TIME-FREQUENCY ANALYSIS OF FRAMES*

Franz Hlawatsch and Helmut Bolcskei

INTHFT, Technische Universitdt Wien, Gusshausstrasse 25/389, A-1040 Vienna, Austria
email address: fhlawats@email.tuwien.ac.at

Abstract—The theory of frames is fundamental to time-
frequency (TF) or time-scale signal expansions like Gabor
expansions and wavelet transforms. We propose a TF anal-
ysis of frames via two “TF frame representations” called
the Weyl symbol and Wigner distribution of a frame. The
TF analysis shows how a frame’s properties depend on the
signal’s TF location and on certain frame parameters.

1 INTRODUCTION

Linear time-frequency (TF) or time-scale signal expansions
like the Gabor expansion or the wavelet transform [1]-[123]
are often based on nonorthogonal function sets. The math-
ematical theory of frames [3]-[5] yields important insights
into the properties of nonorthogonal signal expansions, as
well as methods for calculating the expansion coefficients.

Review of Frame Theory. Let X C £2(IR) be a Hilbert
space of finite-energy signals, with dimension Dx that may
be co. A set of functions G = {gx(t)} with gix(t) € X is a
frame for X if for every signal z(t) € X

Agllel® < S [z, ge)|* < Bollzlf? (1)
k

with 0 < Ag < Bg < 0o. Here, <z,gk> = ftm(t)g};(t) dt
is the inner product® of z(t) with gi(t), and ||z||2 = (z,.z)
is the energy of z(t). The constants Ag and Bg are called

frame bounds. Frame theory now shows [3] that any signal
z(t) € X can be expanded into the frame functions g (t) as

o)=Y ongu(t)  with o = (z,5) (2)
where f -

Ge(t)= (G 'ge)(t) € X. (3)
Here, the frame operator G is defined as

(@2)(6) = 3 (=) u(0) = [ G0yt at

k t

G(t,t) =) () gi(t). (4)

k
G is a self-adjoint, positive semidefinite, linear operator [6]
that maps L2(IR) into X. On X, G is positive definite
and invertible, i.e., G is also an invertible mapping from
X onto X. We note that (Gz)(t) =0 for z(¢t) L X. Eq. (1)
can be rewritten as Agllz|® < (Gz,z) < Bgllz||® for all
z(t) € X. This shows that the tightest possible frame bounds
(denoted A%, BY) are given by the infimum and supremum,
respectively, of the eigenvalues of G.

The functions gi(t) in (2), (3) constitute another frame

with the kernel
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G = {gx(t)} for X which is called the dual frame. For the
dual frame, the frame bounds are A; = 1/Bg and B; =
1/Ag, and the frame operator is (on X) G = G™1.

A frame G is complete in the space X, but the frame func-
tions gx(t) need not be linearly independent. A frame with
linearly independent gi(t) (called ezact frame) satisfies the
biorthogonality relations <gk, g,) = 6r:. A frame is called
tight if A = Bg. Here, G = Ag Px, where Py is the or-
thogonal projection operator on X, and gi(t) = gx(t)/Ag so
that calculation of the dual frame is trivial. An orthonormal
basis is a special case of a tight frame with Ag = Bg =1. A
frame with Ag = Bg is called snug. Closer frame bounds Ag
and Bg entail better numerical properties of the expansion
(2) and more efficient algorithms for calculating the dual
frame. Indeed, (3) can be expanded as

o o]
~ n —_— 2
gk(t)-czo(a—ce) 9)®), C= g O
which converges faster for closer Ag, Bg [3]. For snug

frames, g (t) can hence be approximated by truncating the
series (5). In particular, truncation after the n = 0 term
yields gx(t) = C gr(t) and, with (2),

2(t) & s =CY_ (z,0c) o (t). (6)
k

Motivation and Outline. The frame bounds Ag, Bg
do not show how certain parameters of a frame could be
changed in order to improve the frame’s numerical proper-
ties. This information can often be obtained from the TF
analysis of frames proposed in this paper. The TF analysis
also shows how a frame’s properties depend on the TF loca-
tion of the signal to be expanded; in particular, a frame may
be “locally snug” in restricted TF regions. We propose two
TF frame representations, the Weyl symbol and the Wigner
distribution of a frame, both of which generalize the Wig-
ner distribution of a linear signal space [7, 8] and satisfy
interesting properties. Local averages of these TF represen-
tations are bounded in terms of the frame bounds. Some
examples show the usefulness of the TF analysis proposed.

Trace, Inner Product, Energy. For use in subsequent
sections, we define the trace Tg of a frame G as the trace of
the frame operator G,

A
Tg = tr{G}= /G(t,t) dt =" |lgll*.
¢ k
We also define the inner product of two frames G and H as

(6, %) = tr{GH}:// G(t,t') H* (t,¢) dtdt’

;Xl:l@k,hﬁlz,

and the energy of a frame G as




[

IGIF 2 {G*} =(4,6) = / / Gt ¢))P dedt’

= 3> lowal™

The following bounds and relations can be shown:
AgDx < Tg < BgDx,
max{AxTg, AgTu} < (G,H) < min{ByTg, BgTu},
A§Dx < AgTs < |I6|* < BgTo < BgDx,
I6I* < T, (9,9) =Dx.
For a tight frame, we have Tg = AgDyx and ||G||> = AZDx.

2 WEYL SYMBOL OF A FRAME

The Weyl symbol (WS) is an important TF representation of
linear operators [9, 10]. We define the Weyl symbol Lg(t, f)
of a frame G as the WS of the frame operator G,

Lo(t,f) = /G(t+%,t-%)e—j2"frdr.

This is a realvalued but (in general) not everywhere non-
negative function of time ¢ and frequency f. With (4),

Lo(t,f) =Y Wa.(t,f)
k

where Wy, (t, f) = ff gr(t+7/2) gx(t—7/2) e 9™I7 dr is the
Wigner distribution (WD) of gi(t) [11]. Hence, the WS of

G is simply the sum of the WDs of all frame functions gk (t),
and thus indicates the frame’s TF location.

Tight Frames. For a tight frame, we have
Lg(t,f)=AgWx(t,f), L(j(taf)=WX(tvf)/Aga

where Wx(t, f) is the WD of the space X [7, 8]. For an
orthonormal basis (or, more generally, any tight frame with
Ag = 1), there is Lg(t, f) = Lg(t, f) = Wx (¢, f). IfGis a
tight frame for X = L2(IR), then Wx(t, f) = 1 [7] and the
WS is constant over the entire TF plane,

Lg(t,f)EAg, L(j(t,f)El/Ag

Integral Relations and Bounds. The WS can be con-
sidered as a TF distribution of the frame’s trace since

//Lg(t,f)dtdf=Tg.
tJf

The inner product of the WSs of two frames equals the inner
product of the frames,

(Lo, L) = / /, Lo(t, f) Luu(t, £) dtdf = (G, H),

which will be zero for frames G and H whose underlying
spaces are orthogonal; the WSs are here orthogonal as well.
The squared norm of the WS equals the frame’s energy,

ILol? = / / L3 (¢, ) dtdf = 1611
tJf

The inner product of the WS of a frame G with the WD of
a signal z(t) € L2(R) is

(Lo, W) = (Ga,2) = 3 [(za0)

k
which will be zero for z(t) L X. The WS satisfies the fol-
lowing bounds and relations:
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AgDx < //Lg(tyf)dtdf < BgDx,
tJf
max{AxTg, A¢Tn} < (LQ,L’H> < min{BxTg, B¢Tn},
AiDx < AgTs < |Lgl® < BgTg < BiDx,

2
Lol < ( / / Lg(t,ndtdf), (Lo, Lg) = Dx,
tJf

Agllzll® < (Lg,We) < Bgliz|® forz(t)ex. (7)

For a tight frame, we have ftff Lg(t, f)dtdf = AgDx,
I|ILg||> = A% Dx, and <Lg,WI> = Ag ||z||* for z(t) € X.

Local Averages and Frame Bounds. The inequality
(7) relates the WS with the frame bounds. Let h(t) € X
be a normalized “test signal” which is well localized about
a given TF point (to, fo). The WD of h(t) is then normal-

ized as [, [ Wit f) dtdf =1, well localized about (to, fo),
and predominantly nonnegative. Thus, the inner product
(Lg,Wh> = ft ff Lg(t, f) Wa(t, f) dtdf can be interpreted

as a local average of the WS Lg(t, f) over a TF region of
area = 1, centered about (fo, fo). Due to (7), we have

Ag < (Lg,Ws) < Bg. (8)

While this bound does not say anything about the pointwise
behavior of the WS, it shows that the WS may not be con-
sistently < Ag or > Bg in any TF region with area = 1. In
this sense, the WS indicates the “snugness” and numerical
properties of a frame. In particular, if the WS consistently
assumes low values in a TF region of area > 1 and high
values in another TF region of area > 1, then we know that
the frame bounds must be widely different and the frame is
not snug. Conversely, if the WS is approximately constant
over the entire TF region corresponding to the underlying
space X, then the frame is guaranteed to be snug. This
interpretation will be refined in Section 4.

If X and u(t) denote the eigenvalues and normalized eigen-
functions, respectively, of the frame operator G, then

(Lg,Wu> = <Gu,u) =,

and it follows that the tightest possible frame bounds can
be obtained from the frame’s WS according to

AL =inf X = inf (Lg,W.), B =supX=sup(Lg,W.).
u u

Covariance Properties. The WS of a frame is “covari-
ant” to certain unitary transformations of a frame. Let us
transform a frame G = {g« ()} into a new frame H = {hx(t)}
(for a transformed signal space) by TF-shifting all frame sig-
nals by time 7 and frequency v, i.e. hi(t) = gr(t —7) eVt
The WS of the “TF-shifted frame” is then

Lu(t, f) = Lg(t =7, f —v).
For a TF-scaling hi(t) = 1/|a| gx(at), we obtain

L'H(tvf) = Lg(at, f/a’) .

Similar covariance properties exist for certain other unitary
transformations, such as the multiplication or convolution
by a chirp signal, the Fourier transform, etc. These frame
transformations correspond to area-preserving, affine TF co-
ordinate transforms in the WS.

Sum Property. Let G = {gx(t)} and H = {hi(t)} be two
frames for the same signal space X, and define the sum of
the frames G and H as G + H = {gr(t)} U g”(t%-}' G+His

+

again a frame for X, with frame operator and WS

LQ+7‘£(t7f) = Lg(t, f) + L’H(t,f) .




3 WIGNER DISTRIBUTION OF A FRAME

Besides the WS, another important TF representation of a
(normal) linear operator is the operator’s Wigner distribu-
tion (WD) {12]. We define the Wigner distribution Wg(t, f)
of a frame G as the WD of the frame operator G, which

equals the WS of the squared frame operator G2,
We(t,f) 2 /G‘” (t+§,t—§) eI gr

with G (t,¢') = [, G(t,5)G(s,t") ds. Wg(t, f) is realvalued
but not necessarily nonnegative. With (4), we obtain

Wolt, ) =D {9k 9) Woalt,f)
k !

with Wiy 0, (t, f) = [, gu(t+7/2) g7 (t—7/2) 9277 dr [11].
Tight Frames. For a tight frame, we have

Wol(t, f) = AF Wa(t, f),  Wg(t, f) = Wa(t, £)/AG .

In the case of an orthonormal basis (or, more generally, any
tight frame with Ag = 1), the WD equals the WS and also
the WD of the space X, Wg(t, f) = Ws(t, f) = Lg(t, f) =
Lg(t, f) = Wx(t, f). If G is a tight frame for X = L2(RR),

then
Wg(taf)EAér Wg'(tnf)El/Aé
Note that here Wg(t, f) = [Lg(t, f))*.

Integral Relations and Bounds. The WD of a frame
is a TF distribution of the frame’s energy since

/ / Welt, f) dtdf = [GII°.
tJf

The inner product of the WDs of two frames is
<Wg, Wu} = tr{G*H?} =

; Z; D0 {9kt (s ) (g B ) (g1, hn )’

which will be zero for frames G and H whose underlying
spaces are orthogonal; the WDs are here orthogonal as well.
The squared norm of the WD is

IWgl|” = tr{G"}.

The inner product of the WD of a frame G with the WD of
a signal z(£) € L2(IR) is the energy of the signal (Gz)(t),

(W, W:) = ||IG=]|?,

which will be zero for z(t) L X. The WD satisfies the
following bounds and relations:

AiDx < AgTg < / / Wg(t, f) dtdf < BgTg < BGDx,
tJf

(Wo, W) < TeTh, |Well® < T4, (Wg,Wy) = Dx,

/t/fWg(t,f)dtdf (/t/fLG(t,f)dtdf)z,

AZll=l® < (W, W) < Billsl® forz(t)eX. (9)

IA

For a tight frame, we have |, ff Wq(t, f)dtdf = A%Dx,
[|Wgl||? = A§ Dx, and <Wg, W,) = A% ||z||? for z(t) € X.
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Local Averages and Frame Bounds. For a normalized
“test signal” h(t) € X localized about a TF point (%o, fo),
the inner product (Wo,Ws) = [, [, Wa(t, f) Wa(t, f) dtdf
is a local average of the WD Wg(t, f) about the TF point
(to, fo). With (9), this local average is bounded as

AL < (Wg,Wh) < Bj.

The discussion of this result is completely analogous to that
of the WS result (8). We have furthermore

(Wg,W.) = (G*u,u) = \?

where A and u(t) are the eigenvalues and normalized eigen-
functions, respectively, of G. Thus, the tightest possible
frame bounds are obtained from the WD as

AY =inf \[(Wg,W.), B =supy/(Wq,W.).

Covariance Properties. The WD of a frame satisfies
the same covariance properties as the WS, i.e. frame trans-
formations by TF shifts or scalings, multiplication or convo-
lution by chirp signals, Fourier transform etc. correspond to
area-preserving agﬂ?ne TF coordinate transforms in the WD.

Sum Property and Cross-WD. The WD of the sum of
two frames G and H for the same signal space is

Woin(t, f) = Wa(t, ) + Wa(t, f) + 2Re{Wg,u(t, )}

where the cross-WD Wg #(t, f) is defined as the WS of the
composite operator GH. It follows that

Wg,’ﬂ(t)f) = ZZ <gl'c)hl>"r ng;hl(t1f))
k l

Wit f) = Wint ), Woolt, f) = Wa(t, ),
/ / Won(t, f)dtdf = (G, 1Y),  Wq ot f) = Wa(t,f).-
tJf

4 EXAMPLES

We shall illustrate the TF analysis of frames by some exam-
ples. Due to space restrictions, only the WS will be consid-
ered; however, a similar discussion applies to the WD.

Improving Frame Snugness. The TF analysis can yield
valuable information on how to change the parameters of a
frame in order to improve the frame’s snugness. Fig. I(a)
shows a segment of the WS of a Weyl-Heisenberg (WH)
frame [3] for X = L2(IR), i.e., G = {gki(t)} with the “Gabor
logons” gri(t) = g(t — kT) e’ (=00 < k,1 < o0), where
g(t) is a suitable function and TF < 1 [3]. The WS of G is

Lo(t, /) =33 Woult,) =D ) Wylt—kT,f~IF),
k 1 k 3

which is T-periodic in ¢ and F-periodic in f. The WH frame
in Fig. 1(a) uses a Gaussian g(t) and TF = 1/2. The large
dynamic range of the WS (maxLg(t, f)/ minLg(t, f) =
2.4323) indicates that the frame is not snug. Indeed, the
ratio of the tightest possible frame bounds (calculated via
the Zak transform [3, 13]) is BY /AL = 2.4323, which equals®
max Lg (¢, f)/ min Lg (¢, f). The variations of the WS in the
t direction indicate that the logons’ time spacing T is too
large, causing “ener aps” between logons adjacent with
respect to t. Fig. 1(b) gepicts the WS 0? a WH frame with
the same g(t) but T reduced by one half (ie. TF = 1/4).
The WS is practically constant, indicating that this frame

2For TF = 1/(2n) with n € IN, one can show [14] a relation
of the WS with the Zak transform, from which it follows that

min Lg(t, f) = Ag and maxLg(¢t, f) = BZ:.




W
W,

Fig. 1: WS (segment) of a WH frame with (a) TF = 1/2, (b)) TF =1/4 and “correct” logon spread,
and (c) TF = 1/4 and “incorrect” logon spread.

is snug; indeed, max Lg(t, f)/ minLg(t,f) = BZ /AL =
1.0151 = 1. Finally, Fig. 1(c) shows the WS of a WH frame
with T, F as in Fig. 1(b); however, the Gaussian g(t) now
has a larger time spread so that its effective bandwidth is
too small as compared to the logons’ frequency spacing F.
This is correctly indicated by the WS variations in the f
direction. Indeed, max Lg(t, f)/ min Lg(t, f) = BE /AL =
1.1892, which means poorer snugness even though the over-
sampling factor 1/(T'F) = 4 is the same as before.

Local Snugness. The TF analysis of frames also leads
to the new concept of “local snugness.” Fig. 2(a) shows the
WS of a frame for a finite-dimensional signal space. This
frame is not snug globally but locally snug in the sense that

7
//l/:“
117y \

///Z \
Al

2

_—>t

Fig. 2: (a) WS (slightly smoothed) of a “locally snug”
frame, (b) WDs of Gaussian signals used for verifying the
concept of local snugness.
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the frame’s WS is nearly constant in a specific TF region
R. We hypothesize that, for a signal z(t) concentrated in
R, the numerical properties of the frame expansion are as
if the frame were snug in the entire TF plane. This hy-
pothesis was verified by calculating the “zero-order expan-

sions” z§°) #=Ciy, (:c,-,gk> gk (t) (cf. (6)) of two Gaus-
sian signals z1(f) and z2(t) located inside and outside R,
respectively (see Fig. 2(b)). The factors C; were chosen as

Ci = arg ming ||x$°)—- z;|| in order to optimally approximate
the true signals z;(t). The normalized approximation er-

TOrS €; = ||:c$0)- x;||/}|z:|| were obtained as e1 = 0.015 and
€2 = 0.804. As expected, the error is very small for zi(t)
(localized in R) but large for z2(t) (localized outside R).
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