UNIFIED THEORY OF DISPLACEMENT-COVARIANT TIME-FREQUENCY ANALYSIS*

Franz Hlawatsch and Helmut Bölcskei

INTHFT, Technische Universität Wien, Gusshausstrasse 25/389, A-1040 Vienna, Austria email address: fhlawats@email.tuwien.ac.at

Abstract—We present a theory of linear and quadratic time-frequency representations (TFRs) that are covariant to time-frequency displacement operators. The theory unifies important TFR classes (short-time Fourier transform, wavelet transform; Cohen's, affine, hyperbolic, and power classes), and it allows the systematic construction of new TFRs that are covariant to a given operator.

1 INTRODUCTION

Most of the known classes of linear and quadratic time-frequency representations (TFRs) [1, 2] can be defined axiomatically by covariance properties. In what follows, x(t) is a signal, t and f denote time and frequency, respectively, and integrations are over the signals' support.

Linear TFRs. The TFR class of short-time Fourier transforms (STFT) [1, 2]

$$STFT_x(t, f) = \int_{t'} x(t') h^*(t'-t) e^{-j2\pi f t'} dt', \qquad (1)$$

where h(t) is a fixed function, can be shown to consist of all linear TFRs that are covariant, up to a phase factor, to time-frequency (TF) shifts:

$$STFT_{\mathbf{S}_{\tau,\nu}x}(t,f) = e^{-j2\pi\tau(f-\nu)} STFT_x(t-\tau,f-\nu)$$
 (2)

with $(\mathbf{S}_{\tau,\nu}x)(t) = x(t-\tau)e^{j2\pi\nu t}$. Similarly, the TFR class of continuous wavelet transforms (WT) [3, 2]

$$WT_{x}(t,f) = \sqrt{\frac{|f|}{f_{0}}} \int_{t'} x(t') h^{*} \left(\frac{f}{f_{0}}(t'-t)\right) dt', \quad f \neq 0, \quad (3)$$

where $f_0 > 0$ is a fixed reference frequency, consists of all linear TFRs covariant to time shifts and TF scalings:

$$WT_{\mathbf{C}_{x-x}}(t,f) = WT_x(a(t-\tau), f/a)$$
 (4)

with $(C_{a,\tau} x)(t) = \sqrt{|a|} x(a(t-\tau))$, $a \neq 0$. A similar covariance is satisfied by the hyperbolic WT defined in [4].

Quadratic TFRs. Cohen's class with signal-independent kernels [5, 2, 1] (briefly called Cohen's class hereafter),

$$C_x(t,f) = \int_{t_1} \int_{t_2} x(t_1) \, x^*(t_2) \, h^*(t_1 - t, t_2 - t) \, e^{-j2\pi f(t_1 - t_2)} dt_1 dt_2,$$

where $h(t_1, t_2)$ is a fixed function, consists of all quadratic TFRs that are covariant to TF shifts,

$$C_{\mathbf{S}_{\tau,\nu}x}(t,f) = C_x(t-\tau,f-\nu),$$
 (6)

and the affine class [6, 7]

$$A_x(t,f) = \frac{|f|}{f_0} \int_{t_1} \int_{t_2} x(t_1) \, x^*(t_2) \, h^* \Big(\frac{f}{f_0}(t_1 - t), \frac{f}{f_0}(t_2 - t) \Big) dt_1 dt_2$$

consists of all quadratic TFRs that are covariant to time shifts and TF scalings,

$$A_{\mathbf{C}_{a,\tau}x}(t,f) = A_x(a(t-\tau),f/a). \tag{8}$$

Similar covariances are satisfied by the hyperbolic class [4] and the power classes [8] of quadratic TFRs.

2 TF DISPLACEMENT OPERATORS

The TF shift operator $S_{\tau,\nu}$ underlying the STFT and Cohen's class and the time shift/TF scaling operator $C_{a,\tau}$ underlying the WT and the affine class are families of unitary, linear operators indexed by a 2D parameter. Both $S_{\tau,\nu}$ and $C_{a,\tau}$ displace signals in the TF plane. We shall now establish a general framework of TF displacement operators (TFDOs). This will yield a unified theory of "displacement-covariant TF analysis" which includes the known classes of linear and quadratic TFRs and also provides a systematic method for constructing new displacement-covariant TFRs.

Consider a family of linear operators \mathbf{D}_{θ} defined on a linear space $\mathcal{X} \subseteq \mathcal{L}_2(\mathbb{R})$ of finite-energy signals x(t), and indexed by the $2\mathbb{D}$ "displacement parameter" $\theta = (\alpha, \beta) \in \mathcal{D}$ with $\mathcal{D} \subseteq \mathbb{R}^2$. We assume that there exists an operation o such that \mathcal{D} and o form a group with identity element θ_0 and inverse element θ^{-1} , i.e., (i) $\theta_1 \circ \theta_2 \in \mathcal{D}$ for $\theta_1, \theta_2 \in \mathcal{D}$, (ii) $\theta_1 \circ (\theta_2 \circ \theta_3) = (\theta_1 \circ \theta_2) \circ \theta_3$, (iii) $\theta \circ \theta_0 = \theta_0 \circ \theta = \theta$, and (iv) $\theta^{-1} \circ \theta = \theta \circ \theta^{-1} = \theta_0$. It follows that $(\theta_1 \circ \theta_2)^{-1} = \theta_2^{-1} \circ \theta_1^{-1}$. We now formulate six properties which \mathbf{D}_{θ} must satisfy in order to be called a TFDO.

Property 1: For all $\theta \in \mathcal{D}$, \mathbf{D}_{θ} is a *unitary* operator mapping \mathcal{X} onto \mathcal{X} , i.e.,

$$\mathbf{D}_{\theta} \, \mathbf{D}_{\theta}^{*} = \mathbf{D}_{\theta}^{*} \, \mathbf{D}_{\theta} = \mathbf{I} \,, \qquad \mathbf{D}_{\theta}^{-1} = \mathbf{D}_{\theta}^{*} \tag{9}$$

where \mathbf{D}_{θ}^{*} and \mathbf{D}_{θ}^{-1} denote the adjoint and the inverse, respectively, of \mathbf{D}_{θ} , and I is the identity operator on \mathcal{X} [9]. Unitarity of \mathbf{D}_{θ} is a natural property since we want \mathbf{D}_{θ} to displace the signal's energy in the TF plane, but not to change the total amount of energy.

Property 2: D_{θ} satisfies a composition law

$$\mathbf{D}_{\theta_2} \mathbf{D}_{\theta_1} = e^{j\psi(\theta_1, \theta_2)} \, \mathbf{D}_{\theta_1 \circ \theta_2} \tag{10}$$

where $\psi(\cdot,\cdot)$ satisfies $\psi(\theta,\theta_0)=\psi(\theta_0,\theta)=0$ modulo 2π . Thus, a displacement by θ_1 followed by a displacement by θ_2 is equivalent, up to a phase, to a displacement by $\theta_1 \circ \theta_2$. From the above two properties, it follows that $\mathbf{D}_{\theta_0}=\mathbf{I}$,

From the above two properties, it follows that $D_{\theta_0} = I$, i.e, the identity element θ_0 corresponds to no displacement. Furthermore.

$$\mathbf{D}_{\theta}^{-1} = e^{-j\psi(\theta^{-1},\theta)} \; \mathbf{D}_{\theta^{-1}} \,, \tag{11}$$

^{*}Funding by FWF grant P10012-ÖPH.

i.e., a TF displacement by θ can be undone, up to a phase factor, via a displacement by the inverse parameter θ^{-1} . It is also easily shown that

$$\psi(\theta^{-1}, \theta) = \psi(\theta, \theta^{-1}) \text{ modulo } 2\pi.$$
 (12)

Examples. Properties 1 and 2 are satisfied by the TF shift operator $\mathbf{S}_{\tau,\nu}$ and the time shift/TF scaling operator $\mathbf{C}_{a,\tau}$. For $\mathbf{S}_{\tau,\nu}$, we have $\theta=(\tau,\nu)$, $\mathcal{D}=\mathbb{R}^2$, (τ_1,ν_1) o $(\tau_2,\nu_2)=(\tau_1+\tau_2,\nu_1+\nu_2)$, $\theta_0=(0,0)$, $\theta^{-1}=(-\tau,-\nu)$, and $\psi(\theta_1,\theta_2)=-2\pi\nu_1\tau_2$. For $\mathbf{C}_{a,\tau}$, we have $\theta=(a,\tau)$, $\mathcal{D}=\mathbb{R}\setminus\{0\}\times\mathbb{R}$, $(a_1,\tau_1)\circ(a_2,\tau_2)=(a_1a_2,\tau_1/a_2+\tau_2)$, $\theta_0=(1,0)$, $\theta^{-1}=(1/a,-a\tau)$, and $\psi(\theta_1,\theta_2)\equiv 0$. The composition law (10) is

$$\mathbf{S}_{\tau_2,\nu_2}\mathbf{S}_{\tau_1,\nu_1} = e^{-j2\pi\nu_1\tau_2}\,\mathbf{S}_{\tau_1+\tau_2,\,\nu_1+\nu_2}\,,$$

$$\mathbf{C}_{a_2,\tau_2}\mathbf{C}_{a_1,\tau_1} = \mathbf{C}_{a_1a_2,\,\tau_1/a_2+\tau_2}\,.$$

Displacement Function. The primary effect of a TFDO D_{θ} is a *TF displacement*: if x(t) is localized about a TF point z = (t, f), then $(D_{\theta} x)(t)$ will be localized about some other TF point z' = (t', f'). Here, z' depends on the original TF point z and the displacement parameter θ ,

$$z'=d(z,\theta)$$
,

which is short for $t'=d_1(t,f;\alpha,\beta), \ f'=d_2(t,f;\alpha,\beta)$. We call $d(\cdot,\cdot)$ the displacement function (DF) of the TFDO \mathbf{D}_{θ} . For example, the DF of the TF shift operator $\mathbf{S}_{\tau,\nu}$ is easily seen to be $t'=d_1(t,f;\tau,\nu)=t+\tau,\ f'=d_2(t,f;\tau,\nu)=f+\nu$. In the following, we present a systematic procedure for constructing the DF of a given TFDO \mathbf{D}_{θ} , and we formulate some additional TFDO properties. The procedure has been introduced in [10] in a related context.

Let $\mathcal{Z} \subseteq \mathbb{R}^2$ (where \mathbb{R}^2 stands for the entire TF plane) denote the set of TF points z=(t,f) underlying our TF analysis¹. Suppose that x(t) is localized about a TF point $z_x=(t_x,f_x)\in\mathcal{Z}$ as shown in Fig. 1. Let $\delta_{t_x}(t)=\delta(t-t_x)$ and $e_{f_x}(t)=e^{j2\pi f_x t}$. In the TF plane, $\delta_{t_x}(t)$ is localized along the straight line $t=t_x$, and $e_{f_x}(t)$ is localized along the straight line $f=f_x$ (see Fig. 1). The TF point $z_x=(t_x,f_x)$ is the intersection of these lines.

We wish to find the TF point z'=(t',f') about which the displaced signal $(\mathbf{D}_{\theta}\,x)(t)$ is located. Consider the signals $\tilde{\delta}_{t_x,\theta}(t)=(\mathbf{D}_{\theta}\,\delta_{t_x})(t)$ and $\tilde{\epsilon}_{f_x,\theta}(t)=(\mathbf{D}_{\theta}\,\epsilon_{f_x})(t)$, and let $\tau_{t_x,\theta}(f)$ be the group delay² of $\tilde{\delta}_{t_x,\theta}(t)$ and $\nu_{f_x,\theta}(t)$ be the instantaneous frequency³ of $\tilde{\epsilon}_{f_x,\theta}(t)$. The signal $\tilde{\delta}_{t_x,\theta}(t)$ is localized in the TF plane along the group delay curve $t=\tau_{t_x,\theta}(f)$, while $\tilde{\epsilon}_{f_x,\theta}(t)$ is localized along the instantaneous frequency curve $f=\nu_{f_x,\theta}(t)$. Hence, z'=(t',f') will be the intersection of these curves (see Fig. 1), i.e., the solution to the system of equations $\tau_{t_x,\theta}(f')=t',\nu_{f_x,\theta}(t')=f'$. This solution z'=(t',f') depends on $z_x=(t_x,f_x)$ and on θ , i.e., $z'=d(z_x,\theta)$. This defines the DF $d(\cdot,\cdot)$ of \mathbf{D}_{θ} , provided that the following property is satisfied. (Below, we write z=(t,f) instead of $z_x=(t_x,f_x)$.)

Property 3: The intersection equation

$$\tau_{t,\theta}(f') = t', \qquad \nu_{f,\theta}(t') = f' \tag{13}$$

has a unique solution $z'=(t',f')\in\mathcal{Z}$ for any $z=(t,f)\in\mathcal{Z}$ and for any $\theta\in\mathcal{D}$.

The instantaneous frequency of $\tilde{e}_{f_x,\theta}(t)$ is $\nu_{f_x,\theta}(t) = \frac{1}{2\pi} \frac{d}{dt} \phi(t)$ where $\phi(t)$ is the phase of $\tilde{e}_{f_x,\theta}(t)$.

Fig. 1: Construction of the displacement function.

Examples. Property 3 is satisfied for the TF shift operator $S_{\tau,\nu}$ and the time shift/TF scaling operator $C_{a,\tau}$. For $S_{\tau,\nu}$, $\mathcal Z$ is $\mathbb R^2$ (the entire TF plane) and the DF is obtained from (13) as $t'=d_1(t,f;\tau,\nu)=t+\tau$, $f'=d_2(t,f;\tau,\nu)=f+\nu$. For $C_{a,\tau}$, $\mathcal Z$ is $\mathbb R\times\mathbb R\setminus\{0\}$ (the entire TF plane minus the line f=0) and the DF is obtained from (13) as $t'=d_1(t,f;a,\tau)=t/a+\tau$, $f'=d_2(t,f;a,\tau)=af$.

Induced TFDO. The DF expresses a TF coordinate transform. Let $T(z) = T(t, f) \in \mathcal{L}_2(\mathcal{Z})$ be a square-integrable TF function defined for $z \in \mathcal{Z}$, and consider the coordinate transform operator $\hat{\mathbf{D}}_{\theta}$ defined on $\mathcal{L}_2(\mathcal{Z})$ as

$$(\tilde{\mathbf{D}}_{\theta} T)(z) = T(d(z, \theta^{-1})).$$

The operator family $\tilde{\mathbf{D}}_{\theta}$ will be called the *induced TFDO* (ITFDO) associated to \mathbf{D}_{θ} . While the TFDO acts on a signal, the ITFDO acts on a TF function (which may be the TFR of a signal). The ITFDO is a linear operator even though the TF coordinate transform $z' = d(z,\theta)$ may be nonlinear. The ITFDOs associated to $\mathbf{S}_{\tau,\nu}$ and $\mathbf{C}_{a,\tau}$ are $(\tilde{\mathbf{S}}_{\tau,\nu}T)(t,f) = T(t-\tau,f-\nu)$ and $(\tilde{\mathbf{C}}_{a,\tau}T)(t,f) = T(a(t-\tau),f/a)$. We now formulate three further properties which concern the DF or, equivalently, the ITFDO.

Property 4: For any $\theta \in \mathcal{D}$, the TF coordinate transform $z' = d(z, \theta)$ is an invertible, area-preserving mapping of \mathcal{Z} onto \mathcal{Z} . This implies that the Jacobian of the vector function $z \to z' = d(z, \theta)$ is 1 for any $\theta \in \mathcal{D}$. Equivalently, the ITFDO $\tilde{\mathbf{D}}_{\theta}$ is unitary on $\mathcal{L}_2(\mathcal{Z})$, i.e.,

$$\tilde{\mathbf{D}}_{\theta}\,\tilde{\mathbf{D}}_{\theta}^{\star}=\tilde{\mathbf{D}}_{\theta}^{\star}\,\tilde{\mathbf{D}}_{\theta}=\tilde{\mathbf{I}}\,,\qquad \tilde{\mathbf{D}}_{\theta}^{-1}=\tilde{\mathbf{D}}_{\theta}^{\star}$$

where $\tilde{\mathbf{I}}$ is the identity operator on $\mathcal{L}_2(\mathcal{Z})$.

Property 5: The DF and the ITFDO satisfy the (equivalent) composition laws

$$d(d(z,\theta_1),\theta_2) = d(z,\theta_1 \circ \theta_2), \qquad \tilde{\mathbf{D}}_{\theta_2} \tilde{\mathbf{D}}_{\theta_1} = \tilde{\mathbf{D}}_{\theta_1 \circ \theta_2}.$$

From properties 4 and 5, it follows that the TF coordinate transform corresponding to the identity element θ_0 is the identity transform, i.e., $d(z,\theta_0)=z$ or equivalently $\tilde{\mathbf{D}}_{\theta_0}=\tilde{\mathbf{I}}$. Furthermore, a coordinate transform by θ can be undone by a coordinate transform by θ^{-1} : if $z'=d(z,\theta)$, then $z=d(z',\theta^{-1})$. Equivalently,

$$d(d(z,\theta),\theta^{-1})=z, \qquad \tilde{\mathbf{D}}_{\theta}^{-1}=\tilde{\mathbf{D}}_{\theta^{-1}}.$$

Parameter Function. We finally postulate that, from any given TF point z, we can reach any other TF point z' via a suitable TF displacement:

Property 6: The equation $d(z, \theta) = z'$ has a solution $\theta \in \mathcal{D}$ for any $z, z' \in \mathcal{Z}$.

¹Note that the TF set ${\mathcal Z}$ is related to the signal space ${\mathcal X}.$

²The group delay of $\tilde{\delta}_{t_x,\theta}(t)$ is $\tau_{t_x,\theta}(f) = -\frac{1}{2\pi} \frac{d}{df} \Phi(f)$ where $\Phi(f)$ is the phase of the Fourier transform of $\tilde{\delta}_{t_x,\theta}(t)$.

This solution can be written as

$$\theta = p(z',z),$$

which is short for $\alpha = p_1(t', f'; t, f)$, $\beta = p_2(t', f'; t, f)$. We call $p(\cdot, \cdot)$ the parameter function (PF) of the TFDO D_{θ} . Note that $p(z, z) = \theta_0$ and $p(z', z) = \theta \Rightarrow p(z, z') = \theta^{-1}$. Furthermore, it can be shown that

$$p(d(z',\theta),z) = p(z',z) \circ \theta. \tag{14}$$

Examples. The properties 4-6 are satisfied in the case of $S_{\tau,\nu}$ and $C_{a,\tau}$. The PF of $S_{\tau,\nu}$ is $\tau = p_1(t',f';t,f) = t'-t$, $\nu = p_2(t',f';t,f) = f'-f$, and the PF of $C_{a,\tau}$ is $a = p_1(t',f';t,f) = f'/f$, $\tau = p_2(t',f';t,f) = t'-(f/f')t$.

3 DISPLACEMENT-COVARIANT TFRS

In the previous section, we formulated six properties which define a TFDO. We now consider linear and quadratic TFRs which are covariant to a TFDO.

Linear TFRs. A linear TFR (LTFR) $T_x(t, f) = T_x(z)$ will be called *covariant to a TFDO* \mathbf{D}_{θ} if

$$T_{\mathbf{D}_{\theta}x}(z) = e^{j\epsilon(z,\theta)} \left(\tilde{\mathbf{D}}_{\theta} T_x \right) (z) \tag{15}$$

with

$$\epsilon(z,\theta) = \psi(\theta^{-1},\theta) - \psi(p(z,z_0),\theta^{-1}), \qquad (16)$$

where $z_0 \in \mathcal{Z}$ is an arbitrary fixed reference TF point. (We use this particular phase function $\epsilon(z,\theta)$ since other definitions would lead to an additional phase factor in (17).) The next theorem characterizes all covariant LTFRs.

Theorem 1. All LTFRs covariant to a TFDO \mathbf{D}_{θ} can be written as the inner product

$$T_x(z) = \left\langle x, \mathbf{D}_{p(z,z_0)} h \right\rangle = \int_{t'} x(t') \left(\mathbf{D}_{p(z,z_0)} h \right)^* (t') dt', \quad (17)$$

where h(t) is an arbitrary function (independent of x(t)) and z_0 is the reference TF point used in (16). Conversely, all LTFRs of the form (17) are covariant to \mathbf{D}_{θ} .

Examples. For $\mathbf{D}_{\theta} = \mathbf{S}_{\tau,\nu}$ and $z_0 = (0,0)$, (15) becomes the TF shift covariance property (2), and (17) becomes the STFT defined in (1). For $\mathbf{D}_{\theta} = \mathbf{C}_{a,\tau}$ and $z_0 = (0, f_0)$, (15) becomes the time shift/TF scaling covariance property (4) and (17) becomes the WT in (3).

Proof of Theorem 1. Any LTFR can be written as

$$T_x(z) = \langle x, k_z \rangle = \int_{t'} x(t') \, k_z^*(t') \, dt',$$
 (18)

where the function $k_z(t)$ depends on z but not on x(t). With (18), the LHS of (15) is $T_{\mathbf{D}_{\theta}x}(z) = \langle \mathbf{D}_{\theta} x, k_z \rangle = \langle x, \mathbf{D}_{\theta}^{-1} k_z \rangle$, where (9) has been used, and the RHS is $e^{j\epsilon(z,\theta)} \left(\tilde{\mathbf{D}}_{\theta} T_x \right)(z) = e^{j\epsilon(z,\theta)} T(d(z,\theta^{-1})) = e^{j\epsilon(z,\theta)} \langle x, k_{d(z,\theta^{-1})} \rangle$. Hence, (15) is satisfied if and only if $k_z(t)$ satisfies $\left(\mathbf{D}_{\theta}^{-1} k_z \right)(t') = e^{j\epsilon(z,\theta)} k_{d(z,\theta^{-1})}(t')$ or

$$k_z(t') = e^{j\epsilon(z,\theta)} \left(\mathbf{D}_{\theta} k_{d(z,\theta^{-1})} \right) (t') \qquad \forall z,\theta,t'. \tag{19}$$

Consider now a fixed reference TF point z_0 . Due to Property 6, there exists a θ for any z such that $d(z, \theta^{-1}) = z_0$; this θ is given by $\theta^{-1} = p(z_0, z)$ or $\theta = p(z, z_0)$. For this specific θ , (19) becomes

$$k_z(t') = e^{j\epsilon(z,p(z,z_0))} \left(\mathbf{D}_{p(z,z_0)} k_{z_0} \right) (t').$$
 (20)

Note that, for fixed z_0 , this is now only a necessary condition

since we picked a specific θ whereas (19) must be satisfied for all θ . With (16), we have $\epsilon(z, p(z, z_0)) = \psi(\theta^{-1}, \theta) - \psi(\theta, \theta^{-1}) = 0$ modulo 2π , where $\theta = p(z, z_0)$ and (12) have been used. Hence, (20) simplifies to

$$k_z(t') = (\mathbf{D}_{p(z,z_0)} k_{z_0})(t') = (\mathbf{D}_{p(z,z_0)} h)(t'),$$
 (21)

with $h(t) \triangleq k_{z_0}(t)$. Inserting (21) in (18) gives (17).

We have finally to show that the form (21) or, equivalently, (17) is also *sufficient* for the covariance (15). Using (17), (15) is proved as follows:

$$\begin{split} T_{\mathbf{D}_{\theta x}}(z) &= \left\langle \mathbf{D}_{\theta} \, x, \mathbf{D}_{p(z,z_0)} h \right\rangle = \left\langle x, \mathbf{D}_{\theta}^* \, \mathbf{D}_{p(z,z_0)} h \right\rangle \\ &= \left\langle x, \mathbf{D}_{\theta}^{-1} \, \mathbf{D}_{p(z,z_0)} h \right\rangle = \left\langle x, e^{-j\psi(\theta^{-1},\theta)} \, \mathbf{D}_{\theta^{-1}} \, \mathbf{D}_{p(z,z_0)} h \right\rangle \\ &= e^{j\psi(\theta^{-1},\theta)} \, \left\langle x, e^{j\psi(p(z,z_0),\theta^{-1})} \, \mathbf{D}_{p(z,z_0)\circ\theta^{-1}} h \right\rangle \\ &= e^{j[\psi(\theta^{-1},\theta)-\psi(p(z,z_0),\theta^{-1})]} \, \left\langle x, \mathbf{D}_{p(d(z,\theta^{-1}),z_0)} h \right\rangle \\ &= e^{j\epsilon(z,\theta)} \, T_x \left(d(z,\theta^{-1}) \right) = e^{j\epsilon(z,\theta)} \, \left(\tilde{\mathbf{D}}_{\theta} \, T_x \right) (z) \,, \end{split}$$

where (9), (11), (10), (14), and (16) have been used.

TF Localization. The form (17), besides being necessary and sufficient for the covariance property (15), also guarantees correct TF localization of the LTFR $T_x(z)$ if only h(t') is TF-localized about z_0 . In this case, $\left(\mathbf{D}_{p(z,z_0)}h\right)(t')$ is TF-localized about z. Thus, at a given analysis TF point z, $T_x(z)$ is formed by correlating x(t') with a "test signal" $\left(\mathbf{D}_{p(z,z_0)}h\right)(t')$ correctly localized about z.

Quadratic TFRs. A quadratic TFR (QTFR) $T_x(t, f) = T_x(z)$ will be called *covariant to a TFDO* \mathbf{D}_{θ} if

$$T_{\mathbf{D}_{\theta}x}(z) = (\tilde{\mathbf{D}}_{\theta} T_x)(z). \tag{22}$$

This differs from the covariance (15) by the absence of a phase factor. The next theorem characterizes all covariant QTFRs. In what follows, $x^{\otimes}(t_1, t_2) = x(t_1) x^{\bullet}(t_2)$ denotes the outer product of the signal x(t) by itself, and $\mathbf{D}_{\theta}^{\otimes}$ denotes the outer product of the operator \mathbf{D}_{θ} by itself.

Theorem 2. All QTFRs covariant to a TFDO \mathbf{D}_{θ} can be written as the 2D inner product

$$T_{x}(z) = \langle \! \langle x^{\otimes}, \mathbf{D}_{p(z,z_{0})}^{\otimes} h \rangle \! \rangle$$

$$= \int_{t_{1}} \int_{t_{2}} x(t_{1}) x^{*}(t_{2}) (\mathbf{D}_{p(z,z_{0})}^{\otimes} h)^{*}(t_{1},t_{2}) dt_{1} dt_{2} \quad (23)$$

where $h(t_1, t_2)$ is an arbitrary 2D function (independent of x(t)) and $z_0 \in \mathcal{Z}$ is an arbitrary reference TF point. Conversely, all QTFRs (23) are covariant to \mathbf{D}_{θ} .

Examples. For $\mathbf{D}_{\theta} = \mathbf{S}_{\tau,\nu}$ and $z_0 = (0,0)$, (22) becomes the TF shift covariance property (6) and (23) becomes Cohen's class defined in (5). For $\mathbf{D}_{\theta} = \mathbf{C}_{a,\tau}$ and $z_0 = (0, f_0)$, (22) becomes the time shift/TF scaling covariance property (8) and (23) becomes the affine class in (7).

The proof of Theorem 2 is structurally analogous to that of

⁴If \mathbf{D}_{θ} acts on a 1D function x(t) as $\left(\mathbf{D}_{\theta} x\right)(t) = \int_{t'} D_{\theta}(t,t')$ x(t') dt' (where $D_{\theta}(t,t')$ is the kernel of \mathbf{D}_{θ}), then $\mathbf{D}_{\theta}^{\otimes}$ acts on a 2D function $y(t_1,t_2)$ as $\left(\mathbf{D}_{\theta}^{\otimes} y\right)(t_1,t_2) = \int_{t'_1} \int_{t'_2} D_{\theta}(t_1,t'_1)$ $D_{\theta}^*(t_2,t'_2) y(t'_1,t'_2) dt'_1 dt'_2$. For example, $(\mathbf{S}_{\tau,\nu}^{\otimes} y)(t_1,t_2) = y(t_1-\tau,t_2-\tau) e^{j2\pi\nu(t_1-t_2)}$ and $(\mathbf{C}_{\alpha,\tau}^{\otimes} y)(t_1,t_2) = |a| y\left(a(t_1-\tau),a(t_2-\tau)\right)$.

Theorem 1 and will not be included. Correct TF localization of the QTFR (23) is guaranteed if a (suitably defined) TF representation of the kernel $h(t_1, t_2)$ is localized about the reference TF point z₀ used in (23). Generalized marginal properties are considered in [11].

4 EXAMPLES

We now apply our theory to three TFDOs which are less trivial than the TFDOs $\mathbf{S}_{\tau,\nu}$ and $\mathbf{C}_{a,\tau}$ considered so far.

Example 1. The TFDO $\mathbf{H}_{a,c}$ is defined on the space \mathcal{H} of analytic signals as

$$(\mathbf{H}_{a,c} \, x)(t) = \mathcal{F}^{-1} \left\{ \frac{1}{\sqrt{a}} \, X \left(\frac{f}{a} \right) e^{-j2\pi c \ln(f/f_0)} \right\}, \quad a > 0 \, ,$$

where \mathcal{F}^{-1} is the inverse Fourier transform operator and X(f) is the Fourier transform of x(t). $\mathbf{H}_{a,c}$ consists of a TF scaling and a "hyperbolic time shift" [4]. We have $\theta =$ $(a,c), \mathcal{D} = \mathbb{R}_+ \times \mathbb{R}, (a_1,c_1) \circ (a_2,c_2) = (a_1a_2, c_1+c_2), \theta_0 =$ $(1,0), \theta^{-1} = (1/a, -c), \text{ and } \psi(\theta_1, \theta_2) = 2\pi c_1 \ln a_2.$ The DF, defined on $\mathcal{Z} = \mathbb{R} \times \mathbb{R}_+$, is obtained as $t' = d_1(t, f; a, c) =$ (t+c/f)/a, $f'=d_2(t,f;a,c)=af$, and the PF is a= $p_1(t', f'; t, f) = f'/f$, $c = p_2(t', f'; t, f) = t'f' - tf$. Setting $z_0 = (0, f_0)$, the LTFR covariance property (15) becomes

$$T_{\mathbf{H}_{a,c} x}(t,f) = e^{j2\pi(tf-c)\ln a} T_x(a(t-c/f),f/a).$$
 (24)

Applying Theorem 1, it follows that all LTFRs satisfying this covariance are given by

$$T_x(t,f) = \sqrt{\frac{f_0}{f}} \int_{f'} X(f') H^*\left(\frac{f_0}{f} f'\right) e^{j2\pi t f \ln(f'/f_0)} df',$$

which is the hyperbolic WT introduced in [4]. The QTFR covariance property is (24) without the phase factor. Due to Theorem 2, all covariant QTFRs are given by

$$T_{x}(t,f) = \frac{f_{0}}{f} \int_{f_{1}} \int_{f_{2}} X(f_{1}) X^{*}(f_{2}) H^{*}\left(\frac{f_{0}}{f} f_{1}, \frac{f_{0}}{f} f_{2}\right) e^{j2\pi t f \ln(f_{1}/f_{2})} df_{1} df_{2},$$

which is the hyperbolic class introduced in [4].

Example 2. The TFDO $P_{a,c}$ defined on $\mathcal{X} = \mathcal{L}_2(\mathbb{R})$ as

$$(\mathbf{P}_{a,c} x)(t) = \mathcal{F}^{-1} \left\{ \frac{1}{\sqrt{|a|}} X\left(\frac{f}{a}\right) e^{-j2\pi c \, \xi_{\kappa}(f/f_0)} \right\}$$

with $\xi_{\kappa}(b) = \operatorname{sign}(b) |b|^{\kappa}$, $\kappa \in \mathbb{R} \setminus \{0\}$, consists of a TF scaling and a "power-law time shift" [8]. We have $\theta = (a, c)$, $\mathcal{D} =$ $\mathbb{R}\setminus\{0\}\times\mathbb{R},\ (a_1,c_1)\circ(a_2,c_2)=(a_1a_2,\,c_1/\xi_{\kappa}(a_2)+c_2),\ \theta_0=$ $(1,0), \theta^{-1} = (1/a, -\xi_{\kappa}(a) c), \text{ and } \psi(\theta_1, \theta_2) \equiv 0.$ The DF, defined on $\mathcal{Z} = \mathbb{IR} \times \mathbb{IR} \setminus \{0\}$, is $t' = d_1(t, f; a, c) = t/a + c \tau_{\kappa}(af)$, $f' = d_2(t, f; a, c) = af$ where $\tau_{\kappa}(f) = (1/f_0) \xi_{\kappa}'(f/f_0) = (\kappa/f_0) |f/f_0|^{\kappa-1}$. The PF is $a = p_1(t', f'; t, f) = f'/f$, $c = p_2(t', f'; t, f) = (t'f' - tf)/(f'\tau_{\kappa}(f'))$. Setting $z_0 = (0, f_0)$, the covariance property for LTFRs and QTFRs reads

$$T_{\mathbf{P}_{a,c}x}(t,f) = T_x(a(t-c\,\tau_{\kappa}(f)),f/a).$$

By application of Theorem 1, all LTFRs satisfying this covariance are obtained as

$$T_x(t,f) = \sqrt{\frac{f_0}{|f|}} \int_{f'} X(f') H^*\left(\frac{f_0}{f}f'\right) \exp\left\{j2\pi \frac{t}{\tau_\kappa(f)} \xi_\kappa\left(\frac{f'}{f_0}\right)\right\} df'.$$

Similarly, it follows from Theorem 2 that all QTFRs satisfying the covariance are given by

$$\begin{split} T_x(t,f) &= \frac{f_0}{|f|} \int_{f_1} \int_{f_2} X(f_1) \, X^*(f_2) \, H^*\!\!\left(\!\frac{f_0}{f} f_1, \!\frac{f_0}{f} f_2\right) \\ &\cdot \exp\left\{j 2\pi \frac{t}{T_{\kappa}(f)} \!\left[\xi_{\kappa}\!\left(\!\frac{f_1}{f_0}\right) - \xi_{\kappa}\!\left(\!\frac{f_2}{f_0}\right) \right] \right\} df_1 df_2 \,, \end{split}$$

which is the power class with power parameter κ [8].

Example 3. We finally define the TFDO $W_{\kappa,a}$ on the space $\mathcal{X} = \mathcal{L}_2(\mathbb{R}_+)$ as

$$(\mathbf{W}_{\kappa,a} x)(t) = \sqrt{a |\kappa| \left(\frac{at}{t_0}\right)^{\kappa-1}} x \left(t_0 \left(\frac{at}{t_0}\right)^{\kappa}\right), \quad a > 0.$$

This TFDO is a "power-law warping" (essentially $t \to t^{\kappa}$) [8, 10] followed by a TF scaling. We have $\theta = (\kappa, a)$, $\mathcal{D} = \mathbb{R} \setminus \{0\} \times \mathbb{R}_+, \ (\kappa_1, a_1) \circ (\kappa_2, a_2) = (\kappa_1 \kappa_2, \ a_1^{1/\kappa_2} a_2), \\ \theta_0 = (1, 1), \ \theta^{-1} = (1/\kappa, 1/a^{\kappa}), \ \text{and} \ \psi(\theta_1, \theta_2) \equiv 0.$ The o₀ = (1,1), $b' = (1/\kappa, 1/u')$, and $\psi(b_1, b_2) = 0$. The DF, defined on $\mathcal{Z} = \mathbb{R}_+ \times \mathbb{R} \setminus \{0\}$, is $t' = d_1(t, f; \kappa, a) = (t_0/a)(t/t_0)^{1/\kappa}$, $f' = d_2(t, f; \kappa, a) = a\kappa f(t/t_0)^{1-1/\kappa}$. The PF is $\kappa = p_1(t', f'; t, f) = t'f'/(tf)$, $a = p_2(t', f'; t, f) = (t_0/t')(t/t_0)^{tf/(t'f')}$. Setting $z_0 = (t_0, 1/t_0)$, the covariance property for LTFRs and QTFRs reads

$$T_{\mathbf{W}_{\kappa,a}}(t,f) = T_x \left(t_0 \left(\frac{at}{t_0} \right)^{\kappa}, \frac{1}{\kappa a^{\kappa}} \left(\frac{t}{t_0} \right)^{1-\kappa} f \right).$$

From Theorem 1, all covariant LTFRs are obtained as

$$T_x(t,f) = \sqrt{t_0|f|} \int_{t'} x(t') \sqrt{\left(\frac{t'}{t}\right)^{tf-1}} h^*\left(t_0\left(\frac{t'}{t}\right)^{tf}\right) dt',$$

and from Theorem 2, all covariant QTFRs are obtained as

$$T_{x}(t,f) = t_{0}|f| \int_{t_{1}} \int_{t_{2}} x(t_{1}) x^{*}(t_{2}) \sqrt{\left(\frac{t_{1}t_{2}}{t^{2}}\right)^{t_{f-1}}} \cdot h^{*}\left(t_{0}\left(\frac{t_{1}}{t}\right)^{t_{f}}, t_{0}\left(\frac{t_{2}}{t}\right)^{t_{f}}\right) dt_{1} dt_{2}.$$

Acknowledgment

We thank K. Nowak and A. Berthon for interesting discus-References

- [1] P. Flandrin, Temps-fréquence. Paris: Hermès, 1993.
- T. Fiandini, Temps-frequence. Paris: Hermes, 1993.
 F. Hlawatsch and G.F. Boudreaux-Bartels, "Linear and quadratic time-frequency signal representations," IEEE Signal Proc. Mag., vol. 9, no. 2, pp. 21-67, April 1992.
 O. Rioul and M. Vetterli, "Wavelets and signal processing," IEEE Signal Proc. Mag., vol. 8, pp. 14-38, Oct. 1991.
 A. Papandreou, F. Hlawatsch, and G.F. Boudreaux-Bartels, "The hyperbolic class of quadratic time-frequency research."

- A. Papandreou, F. Hlawatsch, and G.F. Boudreaux-Bartels, "The hyperbolic class of quadratic time-frequency representations, Part I," IEEE Trans. Signal Processing, vol. 41, no. 12, pp. 3425-3444, Dec. 1993.
 L. Cohen, "Generalized phase-space distribution functions," J. Math. Phys., vol. 7, pp. 781-786, 1966.
 J. Bertrand and P. Bertrand, "Affine time-frequency distributions," in Time-Frequency Signal Analysis—Methods and Applications, ed. B. Boashash, Longman-Cheshire, Melbourne Australia, 1992. bourne, Australia, 1992.

 O. Rioul and P. Flandrin, "Time-scale energy distribu-
- tions: A general class extending wavelet transforms," *IEEE Trans. Sig. Proc.*, vol. 40, no. 7, pp. 1746-1757, July 1992.

 [8] F. Hlawatsch, A. Papandreou, and G.F. Boudreaux-Bartels, "The power classes of quadratic time-frequency representa-
- tions: A generalization of the affine and hyperbolic classes," Proc. 27th Asilomar Conf., Pacific Grove, CA, pp. 1265-1270, Nov. 1993.
- [9] A.W. Naylor and G.R. Sell, Linear Operator Theory in Engineering and Science. New York: Springer, 1982.
 [10] R.G. Baraniuk and D.L. Jones, "Unitary equivalence: A new twist on signal processing," submitted to IEEE Trans. Sig-
- [11] F. Hlawatsch and H. Bölcskei, "Displacement-covariant time-frequency energy distributions," submitted to IEEE ICASSP-95.