of (grid) points.

Lemma 5. Let Ω ⊂ [0, 1]2 be a finite set of points and pick any ε ≤ 1 and δ > 0. Suppose that

L ≥ S

ε2
max

(
c5 log2

(
12S|Ω|
δ

)
log

(
8|Ω|
δ

)
, c log

(
4|Ω|
δ

)
log

(
18S2

δ

))
.

Then

P
[
max
r∈Ω

1

κn+m

∣∣∣Q(m,n)(r)− Q̄(m,n)(r)
∣∣∣ ≤ ε] ≥ 1− 4δ.

In order to prove Lemma 5, first note that the (m,n)th partial derivative of Q(r) (defined by
(29)) is (after normalization with 1/κm+n)

1

κm+n
Q(m,n)(r) =

S∑
k=1

(
αk

1

κm+n
G(m,n)(r− rk)

+ κβ1k
1

κm+n+1
G(m+1,n)(r− rk) + κβ2k

1

κm+n+1
G(m,n+1)(r− rk)

)
= (v(m,n)(r))

H
Lu (60)
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where we used (51) and defined

(v(m,n))
H

(r) :=
1

κm+n

[
G(m,n)(r− r1) · · ·G(m,n)(r− rS)

1

κ
G(m+1,n)(r− r1) · · · 1

κ
G(m+1,n)(r− rS)

1

κ
G(m,n+1)(r− r1) · · · 1

κ
G(m+1,n+1)(r− rS)

]
.

Since E[G(m,n)(r)] = Ḡ(m,n)(r) (cf. (36)), we have

E[v(m,n)(r)] = v̄(m,n)(r)

where

v̄H(m,n)(r)
1

κm+n
=

[
Ḡ(m,n)(r− r1) · · · Ḡ(m,n)(r− rS)

1

κ
Ḡ(m+1,n)(r− r1) · · · 1

κ
Ḡ(m+1,n)(r− rS)

1

κ
Ḡ(m,n+1)(r− r1) · · · 1

κ
Ḡ(m+1,n+1)(r− rS)

]
.

Next, we decompose the derivative of Q(r) according to

1

κm+n
Q(m,n)(r) =

〈
u,LHv(m,n)(r)

〉
=
〈
u, L̄H v̄(m,n)(r)

〉
+
〈
u,LH(v(m,n)(r)− v̄(m,n)(r))

〉︸ ︷︷ ︸
I
(m,n)
1 (r)

+
〈
u, (L− L̄)

H
v̄(m,n)(r)

〉
︸ ︷︷ ︸

I
(m,n)
2 (r)

=
1

κm+n
Q̄(m,n)(r) + I

(m,n)
1 (r) + I

(m,n)
2 (r) (61)

where L̄ was defined below (46). The following two results establish that the perturbations I
(m,n)
1 (r)

and I
(m,n)
2 (r) are small on a set of (grid) points Ω with high probability.

Lemma 6. Let Ω ⊂ [0, 1]2 be a finite set of points, suppose that m + n ≤ 2. We have, for any
δ ≥ 0, that

P
[
max
r∈Ω
|I(m,n)

1 (r)| ≥ ε
]
≤ δ + P

[
E1/4

]
provided that

L ≥ c5

ε2
S log2

(
12S|Ω|
δ

)
log

(
8|Ω|
δ

)
.

Proof. Set ∆v := v(m,n)(r) − v̄(m,n)(r) for notational convenience. By the union bound, we have
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for all a, b ≥ 0,

P
[
max
r∈Ω
|I(m,n)

1 (r)| ≥ 2.5ab

]
= P

[
max
r∈Ω

∣∣〈u,LH∆v
〉∣∣ ≥ 2.5ab

]
≤ P

[⋃
r∈Ω

{∣∣〈u,LH∆v
〉∣∣ ≥ ∥∥LH∆v

∥∥
2
b
}
∪
{∥∥LH∆v

∥∥
2
≥ 2.5a

}]

≤ P

[⋃
r∈Ω

{∣∣〈u,LH∆v
〉∣∣ ≥ ∥∥LH∆v

∥∥
2
b
}
∪ {‖∆v‖2 ≥ a} ∪ {‖L‖ ≥ 2.5}

]
≤ P[‖L‖ ≥ 2.5] +

∑
r∈Ω

(
P
[∣∣〈u,LH∆v

〉∣∣ ≥ ∥∥LH∆v
∥∥

2
b
]

+ P[‖∆v‖2 ≥ a]
)

≤ P
[
E1/4

]
+ |Ω|4e− b

2

4 +
∑
r∈Ω

P[‖∆v‖2 ≥ a] (62)

≤ P
[
E1/4

]
+
δ

2
+
∑
r∈Ω

P[‖∆v‖2 ≥ a] (63)

where (62) follows from application of Hoeffding’s inequality (stated below) and from {‖L‖ ≥ 2.5} ⊆
E1/4 according to (52). For (63), we used |Ω|4e− b

2

4 ≤ δ
2 ensured by choosing b = 2

√
log(8|Ω|/δ).

Lemma 7 (Hoeffding’s inequality). Suppose the entries of u ∈ RS are i.i.d. with P[ui = −1] =
P[ui = 1] = 1/2. Then, for all t ≥ 0, and for all v ∈ CS

P[|〈u,v〉| ≥ ‖v‖2t] ≤ 4e−
t2

4 .

We next upper-bound P[‖∆v‖2 ≥ a] in (63). For all α ≥ 0, using that 12
n+m+1

2 ≤ 12
3
2 , we have

P

[
‖∆v‖2 ≥

√
3s√
L

12
3
2 c1α

]
≤ P

[
‖∆v‖2 ≥

√
3s√
L

12
n+m+1

2 c1α

]
= P

[
‖∆v‖22 ≥

3s

L
12n+m+1c2

1α
2

]

≤
3s∑
k=1

P
[
|[∆v]k|2 ≥

1

L
12n+m+1c2

1α
2

]
(64)

=

3s∑
k=1

P
[
|[∆v]k| ≥

1√
L

12
n+m+1

2 c1α

]
≤ 3s · 2 exp

(
−cmin

(
α2

c4
2

,
α

c2
2

))
(65)

≤ δ

2|Ω| (66)

where (64) follows from the union bound, (65) follows from Lemma 1, and to obtain (66) we chose

α =
c22
c log

(
12S|Ω|
δ

)
. To see this, note that min

(
α2

c42
, α
c22

)
= α

c22
as long as α ≥ c2

2, which holds since

c ≤ 1. We have established that P[‖∆v‖2 ≥ a] ≤ δ
2|Ω| with a =

√
3s√
L

12
3
2 c1

c22
c log

(
12s|Ω|
δ

)
.

Substituting (66) into (63) we get

P

[
max
r∈Ω
|I(m,n)

1 (r)| ≥ √c5

√
s√
L

log

(
12s|Ω|
δ

)√
log

(
8|Ω|
δ

)]
≤ δ + P

[
E1/4

]
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where c5 = (5
√

3 12
3
2 c1

c22√
c
)2 is a numerical constant. This concludes the proof.

Lemma 8. Let Ω ⊂ [0, 1]2 be a finite set of points. Suppose that m+ n ≤ 2. For all ε, δ ≥ 0, and
for all τ > 0 with

τ ≤ εc6√
log
(

4|Ω|
δ

) (67)

where c6 ≤ 1/4 is a numerical constant, we have that

P
[
max
r∈Ω
|I(m,n)

2 (r)| ≥ ε
∣∣∣Eτ] ≤ δ.

Proof. By a union bound

P
[
max
r∈Ω
|I(m,n)

2 (r)| ≥ ε
∣∣∣Eτ] ≤∑

r∈Ω

P
[∣∣∣〈u, (L− L̄)

H
v̄(m,n)(r)

〉∣∣∣ ≥ ε∣∣∣Eτ]
≤
∑
r∈Ω

P
[∣∣∣〈u, (L− L̄)

H
v̄(m,n)(r)

〉∣∣∣ ≥ ∥∥∥(L− L̄)
H

v̄(m,n)(r)
∥∥∥

2

ε

c5τ

]
(68)

≤ |Ω|4e−
(ε/(c5τ))

2

4 (69)

≤ δ (70)

where (68) follows from (71) below, (69) follows by Hoeffding’s inequality (cf. Lemma 7), and to
obtain (70) we used the assumption (67) with c6 = 1/(2c5).

To complete the proof, note that by (53) we have
∥∥L− L̄

∥∥ ≤ 2.5τ on Eτ . Thus, conditioned on
Eτ , ∥∥∥(L− L̄)

H
v̄(m,n)(r)

∥∥∥
2
≤
∥∥L− L̄

∥∥∥∥v̄(m,n)(r)
∥∥

2
≤ 2.5τ

∥∥v̄(m,n)(r)
∥∥

1
≤ c5τ (71)

where we used ‖·‖2 ≤ ‖·‖1, and the last inequality follows because, for all r,

∥∥v̄(m,n)(r)
∥∥

1
=

1

κm+n

S∑
k=1

(∣∣∣Ḡ(m,n)(r− rk)
∣∣∣+

∣∣∣∣1κḠ(m+1,n)(r− rk)

∣∣∣∣+

∣∣∣∣1κḠ(m,n+1)(r− rk)

∣∣∣∣) ≤ c5

2.5

where c5 is a numerical constant, and where we used [8, C.12, Table 6] and N/κ ≤ 0.5514.

We are now ready to prove the main result of this subsection.

Proof of Lemma 5. From (61), we obtain

P
[
max
r∈Ω

1

κn+m

∣∣∣Q(m,n)(r)− Q̄(m,n)(r)
∣∣∣ ≥ 2ε

]
= P

[
max
r∈Ω

∣∣∣I(m,n)
1 (r) + I

(m,n)
2 (r)

∣∣∣ ≥ 2ε

]
≤ P

[
max
r∈Ω

∣∣∣I(m,n)
1 (r)

∣∣∣ ≥ ε]+ P
[
Eτ
]

+ P
[
max
r∈Ω

∣∣∣I(m,n)
2 (r)

∣∣∣ ≥ ε|Eτ] (72)

≤ 4δ
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where (72) follows from the union bound and P[A] = P
[
A ∩B

]
+ P[A ∩B] ≤ P

[
B
]

+ P[A|B] with

B = Eτ and A =
{

maxr∈Ω

∣∣∣I(m,n)
2 (r)

∣∣∣ ≥ ε}, and the last inequality follows from Lemmas 4, 6 and

8, respectively.

Specifically, we choose τ = εc6 log−1/2
(

4|Ω|
δ

)
. It then follows from Lemma 8 that the third

probability in (72) is smaller than δ. With this choice of τ , the condition in Lemma 4 becomes

L ≥ S c4
ε2c26

log
(

4|Ω|
δ

)
log
(

18S2

δ

)
, which is satisfied by assumption (c = c4

c26
). Moreover, τ ≤ 1/4 since

ε ≤ 1 and c6 ≤ 1/4. Thus, Lemma 4 yields P
[
Eτ
]
≤ δ and P

[
E1/4

]
≤ δ. Finally, observe that the

conditions of Lemma 6 are satisfied by assumption, thus the first probability in (72) can be upper
bounded by

P
[
max
r∈Ω

∣∣∣I(m,n)
1 (r)

∣∣∣ ≥ ε] ≤ δ + P
[
E1/4

]
≤ 2δ.

This concludes the proof.

8.4 Step 3b: Q(r) and Q̄(r) are close for all r

We next use an ε-net argument together with Lemma 5 to establish that Q(m,n)(r) is close to
Q̄(m,n)(r) for all r ∈ [0, 1]2 with high probability.

Lemma 9. Let ε, δ ≥ 0. If

L ≥ S c

ε2
log3

(
c′L6

δε2

)
(73)

then, with probability at least 1− δ,

max
r∈[0,1]2,(m,n) : m+n≤2

1

κn+m

∣∣∣Q(m,n)(r)− Q̄(m,n)(r)
∣∣∣ ≤ ε. (74)

Proof. We start by choosing a set of points Ω (i.e., the ε-net) that is sufficiently dense in the
∞-norm. Specifically, we choose the points in Ω on a rectangular grid such that

max
r∈[0,1]2

min
rg∈Ω

|r− rg| ≤
ε

3c̃L5/2
. (75)

The cardinality of the set Ω is

|Ω| =
(

3c̃L5/2

ε

)2

= c′L5/ε2. (76)

We first establish by application of Lemma 5 that
∣∣Q(m,n)(rg)− Q̄(m,n)(rg)

∣∣ is small for all
points rg ∈ Ω, and then show that this result continues to hold for all r ∈ [0, 1]2. We start by
noting that the condition of Lemma 5 is satisfied by assumption (73). Using a union bound over
all 6 pairs (m,n) with m+ n ≤ 2, it now follows from Lemma 5, that{

max
rg∈Ω,m+n≤2

1

κm+n

∣∣∣Q(m,n)(rg)− Q̄(m,n)(rg)
∣∣∣ ≤ ε

3

}
(77)
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holds with probability at least 1− 6δ′ = 1− δ
2 (here, δ′ is the original δ in Lemma 5). In order to

show that this result continues to hold for all r ∈ [0, 1]2, we will also need that the event{
max

r∈[0,1]2,m+n≤2

1

κm+n

∣∣∣Q(m,n)(r)
∣∣∣ ≤ c̃

2
L3/2

}
(78)

holds with probability at least 1 − δ
2 . This is shown in Section 8.4.1 below. By the union bound,

the events in (77) and (78) hold simultaneously with probability at least 1 − δ. As we will see in
Section 8.4.2, (77) and (78) imply (74) which concludes the proof.

8.4.1 Proof that (78) holds with probability at least 1− δ
2

In order to show that (78) holds with probability at least 1− δ
2 , we first upper-bound |Q(m,n)(r)|.

By (60),

1

κm+n

∣∣∣Q(m,n)(r)
∣∣∣ =

∣∣∣〈Lu,v(m,n)(r)
〉∣∣∣

≤ ‖L‖‖u‖2
∥∥∥v(m,n)(r)

∥∥∥
2

≤ ‖L‖
√
S
∥∥∥v(m,n)(r)

∥∥∥
2

≤ ‖L‖
√
S
√

3S
∥∥∥v(m,n)(r)

∥∥∥
∞

= ‖L‖
√

3S max
(m′,n′)∈{(m,n),(m+1,n),(m,n+1)}

1

κm′+n′

∣∣∣G(m′,n′)(r)
∣∣∣ (79)

where we used ‖u‖2 =
√
S, since the entries of u are ±1. Next, note that, for all r, we have, by (38)

1

κm′+n′

∣∣∣G(m′,n′)(r)
∣∣∣ =

1

κm′+n′
aHV(m′,n′)(r)a ≤ 1

κm′+n′
‖a‖22

∥∥∥V(m′,n′)(r)
∥∥∥

≤ c1
(2πN)n

′+m′

κm′+n′
√
L‖a‖22 ≤ c112

m′+n′
2

√
L‖a‖22

≤ c112
3
2

√
L‖a‖22 (80)

where we used Lemma 2 to conclude
∥∥∥V(m′,n′)

∥∥∥ ≤ ∥∥∥V(m′,n′)
∥∥∥
F
≤ c1(2πN)n

′+m′
√
L and (80) follows

from m′ + n′ ≤ 3 (recall that m + n ≤ 2). Substituting (80) into (79) and using that S ≤ L (by
assumption (73)) yields

1

κm+n

∣∣∣Q(m,n)(r)
∣∣∣ ≤ √3 12

3
2 c1L

3/2‖L‖‖a‖22.

It follows that (with c̃
2 = 2.5 · 3 ·

√
3 12

3
2 c1)

P
[

max
r∈[0,1]2,m+n≤2

1

κm+n

∣∣∣Q(m,n)(r)
∣∣∣ ≥ c̃

2
L3/2

]
≤ P

[
‖L‖‖a‖22 ≥ 2.5 · 3

]
≤ P[‖L‖ ≥ 2.5] + P

[
‖a‖22 ≥ 3

]
(81)

≤ δ

2
(82)
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as desired. Here, (81) follows from the union bound and (82) follows from P[‖L‖ ≥ 2.5] ≤ P
[
E1/4

]
≤

δ
4 (by (52) and application of Lemma 4; note that the condition of Lemma 4 is satisfied by (73))

and P
[
‖a‖22 ≥ 3

]
≤ δ

4 , shown below. Using that 4 log(4/δ) ≤ L (by (73)), we obtain

P
[
‖a‖22 ≥ 3

]
≤ P

[
‖a‖22 ≥ 2

(
1 +

2 log(4/δ)

L

)]
≤ P

[
‖a‖2 ≥

(
1 +

√
2 log(4/δ)√

L

)]
≤ e−

2 log(4/δ)
2 =

δ

4
(83)

where we used
√

2(1 + β2) ≥ (1 + β), for all β, and a standard concentration inequality for the
norm of a Gaussian random vector, e.g., [21, Eq. 1.6]. This concludes the proof of (78) holding
with probability at least 1− δ

2 .

8.4.2 Proof that (77) and (78) imply (74)

Consider a point r ∈ [0, 1] and let rg be the point in Ω closest to r in ∞-distance. By the triangle
inequality,

1

κn+m

∣∣∣Q(m,n)(r)− Q̄(m,n)(r)
∣∣∣ ≤

1

κn+m

[∣∣∣Q(m,n)(r)−Q(m,n)(rg)
∣∣∣+
∣∣∣Q(m,n)(rg)− Q̄(m,n)(rg)

∣∣∣+
∣∣∣Q̄(m,n)(rg)− Q̄(m,n)(r)

∣∣∣] . (84)

We next upper-bound the terms in (84) separately. With a slight abuse of notation, we write
Q(m,n)(τ, ν) = Q(m,n)([τ, ν]T ) = Q(m,n)(r). The first absolute value in (84) can be upper-bounded
according to∣∣∣Q(m,n)(r)−Q(m,n)(rg)

∣∣∣ =
∣∣∣Q(m,n)(τ, ν)−Q(m,n)(τ, νg) +Q(m,n)(τ, νg)−Q(m,n)(τg, νg)

∣∣∣
≤
∣∣∣Q(m,n)(τ, ν)−Q(m,n)(τ, νg)

∣∣∣+
∣∣∣Q(m,n)(τ, νg)−Q(m,n)(τg, νg)

∣∣∣
≤ |ν − νg| sup

z

∣∣∣Q(m,n+1)(τ, z)
∣∣∣+ |τ − τg| sup

z

∣∣∣Q(m+1,n)(z, νg)
∣∣∣

≤ |ν − νg|2πN sup
z

∣∣∣Q(m,n)(τ, z)
∣∣∣+ |τ − τg|2πN sup

z

∣∣∣Q(m,n)(z, νg)
∣∣∣ (85)

where (85) follows from Bernstein’s polynomial inequality, stated below (note that Q(m,n)(τ, ν) is
a trigonometric polynomial of degree N in both τ and ν).

Proposition 5 (Bernstein’s polynomial inequality [14, Cor. 8]). Let p be a trigonometric polynomial
of degree N with complex coefficients pk, i.e., p(θ) =

∑N
k=−N pke

i2πθk. Then

sup
θ

∣∣∣∣ ddθp(θ)
∣∣∣∣ ≤ 2πN sup

θ
|p(θ)|.

Substituting (78) into (85) yields that

1

κm+n

∣∣∣Q(m,n)(r)−Q(m,n)(rg)
∣∣∣ ≤ c̃

2
L5/2(|τ − τg|+ |ν − νg|) ≤ c̃L5/2 |r− rg| ≤

ε

3
(86)
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where the last inequality follows from (75).
We next upper-bound the third absolute value in (84). Using steps analogous to those leading

to (86), we obtain

1

κm+n

∣∣∣Q̄(m,n)(rg)− Q̄(m,n)(r)
∣∣∣ ≤ ε

3
. (87)

Substituting (77), (86), and (87) into (84) yields that

1

κn+m

∣∣∣Q(m,n)(r)− Q̄(m,n)(r)
∣∣∣ ≤ ε, for all (m,n) : m+ n ≤ 2 and for all r ∈ [0, 1]2

with concludes the proof of Lemma 9.

8.5 Step 3c: Ensuring that Q(r) < 1 for all r /∈ T
Lemma 10. Suppose that

L ≥ Sc log3

(
c′L6

δ

)
.

Then with probability at least 1− δ the following statements hold:

1. For all r, that satisfy minrj∈T |r− rj | ≥ 0.2447/N we have that Q(r) < 0.9963.

2. For all r /∈ T that satisfy 0 < |r− rj | ≤ 0.2447/N for some rj ∈ T , we have that Q(r) < 1.

Proof. Choose ε = 0.0005. It follows from Lemma 9 that

1

κn+m

∣∣∣Q(m,n)(r)− Q̄(m,n)(r)
∣∣∣ ≤ 0.0005, for all (m,n) : m+ n ≤ 2, and for all r (88)

with probability at least 1 − δ. To prove the lemma we will show that Statement 1 and 2 follow
from (88) and certain properties of Q̄(m,n)(r) established in [8].

Statement 1 follows directly from combining (88) with the following result via the triangle
inequality.

Proposition 6 ([8, Lem. C.4]). For all r, that satisfy minrj∈T |r − rj | ≥ 0.2447/N we have that
Q(r) < 0.9958.

In order to prove Statement 2, assume without loss of generality (w.l.o.g.) that 0 ∈ T , and
consider r with |r| ≤ 0.2447/N . Statement 2 is established by showing that the Hessian matrix of
Q̃(r) := |Q(r)|, i.e.,

H =

[
Q̃(2,0)(r) Q̃(1,1)(r)

Q̃(1,1)(r) Q̃(0,2)(r)

]
, Q̃(m,n)(r) :=

∂m

∂τm
∂n

∂νn
Q̃(r)

is negative definite. This is accomplished by showing that

trace(H) = Q̃(2,0) + Q̃(0,2) < 0 (89)

det(H) = Q̃(2,0)Q̃(0,2) − (Q̃(1,1))2 > 0 (90)

which implies that both eigenvalues of H are strictly negative. To this end, we will need the
following result.

30



Proposition 7 ([8, Sec. C.2]). For |r| ≤ 0.2447/N and for N ≥ 512,

1 ≥ Q̄(r) ≥ 0.6447 (91)

1

κ2
Q̄(2,0)(r) ≤ −0.3550 (92)

1

κ2
|Q̄(1,1)(r)| ≤ 0.3251 (93)

1

κ2
|Q̄(1,0)(r)| ≤ 0.3344. (94)

Define Q
(m,n)
R = 1

κm+nRe(Q(m,n)) and Q
(m,n)
I = 1

κm+n Im(Q(m,n)). We have that

1

κ
Q̃(1,0) =

Q
(1,0)
R QR +Q

(1,0)
I QI

|Q|

therefore

1

κ2
Q̃(2,0) = −(QRQ

(1,0)
R +QIQ

(1,0)
I )2

|Q|3 +
|Q(1,0)|2 +QRQ

(2,0)
R +QIQ

(2,0)
I

|Q|

= −Q
2
RQ

(1,0)
R

2
+ 2QRQ

(1,0)
R QIQ

(1,0)
I +Q2

IQ
(1,0)
I

2

|Q|3 +
Q

(1,0)
R

2
+Q

(1,0)
I

2
+QRQ

(2,0)
R +QIQ

(2,0)
I

|Q|

=

(
1− Q2

R

|Q|2
)
Q

(1,0)
R

2

|Q| −
2QRQ

(1,0)
R QIQ

(1,0)
I +Q2

IQ
(1,0)
I

2

|Q|3 +
Q

(1,0)
I

2
+QIQ

(2,0)
I

|Q| +
QR
|Q|Q

(2,0)
R

(95)

By Proposition 7, the triangle inequality, and using that Q̄(m,n)(r) is real, the following bounds are
in force:

QR(r) ≤ Q̄(r) + ε ≤ 1 + ε

QR(r) ≥ Q̄(r)− ε ≥ 0.6447− ε
Q

(m,n)
I ≤ ε

Q
(2,0)
R (r) ≤ 1

κ2
Q̄(2,0)(r) + ε ≤ −0.3550 + ε

|Q(1,1)
R | ≤ 1

κ2
|Q̄(1,1)(r)|+ ε ≤ 0.3251 + ε

|Q(1,0)
R (r)| ≤ 1

κ2
|Q̄(1,0)(r)|+ ε ≤ 0.3344 + ε.

Using these bounds in (95) with ε = 0.0005 yields that Q̃(2,0) < −0.3539, which implies that (89)
is satisfied.
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It remains to verify (90). First note that

1

κ2
Q̃(1,1)

=
Q

(1,1)
R QR +Q

(1,0)
R Q

(0,1)
R +Q

(1,1)
I QI +Q

(1,0)
I Q

(0,1)
I

|Q| − (Q
(0,1)
R QR +Q

(0,1)
I QI)(Q

(1,0)
R QR +Q

(1,0)
I QI)

|Q|3

= Q
(1,1)
R

QR
|Q| +

Q
(1,0)
R Q

(0,1)
R

|Q|

(
1− Q2

R

|Q|2
)

+
Q

(1,1)
I QI +Q

(1,0)
I Q

(0,1)
I

|Q|

− Q
(0,1)
R QRQ

(1,0)
I QI +Q

(0,1)
I QI(Q

(1,0)
R QR +Q

(1,0)
I QI)

|Q|3 . (96)

Using the bounds above in (96) yields, with ε = 0.0005, that 1
κ2
|Q̃(1,1)| ≤ 0.3267. With 1

κ2
Q̃(2,0) <

−0.3539, it follows that the RHS of (89) can be lower bounded by 1
κ2

(0.35392 − 0.32672) =
1
κ2

0.01855 > 0 i.e., (90) holds as well, which concludes the proof of Statement 2.
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A Proof of (12)

The proof of the I/O relation (12) appears in [4]. For convenience of the reader, we present the
details below. We first write (9) in its equivalent form

y(t) =

∫
LH(t, f)X(f)ei2πftdf (97)

where X(f) =
∫
x(t)ei2πftdt is the Fourier transform of x(t), and LH(t, f) is the time-varying

transfer function given by

LH(t, f) :=

∫ ∫
sH(τ, ν)ei2π(νt−τf)dτdν. (98)

Since x(t) is band-limited to [0, B), we may write

X(f) = X(f)HI(f), HI(f) :=

{
1, 0 ≤ f < B

0, else.

Since y(t) is time-limited to [−T/2, T/2) we may write

y(t) = y(t)hO(t), hO(t) :=

{
1, −T/2 ≤ t < T/2

0, else.
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With the input band-limitation and the output time-limitation, (97) becomes

y(t) =

∫
LH(t, f)X(f)ei2πftdf (99)

with
LH(t, f) := LH(t, f)hO(t)HI(f) (100)

i.e., the effect of input band-limitation and output time-limitation is accounted for by passing the
input signal through a system with time varying transfer function given by LH . The spreading
function sH of the system (99) and LH are related by the two-dimensional Fourier transform in
(98). We see that LH(t, f) “band-limited” with respect to t and f , and hence, by the sampling
theorem, can be expressed in terms of its samples as

sH(τ, ν) =
∑
m,`∈Z

sH

(
m

B
,
l

T

)
sinc

((
τ − m

B

)
B
)

sinc

((
ν − `

T

)
T

)
. (101)

In terms of sH(τ, ν) (99) can be written as

y(t) =

∫ ∫
sH(τ, ν)x(t− τ)ei2πνtdνdτ (102)

and with (101)

y(t) =
∑
m,`∈Z

sH

(
m

B
,
`

T

)∫
sinc

((
τ − m

B

)
B
)
x(t− τ)dτ

∫
sinc

((
ν − `

T

)
T

)
ei2πνtdν

=
∑
m,`∈Z

sH

(
m

B
,
`

T

)
x
(
t− m

B

)
ej2π

`
T
t.

According to (98), (100), and (98), sH(τ, ν) and sH(τ, ν) are related as

sH(τ, ν) =

∫ ∫
sH(τ ′, ν ′) sinc((τ−τ ′)B) sinc((ν−ν ′)T )dτ ′dν ′. (103)

which concludes the proof of (12).

B Proof of (17) and of (2)

We first establish (17). Starting with (16) and changing the order of summation according to
` = ˜̀+ Lk and r = r̃ + Lq with ˜̀, r̃ = N, ..., N and k, q ∈ Z yields

yp =

S∑
n=1

bn

N∑
˜̀,r̃=−N

∑
k,q∈Z

sinc(˜̀+ kL− τ̄nB) sinc(r̃ + Lq − ν̄nT )ap−˜̀−kLe
i2π

(r̃+Lq)p
L

=
S∑
n=1

bn

N∑
`,r=−N

∑
k,q∈Z

sinc

((
`

L
− τn + k

)
L

)
sinc

(( r
L
− νn + q

)
L
)
ap−`e

i2π rp
L (104)

=

S∑
n=1

bn

N∑
`,r=−N

DN

(
`

L
− τn

)
DN

( r
L
− νn

)
ap−`e

i2π rp
L (105)
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where (104) follows from a` being L-periodic and by defining τn := τ̄n
B
L and νn := ν̄n

T
L . To obtain

(105), we used that

DN (t) =
∑
k∈Z

sinc (L(t− k)) =
sin(πLt)

L sin(πt)
.

Next, we establish (2). Starting from (105) and using that

DN (t) =
1

L

N∑
k=−N

ei2πtk

yields

yp =
S∑
n=1

bn

N∑
`,r=−N

 1

L2

N∑
k,q=−N

ei2πk(
`
L
−τn)ei2πq(

r
L
−νn)

 ap−`e
i2π rp

L

=
S∑
n=1

bn

N∑
`=N

1

L

N∑
k,q=−N

ei2πk(
`
L
−τn)e−i2πqνnap−`

1

L

N∑
r=N

ei2π
r
L

(p+q)

=
S∑
n=1

bne
i2πpνn

N∑
`=N

1

L

N∑
k=−N

ei2πk(
`
L
−τn)ap−`

=
S∑
n=1

bne
i2πpνn 1

L

N∑
`,k=−N

e−i2πkτnei2π(p−`) k
La`.

C Proof of Theorem 2

The proof follows by establishing exact recovery via construction of a dual certificate. The following
proposition is standard, see e.g., [9].

Proposition 8. Let s be supported on T , suppose that s is feasible for (19) and assume that RT
has full column rank. If there exists a vector v in the row space of R with

vT = sign(sT ) and
∥∥vT ∥∥∞ < 1 (106)

then s is the unique minimizer to (19).

The proof now follows directly from Proposition 3. To see this, set u = sign(sT ) in Proposition
3 and consider the polynomial Q(r) from Proposition 3. Define v as [v](m,n) = Q([m/K,n/K]) and
note that v satisfies (106) sinceQ([m/K,n/K]) = sign(s(m,n)) for (m,n) ∈ T andQ([m/K,n/K]) <
1 for (m,n) /∈ T .

D Bound on U

We have that

U(t) = 16

N∑
p=−N

min

(
1,

1

p4

)
P (m)(p/L− t)
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with

P (m)(t) :=
1

M

N∑
k=−N

(−i2πk)mei2πtk =
∂m

∂tm
sin(Lπt)

M sin(πt)
.

We start by upper bounding |P (m)(t)|. First note that |P (m)(t)| is a 1-periodic and symmetric
function, thus in order to upper bound |P (m)(t)|, we only need to consider the case 0 ≤ t ≤ 1/2.

For m = 0, we have that

|P (0)(t)| ≤ min

(
4,

1

M | sin(πt)|

)
.

Next, consider the case m = 1, and assume that t ≥ 1/L. We have

P (1)(t) =
cos(Lπt)Lπ

M sin(πt)
− π sin(Lπt) cos(πt)

M sin2(πt)
.

Using that sin(πt) ≥ 2t ≥ 2/L for 1/L ≤ t ≤ 1/2 we get

|P (1)(t)| ≤ 1.5Lπ

M | sin(πt)| .

Next, consider the case m = 2. We have

P (2)(t) =
π2(1− L2) sin(Lπt)

M sin(πt)
− 2Lπ2 cos(Lπt) cos(πt)

M sin2(πt)
+

2π2 sin(Lπt) cos2(πt)

M sin3(πt)
.

Using again that that sin(πt) ≥ 2t ≥ 2/L for 1/L ≤ t ≤ 1/2 we get

|P (2)(t)| ≤ 2.5L2π2

M | sin(πt)| .

Analogously, we can obtain bounds for m = 3, 4. We therefore obtain, for 1/L ≤ |t| ≤ 1/2,

|P (m)(t)| ≤ (Lπ)m
c1

M | sin(πt)| ≤ 1.039c1︸ ︷︷ ︸
c2:=

(2Nπ)m
1

M | sin(πt)|

where c2 is a numerical constant and where we used that (L/(2M))m ≤ 1.039 for N ≥ 512 and
m ≤ 4. Regarding the range 0 ≤ |t| ≤ 1/L, simply note that by Bernstein’s polynomial inequality
(cf. Proposition 5) we have, for all t, from |P (0)(t)| ≤ 4, that

|P (m)(t)| ≤ 4(2Nπ)m.

Using that c2 ≥ 1, we finally obtain

U(t) ≤ 16
N∑

p=−N
min

(
1,

1

p4

)
c2

{
4, |p/L− t+ n| ≤ 1/L, n ∈ Z

1
M | sin(π(p/L−t))| , else.

The RHS above is 1-periodic (in t) and symmetric around the origin. Thus it suffices to consider
t ∈ [0, 1/2]. Assume furthermore that Lt is an even integer, the proof for general t is similar. For
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p ≥ 0, we have that |p/L−t| ≤ 1/2 and thus M | sin(π(p/L−t))| ≥M |2(p/L−t)| = 2M/L|p−Lt| ≥
1/2|p− Lt|. It follows that

U(t) ≤ 16c2

N∑
p=0

min

(
1,

1

p4

)
min

(
4,

2

|p− Lt|

)

≤ 16c2

Lt/2∑
p=0

min

(
1,

1

p4

)
2

Lt− p +

Lt−1∑
p=Lt/2+1

1

p4

2

Lt− p +

N∑
p=Lt

1

p4
4

=
16c2

Lt

Lt/2∑
p=0

min

(
1,

1

p4

)
Lt

Lt− p +

Lt−1∑
p=Lt/2+1

Lt

p4

2

Lt− p +

N∑
p=Lt

4Lt

p4


≤ 16c2

Lt

Lt/2∑
p=0

2 min

(
1,

1

p4

)
+

Lt−1∑
p=Lt/2+1

2
2

p3
+

N∑
p=Lt

4

p3


≤ c̃

Lt
.

Analogously we can upper-bound the sum over p = −N, ...,−1 which yields U(t) ≤ c
L|t| , as desired.

E Proof of Proposition 2

The argument is standard, see e.g., [27, Prop. 2.4]. By definition, q is dual feasible. To see this,
note that ∥∥GHq

∥∥
A∗ = sup

r∈[0,1]2

∣∣〈GHq,a(r)
〉∣∣ = sup

r∈[0,1]2
|〈q,Ga(r)〉| = sup

r∈[0,1]2
|Q(r)| ≤ 1 (107)

where the last inequality holds by assumption. By (25), we obtain

〈q,y〉 =

〈
q,G

∑
rn∈T

bna(rn)

〉
=
∑
rn∈T

b∗n 〈q,Ga(rn)〉 =
∑
rn∈T

b∗nsign(bn) =
∑
rn∈T

|bn| ≥ ‖z‖A (108)

where the last inequality holds by definition of the atomic norm. By Hölder’s inequality we have
that

Re 〈q,y〉 = Re 〈q,Gz〉 = Re
〈
GHq, z

〉
≤
∥∥GHq

∥∥
A∗‖z‖A ≤ ‖z‖A

where we used (25) for the last inequality. We thus have established that Re 〈q,y〉 = ‖z‖A. Since
(z,q) is primal-dual feasible, it follows from strong duality that z is a primal optimal solution and
q is a dual optimal solution.

It remains to establish uniqueness. To this end, suppose that ẑ =
∑

rn∈T̂ b̂na(rn) with ‖ẑ‖A =
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∑
rn∈T̂ |b̂n| and T̂ 6= T is another optimal solution. We then have

Re 〈q,Gẑ〉 = Re

〈
q,G

∑
rn∈T̂

b̂na(rn)

〉

=
∑
rn∈T

Re
(
b̂∗n 〈q,Ga(rn)〉

)
+

∑
rn∈T̂ \T

Re
(
b̂∗n 〈q,Ga(rn)〉

)
<
∑
rn∈T

|b̂n|+
∑

rn∈T̂ \T

|b̂n|

= ‖ẑ‖A

where we used that |Q(r)| < 1 for r /∈ T . This contradicts strong duality and implies that all
optimal solutions must be supported on T . Since the set of atoms with rn ∈ T are linearly
independent, it follows that the optimal solution is unique.

References

[1] W. U. Bajwa, K. Gedalyahu, and Y. C. Eldar. Identification of parametric underspread linear
systems and super-resolution radar. IEEE Trans. Signal Process., 59(6):2548–2561, June 2011.

[2] W. U. Bajwa, A. M. Sayeed, and R. Nowak. Learning sparse doubly-selective channels. In
Proc. of 46th Allerton Conf. on Commun., Control, and Comput., pages 575–582, Monticello,
IL, 2008.

[3] S. R. Becker, E. J. Candès, and M. C. Grant. Templates for convex cone problems with
applications to sparse signal recovery. Mathematical Programming Computation, 3(3):165–
218, September 2011.

[4] P. A. Bello. Characterization of randomly time-variant linear channels. IEEE Trans. Commun.
Syst., 11(4):360–393, December 1963.

[5] P. A. Bello. Measurement of random time-variant linear channels. IEEE Trans. Inf. Theory,
15(4):469–475, July 1969.

[6] B. N. Bhaskar, G. Tang, and B. Recht. Atomic norm denoising with applications to line
spectral estimation. arXiv:1204.0562 [cs, math], April 2012.

[7] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, 2004.

[8] E. J. Candès and C. Fernandez-Granda. Towards a mathematical theory of super-resolution.
Comm. Pure Appl. Math., 67(6):906–956, June 2014.

[9] E. J. Candès, J. Romberg, and T. Tao. Robust uncertainty principles: exact signal reconstruc-
tion from highly incomplete frequency information. IEEE Trans. Inf. Theory, 52(2):489–509,
2006.

[10] V. Chandrasekaran, B. Recht, P. A. Parrilo, and A. S. Willsky. The convex geometry of linear
inverse problems. Foundations of Computational Mathematics, 12(6):805–849, December 2012.

37



[11] B. Dumitrescu. Positive Trigonometric Polynomials and Signal Processing Applications.
Springer, 2007.

[12] A. Gershman and N. Sidiropoulos, editors. Space-Time Processing for MIMO Communications.
Wiley, 2005.

[13] M. Grant and S. Boyd. CVX: Matlab software for disciplined convex programming, version
2.1. http://cvxr.com/cvx, March 2014.

[14] L. A. Harris. Bernstein’s polynomial inequalities and functional analysis. Irish Math. Soc.
Bull., 36:19–33, 1996.

[15] R. Heckel and H. Bölcskei. Identification of sparse linear operators. IEEE Trans. Inf. Theory,
59(12):7985–8000, 2013.

[16] M. A. Herman and T. Strohmer. High-resolution radar via compressed sensing. IEEE Trans.
Signal Process., 57(6):2275–2284, 2009.

[17] R. A. Horn and C. R. Johnson. Matrix Analysis. Cambridge University Press, Cambridge;
New York, 2 edition edition, December 2012.

[18] T. Kailath. Measurements on time-variant communication channels. IRE Trans. Inf. Theory,
8(5):229–236, September 1962.

[19] W. Kozek and G. E. Pfander. Identification of operators with bandlimited symbols. SIAM J.
Math. Anal., 37(3):867–888, 2005.

[20] F. Krahmer, S. Mendelson, and H. Rauhut. Suprema of chaos processes and the restricted
isometry property. Communications on Pure and Applied Mathematics, 67(11):1877–1904,
November 2014.

[21] M. Ledoux and M. Talagrand. Probability in Banach spaces: Isoperimetry and processes.
Springer, Berlin, Heidelberg, 1991.

[22] G. E. Pfander, H. Rauhut, and J. Tanner. Identification of matrices having a sparse represen-
tation. IEEE Trans. Signal Process., 56(11):5376–5388, 2008.

[23] G. E. Pfander and D. F. Walnut. Measurement of time-variant linear channels. IEEE Trans.
Inf. Theory, 52(11):4808–4820, December 2006.

[24] M. Rudelson and R. Vershynin. Hanson-wright inequality and sub-gaussian concentration.
Electron. Commun. Probab., 18(0), October 2013.

[25] M. Soltanolkotabi. Algorithms and theory for clustering and nonconvex quadratic programming.
2014. Stanford Ph.D. Dissertation.

[26] T. Strohmer. Pseudodifferential operators and banach algebras in mobile communications.
Appl. Comput. Harmon. Anal., 20(2):237–249, March 2006.

[27] G. Tang, B. N. Bhaskar, P. Shah, and B. Recht. Compressed sensing off the grid. IEEE Trans.
Inform. Theory, 59(11):7465–7490, November 2013.

38

http://cvxr.com/cvx
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