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Abstract—We present a theory of linear and quadratic
time-frequency representations (TFRs) that are covariant
to time-frequency displacement operators. The theory uni-
fies important TFR classes (short-time Fourier transform,
wavelet transform; Cohen’s, affine, hyperbolic, and power
classes), and it allows the systematic construction of new
TFRs that are covariant to a given operator.

1 INTRODUCTION

Most of the known classes of linear and quadratic time-
frequency representations (TFRs) [1, 2] can be defined ax-
iomatically by covariance properties. In what follows, z(t)
is a signal, t and f denote time and frequency, respectively,
and integrations are over the signals’ support.

Linear TFRs. The TFR class of short-time Fourier
transforms (STFT) {1, 2]

STFT.(t, f) = / :L‘(t’) hm(t/_t)c—nrrft’ dt', (1)

t

where h(t) is a fixed function, can be shown to consist of
all linear TFRs that are covariant, up to a phase factor, to
time-frequency (TF) shifts:

STFTg, .(t, f) = e>"U™) STFT.(t—7, f-v) (2)

with (Sr,2)(t) = z(t—7) '™, Similarly, the TFR class of
continuous wavelet transforms (WT) [3, 2]

WTL(t, f) = \/% /’z(t')h'(?f;(t'—t)) dit', F#0, (3)

where fo > 0 is a fixed reference frequency, consists of all
linear TFRs covariant to time shifts and TF scalings:

WTc, ,.(tf)=WTs (a(t—T), f/a) (4)

with (Ca,rz)(t) = /la x(a(t — 1)), a # 0. A similar
covariance is satisfied by the hyperbolic WT defined in [4].

Quadratic TFRs. Cohen’s class with signal-independent
kernels [5, 2, 1] (briefly called Cohen’s class hereafter),

Cz(,f) =//z(tl)z‘(t2)h'(t1—t, to—t) e 721 =02) 4y, gg,
tivity

5
where h(t1,12) is a fixed function, consists of all quadragic
TFRs that are covariant to TF shifts,

Cs, ,:(t.f) = Calt—7,f-v), (6)

and the affine class [6, 7]
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At f) = ';T'/tl/t:(tl)z‘(ta)h‘(%(tl—t)%(tz—t))dtldt2

. 7
consists of all quadratic TFRs that are covariant to txgng
shifts and TF scalings,

Ac, ..t f) = As(a(t=7), f/a) . (8)

Similar covariances are satisfied by the hyperbolic class [4]
and the power classes [8] of quadratic TFRs.

2 TF DISPLACEMENT OPERATORS

The TF shift operator S, underlying the STFT and Co-
hen’s class and the time shift/TF scaling operator Cq, un-
derlying the WT and the affine class are families of unitary,
linear operators indexed by a 2D parameter. Both S, and
C.,r displace signals in the TF plane. We shall now es-
tablish a general framework of TF displacement operators
(TFDOs). This will yield a unified theory of “displacement-
covariant TF analysis” which includes the known classes of
linear and quadratic TFRs and also provides a systematic
method for constructing new displacement-covariant TFRs.

Consider a family of linear operators Dy defined on a linear
space X C L2(IR) of finite-energy signals z(t), and indexed
by the 2D “displacement parameter” 6§ = (a,8) € D with
D C IR?. We assume that there exists an operation o such
that D and o form a group with identity element 8o and
inverse element 71, i.e., (i) 61 0 82 € D for 61,0, € D, (ii)
610(82083) = (61082)005, (i) fobp = o086 =6, and (iv)
6108 = fof~! = B,. It follows that (§108,)™" = 05 08",
We now formulate six properties which Dp must satisfy in
order to be called a TFDO.

Property 1: For all 8 € D, Dg is a unitary operator
mapping X onto X, i.e.,

DyD;=D;Ds=1, D;!' =D; 9)

where Dj and D;l denote the adjoint and the inverse, re-
spectively, of Dy, and I is the identity operator on X E))]
Unitarity of D is a natural property since we want Dy
to displace the signal’s energy in the TF plane, but not to
change the total amount of energy.

Property 2: Dy satisfies a composition law
Do, Do, = ¢’¥(?%2) Dy 0, (10)

where (-, ) satisfies 1/1(0,001) = (60,8) = 0 modulo 2.
Thus, a displacement by 6 followed by a displacement by
6, is equivalent, up to a phase, to a displacement by 610 8.

From the above two properties, it follows that Dg, = 1,
i.e, the identity element 8o corresponds to no displacement.

Furthermore, o-1g
D;l — g~ I¥(6750) Do-1, (11)




i.e., a TTF displacement by 8 can be undone, up to a phase

factor, via a displacement by the inverse parameter 7. 1t
is also easily shown that

$(87,68) = ¢(8,6™") modulo 2. (12)

Examples. Properties 1 and 2 are satisfied by the TF
shift operator S,. and the time shift/TF scaling operator
Cga,r. For S;,, we have § = (r,v), D = R?, (r1,11) 0
(Tz,l/z) = (T] + 12, 1 +ll2), 6o = (0,0), 9~ = (-—-T,—I/),
and 9(6:1,62) = —2anm. For Car, we have 8§ = (a,7),
D = R\{0} x IR, (al,rl) [ (az,T2) = (@102, rifaz + m2),
0o = (1,0), 87! = (1/a,—ar), and ¥(6:1,82) = 0. The
composition law (10) is

SrpwsSri = eI Sritra, vz s

Caz,72Carn = Cajay,mifagtrs -

Displacement Function. The primary effect of a TFDO
Dy is a TF displacement: if z(t) is localized about a TF
point z = (2, f), then (Dg z)(t) will be localized about some
other TF point z’ = (¢', f'). Here, z’ depends on the original
TF point z and the displacement parameter 8,

2 =d(z,8),

which is short for t' = di(t, f; @, B), ' = d2(t, f; a, 8). We
call d(-,-) the displacement function (DF) of the TFDO De.
For example, the DF of the TF shift operator S, is easily
seen to be t’ = di(t, f;m,v) = t+ 7, f = doft, fi7,v) =
f+v. In the following, we present a systematic procedure for
constructing the DF of a given TFDO Dy, and we formulate
some additional TFDO properties. The procedure has been
introduced in [10] in a related context.

Let Z C IR? (where IR? stands for the entire TF plane)
denote the set of TF points z = (t, f) underlying our TF
analysis!. Suppose that z(t) is localized about a TF point
2z = (tz, fz) € Z as shown in Fig. 1. Let 8:.(2) = 6(1—12)
and eg,(t) = €’>™f='. In the TF plane, 6., (t) is localized
along the straight line t = ¢, and ey, (1) is localized along
the straight line f = f. (see Fig. 1). The TF point 2z, =
(tz, fz) is the intersection of these lines.

We wish to find the TF point z’ = (', f') about which the
displaced signal (De z)(t) is located. Consider the signals

5gz,9(t) = (De 6:,)(” and éfzyggt) = (De e;,)(t), and let

7e.,0(f) be the group delay” of é:, 6(t) and vy, o(t) be the
instantaneous frequency® of és, ¢(t). The signal 6., ,6(t) is
localized in the TF plane along the group delay curve ¢ =
Ttg,0(f), while é f,,eﬁ) is localized along the instantaneous
frequency curve f = vy, o(t). Hence, z' = (t', ') will be the
intersection of these curves (see Fig. 1), i.e., the solution to
the system of equations 7¢, o(f') = t', vy, 6(t') = f'. This
solution 2z’ = (¢, f') depends on z; = (i, fz) and on 6, i.e.,
2’ = d(2z,8). This defines the DF d(-,-) of Dy, provided
that the following property is satisfied. (Below, we write
z = (¢, f) instead of zz = (z, fz).)

Property 3: The intersection equation
ro(f) =1, vt =f (13)

has a unique solution 2z’ = (t', f') € Zforanyz=(t,f) € 2
and for any 8 € D.

!Note that the TF set Z is related to the signal space X.
2The group delay of &;_o(t) is ¢, o(f) = ———2—1; dif ®(f) where
&(f) is the phase of the Fourier transform of gg:’g(t).
The instantaneous frequency of &g, (t) is vy 6(t) =
21—" % #(t) where ¢(t) is the phase of é¢_ ().

Fig. 1: Construction of the displacement function.

Examples. Property 3 is satisfied for the TF shift oper-
ator S, and the time shift/TF scaling operator Ca,r. For

S.., Z is IR? (the entire TF plane) and the DF is obtained
from (13) as t' = di(t, f;7,v) = t+ 7, f' = do(t, f;7,v) =
f+v. For C,,r, Z is R x R\ {0} (the entire TF plane
minus the line f = 0) and the DF is obtained from (13) as
t' =di(t, f;a,7) =t/a+7, f =d2t, fia,7) = af.
Induced TFDO. The DF expresses a TF coordinate
transform. Let T(z) = T(,f) € L2(Z) be a square-
integrable TF function defined for z € Z, and consider the

coordinate transform operator Dg defined on £2(Z2) as

(Do T)(z) = T(d(z,67)) .
The operator family Ds will be called the induced TFDO
(ITFDO) associated to Dg. While the TFDO acts on a
signal, the ITFDO acts on a TF function (which may be
the TFR of a signal). The ITFDO is a linear operator even

though the TF coordinate transform z’' = d(z,8) may be
nonlinear. The ITFDOs associated to S;, and C,,, are

(8:, T)(t, f) = T(t—7, f—v) and (Ca- T)(t f) = T(a(t-
), f /a). We now formulate three further properties which
concern the DF or, equivalently, the ITFDO.

Property 4: For any 6 € D, the TF coordinate transform
z' = d(z,0) is an invertible, area-preserving mapping of 2
onto Z. This implies that the Jacobian of the vector func-
tion z — z'= d(z,6) is 1 for any § € D. Equivalently, the
ITFDO Dy is unitary on L2(Z2), i.e.,

DeD;=DyDe=1, D;'=D;
where I is the identity operator on £(Z).

Property 5: The DF and the ITFDO satisfy the (equiv-
alent) composition laws

d(d(z,Bl),Bz) = d(z, 61002), Do, Do, = Do,00, -

From properties 4 and 5, it follows that the TF coordinate
transform corresponding to the identity element 6 is the
identity transform, i.e., d(z,80) = z or equivalently Dy, = L
Furthermore, a coordinate transform by ¢ can be undone by
a coordinate transform by 87': if 2’ = d(z,0), then z =
d(z',6™"). Equivalently,

d(d(z,60),67") = z,

Parameter Function. We finally postulate that, from
any given TF point z, we can reach any other TF point 2
via a suitable TF displacement:

D;' =Dg-s.

Property 6: The equation d(z,8) = z' has a solution
8 € D for any z,2' € Z.
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This solution can be written as
6 =p(,z),

which is short for o = p1(t', f'; t, ), B = p2(t', f'; 1, ). We
call p(-,-) the parameter function (PF) of the TFDO De.
Note that p(z,z) = 8o and p(z,2z) =8 = p(z,2') =6"".
Furthermore, it can be shown that

p(d(z,ﬂ),z) =p(z,z)08. (14)

Examples. The properties 4-6 are satisfied in the case

of S;, and C,,r. The PF of S,, is 7 = p1(¢', 51, f) =

' —t,v=p(t,f;t,f) = f'— f, and the PF of C,; is

a =p1(tl:fl;taf) = fl/fv T=p2(t’,f’;t,f) =t,_(f/f’)t'
3 DISPLACEMENT-COVARIANT TFRs

In the previous section, we formulated six properties which
define a TFDO. We now consider linear and quadratic TFRs
which are covariant to a TFDO.

Linear TFRs. A linear TFR 8LTFR T:(t, f) = Tz(2)
will be called covariant to a TFD

Tp,.(z) = €9 (Do T2)(2) (15)
€(z,8) = ¥(87,8) - ¥(p(z,20),67"), (16)

where zo € Z is an arbitrary fixed reference TF point. (We
use this particular phase function €(z,8) since other defini-

tions would lead to an additional phase factor in (17).) The
next theorem characterizes all covariant LTFRs.

Theorem 1. All LTFRs covariant to a TFDO Dg can be
written as the inner product

T2(5) = (2. Dpmyh) = [ 2(6) (Dycer) W), (17)

where h(t) is an arbitrary function (independent of z(t))
and zp is the reference TF point used in (16). Conversely,
all LTFRs of the form (17) are covariant to Dg.

Examples. For Dg = S;, and 20 = (0,0), (15) becomes
the TF shift covariance property (2), and (17) becomes the
STFT defined in (1). For Dg = C, r and 20 = (0, fo), (15)
becomes the time shift/TF scaling covariance property (4)
and (17) becomes the WT in (3).

Proof of Theorem 1. Any LTFR can be written as

Tx(2) = (z,kz> =/ c(t') k3 (t') dt’, (18)
tl

where the function k.(t) depends on z but not on z(t).
With (18), the LHS of (15) is Tp,.(z) = (Dez,k.) =
(x,D; kz> = <z,D;1 kz>, where (9) has been used, and
the RHS is e?“= (DpT.)(z) = /=% T(d(z,67")) =
e7<(2:0) <x,kd(z’9_1)>. Hence, (15) is satisfied if and only if
k.(t) satisfies (D‘;1 kz) (t') = (=9 Ea(z0-1)(t') or

kz(tl) = cjc(z,e) (Da kd(z,g—l))(tl)

Consider now a fixed reference TF point zp. Due to Prop-
erty 6, there exists a 8 for any z such that d(z,6™') = z;
this 8 is given by 8~ = p(z0,2) or 8§ = p(z,20). For this
specific 8, (19) becomes

kz(tl) = ¢ (#:P(2:20)) (DP(ZJO) kzo)(t/) . (20)

Note that, for fixed zo, this is now only a necessary condition

with

Y z,0,t. (19)
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since we picked a specific § whereas (19) must be satisfied
for all 9. With (16), we have €(z,p(z,20)) = ¥v(87,6) —
¢(9,0—1) = 0 modulo 27, where 8 = p(z, z0) and (12) have
been used. Hence, (20) simplifies to

k2(t') = (Dyz,20) Fz0) (') = (D0 B) (1) (21)

with h(2) 2 k.o (t). Inserting (21) in (18) gives (17).

We have finally to show that the form (21) or, equivalently,
(17) is also sufficient for the covariance (15). Using (17),
(15) is proved as follows:

Tp,.(2) = (Do 2, Dy(z,20)h) = (7, D Dy(z,20)h)
= <1:,D;1 Dp(z’z(,)h> = <Z,e_j¢(6-l’9) Do—x Dp(z,zg)h>
— J¥EThe) <:1:, eI (P(2,20),671) Dp(z,zu)oe-1h>
] -16)— 2,2 -1
— I [¥(071,8)=¥(p(2,20),67")] <zaDp(d(z,B—1),zo)h>
— 816(2,9) T, (d(z,e_l)) — ejf(z,B) (f)a T,)(z),
where (9), (11), (10), (14), and (16) have been used. |
TF Localization. The form (17), besides being necessary

and sufficient for the covariance property (15), also guaran-
tees correct TF localization of the LTFR T (z) if only h(t")

is TF-localized about 2. In this case, (Dp(,yzo)h) (') is
TF-localized about z. Thus, at a given analysis TF point
z, Tx(2) is formed by correlating z(t') with a “test signal”
(Dp(z,zo)h) (') correctly localized about z.

Quadratic TFRs. A quadratic TFR (QTFR) Tz(t, f) =
T:(z) will be called covariant to a TFDO D if

Tp,.(2) = (D T:)(z). (22)

This differs from the covariance &15) by the absence of a
phase factor. The next theorem characterizes all covariant

QTFRs. In what follows, £®(t1,12) = z(t1) z"({2) denotes
the outer product of the signal £(t) by itself, and DY denotes
the outer product of the operator Dy by itself*.

Theorem 2. All QTFRs covariant to a TFDO Dg can be
written as the 2D inner product

T:(z) = (2% DE. .,k )
//x(tl)z t2) (DE. ..k ) (t1, t2) dtadt,  (23)

where h(t1,%2) is an arbitrary 2D function (independent of
z(t)) and 20 € Z is an arbitrary reference TF point. Con-
versely, all QTFRs (23) are covariant to De.

Examples. For Dy = S, and z = (0, 0), (22) becomes
the TF shift covariance property (6) and (23) becomes Co-
hen’s class defined in (5). For Dy = Ca,r and 20 = (0, fo),
(22) becomes the time shift/TF scaling covariance property
(8) and (23) becomes the affine class in (7).

The proof of Theorem 2 is structurally analogous to that of

4If Dy acts on a 1D function z(t) as (D9 .1:) (t) = ft, Dg(t,t')

z(t')dt’ (where Dg(t,t') is the kernel of Dp), then D? acts

on a 2D function y(t1,t2) as (D? y) (t1,82) = ft, ft, Dg(t1,t1)
1 2

Dj(t2,t5) y(t],t3) dt] dt;. For example, (S8, y)(t1,t2) =

ta—r) 2™(t1=12) and (C$, y)(t1,t2) = |al y(a(tl—T), a(tz—T))-

y(tl =T,




Theorem 1 and will not be included. Correct TF localization
of the QTFR (23) is guaranteed if a (suitably defined) TF
representation of the kernel h(t1,12) is localized about the
reference TF point zo used in (23). Generalized marginal
properties are considered in [11].

4 EXAMPLES

We now apply our theory to three TFDOs which are less
trivial than the TFDOs S, , and C,,, considered so far.

Example 1. The TFDO H, . is defined on the space H
of analytic signals as

(Ha,cz)(t) = .7-'_1{% X({) e*jz"CI“(f/f°)} , a>0,

where F~! is the inverse Fourier transform operator and
X(f) is the Fourier transform of z(t). Hg, consists of a
TF scaling and a “hyperbolic time shift” [4]. We have § =
(a, C), D= ]R,+ xR, (al,cl) o (a2,62) = (alag, c1 +Cz), 6o =
(1,0), 87! = (1/a,—c), and %(61, 82) = 2mc; Inaz. The DF,
defined on Z = IR x IRy, is obtained as t' = dy(t, f;a,c) =
@+ c/f)/a, f' = d2(t, f;a,¢) = af, and the PF is a =
@, 5L =11f, c=p(t', f;t, f) = t'f — tf. Setting
zo0= (0,fo0), the LTFR covariance property (15) becomes

Ty, .. (t f) = > M Ty (a(t — ¢/f), f/a) . (24)

Applying Theorem 1, it follows that all LTFRs satisfying
this covariance are given by

Tz(ta f) = \/Z;/ X(f,) H' (% fl) e.ﬂ""tfln(f’/fo) df’,
f’

which is the hyperbolic WT introduced in [4]. The QTFR

covariance property is (24) without the phase factor. Due
to Theorem 2, all covartant QTFRs are given by

T:(t, f) =
% [ ] XX ‘(f:)H‘(f}‘lfl,%fa)eﬂ"'f n(11/12) g df,

which is the hyperbolic class introduced in [4].
Example 2. The TFDO P defined on X = L2(R) as

) P I\ (-s2mcenstso)
(Pacz)(t) = F {mx(a)e }
with £.(b) = sign(b) |8]", k € IR\{0}, consists of a TF scaling
and a “power-law time shift” [8]. We have § = (a,c), D =
R\{0} x IR, (a1,c1) 0 (a2, c2) = (@102, c1/€x(a2) +¢2), b0 =
(1,0), 87! = (1/a, —¢x(a) c), and 9(61,82) = 0. The DF, de-
fined on Z = RxIR\{0},is t'=d1 (¢, f;a,¢) = t/a+cTe(af),
f' = da(t, f;a,¢) = af where 7c(f) = (1/fo) €x(f/fo) =
(k/fo)|f/fol"™". The PFis a = pa (¥, f'st,f) = f'/f, c =

p2(t, F5t, F) = (' f' = t£)/(f'm(f))- Setting zo = (0, fo),
the covariance property for &/TF&S )a)nd QTFRs geadg °)

Tp, . .(t f) = T (a(t — c7x(f)), f/a) -

By application of Theorem 1, all LTFRs satisfying this co-
variance are obtained as

rien) =B [x0 @) eofior e (B)ar

Similarly, it follows from Theorem 2 that all QTFRs satis-
fying the covariance are given by
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nen = & [ [xexa@nln)
S/ f2

exp {jZWT—K% [5(%) —sx(%)]}dfldfz,

which is the power class with power parameter « [8].

Example 3. We finally define the TFDO W, , on the
space X = L2(IR4) as

(Wk,az)(t) = 1/a IKI(-;‘—:—)K_l z(to (%)K) , a>0.

This TFDO is a “power-law warping” (essentially ¢ — t*)
[8, 10] followed by a TF scaling. We have 0 = (x,a),
D = R\{0} x Ry, (k1,01) 0 (x2,02) = (1x2, a}/"az),
6 = (1,1), 87 = (1/x,1/a"), and ¥(61,82) = 0. The
DF, defined on Z = R4 x IR\{0}, is ¢’ = di(¢, f;%,a) =
(to/a) (t/to)'", f' = da(t, f;K,a) = aKf (t/to)'~'/*. The
PFis k = pl(t,yf,;tvf) = t,f’/(tf)) a = pz(t,vf’;tv.f) =
(to/t) (t/t0)/*'F"). Setting 20 = (to,1/0), the covariance
property for LTFRs and QTFRs reads

at\* 1 t\—=
Tw,..0N=T:(u($), sz () 1)
From Theorem 1, all covariant LTFRs are obtained as
Itf—1 I\tf
T,(t,f):w/to|f|/z(t') (%) h'(to(t?) )dt',
tl

and from Theorem 2, all covariant QTFRs are obtained as

T:(t, f) = t0|f|/t [ z(t1) z°(t2) (%)U-l

tf tf
H(ol®) (%))
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