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Abstract

Channel capacity determines the largest amount of data that can
be reliably transmitted per second over a communication channel.
Finding the capacity of a wireless channel is a difficult problem
because of the presence of two effects: the effect of interference and
the effect of fading. When analyzing fading channels, it is common
to assume that the receiver knows the channel state perfectly, i.e., a
genie provides channel state information (CSI) to the receiver. This
scenario is referred to as the coherent fading channel. However, in
practical wireless systems such CSI must constantly be acquired and
updated. To characterize the cost of acquiring CSI fundamentally, one
needs to study the capacity of the fading channel in the setting when
no CSI is available at the receiver; this scenario is referred to as the
noncoherent fading channel.

Part I of this thesis is devoted to studying how relays can be used
to improve spectral efficiency in interference wireless networks. Specif-
ically, we analyze fading interference relay networks where M single-
antenna source-destination terminal pairs communicate concurrently
and in the same frequency band through a set of K single-antenna
relays using half-duplex two-hop relaying.

First, we consider a coherent-relaying protocol, where the relays
have CSI and perform matched-filtering. The destination terminals
cannot cooperate, i.e., the network operates in a completely distributed
fashion. It is shown that in the large-M limit, provided K grows fast
enough as a function of M , the network “decouples”. This means
that the capacities of all individual source-destination pair links are
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strictly positive. The signal power in all individual source-destination
pair links dominates the interference power in these links. Therefore,
all users in the network can transmit concurrently and in the same
frequency-band. The required (for the network to decouple) rate of
growth of K as a function of M is found to be sufficient to also make
the individual source-destination fading links converge to nonfading
links. We say that the network “crystallizes” as it breaks up into a set
of effectively isolated “wires in the air”. A large-deviations analysis is
performed to characterize the “crystallization” rate, i.e., the rate (as a
function of M,K) at which the decoupled links converge to nonfading
links.

Second, we consider the case of relays that do not have CSI and
perform simple amplify-and-forward (AF) relaying. The destination
terminals have CSI, and are allowed to cooperate and perform joint
decoding. Based on tools from large random-matrix theory, we com-
pute the per source-destination terminal pair capacity of this network
for M,K → ∞, with K/M → β fixed. We also find that for β → ∞,
the AF relay network is turned into a point-to-point multiple-input
multiple-output (MIMO) link. This result demonstrates that employing
relays as “active scatterers” can recover spatial multiplexing gain in
poor scattering environments.

In Part II of the thesis, we consider exclusively systems with a single
transmitter and a single receiver. We study the impact of absence of
CSI at the receiver on channel capacity in two different models. This
is summarized next.

The noncoherent capacity of stationary discrete-time fading chan-
nels is known to be very sensitive to the fine details of the channel
model. More specifically, the measure of the set of harmonics where
the power spectral density of the fading process is nonzero determines
if capacity grows logarithmically in signal-to-noise ratio (SNR) or
slower than logarithmically. An engineering-relevant problem is to
characterize the SNR value at which this sensitivity starts to mat-
ter. To address this problem we start from the general model of
continuous-time Rayleigh-fading channels that satisfy the wide-sense
stationary uncorrelated scattering (WSSUS) assumption. In addition,
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we assume that the channel is underspread, i.e., its scattering func-
tion is highly concentrated around the origin of the Doppler-delay
plane. This is a highly relevant assumption for most real-life wireless
channels and it simplifies our analysis significantly. We show that the
noncoherent capacity of the WSSUS underspread channel is close to
the additive white Gaussian noise channel capacity for all SNR values
of practical interest, independently of whether the scattering function
is compactly supported or not. As a byproduct of our analysis, we
obtain an information-theoretic pulse-design criterion for pulse-shaped
orthogonal frequency division multiplexing (PS-OFDM) systems.

Finally, we analyze the impact of multiple antennas at the receiver
side of noncoherent channels using the temporally correlated Rayleigh
block-fading single-input multiple-output (SIMO) channel model. Our
analysis is aimed at characterizing the capacity pre-log, i.e., the
asymptotic ratio between the capacity and the logarithm of SNR, as
SNR goes to infinity. We derive a lower bound on the channel capacity
pre-log and show that the capacity pre-log in the SIMO case is generally
larger than that in the single-input single-output (SISO) case. The
result is surprising, because in the coherent case the capacity pre-log
of a SIMO fading channel is the same as that of a SISO fading channel.
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Kurzfassung

Die Kanalkapazität entspricht der maximal erreichbaren Datenmenge,
die pro Sekunde fehlerfrei über einen Kommunikationskanal gesendet
werden kann. Die Kapazität eines drahtlosen Kanals zu bestimmen,
ist aufgrund zweier Effekte ein schwieriges Problem: zum einen In-
terferenz, zum anderen Kanalschwund. Bei der Untersuchung von
Schwundkanälen ist es üblich anzunehmen, dass der Empfänger den
Kanalzustand vollkommen kennt, d. h., ein Orakel stellt dem Empfänger
die Kanalzustandsinformation (CSI) zur Verfügung. In realen Syste-
men muss das CSI jedoch laufend erworben und erneuert werden.
Um die Kosten für den Erwerb des CSI grundlegend zu bestimmen,
muss man die Kapazität des Schwundkanals für den Fall, für den der
Empfänger kein CSI besitzt, bestimmen; diesen Fall bezeichnet man
auch als den nicht kohärenten Schwundkanal.

Der erste Teil dieser Dissertation ist der Frage gewidmet, wie
Relais verwendet werden können, die spektrale Effizienz in draht-
losen Interferenznetzwerken zu erhöhen. Insbesondere werden Relais-
Interferenzschwundnetzwerke untersucht, in denen M Einantennen
Sender-Empfängerpaare gleichzeitig und im selben Frequenzband mit-
tels einer Anzahl von K Einantennenrelais unter Verwendung eines
halb-duplex Protokolls über zwei Zeitschlitze miteinander kommu-
nizieren.

Zuerst untersuchen wir ein kohärentes Relaisprotokoll, bei welchem
die Relais über CSI verfügen und daran angepasst filtern. Die Empfänger
können nicht kooperieren, d.h., das Netzwerk funktioniert in einer voll-
ständig dezentralisierten Art. Es wird gezeigt, dass sich das Netzwerk
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für den Fall, in dem M groß wird, und K als Funktion von M ebenfalls
groß genug ist, “aufteil”. Das bedeutet, dass die Kapazitäten aller indi-
viduellen Sender-Empfängerpaarverbindungen strikt positiv sind. Die
Signalleistung in allen individuellen Sender-Empfängerpaarverbindungen
dominiert die Interferenzleistung in diesen Verbindungen. Deshalb
können alle Nutzer in dem Netzwerk gleichzeitig im gleichen Fre-
quenzband senden. Die notwendige Wachstumsrate von K (damit
das Netzwerk sich aufteilen kann) als Funktion von M ist hinre-
ichend, um auch die individuellen Sender-Empfängerschwundkanäle
zu konstanten Verbindungen konvergieren zu lassen. Da das Netzwerk
sich effektiv als “Drahtverbindung in der Luft” auffassen lässt, sagen
wir fortan, dass sich das Netzwerk “kristallisiert”. Eine Analyse der
großen Abweichungen wird durchgeführt, um die Kristallisationsrate
zu charakterisieren, d.h., jene Rate (als Funktion von M und K), bei
welcher die aufgeteilten Verbindungen zu konstanten Verbindungen
konvergieren.

Danach betrachten wir den Fall, in dem die Relais über kein
CSI verfügen und das Signal einfach verstärken und weiterleiten
(AF). Die Empfänger verfügen über CSI und dürfen kooperieren und
gemeinsam dekodieren. Basierend auf Erkenntnissen aus der The-
orie der großen Zufallsmatrizen berechnen wir die Kapazität pro
Sender-Empfängerpaar in diesem Netzwerk wenn M,K → ∞, wobei
K/M → β konstant bleibt. Wir zeigen auch, dass sich das AF Re-
laisnetzwerk für β → ∞ in eine Punkt-zu-Punkt Mehrantennen-
verbindung mit mehreren Antennen auf Sender- und Empfängerseite
wandelt. Dieses Resultat demonstriert, dass die Verwendung von Re-
lais als “aktive Streuer” dazu führen kann, dass man den räumlichen
Multiplexgewinn in schlechten Streuumgebungen erzeugen kann.

Im zweiten Teil dieser Dissertation betrachten wir ausschließlich
Systeme mit einem einzigen Sender und einem einzigen Empfänger.
Wir studieren die Auswirkung des Nichtvorhandenseins von CSI auf
Empfängerseite auf die Kanalkapazität in zwei verschiedenen Modellen.
Dies ist im Folgenden zusammengefasst.

Die nichtkohärente Kapazität von stationären zeitdiskreten Schwund-
kanälen ist bekanntermaßen stark abhängig von kleinen Details des
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Kanalmodells. Genauer gesagt bestimmt das Mass der Menge der har-
monischen Schwingungen bei welchen die spektrale Leistungsdichte des
Schwundprozesses ungleich Null ist, ob die Kapazität logarithmisch
im Verhältnis von Signal- zu Rauschenergie (SNR) oder langsamer als
logarithmisch wächst. Ein aus Ingenieursicht relevantes Problem ist es,
den SNR Wert, bei welchem die Signifikanz dieser Abhängigkeit gross
ist, zu bestimmen. Um dieses Problem zu lösen, betrachten wir zuerst
das allgemeine Modell zeitkontinuierlicher Rayleigh-Schwundkanäle,
die die Annahme der weitestgehenden Stationarität und unkorre-
lierten Streuung (WSSUS) erfüllen. Zusätzlich nehmen wir an, dass
der Kanal untergespreizt ist, d.h., seine Streufunktion ist stark um
den Ursprung der Doppler-Verzögerungsebene konzentriert. Diese
Annahme ist für die meisten realen Drahtloskanäle vollkommen ange-
bracht und vereinfacht unsere Analyse signifikant. Wir zeigen, dass
die nichtkohärente Kapazität des WSSUS unterspreizten Kanals für
alle SNR Werte, welche von praktischem Interesse sind, nahe an der
Kapazität des Kanals unter additivem Gaussschen Rauschen ist. Dies
gilt unabhängig von der Kompaktheit der Streufunktion. Als ein
Nebenprodukt unserer Analyse erhalten wir ein informationstheo-
retisches Pulsdesignkriterium für Systeme, welche ein pulsförmiges
orthogonales Frequenzmultiplexverfahren verwenden.

Zuletzt analysieren wir die Auswirkung, die mehrere Antennen
auf der Empfängerseite auf nichtkohärente Kanäle haben, indem wir
das zeitlich korrelierte Rayleigh-Blockschwundkanalmodell mit einem
einzelnen Eingang und mehreren Ausgängen (SIMO) verwenden. Un-
sere Analyse zielt darauf ab, den Kapazitäts-"Pre-Log" zu bestimmen,
d.h., das asymptotische Verhältnis zwischen der Kapazität und des
Logarithmus des SNR, wenn das SNR groß wird. Wir leiten eine untere
Schranke für den Kanalkapazitäts-Pre-Log her und zeigen, dass dieser
im SIMO Fall im Allgemeinen größer ist als im Fall von einem einzelnen
Eingang und einem einzelnen Ausgang (SISO). Dieses Resultat ist
überraschend, da im kohärenten Fall der Kapazitäts-Pre-Log eines
SIMO Schwundkanals genau gleich wie jener eines SISO Schwundkanals
ist.
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CHAPTER 1

Motivation and Overview

The largest amount of information per unit of time that can
be reliably transmitted over a communication channel is
called the achievable rate. Can noisy communication channels

support strictly positive achievable rates? The answer to this question
was first found by Claude Shannon in 1948 and turned out to be
“yes” (Shannon, 1948). Shannon characterized the channel through a
probabilistic model, where the input and the output of the channel
are represented by dependent random variables (RVs). The conditional
distribution of the channel output given its input is referred to as the
channel law. Given this law, Shannon calculated a certain number,
called the channel capacity, which is equal to the supremum over all
admissible input distributions of the mutual information between the
input of the channel and the output of the channel. He then proved
that using coding it is possible to communicate reliably at an arbitrary
rate below the channel capacity, i.e., all rates below the capacity are
achievable rates. A converse to this statement also exists: rates above
the channel capacity are not achievable.

In his seminal paper, Shannon computed the capacity of the dis-
crete memoryless channel (DMC) and the additive white Gaussian
noise (AWGN) channel. These basic results provided general guidelines
on how to design communication systems. It then took many years of
extensive research and progress in physics, semiconductor technology,
coding theory, and signal processing to convert this theoretical under-
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1. MOTIVATION AND OVERVIEW

standing into practice. As a result, nowadays we can enjoy lightning
fast, reliable, and cheap communication systems.

1.1 . WIRELESS CHANNELS

The main features of the DMC and the AWGN channel model describe
the majority of the real-world wireline channels (communication over
wires) very well. These and similar models can also be used to charac-
terize wireless channels where a single transmitter communicates with
a single receiver located in its line of sight (LOS) and both of them do
not move too fast. In general, however, the situation in the wireless
world is much richer and much more complicated. This is because
two completely new effects come into play: the effect of interference
and the effect of fading. We discuss these effects next.

1.1.1. Interference
All users willing to communicate “over the air” unavoidably share
the same medium: the physical space with the electromagnetic waves
in it. Therefore, each user’s transmitted signal interferes with the
signals transmitted by the other users in the system. The use of
orthogonalization in signal space can mitigate interference:

• Separate users in time, such that only one user at a time is
allowed to transmit.

• Separate users in frequency, such that different frequency-bands
are allocated to different users communicating concurrently.

• Separate users in space, such that different regions of space
are allocated to different users communicating concurrently and
in the same frequency-band; exploit the fact that interfering
signals coming from far away get attenuated due to path loss
and shadowing in the channel.

These three separation methods are used widely in modern wireless
communication systems: i) the time division multiple access (TDMA)
technique realizes separation in time; ii) the frequency division multi-
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ple access (FDMA) technique achieves separation in frequency; iii) the
interference avoidance pattern (Tse and Viswanath, 2005, Section 4.2)
in the cell structure of the global system for mobile communication
(GSM) provides spatial separation of the users: the users located in
the adjacent cells are not allowed to communicate concurrently and
in the same frequency-band to avoid interference, whereas the users
located in the cells that are not adjacent are allowed communicate
concurrently and in the same frequency-band, because path loss elim-
inates interference. These and similar techniques allow to mitigate
multi-user interference and to reduce the problem of communicating
over the shared wireless medium to the point-to-point communication
problem (i.e., communication between a single transmitter and a
single receiver), which is much better understood.

The downside of using orthogonalization techniques is that they
do not allow for simultaneous use of the main resources of a wireless
channel: time, frequency, and space. The division of the resources
through orthogonalization is potentially highly suboptimal from an
information-theoretic perspective. It leads, in general, to loss in spec-
tral efficiency, which reduces system capacity. The consequences of
this can be observed today, as the wide use of smartphones threatens
to saturate the capacity of existing wireless networks.

It is, therefore, paramount to understand the impact of interference
on the capacity of wireless networks where several users operate in
the shared medium and orthogonalization in time, frequency, or space
is not enforced by the system designer.

In Part I of this thesis, consisting of Chapters 2 and 3, we study
one aspect of this general problem; specifically, we explore how relays
can be used to improve spectral efficiency in wireless interference
networks.

1.1.2. Fading
In wireline channels, communication takes place in an essentially
static medium, to a large extent controlled by the system designer.
In wireless channels, in contrast, the medium, in general, is dynamic

3
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and hard to control. The state of the channel changes with time
due to movements of objects in the environment. When the wireless
transmitter and receiver are located in direct LOS of each other, the
variations of the channel state over the time-interval of interest are
insignificant and can be neglected. However, in situations where the
transmitter and the receiver are not located in direct LOS of each other,
which is almost always the case in urban environments, multi-path
wave propagation can create rapid variations of the channel state.
Significant variations may occur on the time scale of interest, even
when the transmitter, the receiver, and the objects in the propagation
environment move relatively slowly. Channels with such variations
are called fading channels.

When analyzing fading channels, it is common to assume that
the receiver knows the channel state perfectly, i.e., a genie provides
channel state information (CSI) to the receiver. This scenario is referred
to as the coherent fading channel. However, in practical wireless
systems such CSI must constantly be acquired and updated. One way
to do this is to regularly transmit so-called pilot symbols, i.e., signals,
known a priori to both the transmitter and the receiver. From the
received pilot symbols, CSI can then be extracted.

Pilot symbols occupy dimensions in signal-space, which could other-
wise be used for transmission of payload data. Depending on the CSI
requirements and on the rate of change of the channel state, sending
pilots can become very costly in terms of the number of signal-space
dimensions sacrificed. From an information-theoretic point of view,
sending pilots is just a special form of coding that may or may not be
optimal. To characterize the cost of acquiring CSI fundamentally, one
needs to study the capacity of the fading channel in the setting when
no CSI is available at the receiver; this scenario is referred to as the
noncoherent fading channel. The price to pay for developing this more
fundamental understanding is that the analysis in the noncoherent
case is usually much harder than that in the coherent case.

In Part II of this thesis, consisting of Chapters 4 and 5, we study
the capacity of point-to-point noncoherent fading channels.

4
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1.2. OUTLINE AND CONTRIBUTIONS

1.2.1. Relaying in Wireless Networks

Part I of the thesis is devoted to studying how relays can be used to im-
prove spectral efficiency in interference wireless networks. Specifically,
we analyze fading interference relay networks where M single-antenna
source-destination terminal pairs communicate concurrently and in
the same frequency band through a set of K single-antenna relays
using half-duplex two-hop relaying. In this analysis we make two
simplifying assumptions. First, we consider specific communication
protocols and study the network capacity induced by these protocols,
not the capacity of the network itself. Second, we are exclusively
interested in the asymptotic capacity behavior when the number of
terminals in the network grows large.

A. “Crystallization” in Networks with Coherent Relaying

In Chapter 2, we analyze a coherent-relaying protocol, where the relays
have CSI and perform matched-filtering. The destination terminals
cannot cooperate, i.e., the network operates in a completely distributed
fashion. It is shown that in the large-M limit, provided K grows fast
enough as a function of M , the network “decouples”. This means
that the capacities of all individual source-destination pair links are
strictly positive. The signal power in all individual source-destination
pair links dominates the interference power in these links. Therefore,
all users in the network can transmit concurrently and in the same
frequency-band. Orthogonalization in the network is achieved by using
relays, without loss in spectral efficiency.

The required (for the network to decouple) rate of growth of K as
a function of M is found to be sufficient to also make the individual
source-destination fading links converge to nonfading links. We say
that the network “crystallizes” as it breaks up into a set of effectively
isolated “wires in the air”. A large-deviations analysis is performed
to characterize the “crystallization” rate, i.e., the rate (as a function
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1. MOTIVATION AND OVERVIEW

of M,K) at which the decoupled links converge to nonfading links.

B. Networks with Noncoherent Amplify-and-Forward Relaying

In Chapter 3, we consider the case of relays that do not have CSI and
perform simple amplify-and-forward (AF) relaying. The destination
terminals have CSI, and, in contrast to Chapter 2, are allowed to
cooperate and perform joint decoding. Based on tools from large
random-matrix theory, we compute the per source-destination ter-
minal pair capacity of this network for M,K → ∞, with K/M → β
fixed. We also find that for β → ∞, the AF relay network is turned
into a point-to-point multiple-input multiple-output (MIMO) link. This
result demonstrates that employing relays as “active scatterers” can
recover spatial multiplexing gain in poor scattering environments.

1.2.2. Noncoherent Wireless Point-to-Point Channels
In Part II of the thesis, we consider exclusively systems with a single
transmitter and a single receiver. We study the impact of absence of
CSI at the receiver on channel capacity in two different models.

A. Noncoherent WSSUS Channel

The noncoherent capacity of stationary discrete-time fading channels
is known to be very sensitive to the fine details of the channel model.
More specifically, the measure of the set of harmonics where the power
spectral density of the fading process is nonzero determines if capacity
grows logarithmically in signal-to-noise ratio (SNR) or slower than
logarithmically (Lapidoth, 2005). An engineering-relevant problem
is to characterize the SNR value at which this sensitivity starts to
matter.

An attempt to resolve this problem was made by Etkin and Tse
(2006), where, for a first-order Gauss-Markov fading process, the
SNR beyond which capacity behaves slower than logarithmically is
computed as a function of the innovation rate of the process. The
main limitation of this result is that it is based on a very specific
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channel model and that it is difficult to link the innovation rate to
physical channel parameters.

In Chapter 4, we attempt to address the problem in more generality.
Rather than focusing on a specific discretized channel model, we
start from the general model of continuous-time Rayleigh-fading
channels that satisfy the wide-sense stationary (WSS) and uncorrelated
scattering (US) assumptions (Bello, 1963). In addition, we assume
that the channel is underspread, i.e., its scattering function is highly
concentrated around the origin of the Doppler-delay plane. This is a
highly relevant assumption for most real-life wireless channels and it
simplifies our analysis significantly.

We show that the noncoherent capacity of the wide-sense stationary
uncorrelated scattering (WSSUS) underspread channel is close to the
AWGN capacity for all SNR values of practical interest, independently
of whether the scattering function is compactly supported or not.
As a byproduct of our analysis, we obtain an information-theoretic
pulse-design criterion for pulse-shaped orthogonal frequency division
multiplexing (PS-OFDM) systems.

B. Noncoherent SIMO Channel

In Chapter 5, we study the impact of multiple antennas at the receiver
side of noncoherent channels. We resort to a much simpler channel
model than the one used in Chapter 4. Specifically, we investigate
the temporally correlated Rayleigh block-fading single-input multiple-
output (SIMO) channel. Our analysis is aimed at characterizing the
capacity pre-log, i.e., the asymptotic ratio between the capacity and
the logarithm of SNR, as SNR goes to infinity.

We derive a lower bound on the channel capacity pre-log. When the
covariance matrix of the channel satisfies a certain technical condition
related to the cardinality of its smallest set of linearly dependent
rows, this lower bound reveals that the capacity pre-log in the SIMO
case is larger than that in the single-input single-output (SISO) case.
The result is surprising, because in the coherent case the capacity
pre-log of a SIMO fading channel is the same as that of a SISO fading
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channel (Telatar, 1999).
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PART I

RELAYING IN WIRELESS
NETWORKS
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CHAPTER 2

“Crystallization” in Networks with
Coherent Relaying

Sparked by the work of Gupta and Kumar (2002), the analysis of
the capacity scaling behavior of large wireless (relay) networks has
emerged as an interesting tool in network information theory, which
often allows to make stronger statements than a finite-number-of-
nodes analysis. The general idea of this approach is the following.
First, define a measure of the capacity of the network. For example,
this could be the sum of the capacities of the individual links in
the network, or the distance-weighted sum of the capacities of the
individual links (Gupta and Kumar, 2003). Then, consider the wireless
network operating under a certain protocol. The protocol induces
a certain effective capacity of the network, which is analyzed as a
function of the number of users, in particular, when the number of
users grows large; this function characterizes the capacity scaling law.
Different protocols can then be compared on the basis of their induced
capacity scaling laws. Sometimes optimality results can be proven,
i.e., it can be shown that a given protocol achieves the best possible
scaling law under certain assumptions on the network (Lévêque and
Telatar, 2005).

This area of research has seen remarkable activity during the
last decade (Xue and Kumar, 2006; Xie and Kumar, 2004; Gast-
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par and Vetterli, 2005; Grossglauser and Tse, 2002; Jovičić et al.,
2004; Franceschetti et al., 2007; Franceschetti and Meester, 2007;
Wang et al., 2006; Dana and Hassibi, 2006; Bölcskei et al., 2006;
Özgür et al., 2007). For a more detailed discussion of some of the work
mentioned above, we refer the interested reader to the monographs
by Xue and Kumar (2006), Franceschetti and Meester (2007), and to
the Ph.D. thesis of Özgür (2009).

In this thesis, we study capacity scaling laws in interference fading
relay networks operating under specific protocols as described in detail
next.

2.1. CONTRIBUTIONS AND RELATION TO
PREVIOUS WORK

Part I of the thesis deals with interference fading relay networks where
M single-antenna source-destination terminal pairs communicate
concurrently and in the same frequency band through half-duplex two-
hop relaying over a common set of K single-antenna relay terminals
(see Figure 2.1). Two setups are considered. In the present chapter, we
analyze the coherent-relaying case, where the relays have CSI, perform
matched-filtering, and the destination terminals cannot cooperate,
i.e., the network operates in a completely distributed fashion. In
Chapter 3, we study the noncoherent-relaying case, where the relays
do not have CSI, perform AF relaying, and the destination terminals
are assumed to cooperate and perform joint decoding.

Our main contributions in this chapter can be summarized as
follows.

• We consider two different protocols, P1 introduced (for the finite-
M case) by Bölcskei et al. (2006) and P2 introduced by Dana and
Hassibi (2006). P1 relies on the idea of relay partitioning (i.e.,
each relay is assigned to one source-destination terminal pair)
and requires each relay terminal to know its assigned backward
(source to relay) and forward (relay to destination) channel only.
The relays perform matched-filtering with respect to (w.r.t.) their

12
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Relay Terminals

Source 2

Source 1

Source 3

Destination 3
Destination 1

Destination 2

Fig. 2.1.: Dense wireless interference relay network with dead-zones around
source and destination terminals. Each terminal employs one antenna.

assigned backward and forward channels. P2 does not use relay
partitioning, requires each relay terminal to know all M backward
and all M forward channels, and performs matched-filtering w.r.t.
all M backward and M forward links, in a sense to be defined
below.
Previous work for the coherent-relaying case has established the
power efficiency scaling of P2 for M → ∞ with K = M2 (Dana
and Hassibi, 2006). Bölcskei et al. (2006) have shown that for P1
with M fixed, in the K → ∞ limit, network capacity1 scales as
(M/2) log(K) +O(1). The results of Bölcskei et al. (2006) and
the corresponding proof techniques, however, rely heavily on M
being fixed when K → ∞. When M,K → ∞, the amount of
interference (at each destination terminal) grows with M . Es-
tablishing the corresponding network capacity scaling behavior,
therefore, requires fundamentally new techniques, which are de-

1Throughout Part I of the thesis, when we talk about capacity, we mean the
capacity induced by the considered protocols, not the capacity of the network
itself. The term “network capacity” stands for the sum of the capacities of the
individual channels between the source-destination terminal pairs.
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veloped in this chapter. In particular, we derive the network
(ergodic) capacity scaling behavior for M,K → ∞ for P1 and
P2 by computing a lower and an upper bound on the per source-
destination terminal pair capacity2, and by showing that the
bounds exhibit the same scaling (in M,K) behavior. The tech-
nique used to establish the lower bound is based on a result found
in a different context in the work of Médard (2000) and applied
by Dana and Hassibi to derive the power efficiency scaling of P2.
For our purposes, we need a slight generalization of the result
in (Médard, 2000), which follows, in a straightforward fashion,
from a result on nearest-neighbor decoding reported by Lapi-
doth and Shamai (Shitz) (2002). For the sake of completeness,
we state, in Appendix C.3, the relevant inequality in the form
needed in the context of this chapter. The corresponding up-
per bound on the per source-destination terminal pair capacity
poses significantly more difficult technical challenges and is based
on a large-deviations analysis of the individual link signal-to-
interference-plus-noise ratio (SINR) RVs. In summary, we prove
that in the large-M limit, provided the number of relay terminals
K grows fast enough as a function of M , under both protocols
P1 and P2 the network “decouples” in the sense that the indi-
vidual source-destination terminal pair (ergodic) capacities are
strictly positive. The corresponding minimum (for the network
to decouple) rates of growth are K ∝ M3 for P1 and K ∝ M2

for P2, with the per source-destination terminal pair capacity
scaling (for M,K → ∞) given by (1/2) log

�
1 + Θ

�
K/M3

��
and

(1/2) log
�
1 + Θ

�
K/M2

��
, respectively. The protocols P1 and P2

thus trade off CSI at the relays for the required rate of growth of
the number of relays. We hasten to add that an ergodic-capacity
lower bound for P2 was previously established by Dana and Has-
sibi; this bound is restated (and reproved under slightly different
assumptions) in this chapter for the sake of completeness. It

2The per source-destination terminal pair capacity is the network capacity
divided by the number of source-destination pairs.
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appears, however, that Dana and Hassibi do not establish the
minimum rate of growth of the number of relays for the network
to decouple.

• We analyze the network outage probability behavior induced by
P1 and P2 using a large-deviations approach. More specifically,
we show that the growth rates K ∝ M3 in P1 and K ∝ M2

in P2 are sufficient to not only make the network decouple,
but also to make the individual source-destination fading links
converge to nonfading links. We say that the network “crystallizes”
as it breaks up into a set of effectively isolated “wires in the
air”. Each of the decoupled links experiences distributed spatial
diversity (or relay diversity), with the corresponding diversity
order going to infinity as M → ∞. Consequently, in the large-
M limit, time diversity (achieved by coding over a sufficiently
long time horizon) is not needed to achieve ergodic capacity. We
obtain bounds on the outage probability of the individual source-
destination links, which allow to characterize the “crystallization”
rate (more precisely a guaranteed “crystallization” rate as we
do not know whether our bounds are tight), i.e., the rate (as
a function of M,K) at which the decoupled links converge to
nonfading links. In the course of this analysis, we develop a
new technique for characterizing the large-deviations behavior
of certain sums of dependent RVs. This technique builds on the
well-known truncation approach and is reported in Appendix A.

• For P1 and P2, we establish the impact of cooperation at the relay
level on network (ergodic) capacity scaling. More specifically, it
is shown that, asymptotically in M and K, cooperation (realized
by vector matched filtering) in groups of L relays leads to an
L-fold reduction in the total number of relays needed to achieve
a given per source-destination terminal pair capacity.
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2.2. CHANNEL AND SIGNAL MODEL

In this section, we present the channel and signal model and additional
basic assumptions. We restrict ourselves to the aspects that apply
to both coherent-relaying and noncoherent-relaying networks and
to both protocols considered in the coherent-relaying case. Relevant
specifics for the coherent-relaying case will be provided in Sections 2.3.1
and 2.3.2 and for the noncoherent-relaying case in Chapter 3.

2.2.1. General Assumptions
We consider an interference relay network (see Figures 2.1 and 2.2)
consisting of K + 2M single-antenna terminals with M designated
source-destination terminal pairs {Sm,Dm} (m∈[1 :M ]) and K relays
Rk (k∈[1 :K]). We assume a “dead-zone” of non-zero radius, free of
relays, around each of the source and destination terminals, no direct
link between the individual source-destination terminal pairs (e.g.,
due to large separation), and a domain of fixed area (i.e., dense
network assumption). Transmission takes place in half-duplex fashion
(the terminals cannot transmit and receive simultaneously) in two
hops (a.k.a. two-hop relaying) over two disjoint time slots. In the
first time slot, the source terminals simultaneously broadcast their
information to all the relay terminals (i.e., each relay terminal receives
a superposition of all source signals). After processing the received
signals, the relay terminals simultaneously broadcast the processed
data to all the destination terminals during the second time slot.
Our setup can be considered as an interference channel (Carleial,
1978) with dedicated relays, hence the terminology interference relay
network.

2.2.2. Channel and Signal Model
Throughout Part I of the thesis, frequency-flat fading over the band-
width of interest as well as perfectly synchronized transmission and
reception between the terminals is assumed. The input-output (IO) re-

16



2. “CRYSTALLIZATION” IN NETWORKS WITH COHERENT RELAYING

.

.

.

.
.
.

.
.
.

.
.
.

Destination 
terminals

Source 
terminals Relay terminals

First hop Second hop

S1

S2

SM

R1

R2

RK

D1

D2

DM

hk,m fm,k

Pm,kEk,m

Fig. 2.2.: Two-hop wireless relay network setup.

lation for the link between the source terminals and the relay terminals
during the first time slot is given by

r = (E⊙H) s+ z (2.1)

where r = [r1 r2 · · · rK ]T with rk denoting the signal received at
the kth relay terminal, E∈R

K×M with [E]k,m =
�

Ek,m where Ek,m

denotes the average energy received at Rk through the Sm → Rk

link3 (accounting for path loss and shadowing in the Sm → Rk

link), H∈C
K×M with [H]k,m = hk,m (k∈[1 :K], m∈[1 :M ]) where

hk,m ∼ CN (0, 1) denotes the independent identically distributed
(i.i.d.) complex-valued channel gains corresponding to the Sm →
Rk links, s = [s1 s2 · · · sM ]T where sm is the zero-mean Gaussian
signal transmitted by Sm and the vector s is i.i.d. temporally and
spatially (across source terminals). Finally, z = [z1 z2 · · · zK ]T where
zk ∼ CN (0, σ2) is temporally and spatially (across relay terminals)
white noise. The kth relay terminal processes its received signal rk
to produce the output signal tk. The collection of output signals tk,
organized in the vector t = [t1 t2 · · · tK ]T, is then broadcast to the
destination terminals during the second time slot, while the source
3A → B signifies communication from terminal A to terminal B.
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terminals are silent. The mth destination terminal receives the signal
ym with y = [y1 y2 · · · yM ]T given by

y = (P⊙F) t+w (2.2)

where P∈R
M×K with [P]m,k =

�
Pm,k and Pm,k denotes the av-

erage energy received at Dm through the Rk → Dm link (having
accounted for path loss and shadowing in the Rk → Dm link). Fur-
thermore, F∈C

M×K with [F]m,k = fm,k (m∈[1 :M ], k∈[1 :K]) where
fm,k ∼ CN (0, 1) denotes the i.i.d. complex-valued channel gains cor-
responding to the Rk → Dm links, and w = [w1 w2 · · · wM ]T with
wm ∼ CN (0, σ2) being temporally and spatially (across destination
terminals) white noise. Throughout Part I of the thesis, we impose a
per-source-terminal power constraint

E
�
|sm|2

�
≤ 1/M, m∈[1 :M ]

which results in the total transmit power trivially satisfying E
�
�s�2

�
≤

1. Furthermore, we impose a per-relay-terminal power constraint

E
�
|tk|2

�
≤ Prel/K, k∈[1 :K]

which results in the total power transmitted by the relay terminals
satisfying E

�
�t�2

�
≤ Prel. As already mentioned above, path loss and

shadowing are accounted for through the Ek,m (k∈[1 :K], m∈[1 :M ])
(for the first hop) and the Pm,k (m∈[1 :M ], k∈[1 :K]) (for the second
hop). We assume that these parameters are deterministic, uniformly
bounded from above (follows from the dead-zone assumption) and
below (follows from considering a domain of fixed area) so that for
all k,m

0 < E ≤ Ek,m ≤ E < ∞ 0 < P ≤ Pm,k ≤ P < ∞. (2.3)

Throughout Part I of the thesis, we assume that the source ter-
minals Sm (m∈[1 :M ]) do not have CSI. The assumptions on CSI
at the relays and the destination terminals depend on the setup
(coherent-relaying or noncoherent-relaying case) and the protocol (in
the coherent-relaying case) and will be made specific when needed.
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A discussion of the motivation for the two scenarios analyzed in
this chapter can be found in the work of Bölcskei et al. (2006).

2.3. PROTOCOLS IN THE COHERENT-RELAYING
CASE

In this section, we describe the two protocols P1 and P2 and derive
the corresponding SINR concentration results along with the resulting
bounds on the individual source-destination link outage probability
induced by P1 and P2. Note that the results in this section do not
require ergodicity of H and F.

2.3.1. Protocol 1 (P1)
We shall next describe the specifics of P1. The K relay terminals are
partitioned into M subsets Mm (m∈[1 :M ]) with4 |Mm| = K/M .
The relays in Mm are assumed to assist the mth source-destination
terminal pair {Sm,Dm}. This assignment is succinctly described
through the relay partitioning function p : [1,K] → [1,M ] defined as

p(k) � m ⇔ Rk ∈Mm.

We assume that the kth relay terminal has perfect knowledge of
the phases arg(hk,p(k)) and arg(fp(k),k) of the SISO backward (from
the perspective of the relay) channel Sp(k) → Rk and the corre-
sponding forward channel Rk → Dp(k), respectively. We furthermore
define h̃k,p(k) � exp

�
i arg(hk,p(k))

�
and f̃p(k),k � exp

�
i arg(fp(k),k)

�
.

The signal rk received at the kth relay terminal is first cophased w.r.t.
the assigned backward channel followed by an energy normalization
so that

uk = dP1,k h̃
∗
k,p(k) rk (2.4)

4For simplicity, we assume that K is an integer multiple of M . Moreover, in the
remainder of this chapter all results pertaining to P1 implicitly assume K ≥ M .
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where

dP1,k �
�

Prel

�
K

M

M�

m=1

Ek,m +Kσ2

�−1/2

(2.5)

ensures that the per-relay power constraint E
���uk

��2� = Prel/K is
met. The relay terminal Rk then computes the transmit signal tk by
cophasing w.r.t. its assigned forward channel, i.e.,

tk = f̃∗
p(k),k uk (2.6)

which, obviously, satisfies E
���tk

��2� ≤ Prel/K with equality and hence
meets the total power constraint (across relays)

E
�
�t�2

�
=

K�

k=1

E
�
|tk|2

�
= Prel.

In summary, P1 ensures that the relays Rk ∈Mm forward the signal
intended for Dm, namely, the signal transmitted by Sm, in a “doubly
coherent” (w.r.t. backward and forward channels) fashion, whereas
the signals transmitted by the source terminals Sm̂ with m̂ �= m are
forwarded to Dm in a “noncoherent” fashion (i.e., phase incoherence
occurs either on the backward or the forward link or on both links).
The idea underlying P1 has originally been introduced by Bölcskei
et al. (2006).

We shall next derive the IO relation for the SISO channels Sm → Dm

(m∈[1 :M ]). The destination terminal Dm receives doubly (backward
and forward link) coherently combined contributions corresponding
to the signal sm, with interfering terms containing contributions
from the signals sm̂ with m̂ �= m as well as noise, forwarded by the
relays. Combining (2.1), (2.4), (2.6), and (2.2), it follows (after some
straightforward algebra) that the signal received at Dm (m∈[1 :M ])
is given by5

5The notation
�

m̂ �=m stands for the summation over m̂∈[1 : M ] such that
m̂ �= m. If not specified, the upper limit of the summation is clear from the
context.
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ym = sm
1√
K

K�

k=1

am,m
k

� �� �
effective channel gain

+
�

m̂ �=m

sm̂
1√
K

K�

k=1

am,m̂
k

� �� �
interference

+
1√
K

K�

k=1

bmk zk + wm

� �� �
noise

(2.7)

where

am,m̂
k � Cm,m̂

P1,k f̃∗
p(k),k fm,k h̃

∗
k,p(k) hk,m̂ (2.8)

bmk � Cm
P1,k f̃

∗
p(k),k fm,k h̃

∗
k,p(k) (2.9)

with

Cm,m̂
P1,k =

√
KdP1,k

�
Pm,kEk,m̂ (2.10)

Cm
P1,k =

√
KdP1,k

�
Pm,k. (2.11)

The normalization factor
√
K in (2.7), (2.10), and (2.11) is introduced

for convenience of exposition. Using (2.3), it now follows that

C �
�

P EPrel

E + σ2
≤ Cm,m̂

P1,k ≤

�
P EPrel

E + σ2
� C (2.12)

c �
�

PPrel

E + σ2
≤ Cm

P1,k ≤

�
PPrel

E + σ2
� c (2.13)

for all k∈[1 :K], m∈[1 :M ], and m̂∈[1 :M ]. In the following, it will be
essential that the constants C, c, C, and c do not depend on M,K.

Since we assumed that the destination terminals Dm (m∈[1 :M ])
cannot cooperate, the Dm cannot perform joint decoding so that the
network can be viewed as a collection of M SISO channels Sm → Dm,
i.e., as an interference channel with dedicated relays. We can see
from (2.7) that each of these SISO channels consists of a fading effective
channel, fading interference, caused by the source signals not intended
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for a given destination terminal, and finally a noise term incorporating
thermal noise forwarded by the relays and thermal noise added at the
destination terminals. In the remainder of this chapter, we make the as-
sumption that each of the destination terminals Dm has perfect knowl-
edge of the fading and path loss and shadowing coefficients in the entire
network, i.e., Dm (m∈[1 :M ]) knows H,F,E and P perfectly. An im-
mediate consequence of this assumption is that Dm (m∈[1 :M ]) has
perfect knowledge of the effective channel gain (1/

√
K)

�K
k=1 a

m,m
k ,

the interference channel gains (1/
√
K)

�K
k=1 a

m,m̂
k (m̂ �= m), and

the quantity (1/
√
K)

�K
k=1 b

m
k . Conditioned on H and F, both the

interference and the noise term in (2.7) are Gaussian, so that the
mutual information for the Sm → Dm link is given by

I(ym; sm |H,F) = log
�
1 + sinrP1

m

�
(2.14)

where

sinrP1
m �

�����

K�

k=1

am,m
k

�����

2

�
m̂ �=m

���
�K

k=1 a
m,m̂
k

���
2
+ σ2M

�K
k=1

��bmk
��2 +KMσ2

(2.15)
is the effective SINR in the SISO channel Sm → Dm.

We conclude by noting that the large-deviations results in Sec-
tion 2.3.3 rely heavily on the assumption that Dm (m∈[1 :M ]) knows
H,F,E, and P perfectly. The ergodic capacity-scaling results in Sec-
tion 2.4 will, however, be seen to require significantly less channel
knowledge at the destination terminals.

2.3.2. Protocol 2 (P2)
The only difference between P1 and P2 is in the processing at the
relays. Whereas in P1 the K relay terminals are partitioned into
M clusters (of equal size) with each of these clusters assisting one
particular source-destination terminal pair, in P2 each relay assists
all source-destination terminal pairs so that relay partitioning is not
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needed. In turn, P2 requires that each relay knows the phases of all
its M backward and M forward channels, i.e., Rk needs knowledge of
h̃k,m and f̃m,k, respectively, for m∈[1 :M ]. Consequently, P2 requires
significantly more CSI at the relays than P1. The relay processing
stage in P2 computes

tk = dP2,k

�
M�

m=1

h̃∗
k,m f̃∗

m,k

�
rk (2.16)

where

dP2,k �
�
Prel

�
K

M�

m=1

Ek,m +MKσ2

�−1/2

ensures that the power constraint E
���tk

��2� = Prel/K and hence

E
�
�t�2

�
=

K�

k=1

E
�
|tk|2

�
= Prel

is met.
Again, we start by deriving the IO relation for the SISO channels

Sm → Dm (m∈[1 :M ]). Like in P1, the destination terminal Dm

receives doubly (backward and forward link) coherently combined
contributions corresponding to the signal sm, interfering terms con-
taining contributions from the signals sm̂ with m̂ �= m, as well as
noise forwarded by the relays. Combining (2.1), (2.16), and (2.2), it
follows that the signal received at Dm (m∈[1 :M ]) is given by

ym = sm
1√
KM

K�

k=1

M�

m̃=1

am,m,m̃
k

� �� �
effective channel gain

+
�

m̂ �=m

sm̂
1√
KM

K�

k=1

M�

m̃=1

am,m̂,m̃
k

� �� �
interference
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+
1√
KM

K�

k=1

M�

m̃=1

bm,m̃
k zk + wm

� �� �
noise

(2.17)

where

am,m̂,m̃
k � Cm,m̂

P2,k f̃∗
m̃,k fm,k h̃

∗
k,m̃ hk,m̂

bm,m̃
k � Cm

P2,k f̃
∗
m̃,k fm,k h̃

∗
k,m̃

with

Cm,m̂
P2,k �

√
KMdP2,k

�
Pm,kEk,m̂ (2.18)

Cm
P2,k �

√
KMdP2,k

�
Pm,k. (2.19)

Again, the normalization
√
KM in (2.17), (2.18) and (2.19) is intro-

duced for convenience of exposition and

C ≤ Cm,m̂
P2,k ≤ C, c ≤ Cm

P2,k ≤ c

for all k∈[1 :K], m∈[1 :M ], and m̂∈[1 :M ] with the constants C, c,
C, and c not depending on M,K.

Recalling that we assume perfect knowledge of H,F,E, and P at
each of the destination terminals, Dm, the mutual information for the
Sm → Dm link in P2 is given by

I(ym; sm |H,F) = log
�
1 + sinrP2

m

�
(2.20)

where

sinrP2
m �

�����

K�

k=1

M�

m̃=1

am,m,m̃
k

�����

2

�

m̂ �=m

�����

K�

k=1

M�

m̃=1

am,m̂,m̃
k

�����

2

+ σ2M
K�

k=1

�����

M�

m̃=1

bm,m̃
k

�����

2

+KM2σ2

(2.21)
is the effective SINR in the SISO channel Sm → Dm.
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2.3.3. Large-Deviations Analysis of
Signal-to-Interference-Plus-Noise Ratio

Our goal in this section is to prove that sinrP1
m and sinrP2

m for m∈[1 :
M ] (and, thus, the corresponding mutual information quantities (2.14)
and (2.20)) lie within “narrow intervals” around their mean values
with6 “high probability” when M,K → ∞. The technique we use
to prove these concentration results is based on a large-deviations
analysis and can be summarized as follows:

i. Consider each sum in the numerator and denominator of (2.15)
and (2.21) separately.

ii. Represent the considered sum as a sum of independent RVs or as a
sum of dependent complex-valued RVs with independent phases.

iii. Find the mean value of the considered sum.

iv. Employ a large-deviations analysis to prove that the considered sum
lies within a narrow interval around its mean with high probability,
i.e., establish a concentration result.

v. Combine the concentration results for the separate sums using the
union bounds summarized in Appendix B to obtain concentration
results for sinrP1

m and sinrP2
m .

A. Chernoff bounds

Before embarking on a detailed discussion of the individual Steps i–
v above, we note that a well-known technique to establish large-
deviations results for sums of RVs (as required in Step iv above) is
based on Chernoff bounds. This method, which yields the precise
exponential behavior for the tails of the distributions under question,
can, unfortunately, not be applied to all the sums in (2.15) and (2.21).
To solve this problem, we develop a new technique, which allows
6The precise meaning of “narrow intervals” and “high probability” is explained

in the formulation of Theorems 2.1 and 2.2 in Section 2.3.4.
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to establish large-deviations results for certain sums of dependent
complex-valued RVs with independent phases where the RVs occurring
in the sum are such that their moment generating function (MGF)
does not need to be known. The new technique is based on the
well-known idea of truncation of RVs and will, therefore, be called
truncation technique. Even though truncation of RVs is a standard
concept in probability theory, and in particular in large-deviations
analysis, we could not find the specific approach developed in this
thesis in the literature. We therefore decided to present the truncation
technique as a stand-alone concept and summarized the main results
in Appendix A. Before proceeding, we note that even though the
truncation technique has wider applicability than Chernoff bounds,
it yields weaker exponents for the tails of the distributions under
question.

Although the proofs of the main concentration results, Theorems 2.1
and 2.2 in Section 2.3.4, are entirely based on the truncation tech-
nique, we still discuss the results of the application of Chernoff bounds
(without giving all the details) in the following, restricting our atten-
tion to P1, to motivate the development of the truncation technique
and to provide a reference for the quality (in terms of tightness of
the bounds) of the results in Theorems 2.1 and 2.2. Moreover, the
developments below introduce some of the key elements of the proofs
of Theorems 2.1 and 2.2.

Following the approach outlined in Steps i–v above, we start by
writing sinrP1

m as

sinrP1
m =

��S(1) + S(2)
��2

S(3) + σ2MS(4) +KMσ2
(2.22)

and establishing bounds on the probability of large deviations of

S(1) �
�

k:p(k)=m

Cm,m
P1,k |fm,k||hk,m| (2.23)

S(2) �
�

k:p(k) �=m

Cm,m
P1,k f̃∗

p(k),k fm,k h̃
∗
k,p(k) hk,m (2.24)
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S(3) �
�

m̂ �=m

���
K�

k=1

Cm,m̂
P1,k f̃∗

p(k),k fm,k h̃
∗
k,p(k) hk,m̂

���
2

(2.25)

S(4) �
K�

k=1

�
Cm

P1,k

�2 |fm,k|2. (2.26)

We shall see in the following that the probability density functions
(PDFs) of the terms in S(1), S(2), and S(4) have a structure that is
simple enough for Chernoff bounds to be applicable. We start with
the analysis of the simplest term, namely S(4). To avoid unnecessary
technical details and to simplify the exposition, we assume (only in
the ensuing analysis of the large deviations behavior of S(4)) that

Cm,m̂
P1,k = Cm

P1,k = 1 (2.27)

for all m, m̂∈[1 :M ], k∈[1 :K]. Defining7 Xk �
��fm,k

��2, we have

S(4) =
K�

k=1

Xk

where the Xk are i.i.d. exponentially distributed8 with parameter λ =
1, and hence E

�
Xk

�
= 1. For convenience, we centralize Xk and

define Zk � Xk − 1. The MGF of Zk is given by

MZk(s) =

∞�

0

es(x−1)e−xdx =
e−s

1− s
, �s ≤ 1. (2.28)

Since the RVs Zk are independent, we obtain, using the standard
Chernoff bound (Gallager, 1968, Section 5.4), for x > 0

P

�
K�

k=1

Zk ≥ x

�
≤ min

0≤s≤1
(MZk(s))

K e−sx

= min
0≤s≤1

e−Ks−K ln(1−s)−sx. (2.29)

7For notational convenience, we shall omit the index m in what follows.
8An exponentially distributed RV with parameter λ is a real-valued RV X with

PDF given by fX(x) = λ exp(−λx)u(x).
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Because (MZk(s))
K exp(−sx) is convex in s (Gallager, 1968, Sec-

tion 5.4), the minimum in (2.29) can easily be seen to be taken on
for s = x/(x+K), which gives

P

�
K�

k=1

Zk ≥ x

�
≤ eK ln(x+K)−K ln(K)−x. (2.30)

The corresponding relation for negative deviations (x < 0) is

P

�
K�

k=1

Zk ≤ x

�
≤

�
eK ln(x+K)−K ln(K)−x, x > −K

0, x < −K.
(2.31)

Finally, setting x =
√
Kt, we get the desired concentration result for

the sum S(4) as

P

�
S(4) −K ≥

√
Kt

�
≤ eK ln(1+t/

√
K)−

√
Kt, t ≥ 0 (2.32)

P

�
S(4) −K ≤

√
Kt

�
≤

�
eK ln(1+t/

√
K)−

√
Kt, −

√
K < t ≤ 0

0, t ≤ −
√
K.

(2.33)

We now consider the case when K is large and t = o
�√

K
�

so that

ln

�
1 +

t√
K

�
=

t√
K

− t2

2K
+O

��
t√
K

�3
�
. (2.34)

If we omit higher (than second) order terms in (2.34), the bound
in (2.32) and (2.33) can be compactly written as

P

����S(4) −K
��� ≥

√
Kt

�
≤ 2e−t2/2. (2.35)

We can, therefore, conclude that the probability of large deviations
of S(4) decays exponentially.

Similar concentration results, using Chernoff bounds, can be estab-
lished for S(1) and S(2). The derivation is somewhat involved (as it
requires establishing upper bounds on the MGF), does not provide
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insights into the problem and will, therefore, be omitted. Unfortu-
nately, the simple technique used above to establish concentration
results for S(4) (and applicable to S(1) and S(2)) does not seem to be
applicable to S(3). To see this, we start by noting that S(3) contains
two classes of terms (in the sense of the properties of their PDF), i.e.,

S(3) = S(31) + S(32) (2.36)

with

S(31) �
�

m̂ �=m

K�

k=1

�
Cm,m̂

P1,k

�2
|fm,k|2|hk,m̂|2 (2.37)

S(32) �
�

m̂ �=m

K�

k=1

�

k̂ �=k

Cm,m̂
P1,k f̃∗

p(k),k fm,k h̃
∗
k,p(k) hk,m̂

× Cm,m̂

P1,k̂
f̃p(k̂),k̂ f

∗
m,k̂

h̃k̂,p(k̂) h
∗
k̂,m̂

. (2.38)

Now, there are two problems in applying the technique we have used
so far to S(3): First, it seems very difficult to compute the MGFs for
the individual terms in S(31) and S(32); second, the individual terms
in S(31) and S(32) are not jointly9 independent across the summation
indices. The first problem can probably be resolved using bounds on
the exact MGFs (as can be done in the analysis of S(1) and S(2)). The
second problem, however, seems more fundamental. In particular, the
individual terms in S(31) are independent across k but not across
m̂. In S(32), the individual terms are independent across k but not
across k̂ and m̂. Assuming that the problem of computing (or properly
bounding) the MGFs is resolved, a natural way to overcome the second
problem mentioned above would be to establish concentration results

9We write “jointly independent”, as opposed to “pairwise independent” here and
in what follows to stress the fact that the joint PDF of the RVs under consideration
can be factored into a product of the marginal PDFs. In several places throughout
this chapter we will deal with sets of RVs that turn out to be pairwise independent,
but not jointly independent.
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for the sums over k, i.e., for

Ŝ(31)
m̂ �

K�

k=1

�
Cm,m̂

P1,k

�2
|fm,k|2|hk,m̂|2 (2.39)

Ŝ(32)

m̂,k̂
�

K�

k=1

Cm,m̂
P1,k f̃∗

p(k),k fm,k h̃
∗
k,p(k) hk,m̂

× Cm,m̂

P1,k̂
f̃p(k̂),k̂ f

∗
m,k̂

h̃k̂,p(k̂) h
∗
k̂,m̂

(2.40)

and to employ the union bound for sums (Lemmas B.1 and B.3
in Appendix B) to obtain concentration results for S(31) and S(32).
Unfortunately, this method, although applicable, yields results that
are very loose in the sense of not reflecting the correct “order-of-
magnitude behavior” of the typical deviations. To understand why
this is the case, we perform an order-of-magnitude analysis as follows.
For simplicity, we again assume that the condition (2.27) is satisfied.
Note that for every k̂, k∈[1 :K] such that k̂ �= k and every m̂∈[1 :M ]
such that m̂ �= m, we have

E

�
f̃∗
p(k),k fm,k h̃

∗
k,p(k) hk,m̂ f̃p(k̂),k̂ f

∗
m,k̂

h̃k̂,p(k̂) h
∗
k̂,m̂

�
= 0.

Chernoff bounding Ŝ(32)

m̂,k̂
would, therefore, yield that

P

����Ŝ(32)

m̂,k̂

��� ≥
√
Kt

�

decays exponentially10 in t. Then, applying the union bound for sums
(Lemma B.1) to S(32) =

�
m̂ �=m

�
k̂ �=k Ŝ

(32)

m̂,k̂
, we would conclude that

P

����S(32)
��� ≥ (M − 1)(K − 1)

√
Kt

�
(2.41)

decays exponentially in t. Even though the terms in S(32) are not com-
pletely independent across k̂ and m̂, we will see in Section 2.3.3.b that
10We do not specify the exponent here.
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there is still enough independence between them for the truncation
technique to reveal that

P

����S(32)
��� ≥

�
(M − 1)(K − 1)Kt

�
(2.42)

decays exponentially in t, which is a much stronger concentration result
than (2.41). The importance of the difference between (2.42) and (2.41)
becomes clear if we consider S(31). Since Ŝ(31)

m̂ is a sum over K
independent terms, each of which satisfies E

���fm,k

��2��hk,m̂

��2� = 1,
Chernoff bounding would yield that

P

����Ŝ(31)
m̂ −K

��� ≥
√
Kt

�

decays exponentially in t. Applying the union bound to S(31) =�
m̂ �=m Ŝ(31)

m̂ , one can then show that

P

����S(31) −K(M − 1)
��� ≥ (M − 1)

√
Kt

�
(2.43)

decays exponentially in t. When M and K are large, we would now
conclude from (2.41) and (2.43) that S(3) = S(31) + S(32) deviates
around KM with a typical deviation of order MK

√
K. Since the

typical deviations are larger (by a factor of
√
K) than the mean, the

corresponding deviation result is useless. On the other hand, if we
use the bound (2.42) combined with (2.43), again assuming that M
and K are large, we can conclude that S(3) deviates around KM
with a typical deviation of order

√
MK +M

√
K, which is an order

of magnitude smaller than the mean. As already mentioned, the
truncation technique allows us to establish useful concentration results
for sums with dependent terms such as that in (2.40).

B. Application of the truncation technique

In this subsection, we demonstrate how the desired concentration
results for S(31) and S(32), defined in (2.37) and (2.38), respectively,
can be obtained by application of the truncation technique. The
following results will be used in the proof of Theorem 2.1 and will,
therefore, be formulated for general Cm,m̂

P1,k and Cm
P1,k.
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Analysis of S(31): Consider Ŝ(31)
m̂ . The variables Xk �

��fm,k

��2
and Yk,m̂ �

��hk,m̂

��2 are exponentially distributed with parameter λ =
1. Therefore, we have

P

�
Xk ≥ x

�
= P

�
Yk,m̂ ≥ x

�
≤ e−x, x ≥ 0, for all k, m̂.

Define Zk,m̂ � XkYk,m̂. From the union bound for products it follows
that

P

�
Zk,m̂ ≥ x2

�
= P

�
XkYk,m̂ ≥ x2

�
≤ 2e−x

which yields
P

�
Zk,m̂ ≥ x

�
≤ 2e−

√
x.

Next, using E
�
Zk,m̂

�
= 1 and E

�
(Zk,m̂)2

�
= 4 for all k, m̂ �= m and

the independence of the RVs Zk,m̂ across k∈[1 :K], it follows from
Corollary A.5, taking into account (2.12), that for K ≥ 2

P

������Ŝ
(31)
m̂ −

K�

k=1

�
Cm,m̂

P1,k

�2
����� ≥

√
Kx

�
≤ 6Ke−∆(31)x2/5

where ∆(31) � min
�
1, (1/8)C

−4�. Applying the union bound for sums
(see Lemma B.1) and using (2.12), we finally obtain the desired11

concentration result for S(31) as

P

�
S(31) ≥ (M − 1)KC

2
+ (M − 1)

√
Kx

�
≤ 6(M − 1)Ke−∆(31)x2/5

(2.44)
and

P

�
S(31) ≤ (M − 1)KC2 − (M − 1)

√
Kx

�
≤ 6(M − 1)Ke−∆(31)x2/5

.

(2.45)

Analysis of S(32): We start by rewriting (2.38) as

S(32) =
√
K − 1

�

m̂ �=m

K�

k=1

Cm,m̂
P1,k f̃∗

p(k),k fm,k h̃
∗
k,p(k) hk,m̂ T (32)

m̂,k (2.46)

11We note that we do not avoid using the union bound on S(31). It is important,
however, that we do not use it when analyzing S(32).
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where T (32)
m̂,k is defined as

T (32)
m̂,k � 1√

K − 1

�

k̂ �=k

Cm,m̂

P1,k̂
f̃p(k̂),k̂ f

∗
m,k̂

h̃k̂,p(k̂) h
∗
k̂,m̂

.

The concentration result for S(32) (and other similar sums occurring
in the proofs of Theorems 2.1 and 2.2) will be established by applying
(one or multiple times) the following general steps:

• Establish a concentration result for T (32)
m̂,k .

• Represent the terms on the right-hand side of (2.46) in the
form Cm,m̂

P1,k Zm̂,k exp(iφ̂k,m̂) where

Zm̂,k � T (32)
m̂,k |fm,k||hk,m̂|

and
φ̂k,m̂ � arg

�
f̃∗
p(k),k fm,k h̃

∗
k,p(k) hk,m̂

�

so that the sum S(32) can be written as

S(32) �
√
K − 1

�

m̂ �=m

K�

k=1

Cm,m̂
P1,k Zm̂,k e

iφ̂k,m̂ .

• Use the concentration result for T (32)
m̂,k together with the union

bound for products (see Lemma B.4) to establish bounds on the
tail behavior of Zm̂,k and verify condition (A.1) in Theorem A.3.

• If needed, split up the sum S(32) into several sums, so that
the phases exp(iφ̂k,m̂) are jointly independent in each of these
sums and Theorem A.3 can be applied (to each of these sums
separately).

• Finally, apply Theorem A.3 to each of the sums resulting in the
previous step separately and use the union bound for sums to
establish the desired concentration result for S(32).

Following this procedure, we start by deriving a concentration
result for T (32)

m̂,k . Since T (32)
m̂,k is of the same nature as S(2), we could,

in principle, use Chernoff bounds. This would, however, lead to an
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exponent with a complicated dependence on t, which can be simplified
only under certain assumptions on t, such as e.g., t = o

�√
K
�

in (2.34).
What we need is a simple universal bound for P

���T (32)
m̂,k

�� ≥ x
�
, which

is valid for all x and allows to verify condition (A.1) in Theorem A.3
for Zm̂,k. Such a bound can be obtained by applying the truncation
technique to T (32)

m̂,k as follows. Define Xk̂ �
��fm,k̂

��, Yk̂,m̂ �
��hk̂,m̂

�� and

φk̂,m̂ � arg
�
f̃p(k̂),k̂ f

∗
m,k̂

h̃k̂,p(k̂) h
∗
k̂,m̂

�

so that
T (32)
m̂,k =

1√
K − 1

�

k̂ �=k

Cm,m̂

P1,k̂
Xk̂Yk̂,m̂eiφk̂,m̂ .

The RVs Xk̂ and Yk̂,m̂ (for all k̂, m̂) are Rayleigh distributed12 with
parameter α2 = 1/2. Therefore, we have

P

�
Xk̂ ≥ x

�
= P

�
Yk̂,m̂ ≥ x

�
≤ e−x2

, x ≥ 0

and the union bound for products yields

P

�
Xk̂Yk̂,m̂ ≥ x

�
≤ 2e−x, x ≥ 0 (2.47)

which shows that condition (A.8) in Corollary A.4 is satisfied. Next,
rewrite φk̂,m̂ as

φk̂,m̂ = arg
�
f̃p(k̂),k̂

�
⊕arg

�
f∗
m,k̂

�
⊕arg

�
h̃k̂,p(k̂)

�
⊕arg

�
h∗
k̂,m̂

�
. (2.48)

Because the f ’s and the h’s in (2.48) are independent across k̂∈[1 :K],
it follows that the phases φk̂,m̂ are also independent across k̂∈[1 :K],
which is precisely what we need for the truncation technique to be
applicable. Recalling that m �= m̂, and, therefore, either p(k̂) �=
m or p(k̂) �= m̂, (2.48) implies that φk̂,m̂ ∼ U(−π, π) and hence,
E
�
exp(iφk̂,m̂)

�
= 0 for all k̂, m̂. Since φk̂,m̂ is independent of Xk̂

12A Rayleigh-distributed RV with parameter α2 is a real-valued RV X with
PDF fX(x) = (x/α2) exp

�
−x2/(2α2)

�
u(x).

34



2. “CRYSTALLIZATION” IN NETWORKS WITH COHERENT RELAYING

and Yk̂,m̂, we have E
�
exp(iφk̂,m̂)Xk̂Yk̂,m̂

�
= 0 for all k̂, m̂ and hence,

E
�
T (32)
m̂,k

�
= 0 for all m̂, k. Finally, applying Corollary A.4 to T (32)

m̂,k ,
taking into account (2.12), we get for K ≥ 2 and x ≥ 0 that

P

����T (32)
m̂,k

��� ≥ x
�
≤ 8(K − 1)e−∆(T )x2/3

(2.49)

with ∆(T ) � 2−1/3 min
�
1, (1/2)C

−2
�
.

We are now ready to establish the concentration result for S(32).
First, rewrite φ̂k,m̂ as

φ̂k,m̂ � arg
�
f̃∗
p(k),k

�
⊕ arg(fm,k)⊕ arg

�
h̃∗
k,p(k)

�
⊕ arg(hk,m̂) . (2.50)

Similar to φk̂,m̂ in (2.48), because m̂ �= m we conclude that φ̂k,m̂ ∼
U(−π, π). Furthermore, because k̂ �= k the φ̂k,m̂ are independent of
T (32)
m̂,k , and therefore also of Zm̂,k (for all k, m̂). To apply Corollary A.4

to S(32), the φ̂k,m̂ are required to be jointly independent across m̂∈[1 :
M ] for m̂ �= m and k∈[1 : K]. It can be verified that this is not
the case. There is, however, a simple way to resolve this problem by
considering the two disjoint index sets

I1 �
�
(m̂, k)

���m̂∈[1 :M ], m̂ �= m, k∈[1 :K], p(k) �= m̂
�

I2 �
�
(m̂, k)

���m̂∈[1 :M ], m̂ �= m, k∈[1 :K], p(k) = m̂
�
.

It follows by inspection that within each of the sets
�
φ̂k,m̂

�
(k,m̂)∈I1

and
�
φ̂k,m̂

�
(k,m̂)∈I2

the phases are jointly independent. Separating
S(32) into two sums corresponding to the group of indices I1 and I2,
we get

S(32) = S(321) + S(322) (2.51)

with

S(321) �
√
K − 1

�

m̂ �=m

�

k:p(k) �=m̂

Cm,m̂
P1,k Zm̂,k e

iφ̂k,m̂

S(322) �
√
K − 1

�

m̂ �=m

�

k:p(k)=m̂

Cm,m̂
P1,k Zm̂,k e

iφ̂k,m̂ .
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Applying the union bound for products first to
��fm,k

����hk,m̂

�� as in (2.47),
then to Zm̂,k using (2.49), and using the simple bound

2e−x + 8(K − 1)e−∆(T )x1/3 ≤ 16(K − 1)e−∆(T )x1/3

which is valid for x ≥ 1, we get

P{|Zm̂,k| ≥ x} ≤ 16(K − 1)e−∆(T )x1/3

for K ≥ 2 and x ≥ 1. Therefore, using E
�
Zm̂,k exp(iφ̂k,m̂)

�
= 0 for

all k, m̂ �= m, applying Corollary A.4 to S(321) (which consists of
K(M − 1)2/M terms) and to S(322) (which consists of K(M − 1)/M
terms) separately, taking into account (2.12), we obtain that for
K ≥ 2, M > 2, and x ≥ 1

P

����S(321)
��� ≥

�
(K − 1)K(M − 1)2

M
x

�

≤ 64
(K − 1)K(M − 1)2

M
e−∆(32)x2/7

(2.52)

and

P

����S(322)
��� ≥

�
(K − 1)K(M − 1)

M
x

�

≤ 64
(K − 1)K(M − 1)

M
e−∆(32)x2/7

(2.53)

where ∆(32) = 2−10/21 min
�
1, (1/2)C

−2�. Combining (2.35) (and sim-
ilar bounds for S(1) and S(2)), (2.52), (2.53), (2.51), (2.44), (2.45),
and (2.36), we can now state the final concentration result for sinrP1

m

by carrying out Step v in the summary presented in the first paragraph
of Section 2.3.3. Recall, however, that we used the classical Chernoff-
bounding technique to establish the large-deviations behavior of S(1),
S(2), and S(4), whereas we employed the truncation technique to ana-
lyze the large-deviations behavior of S(3). Even though the Chernoff
bounds are tighter than the bounds obtained through the truncation
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technique, the tightness of the final bounds for the tail behavior of
sinrP1

m and sinrP2
m is determined by the weakest exponent in the

bounds for the individual terms S(1), S(2), S(3) and S(4). Therefore,
employing Chernoff bounds for S(1), S(2), and S(4) and the truncation
technique for S(3) will not lead to a significantly tighter final result,
compared to the case where the truncation technique is used through-
out. Motivated by this observation and for simplicity of exposition,
we therefore decided to state the concentration results in Section 2.3.4
for sinrP1

m and sinrP2
m obtained by applying the truncation technique

throughout.

2.3.4. Concentration Results for P1 and P2
In Section 2.3.3, we outlined how the large-deviations behavior of
the SINR (for P1 and P2) can be established based on the truncation
technique and on union bounds. The resulting key statement, made
precise in Theorems 2.1 and 2.2 below, is that the probability of the
SINR falling outside a narrow interval around its mean is “exponentially
small”. We proceed with the formal statement of the results.

Theorem 2.1. For every K ≥ 2, M ≥ 2, for every x ≥ 1, the
probability PP1(x) of the event

sinrP1
m /∈ [LP1(x), UP1(x)] , m∈[1 :M ]

where

LP1(x) �
π2

16

C2

C
2
SN

K

M3

max
�
0, 1− 8

Cπ
M√
K
x
�2

C
2

C
2
SN

+ 3
C

2
SN

x√
M

+ σ2

C
2
SN

�
c2 + x√

K

�
+ σ2

C
2
SN

(2.54 )
and

UP1(x) �
π2

16

C
2

C2
SN

K

M3

×

�
1 + 8

Cπ
M√
K
x
�2

max
�
0, C2

C2
SN

M−1
M − 3

C2
SN

x√
M

�
+max

�
0, σ2

C2
SN

�
c2 − x√

K

��
+ σ2

C2
SN

,
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with the constants CSN and CSN given by

CSN �
�

C
2
+ σ2

�
c2 + 1

�
CSN �

�
C2 + σ2(c2 + 1)

satisfies the following inequality

PP1(x) ≤ 302K2Me−∆P1 x2/7

(2.55 )

with ∆P1 � min
�
2−

10
21 , 1/

�
2

31
21C

2�
, 1/

�
8C

4�
, 1/

�
4 c 4

��
.

Proof. See Appendix C.1.

Theorem 2.2. For every K ≥ 2, M ≥ 2, for every x ≥ 1, the
probability PP2(x) of the event

sinrP2
m /∈ [LP2(x), UP2(x)] , m∈[1 :M ]

where

LP2(x) �
π2

16

C2

C
2
SN

K

M2

max
�
0, 1− 8

Cπ

�
M
K x

�2

C
2

C
2
SN

+ 4
C

2
SN

x
min[

√
M,

√
K]

+
σ2

�
c2+ 2x√

K

�

C
2
SN

+ σ2

C
2
SN

UP2(x) �
π2

16

C
2

C2
SN

K

M2

×

�
1 + 8

Cπ

�
M
K x

�2

max

�
0, C2

C2
SN

M−1
M − 4

C2
SN

x
min[

√
M,

√
K]

�
+max

�
0,

σ2
�
c2− 2x√

K

�

C2
SN

�
+ σ2

C2
SN

satisfies the following inequality

PP2(x) ≤ 814K2M3e−∆P2 x2/9

(2.56 )

with ∆P2 � min
�
2−

11
5 , 1/

�
2

61
36C

2�
, 1/

�
8C

4�
, 1/

�
4 c 4

��
.

Proof. The proof idea is the same as that underlying the proof of
Theorem 2.1 with large parts of the proof itself being very similar to
the proof of Theorem 2.1. For the sake of brevity the details of the
proof are therefore omitted.

38



2. “CRYSTALLIZATION” IN NETWORKS WITH COHERENT RELAYING

The concentration results in Theorems 2.1 and 2.2 form the basis for
showing that, provided the rate of growth of K as a function of M is
fast enough, the network “decouples” (see Theorems 2.3 and 2.4) and
“crystallizes” (see Theorem 2.5). Moreover, as outlined in Theorem 2.5,
the outage probability behavior of the Sm → Dm links can be inferred
from (2.55) and (2.56).

2.4 . ERGODIC CAPACITY AND COOPERATION
AT THE RELAY LEVEL

The focus in the previous section was on establishing concentration
results for the individual link SINRs for P1 and P2. Based on these
results, in this section, we study the ergodic capacity realized by the
two protocols and we establish the corresponding capacity scaling
and outage probability behavior.

2.4.1. Ergodic Capacity of P1 and P2

Throughout this section, we assume that all channels in the network
are ergodic. The two main results are summarized as follows.

Theorem 2.3 (Ergodic capacity of P1). Suppose that destination ter-
minal Dm (m∈[1 :M ]) has perfect knowledge of the
mean of the effective channel gain of the Sm → Dm link, given
by (π/(4

√
K))

�
k:p(k)=m Cm,m

P1,k . Then, the per source-destination ter-
minal pair capacity achieved by P1 is given by

CP1 =
1

2M

M�

m=1

I(ym; sm) (2.57 )

and for all �, δ > 0 there exist M0,K0 > 0 such that for all M ≥ M0,
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K ≥ K0, capacity CP1 satisfies

1

2
log

�
1 +

π2

16

C2

C
2
SN

K

M3
(1− �)

�
≤ CP1

≤ 1

2
log

�
1 +

π2

16

C
2

C2
SN

max
�
K,M2+δ

�

M3
(1 + �)

�
. (2.58 )

Theorem 2.4 (Ergodic capacity of P2). Suppose that destination ter-
minal Dm (m∈[1 :M ]) has perfect knowledge of the
mean of the effective channel gain of the Sm → Dm link, given
by (π/(4

√
KM))

�K
k=1 C

m,m
P2,k . Then, the per source-destination termi-

nal pair capacity achieved by P2 is given by

CP2 =
1

2M

M�

m=1

I(ym; sm)

and for all �, δ > 0 there exist M0,K0 > 0, such that for all M ≥ M0,
K ≥ K0, capacity CP2 satisfies

1

2
log

�
1 +

π2

16

C2

C
2
SN

K

M2
(1− �)

�
≤ CP2

≤ 1

2
log

�
1 +

π2

16

C
2

C2
SN

max
�
K,M1+δ

�

M2
(1 + �)

�
. (2.59 )

The proofs of Theorems 2.3 and 2.4 are very similar. Below we
present the proof of Theorem 2.3 only. The proof of Theorem 2.4 is
omitted.

Proof of Theorem 2.3. Formula (2.57) follows because the input dis-
tribution in the protocol P1 is fixed, therefore we should not optimize
over it; the factor 1/2 in (2.57) results from the fact that data is trans-
mitted over two time slots. Next, we focus on proving the inequalities
in (2.58).

We start by establishing the lower bound in (2.58), the proof
of which uses the result summarized in Appendix C.3. To apply
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Lemma C.1 in Appendix C.3, we start from (2.7) and define

F̄m � 1√
K

K�

k=1

E[am,m
k ]

F̃m � 1√
K

K�

k=1

(am,m
k − E[am,m

k ])

Wm �
�

m̂ �=m

sm̂
1√
K

K�

k=1

am,m̂
k +

1√
K

K�

k=1

bmk zk + wm.

With these definitions, we can now rewrite (2.7) as

ym =
�
F̄m + F̃m

�
sm +Wm.

Straightforward, but tedious, manipulations yield

F̄m =
π

4

1√
K

�

k:p(k)=m

Cm,m
P1,k

Var
�
F̃m

�
=

1

K




K�

k=1

�
Cm,m

P1,k

�2
− π2

16

�

k:p(k)=m

�
Cm,m

P1,k

�2





Var[Wm] =
1

KM

�

m̂ �=m

K�

k=1

�
Cm,m̂

P1,k

�2
+

σ2

K

K�

k=1

�
Cm

P1,k

�2
+ σ2.

Next, we use (2.12) and (2.13) to lower-bound F̄m and upper-bound
Var

�
F̃m

�
and Var

�
Wm

�
, substitute the resulting bounds into (C.22),

and obtain13

I(ym; sm) ≥ log

�
1 +

π2

16

C2

(1/M)C
2
+ C

2
SN

K

M3

�
. (2.60)

Finally, fix � > 0 and set

M0 =
1− �

�

C
2

C
2
SN

.

13We note that this bound is valid for arbitrary M and K and is, therefore,
somewhat stronger than the asymptotic bound we are actually seeking.
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It then follows that for every M ≥ M0, the inequality

C2

(1/M)C
2
+ C

2
SN

≥ C2

C
2
SN

(1− �)

is satisfied, which together with (2.60) and (2.57) completes the proof
of the lower bound.

Proving the upper bound on CP1 in (2.58) turns out to be signif-
icantly more challenging. The method we use to this end is based
on the concentration result for sinrP1

m in Theorem 2.1. We start by
noting that the per-stream mutual information can be upper-bounded
by assuming that Dm has perfect knowledge of H and F, i.e.,

I(ym; sm) ≤ EH,F[I(ym; sm |H,F)]

= EH,F

�
log

�
1 + sinrP1

m

��

≤ log
�
1 + EH,F

�
sinrP1

m

��

where the last step follows from Jensen’s inequality.
Now fix � > 0. To prove the upper bound in (2.58), it suffices to

show that there exist M0,K0 > 0 such that for all M ≥ M0 and
K ≥ K0

EH,F

�
sinrP1

m

�
≤ A

max[K,M2+δ]

M3
(1 + �)

where we define

A � π2

16

C
2

C2
SN

.

To simplify the exposition, we define

g(M,K) � 1

A
sinrP1

m (M,K)
M3

max[K,M2+δ]
.

Note that we make the dependence of sinrP1
m on M and K explicit

by using the notation sinrP1
m (M,K). In the remainder of the proof,

we show that
EH,F[g(M,K)] ≤ 1 + � (2.61)
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for M and K large enough. Let fg(x) denote the PDF of g(M,K).
Then, the expectation EH,F[g(M,K)] can be written as

EH,F[g(M,K)] =

∞�

0

t fg(t)dt

=

1+�1�

0

t fg(t)dt+

∞�

1+�1

t fg(t)dt (2.62)

where �1 > 0 is chosen such that

1 + �1 < 1 + �/3.

Consequently, we have
1+�1�

0

t fg(t)dt ≤ (1 + �1)

1+�1�

0

fg(t)dt

≤ 1 + �1 < 1 + �/3. (2.63)

For bounding the second integral on the right-hand side of (2.62),
it is convenient to write the upper bound in Theorem 2.1 in the
following form: there exist ∆ > 0, δ1 > 0, δ2 > 0, and A1, A2, A3 > 0
such that for all x ≥ 1 and M,K ≥ 2

P

�
g(M,K) ≥ B(M,K, x)

�
≤ A3M

δ1Kδ2e−∆x2/7

(2.64)

with
B(M,K, x) � BN (M,K, x)

BD(M,K, x)

where BN (M,K, x) and BD(M,K, x) are given by

BN (M,K, x) � K

max[K,M2+δ]

�
1 +A1

M√
K

x

�2

(2.65)

BD(M,K, x)

�
C2 max

�
0, M−1

M − A2x
C2

√
M

�
+ c2σ2 max

�
0, 1− x

c2
√
K

�
+ σ2

C2
SN

.

(2.66)

43



2. “CRYSTALLIZATION” IN NETWORKS WITH COHERENT RELAYING

The second integral on the right-hand side of (2.62) will be shown,
for M and K large enough, to be upper bounded by 2�/3 by splitting
it up and proving that

�t0��

1+�1

t fg(t)dt ≤ �/3 (2.67)

and
∞�

�t0�

t fg(t)dt ≤ �/3 (2.68)

where the parameter t0 > 1+ �1, independent of M,K, will be chosen
later. It will become clear later why we need to split up the second
integral on the right-hand side of (2.62) according to (2.67) and (2.68).
The integral in (2.67) can be bounded as follows

�t0��

1+�1

t fg(t)dt ≤ �t0�
�t0��

1+�1

fg(t)dt

≤ �t0�P
�
g(M,K) ≥ 1 + �1

�
.

Set x(M) =
�
min

�√
M,Mδ

��1/3. With this choice of x(M), it is not
difficult to show that

lim
M,K→∞

A1
M x(M)�

max[K,M2+δ]
= 0

lim
M,K→∞

A2
x(M)

C2
√
M

= 0

lim
M,K→∞

x

c2
√
K

= 0

which yields

lim
M,K→∞

BN (M,K, x(M)) = lim
M,K→∞

K

max[K,M2+δ]
≤ 1. (2.69)
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Using C2
SN = C2 + σ2

�
c2 + 1

�
, we can furthermore conclude that

lim
M,K→∞

BD(M,K, x(M)) = 1

which, together with (2.69), implies that

lim
M,K→∞

B(M,K, x(M)) ≤ 1.

We can, therefore, conclude that there exist M (11)
0 ,K(11)

0 > 0 such
that for all M ≥ M (11)

0 and K ≥ K(11)
0

B(M,K, x(M)) ≤ 1 + �1. (2.70)

Trivially, we have

lim
M,K→∞

M δ1Kδ2e−∆(x(M))2/7 = 0

and, therefore, there exist M (12)
0 , K(12)

0 > 0 such that for all M ≥
M (12)

0 and K ≥ K(12)
0

A3M
δ1Kδ2e−∆(x(M))2/7 ≤ �

3�t0�
. (2.71)

Combining (2.70) and (2.71) and setting

M (1)
0 = max

�
M (11)

0 ,M (12)
0

�
, K(1)

0 = max
�
K(11)

0 ,K(12)
0

�

we get that for all M ≥ M (1)
0 and K ≥ K(1)

0

�t0�P
�
g(M,K) ≥ 1 + �1

�
≤ �/3 (2.72)

which concludes the proof of (2.67).
To show (2.68), we note that

∞�

�t0�

t fg(t)dt ≤
∞�

n=�t0�
(n+ 1)P

�
g(M,K) ≥ n

�
� S. (2.73)
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Expanding the square, upper-bounding x by x2 in BN (M,K, x), and
substituting the max terms in BD(M,K, x) by 0, we obtain the bound

B(M,K, x) ≤ K

max[K,M2+δ]

C2
SN

σ2

�
1 +

�
2A1

M√
K

+A2
1
M2

K

�
x2

�

� �� �
�B1(M,K,x2)

.

(2.74)
Applying the change of variables y = x2 in (2.74) and (2.64), we
finally get

P

�
g(M,K) ≥ B1(M,K,

√
y)
�
≤ P

�
g(M,K) ≥ B(M,K,

√
y)
�

≤ A3M
δ1Kδ2e−∆y1/7

. (2.75)

Equating B1(M,K, y) with n and solving for y, we find that

P

�
g(M,K) ≥ n

�
≤ A3M

δ1Kδ2e−∆(y2(n,M,K))1/7

with

y2(n,M,K) =

max[K,M2+δ]
K

�
σ2

C2
SN

n− K
max[K,M2+δ]

�

2A1
M√
K

+A2
1
M2

K

. (2.76)

Now, S defined in (2.73) can be upper-bounded as

S ≤ 2
∞�

n=�t0�
nP{g(M,K) ≥ n}

≤ 2A3M
δ1Kδ2

∞�

n=�t0�
ne−∆(y2(n,M,K))1/7 . (2.77)

If n is such that σ2n/C2
SN > 1, then the expression in the parentheses

in the numerator of (2.76) is strictly positive and it follows that

lim
M,K→∞

y2(n,M,K) = ∞.

Therefore, if t0 is chosen such that �t0� > C2
SN/σ

2, each term in
the sum in (2.77) goes to zero exponentially fast in M,K. Note that
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the split-up in (2.67) and (2.68) was needed to be able to choose t0
large enough here. To simplify the exposition in the following, we set
t0 =

�
27 + 1

�
C2

SN/σ
2, so that

�
σ2

C2
SN

n− K

max[K,M2+δ]

�1/7

≥ 2

for n ≥ �t0�. Next, we note that

lim
M,K→∞

max[K,M2+δ]

K

1

2A1
M√
K

+A2
1
M2

K

= ∞

so that there exist M (2)
0 ,K(2)

0 > 0 such that for all M ≥ M (2)
0

and K ≥ K(2)
0

�
max[K,M2+δ]

K

1

2A1
M√
K

+A2
1
M2

K

�1/7

≥ 2.

Now using that, trivially,

xy ≥ x+ y

for x, y ≥ 2, we have for all M ≥ M (2)
0 , K ≥ K(2)

0 and n ≥ �t0�

(y2(n,M,K))1/7 ≥
�

σ2

C2
SN

n− K

max[K,M2+δ]

�1/7

+

�
max[K,M2+δ]

K

1

2A1
M√
K

+A2
1
M2

K

�1/7

which yields

S ≤ 2A3M
δ1Kδ2e

−∆

�
2A1M

√
K+A2

1M2

max[K,M2+δ ]

�−1/7 ∞�

n=�t0�
η(n)

with

η(n) � n exp

�
−∆

�
σ2

C2
SN

n− 1

�1/7
�
.
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Clearly, η(n) decays fast enough for
�∞

n=�t0� η(n) to converge to a
finite limit, in other words, there exists a constant c < ∞ (independent
of M,K) such that

∞�

n=�t0�
η(n) ≤ c. (2.78)

Moreover, it is easily seen that

lim
M,K→∞

M δ1Kδ2e
−∆

�
2A1M

√
K+A2

1M2

max[K,M2+δ ]

�−1/7

= 0

which, together with (2.78), shows that S can be made arbitrarily
small by choosing M and K large enough. More specifically, there
exist M (3)

0 ,K(3)
0 > 0 such that for all M ≥ M (3)

0 and K ≥ K(3)
0

S ≤ �/3. (2.79)

Taking

M0 � max
�
M (1)

0 ,M (2)
0 ,M (3)

0

�

K0 � max
�
K(1)

0 ,K(2)
0 ,K(3)

0

�

and combining (2.63), (2.72), and (2.79), we have shown (2.61), which
completes the proof.

2.4.2. The “Crystallization” Phenomenon

As pointed out in the beginning of this chapter, the “crystallization”
phenomenon occurs for M,K → ∞, provided that K scales fast
enough as a function of M , and manifests itself in two effects, namely,
the decoupling of the individual Sm → Dm links and the convergence
of each of the resulting SISO links to a nonfading link.
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A. Decoupling of the network

Theorems 2.3 and 2.4 show that in the M,K → ∞ limit, the per-
source destination terminal pair capacity scales as

CP1 = (1/2) log
�
1 + Θ

�
K/M3

��

CP2 = (1/2) log
�
1 + Θ

�
K/M2

��

in P1 and P2, respectively. We can, therefore, conclude that if K ∝
M3+α in P1 and K ∝ M2+α in P2 with α ≥ 0, apart from the factor
1/2, which is due to the use of two time slots, P1 and P2 achieve
full spatial multiplexing gain (Tse and Viswanath, 2005) (i.e., full
sum-capacity pre-log) without any cooperation of the terminals in
the network, not even the destination terminals. The corresponding
distributed array gain (i.e., the factor inside the log) is given by Mα

in both cases.
The fact that the per source-destination terminal pair capacity

is strictly positive when K scales at least as fast as M3 in P1 and
at least as fast as M2 in P2 shows that the individual Sm → Dm

links in the network “decouple” in the sense that the SINR is strictly
positive for each of the links. Note that this does not imply that
the interference at the Dm (created by sm̂ with m̂ �= m) vanishes.
Rather, if K scales fast enough, the signal power starts dominating the
interference (plus noise) power. Since both upper and lower bounds in
Theorems 2.3 and 2.4 exhibit the same scaling behavior, the K ∝ M3

and K ∝ M2, respectively, thresholds are fundamental in the sense
of defining the critical scaling rate by delineating the regime where
interference dominates over the signal and hence drives the per source-
destination terminal pair capacity to zero from the regime where
the signal dominates the interference and the per source-destination
terminal pair capacity is strictly positive. Further inspection of the
upper and lower bounds in (2.58) and (2.59) reveals that, for fixed � >
0, unless all path loss and shadowing coefficients Ek,m and Pm,k

(k∈[1 :K],m∈[1 :M ]) are equal and hence C
2
= C2 and C

2
SN = C2

SN,
there is a gap (apart from that due to � > 0) between the bounds.

The order-of-magnitude reduction in the threshold for critical scal-
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ing in P2, when compared with P1, comes at the cost of each relay
having to know all M backward and M forward channels. We can,
therefore, conclude that P1 and P2 trade off the number of relay
terminals for channel knowledge at the relays.

Finally, it is worthwhile to point out that in contrast to the
finite-M results for P1 reported by Bölcskei et al. (2006), the des-
tination terminals Dm do not need knowledge of the fading coeffi-
cients hk,m and fm,k. This can be seen by noting that the quan-
tity

�
π/(4

√
K)

��
k:p(k)=m Cm,m

P1,k , which has to be known at Dm,
depends on Ek,m, Pm,k, K, and M only. Moreover, the coefficient�
π/(4

√
K)

��
k:p(k)=m Cm,m

P1,k can easily be acquired through training.

B. Convergence to nonfading links and “crystallization”

When the network decouples, it is interesting to ask how the decoupled
SISO links behave (in terms of their fading statistics) when M and K
grow large. The answer to this question follows from the concentration
results in Theorems 2.1 and 2.2, which can be reformulated to establish
upper bounds on the outage probability for the individual Sm → Dm

links. For the sake of brevity, we focus on P1 in what follows. The
goal is to arrive at a statement regarding

Pout,P1(R) � P

�
1

2
log

�
1 + sinrP1

m

�
≤ R

�

= P
�
sinrP1

m ≤ 22R − 1
�
.

The corresponding result is summarized as follows.

Theorem 2.5 (Outage probability for P1).

1. Assume that K ≥ 2, M ≥ 2, and R ≥ 0 are such that

x(R) =
1− eP1(M,K,R)

16
Cπ

M√
K

+ eP1(M,K,R)
�

3
C

2
SN

1√
M

+ σ2

C
2
SN

1√
K

� ≥ 1 (2.80 )

where

eP1(M,K,R) =
16

π2

C
2
SN

C2

M3

K

�
22R − 1

�
.
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Then, the individual link outage probability is upper-bounded as

Pout,P1(R) ≤ 151K2Me−∆P1 x(R)2/7 . (2.81 )

2. Under the same conditions on K,M and R as in 1), for all �, δ > 0,
K ≥ M3+δ, and

R ≤ 1

2
log

�
1 +

π2

16

C2

C
2
SN

K

M3
(1− �)

�
, (2.82 )

we have

lim
M,K→∞

Pout,P1(R) ≤ lim
M,K→∞

151K2Me−∆P1 x(R)2/7 = 0.

Proof. We start with the proof of statement 1). Recall that Theo-
rem 2.1 provides us with a parametric upper bound on

P
�
sinrP1

m ≤ LP1(x)
�

with LP1(x) defined in (2.54). Assuming that

x ≤ Cπ
√
K

16M
(2.83)

and using C
2
SN = C

2
+ σ2

�
c2 + 1

�
, we can lower-bound LP1(x) as

LP1(x) ≥
π2

16

C2

C
2
SN

K

M3

1− 16
Cπ

M√
K
x

1 + 3
C

2
SN

x√
M

+ σ2

C
2
SN

x√
K

� L�
P1(x).

Solving
22R − 1 = L�

P1(x) (2.84)

for x(R) yields (2.80), which, by assumption, satisfies x(R) ≥ 1. With

P

�
sinrP1

m ≤ L�
P1(x)

�
≤ P

�
sinrP1

m ≤ LP1(x)
�
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we can now apply14 Theorem 2.1 to obtain

Pout,P1(R) ≤ 151K2Me−∆P1 x(R)2/7 . (2.85)

Finally, we note that x(R) in (2.80) is trivially seen to satisfy (2.83).
This concludes the proof of statement 1).

The proof of statement 2) is obtained by establishing a sufficient
condition on x(R), for every R ≥ 0, to grow with increasing M (and
by K ≥ M3+δ with increasing K). Using (2.80), it is easily verified
that guaranteeing

0 ≤ eP1(M,K,R) ≤ 1− �

for some 0 < � < 1 (independent of M,K) provides such a condition.
The final result is now obtained by solving

eP1(M,K,R) =
16

π2

C
2
SN

C2

M3

K

�
22R − 1

�
≤ 1− �

for R.

The implications of Theorem 2.5 are significant: For any transmis-
sion rate R less than the ergodic capacity (in the case Ek,m = Pm,k

for all k,m) or the ergodic capacity lower bound in Theorem 2.3 (in
the case of general Ek,m and Pm,k), the outage probability of each of
the decoupled links goes to zero exponentially fast in the number of
nodes in the network, provided K scales supercritically in M . We have
thus shown that choosing the rate of growth of K fast enough for the
network to decouple automatically guarantees that the decoupled SISO
links converge to nonfading links. Equivalently, we can say that each
of the decoupled links experiences a distributed spatial diversity (or,
more precisely, relay diversity) order that goes to infinity as M → ∞.
Consequently, in the large-M limit time diversity (achieved by coding
over a sufficiently long time horizon) is not needed to achieve ergodic
capacity. We say that the network “crystallizes” as it breaks up into
14Strictly speaking, one needs to use the upper bounds on P

�
sinrP1

m ≤ LP1(x)
�

derived in the last paragraph of Appendix C.1.
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a set of effectively isolated “wires in the air”. From (2.81), we can
furthermore infer the “crystallization” rate, i.e., the rate (as a function
of M and K) at which the individual Sm → Dm links converge to
nonfading links. We note, however, that the exponent 2/7 (and 2/9
for P2) is unlikely to be fundamental as it is probably a consequence
of the application of the truncation technique. In this sense, we can
only specify a guaranteed crystallization rate. We conclude by noting
that the upper bound (2.85) (as well as the corresponding result for
P2) tend to be rather loose. This is probably a consequence of the
truncation technique and the use of union bounds to characterize the
large-deviations behavior of the individual link SINR RVs.

Numerical results: We shall finally provide numerical results quan-
tifying the outage behavior of P1 and P2. For simplicity, we set
Ek,m = Pm,k = 1 for all m, k and σ2 = 0.01 in both simulation
examples. This choice for the path loss and shadowing parameters,
although not representative of a real-world propagation scenario,
isolates the dependence of our results on the network geometry. More-
over, it ensures that the distribution of the different SINR RVs for a
given protocol is identical for all links so that it suffices to analyze
the behavior of only one SINR RV for each of the two protocols. For
K = M3 in P1 and K = M2 in P2, Figure 2.3 shows the cumulative
distribution functions (CDFs) (obtained through Monte-Carlo simu-
lation) of sinrP1 and sinrP2, respectively, for different values of M .
We observe that, for increasing M , the CDFs approach a step function
at the corresponding mean values, i.e., the SINR RVs, indeed, converge
to a deterministic quantity, and, consequently, the underlying fading
channel converges to a nonfading channel. The limiting mean values
are given by the lower and upper bounds (which coincide in the case
Ek,m = Pm,k = 1 for all m, k) in (2.58) and (2.59) for P1 and P2,
respectively. We can furthermore see that for fixed M the CDFs are
very similar for P1 and P2 (recall, however, that K = M3 in P1 and
K = M2 in P2), suggesting that the convergence behavior is similar
for the two protocols. The difference in the theoretically predicted
convergence exponents (2/7 for P1 and 2/9 for P2) therefore does not
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seem to be fundamental to the two protocols and may, indeed, be a
consequence of our proof technique as already pointed out above.

2.4.3. Cooperation at the Relay Level
The analysis carried out so far was based on the assumption that the
relays cannot cooperate. The purpose of this section is to investigate
the impact of cooperation (in fact, a specific form of cooperation)
at the relay level on the ergodic-capacity scaling behavior in the
coherent-relaying case. Note that we continue to assume that the
destination terminals cannot cooperate. Before proceeding, we would
like to mention that concentration results and an outage analysis
along the lines of the discussion in Sections 2.3 and 2.4.2 are possible,
but will be omitted for brevity of exposition.

Cooperation at the relay level will be accounted for by grouping
the K single-antenna relay terminals into Q groups

Gq �
�
R(q−1)L+1,R(q−1)L+2, . . . ,RqL

�
, q ∈[1 :Q]

with L relays in each group15 and by assuming that the relays in
each group can fully cooperate, but cooperation across groups is not
possible. In order to simplify the exposition, in the remainder of this
section, we think of a group Gq (q ∈[1 :Q]) as a single relay element
with L antenna elements and use the term “vector-relay (v-relay)”
terminal to address the L-antenna relays G1,G2, . . . ,GQ. For q ∈[1 :Q]
and m∈[1 :M ], the following notation will be used:

rq � [r(q−1)L+1 r(q−1)L+2 · · · rqL]
T

tq � [t(q−1)L+1 t(q−1)L+2 · · · tqL]
T

zq � [z(q−1)L+1 z(q−1)L+2 · · · zqL]
T

hq,m � [h(q−1)L+1,m h(q−1)L+2,m · · · hqL,m]T

fm,q � [fm,(q−1)L+1 fm,(q−1)L+2 · · · fm,qL]
T

15For simplicity, we assume that Q divides K so that K = QL.
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Fig. 2.3.: Simulated (Monte-Carlo) SINR CDFs for different values of M for (a)
K = M3 in P1 and (b) K = M2 in P2.
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where rq and tq are the (L-dimensional) vector-valued signals received
and transmitted by the qth v-relay, respectively, zq is additive noise
at the qth v-relay, hq,m contains the channel gains for the Sm → Gq

link, and fm,q contains the channel gains for the Gq → Dm link.
Additionally, for simplicity, we assume that relays belonging to a
given group q are located close to each other so that

Êq,m � E(q−1)L+1,m = E(q−1)L+2,m = · · · = EqL,m

P̂m,q � Pm,(q−1)L+1 = Pm,(q−1)L+2 = · · · = Pm,qL

for q ∈[1 :Q] and m∈[1 :M ]. With this notation, the IO relations (2.1)
and (2.2) for the Sm → Gq links and the Gq → Dm links can be
written as

rq =
M�

m=1

Êq,mhq,msm + zq, q ∈[1 :Q]

and

ym =
Q�

q=1

P̂m,qf
T

m,qtq + wm, m∈[1 :M ]

respectively. Next, we describe the generalization of the protocols P1
and P2 to the case of v-relays making the aspect of cooperation at
the relay level explicit.

A. P1 for the Cooperative Case

Like in the case of single-antenna relays (described in Section 2.3.1),
we partition the Q v-relay terminals into M subsets Mm (m∈[1 :M ])
with16 |Mm| = Q/M . The v-relays (each of which has L antenna
elements) in Mm are assumed to assist the mth source-destination ter-
minal pair {Sm,Dm}, and the relay partitioning function p : [1, Q] →
[1,M ] is defined as

p(q) � m ⇔ Gq ∈Mm.

16For simplicity, we assume that M divides Q.
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We assume that the qth v-relay terminal has perfect knowledge of
the phases of the SIMO backward channel Sp(q) → Gq and the phases
of the corresponding multiple-input single-output (MISO) forward
channel Gq → Dp(q). This implies that perfect knowledge of the
vectors

h̃q,p(q) �
�
ei arg([hq,p(q)]1) ei arg([hq,p(q)]2) · · · ei arg([hq,p(q)]L)

�T

and

f̃p(q),q �
�
ei arg([fp(q),q]1) ei arg([fp(q),q]2) · · · ei arg([fp(q),q]L)

�T

is available at Gq. The signal rq received at the qth v-relay terminal
is phase-matched-filtered first w.r.t. the assigned backward channel
Sp(q) → Gq and then w.r.t. the assigned forward channel Gq → Dp(q)

followed by a normalization so that

tq = dP1,q f̃
∗
p(q),q

�
h̃
H

q,p(q) rq

�
(2.86)

where17 the choice

dP1,q � 1

L

�
Prel

�
Q

M

M�

m=1

Êq,m +
π(L− 1)Q

4M
Êq,p(q) +Qσ2

�−1/2

ensures that the per-v-relay power constraint

E
�
�tq�2

�
= Prel/Q q ∈[1 :Q]

and consequently the total (across v-relays) power constraint

Q�

q=1

E
�
�tq�2

�
= Prel

17The quantity dP1,q, used in this section is (for L > 1) different from dP1,k

defined in (2.5). We use the same symbol for notational simplicity and employ
the index q (instead of k) consistently, in order to resolve potential ambiguities.
The same comment applies to other variables redefined in this section.
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is met. As in the single-antenna relay (i.e., noncooperative) case, P1
ensures that the relays Gq ∈Mm forward the signal intended for Dm in
a “doubly coherent” (w.r.t. the assigned backward and forward channel)
fashion whereas the signals transmitted by the source terminals Sm̂

with m̂ �= m are forwarded to Dm in a “noncoherent” fashion (i.e.,
phase incoherence occurs either on the backward or the forward
link or on both links). From (2.86), we can see that cooperation in
groups of L single-antenna relays is realized by phase combining on
the backward and forward links of each v-relay. More sophisticated
forms of cooperation such as equalization on the backward link and
precoding on the forward link are certainly possible, but are beyond
the scope of this thesis.

B. P2 for the Cooperative Case

Like in the case of single-antenna relays (i.e., the noncooperative case),
P2 requires that each relay, in fact here v-relay, knows the phases of
all its M vector-valued backward and forward channels, i.e., Gq needs
knowledge of h̃q,m and f̃m,q, respectively, for m∈[1 :M ]. The relay
processing stage in P2 computes

tq = dP2,q

�
M�

m=1

f̃
∗
m,qh̃

H

q,m

�
rq

where

dP2,q � 1

L

�
Prel

�
Q

M�

m=1

Êq,m +
π(L− 1)Q

4M

M�

m=1

Êq,m +MQσ2

�−1/2

ensures that the per-v-relay power constraint

E
�
�tq�2

�
= Prel/Q q ∈[1 :Q]

and, consequently, the total (across relays) power constraint
Q�

q=1

E
�
�tq�2

�
= Prel

is met.
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C. Ergodic-Capacity Results

We are now ready to establish the impact of cooperation at the relay
level on the ergodic capacity scaling laws for P1 and P2. Our results
are summarized in Theorems 2.6 and 2.7 below.

Theorem 2.6 (Capacity of P1 with cooperation). Suppose that
destination terminal Dm (m∈[1 :M ]) has perfect knowledge of the
mean of the effective channel gain of the Sm → Dm link, given by
(π/4)L2

�
q:p(q)=m dP1,qP̂m,qÊq,m. Then, for all �, δ > 0, there exist

M0, Q0 > 0 such that for all M ≥ M0 and Q ≥ Q0 the per source-
destination terminal pair ergodic capacity achieved by P1 satisfies18

1

2
log

�
1 +

π2

16

QL2

M3

C2

C
2
SN

(1− �)

�
≤ CP1

≤ 1

2
log

�
1 +

π2

16

max
�
Q,M2+δ

�
L2

M3

C
2

C2
SN

(1− �)

�
. (2.87 )

Theorem 2.7 (Capacity of P2 with cooperation). Suppose that
destination terminal Dm (m∈[1 :M ]) has perfect knowledge of the
mean of the effective channel gain of the Sm → Dm link, given
by (π/4)L2

�Q
q=1 dP2,qP̂m,qÊq,m. Then, for all �, δ > 0, there exist

M0, Q0 > 0 such that for all M ≥ M0, Q ≥ Q0 the per source-
destination terminal pair ergodic capacity achieved by P2 satisfies

1

2
log

�
1 +

π2

16

QL2

M2

C2

C
2
SN

(1− �)

�
≤ CP2

≤ 1

2
log

�
1 +

π2

16

max
�
Q,M1+δ

�
L2

M2

C
2

C2
SN

(1− �)

�
. (2.88 )

Proof of Theorems 2.6 and 2.7. The upper bounds in (2.87) and (2.88)
are again established based on a concentration result for the individual
18Note that the quantities CSN, C, C, and CSN used in this section have been
defined in Section 2.3.
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link SINRs and the lower bounds build on the technique summarized
in Appendix C.3. The proofs of Theorems 2.6 and 2.7 are almost iden-
tical to the proofs of Theorems 2.3 and 2.4, respectively, and do not
require new techniques. There is, however, one important aspect in
which Theorems 2.6 and 2.7 differ from Theorems 2.3 and 2.4, namely,
the appearance of the factor L2 in (2.87) and (2.88). To demonstrate
where this factor comes from, we provide the proof of the ergodic
capacity lower bound for P1 in Appendix C.2. The proofs of the
remaining statements will be omitted for brevity of exposition.

Discussion of results: Just like in the noncooperative (i.e., single-
antenna relay) case, we can conclude that asymptotically in M if
K ∝ M3+α in P1 and K ∝ M2+α in P2 with α > 0, the network
decouples.

The effect of cooperation (through phase matched-filtering) at the
relay level manifests itself in the presence of the factor L2 inside the
log in the bounds for CP1 and CP2 stated in Theorems 2.6 and 2.7,
respectively. We can summarize the results of Theorems 2.6 and 2.7
as19

CP1 =
1

2
log

�
1 + Θ

�
QL2

M3

��

CP2 =
1

2
log

�
1 + Θ

�
QL2

M2

��
.

We can, therefore, conclude that the per-stream array gain A is given
by AP1 = QL2/M3 for P1 and AP2 = QL2/M2 for P2. On a concep-
tual level, the array gain can be decomposed into a contribution due
to distributed array gain, Ad, and a contribution due to cooperation at
the relay level (realized by phase matching on backward and forward
links), Ac, i.e., A = AdAc with Ad,P1 = QL/M3, Ad,P2 = QL/M2,
and Ac,P1 = Ac,P2 = L. To illustrate the impact of cooperation at
19Note that we use the Θ(·) notation only to hide the dependence on E, E, P , and
P . Strictly speaking, as L is finite it should also be hidden under the Θ(·) notation.
However, our goal is to exhibit the impact of cooperation at the relay level on
CP1 and CP2, which is the reason for making the dependence on L explicit.
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the relay level, we compare a network with K noncooperating single-
antenna relays to a network with a total of K = QL single-antenna
relays cooperating in groups of L single-antenna relays. In the case
where there is no cooperation at the relay level, we have

C(nc)
P1 =

1

2
log

�
1 + Θ

�
K

M3

��

whereas if the relays cooperate in groups of L single-antenna relays,
we get

C(c)
P1 =

1

2
log

�
1 + Θ

�
KL

M3

��
.

Cooperation at the relay level (realized by phase matched-filtering) in
groups of L single-antenna relays therefore yields an L-fold increase
in the effective per-stream SINR due to additional array gain given
by Ac = L. Equivalently, the total number of single-antenna relays
needed to achieve a given per source-destination terminal pair capacity
is reduced by a factor of L through cooperation in groups of L single-
antenna relay elements. The conclusions for P2 are identical.

As already pointed out above, the network decouples into effectively
isolated source-destination pair links for every finite L > 1. Even
though a concentration analysis along the lines of Theorems 2.1
and 2.2 was not reported (for the sake of brevity), it can be shown
that for finite L > 1 the individual links converge to nonfading links
as M,Q → ∞, provided that Q scales supercritically as a function
of M .

Numerical example: We conclude this section with a numerical
example that demonstrates the impact of cooperation at the relay
level, where we use the same parameters as in the simulation examples
at the end of Section 2.4.2. Figure 2.4 shows the SINR CDF for P1
with L = 4 and QL = M3 (the case L = 1 shown in Figure 2.3
is included for reference). We observe that, as pointed out above,
for increasing M , we, indeed, get convergence of the fading link to a
nonfading link. Moreover, we can also see that increasing L for fixed M
results in higher per source-destination terminal pair capacity, but at

61



2. “CRYSTALLIZATION” IN NETWORKS WITH COHERENT RELAYING

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

limiting CDF

P
{

S
IN

R
≤

x

}

x

M = 5
M = 20

M = 35

L = 4

L = 1

M = 35

M = 5

M = 20

Fig. 2.4.: Simulated (Monte-Carlo) SINR CDFs for different values of M for QL =
M3 in P1 with L = 1 and L = 4.

the same time slows down convergence (w.r.t. M and hence also Q)
of the link SINRs to their deterministic limits.

2.5 . SUMMARY OF RESULTS

The minimum rate of growth of the number of relays K, as a function
of the number of source-destination terminal pairs M , for fading
interference networks with coherent relays to decouple was shown
to be K ∝ M3 under protocol P1 and K ∝ M2 under protocol P2.
P1 requires relay partitioning and the knowledge of one backward
and one forward fading coefficient at each relay, whereas P2 does not
need relay partitioning, but requires that each relay knows all its M
backward and M forward fading coefficients. The protocols P1 and
P2 are thus found to trade off CSI at the relays for the required (for
the network to decouple) rate of growth of K as a function of M .
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We found that cooperation at the relay level in groups of L relays,
both for P1 and P2, results in an L-fold reduction of the total number
of relays needed to achieve a given per source-destination terminal pair
capacity. An interesting open question in this context is whether more
sophisticated signal processing at the relays (such as equalization for
the backward link and precoding for the forward link) could lead to
improved capacity scaling behavior.

It was furthermore shown that the critical growth rates K ∝ M3

in P1 and K ∝ M2 in P2 are sufficient to not only make the network
decouple, but to also make the individual source-destination fading
links converge to nonfading links. We say that the network “crystallizes”
as it breaks up into a set of effectively isolated “wires in the air”.
More pictorially, the decoupled links experience increasing distributed
spatial (or more specifically relay) diversity. Consequently, in the
large-M limit time diversity (achieved by coding over a sufficiently
long time horizon) is not needed to achieve ergodic capacity. We
furthermore characterized the “crystallization” rate (more precisely
a guaranteed “crystallization” rate as we do not know whether our
bounds are tight), i.e., the rate (as a function of M,K) at which
the decoupled links converge to nonfading links. In the course of our
analysis, we developed a new technique for characterizing the large-
deviations behavior of certain sums of dependent random variables.

The large-deviations analysis, along with the notion of decoupling of
the network, as carried out in this thesis could serve as a general tool
to assess the impact of protocols, processing at the relays, propagation
conditions, routing, and scheduling on network outage and ergodic
capacity performance. More specifically, an interesting question is
under which conditions “crystallization” can happen in a general
network and, if it occurs, what the corresponding “crystallization”
rate would be. It has to be noted, however, that, in view of the
technical difficulties posed by the basic case analyzed in this chapter,
it is unclear whether this framework can yield substantial analytical
insights into the above-mentioned questions.

Finally, we note that if we interpret our results in terms of per-
node throughput, we find that P1 achieves O

�
1/n2/3

�
whereas P2
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realizes O(1/
√
n), where n = 2M +K is the total number of nodes

in the network. The scaling law for P2 is exactly the same as the
behavior established by Gupta and Kumar (2002) and the per-node
throughput goes to zero. On the other hand, it is interesting to
observe that we can get an O(1/

√
n) throughput without imposing

any assumptions on the path loss behavior. General conclusions on the
impact of fading on the network-capacity scaling law cannot be drawn
as we are considering a specific setup and specific protocols. Based
on the work of Aeron and Saligrama (2007), Özgür et al. (2007) have
recently shown, however, that under optimistic assumptions on CSI in
the network (every user must know all the channels globally), O(1)
per-node throughput can be achieved using hierarchical cooperation.
For more details on this, see the Ph.D. thesis of Özgür (2009).
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CHAPTER 3

Networks with Noncoherent
Amplify-and-Forward Relaying

In Chapter 2, we have considered networks with coherent relaying,
where each relay terminal is assumed to know its assigned backward
and forward channels (P1) or all its backward and all its forward
channels (P2) perfectly. In this chapter, we relax this assumption
and study networks with no CSI at the relay terminals, i.e., networks
with noncoherent relaying. In particular, we investigate a simple AF
architecture where the relay terminals, in the second time slot, forward
(without additional processing) a scaled version of the signal received
in the first time slot. As already mentioned in Section 2.2, the source
terminals do not have CSI. The destination terminals have CSI and,
in contrast to Chapter 2, are allowed to cooperate and perform joint
decoding.

3.1. CONTRIBUTIONS AND RELATION TO
PREVIOUS WORK

Previous work of Bölcskei et al. (2006) for the noncoherent-relaying
(AF) case demonstrated that for M fixed and K → ∞, AF relaying
turns the fading interference relay network into a fading point-to-point
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3. NETWORKS WITH NONCOHERENT AMPLIFY-AND-FORWARD RELAYING

MIMO link, showing that the use of relays as active scatterers can
recover spatial multiplexing gain in poor scattering environments.
Our main contributions for the noncoherent-relaying (AF) case are as
follows:

• As in the coherent-relaying case, the proof techniques used by
Bölcskei et al. (2006) for the noncoherent-relaying (AF) case rely
heavily on M being finite. Building on results reported by Silver-
stein (1995), we compute the M,K → ∞ (with K/M → β fixed)
per source-destination terminal pair capacity using tools from
large-random-matrix theory (Tulino and Verdú, 2004; Müller,
2003; Anderson et al., 2009). The limiting eigenvalue density
function of the effective MIMO channel matrix between the source
and destination terminals is characterized in terms of its Stielt-
jes transform as the unique solution of a fixed-point equation,
which can be transformed into a fourth-order equation. Upon
solving this fourth-order equation and applying the inverse Stielt-
jes transform, the remaining steps to computing the limiting
eigenvalue density function, and based on that the asymptotic
network capacity, need to be carried out numerically. We show
that this can be accomplished in a straightforward fashion and
provide a corresponding algorithm.

• We show that for β → ∞, the fading AF relay network is turned
into a fading point-to-point MIMO link (in a sense to be made
precise in Section 3.5), thus establishing the large-M,K analog
of the result found previously by Bölcskei et al. (2006) for the
finite-M and K → ∞ case.

3.2. THE AMPLIFY-AND-FORWARD PROTOCOL

Throughout this chapter, we use the basic setup introduced in Sec-
tion 2.2. In addition, we assume that Ek,m = Pm,k = 1 for all
m∈[1 :M ], k∈[1 :K]. This assumption is crucial as the technique
used to derive the main result in this chapter does not seem to be
applicable for general Ek,m and Pm,k. On the other hand, the results
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in this chapter do not require H and F to have Gaussian entries. Upon
reception of rk, the kth relay terminal simply scales the received signal
to obtain tk =

�
d/

√
K
�
rk. Choosing d =

�
Prel/(1 + σ2) ensures that

the per-relay power constraint E
���tk

��2� ≤ Prel/K and hence the total
power constraint E

�
�t�2

�
≤ Prel is met.

With these assumptions, inserting (2.1) into (2.2), we get the fol-
lowing IO relation

y =
d√
K

FHs+
d√
K

Fz+w. (3.1)

In the remainder of this chapter, we assume that the jointly decoding
destination terminals have access to the realizations of H and F. In
fact, as the analysis below shows, knowledge of FH and F is sufficient.

3.3. CAPACITY OF THE
AMPLIFY-AND-FORWARD PROTOCOL

Based on the IO relation (3.1), we shall next study the behavior
of I(y; s |FH,F) when M,K → ∞ with K/M → β. We start by
noting that

I(y; s |FH,F) = log det

�
I+

d2

σ2MK
H

H
F

H

�
d2

K
FF

H + I

�−1

FH

�
.

Since the destination terminals perform joint decoding, the ergodic
capacity per source-destination terminal pair is given by

CAF =
1

2
E

�
1

M

K�

k=1

log

�
1 +

1

σ2
λk

�
1

M
HH

H
T

���
(3.2)

where

T � d2

K
F

H

�
I+

d2

K
FF

H

�−1

F

and the factor 1/2 in (3.2) results from the fact that data is trans-
mitted over two time slots.
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3.4 . ASYMPTOTIC CAPACITY BEHAVIOR

To compute CAF in the M,K → ∞ limit with K/M → β, we start by
analyzing the corresponding asymptotic behavior of λk

�
(1/M)HH

H
T
�
.

To this end, we define the empirical spectral distribution (ESD) of a
matrix (random or deterministic).

Definition 3.1. Let A∈C
N×N be a Hermitian matrix. The ESD of

A is defined as

FN
A
(x) � 1

N

N�

n=1

I[λn(A) ≤ x] .

For random A, the quantity FN
A
(x) is random as well, i.e., it is a

RV for each x. In the following, our goal is to prove the convergence
(in the sense defined below), when M,K → ∞ with K/M → β and
β ∈(0,∞), of FK

(1/M)HHHT
(x) to a deterministic limit and to find the

corresponding limiting eigenvalue distribution.

Definition 3.2. We say that the ESD FN
A
(x) of a random Hermitian

matrix A∈C
N×N converges almost surely (a.s.) to a deterministic

limiting function FA(x), when N → ∞, if for every � > 0 there exists
an N0 > 0 such that for all N ≥ N0 a.s.

sup
x∈R

��FN
A
(x)− FA(x)

�� ≤ �.

To prove the convergence of FK
(1/M)HHHT

(x) to a deterministic
limiting function, we start by analyzing FK

T
(x).

Lemma 3.1. For M,K → ∞ with K/M → β, the ESD FK
T
(x)

converges a.s. to a nonrandom limiting distribution FT(x) with corre-
sponding density given by1

fT(x) =

�
(1 + γ1)(1 + γ2)

�
γ2

1+γ2
− x

�+�
x− γ1

1+γ1

�+

2πd2x(1− x)2
+

�
1− 1

β

�+
δ(x)

(3.3 )
1Note that (3.3) implies that fT(x) is compactly supported in the inter-

val [γ1/(1 + γ1), γ2/(1 + γ2)] .
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where γ1 � d2(1− 1/
√
β)2 and γ2 � d2(1 + 1/

√
β)2.

Proof. We start with the singular value decomposition

d√
K

F = UΣV

where the columns of U∈C
M,M are the eigenvectors of the ma-

trix (d2/K)FFH, the columns of V
H ∈C

K,K are the eigenvectors
of (d2/K)FH

F, and the matrix Σ∈R
M,K contains R = min(M,K)

nonzero entries Σ11,Σ22, . . . ,ΣRR, which are the positive square
roots of the nonzero eigenvalues of the matrix (d2/K)FFH. Defining
Λ � ΣΣH ∈R

M,M , we have

T = V
HΣH (I+ Λ)−1 ΣV.

By inspection, it follows that

FK
ΣH(I+Λ)−1Σ(x) =

M

K
FM

Λ

�
x

1− x

�
+

�
1− M

K

�
u(x). (3.4)

As FM
Λ (x) = FM

(d2/K)FFH(x), by the Marčenko-Pastur law (see
Theorem D.3 in Appendix D), we conclude that FM

Λ (x) converges
a.s. to a limiting nonrandom distribution FΛ(x) with corresponding
density

fΛ(x) =
β

2πxd2

�
(γ2 − x)+ (x− γ1)

+ + [1− β]+δ(x). (3.5)

From (3.4) we can, therefore, conclude that FK
ΣH(I+Λ)−1Σ(x) converges

a.s. to a nonrandom limit given by

FΣH(I+Λ)−1Σ(x) =
1

β
FΛ

�
x

1− x

�
+

�
1− 1

β

�
u(x). (3.6)

Taking the derivative w.r.t. x on both sides of (3.6), the density
corresponding to FΣH(I+Λ)−1Σ(x) is obtained as

fΣH(I+Λ)−1Σ(x) =
1

β
fΛ

�
x

1− x

�
1

(1− x)2
+

�
1− 1

β

�
δ(x). (3.7)
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We obtain the final result in (3.3) now by noting that fT(x) =
fΣH(I+Λ)−1Σ(x) because of the unitarity of V and by inserting (3.5)
into (3.7) and carrying out straightforward algebraic manipulations.

Based on Lemma 3.1, we can now apply Theorem D.2 (Appendix D)
to conclude that FK

(1/M)HHHT
(x) converges a.s. to a deterministic

function F(1/M)HHHT(x) as M,K → ∞ with K/M → β. The cor-
responding limiting density f(1/M)HHHT(x) is obtained through the
application of the Stieltjes inversion formula (D.1) to the solution of
the fixed-point equation

G(z) =

∞�

−∞

fT(x)dx

x(1− β − βzG(z))− z

� �� �
I

, z ∈C
+ (3.8)

in the set
�
G(z)∈C

��−(1− β)/z + βG(z)∈C
+
�
, z ∈C

+ (3.9)

where we used the symbol G(z) to denote the Stieltjes transform
G(1/M)HHHT(z). In the following, for brevity, we write G instead
of G(z). To solve (3.8), we first compute the integral I on the right-
hand side of (3.8). We substitute fT(x) from (3.3) into (3.8) and
define

η1 � γ1
1 + γ1

, η2 � γ2
1 + γ2

, ρ �
�

(1 + γ1)(1 + γ2)

2πd2

to obtain

I = −1

z

�
1− 1

β

�+
+

1

z

η2�

η1

ρ
�

(η2 − x) (x− η1) dx

x(1− x)2
�
x
�

1−β
z − βG

�
− 1

�

� �� �
Î

. (3.10)

The integral Î is computed in Appendix E. Employing the nota-
tion introduced in Appendix E, we can finally write the fixed point
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equation (3.8) as

Gz = −
�
1− 1

β

�+
+ χ

�
A1Î1 +A2Î2 +A3Î3 +A4Î4

�
. (3.11)

It is tedious, but straightforward, to show that for every β > 0

−
�
1− 1

β

�+
+ χA1Î1 = −β − 1

2β

so that (3.11) can be written as

Gz +
β − 1

2β
− χA2Î2 − χA3Î3 = χA4Î4. (3.12)

Next, multiplying (3.12) by 2d2β(Gβz + z + β − 1)2, squaring both
sides, introducing the auxiliary variable

Ĝ � −1− β

z
+ βG

we obtain after straightforward, but tedious, manipulations that Ĝ
must satisfy the following quartic equation

Ĝ
4
+ a3Ĝ

3
+ a2Ĝ

2
+ a1Ĝ + a0 = 0 (3.13)

with the coefficients

a3 =
1

z
(2z − β + 1) a2 =

1

z

�
z − β + 3− β

d2

�

a1 =
1

z2

�
2z − β + 1− β

d2

�
a0 =

1

z2
.

The quartic equation (3.13) can be solved analytically. The resulting
expressions are, however, very lengthy, do not lead to interesting
insights, and will therefore be omitted. It is important to note, however,
that (3.13) has two pairs of complex conjugate roots. The solutions
of (3.13) will henceforth be denoted as Ĝ1, Ĝ

∗
1, Ĝ2, and Ĝ

∗
2. We

recall that our goal is to find the unique solution G of the fixed
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point equation (3.8) such that Ĝ = −(1 − β)/z + βG ∈C
+ for all

z ∈C
+. Therefore, in each point z ∈C

+ we can immediately eliminate
the two solutions (out of the four) that have a negative imaginary
part. In practice, this can be done conveniently by constructing the
functions Ĝ

�
1 � �Ĝ1+i

���Ĝ1

�� and Ĝ
�
2 � �Ĝ2+i

���Ĝ2

��, which can be
computed analytically, satisfy (3.13), and are in C

+ for every z ∈C
+.

Next, note that (3.12) has a unique solution in the set (3.9), which is
also the unique solution of (3.8). We can obtain this solution G(z),
z ∈C

+, by substituting

G1 = (1/β)(Ĝ
�
1 − (β − 1)/z) and

G2 = (1/β)(Ĝ
�
2 − (β − 1)/z)

into (3.12) and checking which of the two satisfies the equation. Un-
fortunately, it seems that this verification cannot be formalized in
the sense of identifying the unique solution of (3.12) in analytic
form. The primary reason for this is that to check algebraically if G1

and G2 satisfy (3.12), we have to perform a noninvertible transfor-
mation (squaring) of (3.12), which doubles the number of solutions
of this equation, and results in G1 and G2 both satisfying the re-
sulting formula. The second reason is that depending on the values
of the parameters β > 0, d > 0, the correct solution is either G1

or G2, and the dependence between G1, G2, β, and d has a com-
plicated structure. Starting from the analytical expressions for G1

and G2, we can identify, however, for all fixed β > 0, d > 0, the
density function f(1/M)HHHT(x) = (1/π) limy→0+ �[G(x+ iy)] corre-
sponding to the unique solution of (3.12) [and hence of (3.8)] numer-
ically. This is accomplished as follows. We know that, for every x,
limy→0+ � [G(x+ iy)] is either equal to

L1(x) � lim
y→0+

� [G1(x+ iy)]

or

L2(x) � lim
y→0+

� [G2(x+ iy)] .
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Even though the functions L1(x) and L2(x) can be computed analyti-
cally (with the resulting expressions being very lengthy and involved),
it seems that for every fixed x > 0 the correct choice between the
values L1(x) and L2(x) can only be made numerically. The following
algorithm constitutes one possibility to solve this problem.

Algorithm—Choice of the Limit

Input: x > 0

1) Choose a small enough y > 0

2) Substitute G1(x+ iy) and G2(x+ iy) into (3.12)

3) If G1(x+ iy) satisfies (3.12), then

return L1(x)

otherwise

return L2(x)

As every other numerical procedure, this algorithm includes a
heuristic element. The following comments are therefore in order.

• In Step 1 of the algorithm, the choice of y cannot be formalized
in the sense of giving an indication of how small it has to be as a
function of β and d. On the one hand, y has to be strictly greater
than zero, because (3.12) in general holds in C

+ only and does
not need to hold neither for G1(x+i0) nor for G2(x+i0). On the
other hand, y should be small enough for G1(x+ iy) to be close
to L1(x) and G2(x+ iy) to be close to L2(x). The correctness of
the output of the algorithm is justified by the fact that G(z) is
analytic in C

+ (see Definition D.1 in Appendix D).
• In Step 3, the check whether G1(x + iy) satisfies (3.12) is per-

formed numerically. Therefore, rounding errors will arise. It turns
out, however, that in practice, unless

��L1(x)− L2(x)
�� is very

small (in this case it does not matter which of the two values we
choose), the solution of (3.12) yields a clear indication of whether
G1(x+ iy) or G2(x+ iy) is the correct choice.
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• To compute the density f(1/M)HHHT(x) using the proposed algo-
rithm, we need to run Steps 1–3 for every x. It will be proved later
that f(1/M)HHHT(x) is always compactly supported and bounds
for its support will be given in analytic form (as a function of β
and d). Since the algorithm consists of very basic arithmetic
operations only, it is very fast and can easily be run on a dense
grid inside the support region of f(1/M)HHHT(x).

As an example, for d = 1 and β = 1/2, Figure 3.1(a) shows the
density f(1/M)HHHT(x) obtained by the algorithm formulated above
along with the histogram of the same density obtained through Monte-
Carlo simulation. We can see that the two curves match very closely
and that our method allows to obtain a much more refined picture of
the limiting density. Figure 3.1(b) shows the density f(1/M)HHHT(x)
for β = 2, 1, 1/2 obtained through our algorithm. We can see that
the density function is always compactly supported.

The final step in computing the asymptotic capacity of the AF relay
network is to take the limit K,M → ∞ with K/M → β in (3.2) and
to evaluate the resulting integral

Cβ
AF � β

2

∞�

0

log
�
1 +

x

σ2

�
f(1/M)HHHT(x) dx (3.14)

numerically. The evaluation of (3.14) is drastically simplified if we con-
sider that f(1/M)HHHT(x) is compactly supported. The corresponding
interval boundaries (or, more specifically, bounds thereon) can be
computed analytically as a function of β and d. We start by noting
that the second part of Theorem D.3 in Appendix D implies that a.s.

lim
M→∞

λmax

�
1

M
HH

H

�
= (1 +

�
β)2.

From (3.7) and Theorem D.3, it follows that a.s.

λmax(T) =
d2(1 +

√
β)2

β + d2(1 +
√
β)2

.
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Fig. 3.1.: Limiting density f(1/M)HHHT
(x) (a) for β = 1/2 and d = 1 along with

its histogram (Monte-Carlo) and (b) for different values of β = 2, 1, 1/2
and d = 1.

For every realization of H and T and all M,K, by the submultiplica-
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tivity of the spectral norm, we have

λmax

�
1

M
HH

H
T

�
≤ λmax

�
1

M
HH

H

�
λmax(T)

which implies that for M,K → ∞ with K/M → β a.s.

λmax

�
1

M
HH

H
T

�
≤ d2(1 +

√
β)4

β + d2(1 +
√
β)2

� xmax.

We can thus conclude that f(1/M)HHHT(x) is compactly supported on
the interval2 [0, xmax]. Consequently, the integral in (3.14) becomes

Cβ
AF =

β

2

xmax�

0

log
�
1 +

x

σ2

�
f(1/M)HHHT(x) dx

which we can compute numerically, using any standard method for
numerical integration and employing the algorithm described above
to evaluate f(1/M)HHHT(x) at the required grid points. Using this
procedure, we computed Cβ

AF as a function of β for d = 1 with the
result depicted in Figure 3.2. We can see that for β < 1 (i.e., K < M),
Cβ

AF increases very quickly with β, which is because the corresponding
effective MIMO channel matrix builds up rank and hence spatial
multiplexing gain. For β > 1 (i.e., K > M), when the effective MIMO
channel matrix is already full rank with high probability, the curve
flattens out and for β → ∞, the capacity Cβ

AF seems to converge to a
finite value. In the next section, we prove that Cβ

AF indeed converges
to a finite limit as β → ∞. This result has an interesting interpretation
as it allows to relate the AF relay network to a point-to-point MIMO
channel.

3.5 . CONVERGENCE TO POINT-TO-POINT
MIMO CHANNEL

Bölcskei et al. (2006) have shown that for finite M , as K → ∞, the
two-hop AF relay network capacity converges to half the capacity
2The actual supporting interval of f(1/M)HHHT

(x) may, in fact, be smaller.
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Fig. 3.2.: Capacity Cβ
AF as a function of β for d = 1 and σ2 = 0.01.

of a point-to-point MIMO link; the factor 1/2 penalty comes from
the fact that communication takes place over two time slots. In the
following, we demonstrate that the result of Bölcskei et al. (2006)
can be generalized to the M,K → ∞ case. More specifically, we show
that for β → ∞ the asymptotic (M,K → ∞) capacity of the two-hop
AF relay network is equal to half the asymptotic (M → ∞) capacity
of a point-to-point MIMO channel with M transmit and M receive
antennas. We start by dividing (3.13) by β and taking the limit3

β → ∞, which yields the quadratic equation

zĜ
2
+ z

�
1 +

1

d2

�
Ĝ +

�
1 +

1

d2

�
= 0. (3.15)

The two solutions of (3.15) are given by

Ĝ1,2(z) =
−z

�
1 + 1

d2

�
±
�

z2
�
1 + 1

d2

�2 − 4z
�
1 + 1

d2

�

2z
. (3.16)

3It is important that first we take the limit M,K → ∞ with K/M → β and
afterwards let β → ∞.
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Applying the Stieltjes inversion formula (D.1) to (3.16) and choosing
the solution that yields a positive density function, we obtain

βf(1/M)HHHT(x) =
1

π
lim

y→0+
� [βG(x+ iy)]

=
1

π
lim

y→0+
�
�
Ĝ(x+ iy)

�

=
1

2πx

����
�
4x

�
1 +

1

d2

�
− x2

�
1 +

1

d2

�2
�+

.

(3.17)

Inserting (3.17) into (3.14) and changing the integration variable
according to u � x

�
1 + 1/d2

�
, we find that Cβ

AF
β→∞−−−−→ C∞

AF, where

C∞
AF � 1

4π

4�

0

�
4

u
− 1 log

�
1 +

d2

(d2 + 1)σ2
u

�
du. (3.18)

Comparing (3.18) with (Telatar, 1999, Equation (13)), it follows that
for β → ∞ the asymptotic M,K → ∞ with K/M → β per source-
destination terminal pair capacity in the two-hop AF relay network
is equal to half the asymptotic (M → ∞) per-antenna capacity in a
point-to-point MIMO link with M transmit and M receive antennas,
provided the SNR in the relay case is defined as snr � d2/

�
(d2 + 1)σ2

�
.

For M and K large, it is easy to verify that this choice corresponds
to the SNR at each destination terminal in the AF relay network. In
this sense, we can conclude that for β → ∞ the AF relay network
“converges” to a point-to-point MIMO link with the same received SNR.

3.6. SUMMARY OF RESULTS

For noncoherent fading interference relay networks with amplify-and-
forward relaying and joint decoding at the cooperating destination
terminals, we computed the asymptotic (in M and K with K/M → β

78



3. NETWORKS WITH NONCOHERENT AMPLIFY-AND-FORWARD RELAYING

fixed) network capacity using tools from large random-matrix the-
ory. To the best of our knowledge, this is the first application of
large random-matrix theory to characterize the capacity behavior of
large fading networks. Yeh and Lévêque (2007) reported an elegant
extension of this approach to the case of multiple layers of relays.
We furthermore demonstrated that for β → ∞ the relay network
converges to a point-to-point MIMO link. This generalizes the finite-M
result obtained by Bölcskei et al. (2006) and shows that the use of
relays as active scatterers can recover spatial multiplexing gain in poor
scattering environments, even if the number of transmit and receive
antennas grows large. More importantly, our result shows that linear
increase in the number of relays as a function of transmit-receive
antennas is sufficient for this to happen.
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CHAPTER 4

Noncoherent WSSUS Channel

The capacity of fading channels in the absence of CSI both at the
transmitter and the receiver1 is notoriously difficult to analyze even for
simple channel models (Abou-Faycal et al., 2001). Most of the results
available in the literature pertain to either low or high SNR asymptotics.
While in the low-SNR regime the capacity behavior seems robust with
respect to the underlying channel model (see, for example, Durisi
et al., 2010, for a detailed review of low-SNR capacity results), this is
not the case in the high-SNR regime, where capacity is very sensitive
to the fine details of the channel model, as we are going to argue next.

Consider, as an example, a discrete-time stationary frequency-flat
time-selective Rayleigh-fading channel subject to AWGN. Here, the
channel law is fully specified by the power spectral density (PSD) f(θ),
θ ∈ [−1/2, 1/2), of the fading process and by the noise variance.
The high-SNR capacity of this channel depends on the measure µ
of the set of harmonics θ where the PSD is nonzero. More specifi-
cally, if µ < 1, capacity behaves as (1− µ) log snr, in the high-SNR
regime (Lapidoth, 2005). If µ = 1 and the fading process is regu-
lar, i.e.,

� 1/2
−1/2 log f(θ)dθ > −∞, then the high-SNR capacity behaves

as log log snr Lapidoth (2005). As a consequence, two channels, one
with PSD equal to 1/∆ for θ ∈ [−∆/2,∆/2] and 0 else (0 < ∆ < 1),
1This quantity, under the additional assumption that the transmitter and the

receiver are aware of the channel law, is typically called noncoherent capacity; in
the remainder of this chapter, it will be referred to simply as capacity.

83



4. NONCOHERENT WSSUS CHANNEL

and the other one with PSD equal to (1− �)/∆ for θ ∈ [−∆/2,∆/2]
and �/(1−∆) else (0 < � < 1), will have completely different high-
SNR capacity behavior, no matter how small � is. A result like this is
clearly unsatisfactory from an engineering viewpoint, as the measure
of the support of a PSD cannot be determined through channel mea-
surements. Such a sensitive dependency of the capacity behavior on
the fine details of the channel model (by fine details here, we mean
details that, in the words of Slepian (Slepian, 1976), have “. . . no
direct meaningful counterparts in the real world . . . ”), should make
one question the validity of the channel model itself.

An engineering-relevant problem is then to determine the SNR
value at which capacity starts being sensitive to such fine details. An
attempt to resolve this problem was recently made in (Etkin and
Tse, 2006), where, for a first-order Gauss-Markov fading process, the
SNR beyond which capacity behaves as log log snr is computed as a
function of the innovation rate of the process. The main limitation
of this result is that it is based on a very specific channel model
and that it is difficult to link the innovation rate to physical channel
parameters.

In this chapter, we attempt to address the problem in more general-
ity. Rather than focusing on a specific discretized channel model, we
start from the general class of continuous-time Rayleigh-fading linear
time-variant (LTV) channels that satisfy the WSS and US assump-
tions (Bello, 1963) and that are, in addition, underspread (Kennedy,
1969). The Rayleigh-fading and the WSSUS assumptions imply that
the statistics of the channel are fully characterized by its scattering
function (Bello, 1963); the underspread assumption is satisfied if the
scattering function is highly concentrated around the origin of the
Doppler-delay plane. More concretely, we shall say that a WSSUS chan-
nel is underspread if its scattering function has only a fraction � � 1
of its volume outside a rectangle of area ∆H � 1 (see Definition 4.1
in the next section). Our main result is the following: we provide a
lower bound on the capacity of continuous-time WSSUS underspread
Rayleigh-fading channels that is explicit in the parameters ∆H and �.
On the basis of this bound, we show that for all SNR values that
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satisfy
√
∆H � snr � 1/(∆H + �), the fading-channel capacity is

close to the capacity of a nonfading AWGN channel with the same
SNR. Hence, the fading-channel capacity grows logarithmically in SNR
up to (high) SNR values snr � 1/(∆H + �).

A crucial step in the derivation of our capacity lower bound is
the discretization of the continuous-time channel IO relation, which
is accomplished by transmitting and receiving on an orthonormal
Weyl-Heisenberg (WH) set (Christensen, 2003, Chapter 8) of time-
frequency shifts of a pulse g(t). The resulting signaling scheme can
be interpreted as PS-OFDM. This discretization technique is attractive
in our setting, because due to the regular time-frequency structure of
the WH set, the stationarity property of the continuous-time channel
is inherited by the corresponding discretized channel, a fact that is
essential for our analysis. Furthermore, by optimizing the parameters
of the WH set, one can mitigate the intersymbol interference (ISI) and
the intercarrier interference (ICI) that originate from the dispersive
nature of the channel.

Durisi et al. (2010) used a similar discretization technique to char-
acterize the capacity of WSSUS underspread fading channels in the
low-SNR regime. In contrast to Durisi et al. (2010), in this chapter, we
explicitly account for ISI and ICI terms in the discretized IO relation.
This is crucial, as unlike in the low-SNR regime, these terms play a
fundamental role at high SNR. Finally, as an interesting byproduct of
our analysis, we obtain an information-theoretic pulse-design criterion
for PS-OFDM systems that operate over WSSUS underspread fading
channels.

4 .1. SYSTEM MODEL

4.1.1. The Continuous-Time Input-Output Relation
In the following, we briefly summarize the continuous-time WSSUS
underspread Rayleigh-fading channel model employed in this chapter.
For a more complete description of this model, the interested reader is
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referred to (Durisi et al., 2010). The IO relation of a continuous-time
stochastic LTV channel H can be written as

y(t) = (H s)(t)� �� �
�ŷ(t)

+w(t)

=

∞�

−∞

hH(t, τ)s(t− τ)dτ + w(t) (4.1)

where y(t) is the received signal and ŷ(t) is the received signal in
the absence of additive noise. As in (Wyner, 1966, Model 2), the
stochastic transmit signal s(t)

i) satisfies the average-power constraint

(1/D)E
�
�s(t)�2

�
≤ P ; (4.2)

ii) is strictly limited to a bandwidth of B Hz, i.e.,

S(f) = 0, for |f | > B/2 (4.3)

where S(f) = F[s(t)];

iii) is approximately limited to a duration of D sec. More precisely,
we shall assume that

E
�
�DDs(t)�2

�
/E

�
�s(t)�2

�
> 1− η (4.4)

where DD is the time-limiting operator (defined in Section H.3),
and η is the average fraction of the energy of s(t) lying outside
[−D/2, D/2].

The constraints (4.3) and (4.4) on the input signal capture the
fact that the signals of interest in wireless communication are es-
sentially time- and bandwidth-limited. Time limitation is important
in an information-theoretic context, because it makes it possible to
define the transmission rate at the encoder in a physically meaningful
way (Wyner, 1966). Note that the strict band limitation (4.3) implies
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that s(t) can be limited in time in an approximate sense (Slepian,
1976) only, a consideration that justifies the constraint (4.4). Through-
out the chapter, the parameter η is assumed to be a small positive
constant.

The signal w(t) is a zero-mean unit-variance proper AWGN process.
As we assumed unit-variance noise, the SNR is given by snr = P/B.
Finally, the channel impulse response hH(t, τ) is a zero-mean jointly
proper Gaussian (JPG) process in t and τ that satisfies the WSSUS
assumption

E[hH(t, τ)h
∗
H
(t�, τ �)] = RH(t− t�, τ)δ(τ − τ �) (4.5)

and is independent of w(t) and s(t). A more detailed review of the
WSSUS channel model can be found for example in (Durisi et al., 2010).
As a consequence of the JPG and the WSSUS assumption, the time-
delay correlation function RH(t, τ) fully characterizes the channel
statistics.

Often, it is convenient to describe H in domains other than the
time-delay domain. The delay-Doppler spreading function SH(ν, τ) =
Ft→ν [hH(t, τ)] can be used for this purpose. If we rewrite the IO
relation (4.1) in terms of the spreading function as

y(t) =

��

R2

SH(ν, τ)s(t− τ)ei2πνtdτdν

� �� �
=ŷ(t)

+w(t) (4.6)

we obtain the following physical interpretation (Durisi et al., 2011):
ŷ(t) = (H s)(t) is a weighted superposition of copies of the input
signal s(t) that are shifted in time by the delay τ and in frequency
by the Doppler shift ν. It is worth noting that, because of the WSSUS
assumption, the spreading function SH(ν, τ) is uncorrelated in τ and ν:

E[SH(ν, τ)S
∗
H
(ν�, τ �)] = CH(ν, τ)δ(ν − ν�)δ(τ − τ �). (4.7)

The function CH(ν, τ) is usually referred to as channel scattering
function. In the remainder of the chapter, we let the scattering function
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be normalized in volume according to
��

R2

CH(ν, τ)dτdν = 1. (4.8)

4.1.2. A Robust Definition of Underspread Channels
Qualitatively speaking, WSSUS underspread channels are WSSUS chan-
nels with a scattering function that is highly concentrated around
the origin of the Doppler-delay plane (Bello, 1963). A mathemati-
cally precise definition of the underspread property is available for
the case where CH(ν, τ) is compactly supported within a rectangle.
In this case, the channel is said to be underspread if the support
area of CH(ν, τ) is much smaller than 1 (see, for example, Kozek,
1997; Durisi et al., 2010). The compact-support assumption, albeit
mathematically convenient, is a fine detail of the channel model in the
terminology introduced in the previous section, because it is not pos-
sible to determine through channel measurements whether CH(ν, τ) is
indeed compactly supported or not. However, the results discussed in
the previous section hint at a high sensitivity of capacity to this fine
detail. To better understand and quantify this sensitivity, we need
to take a more general approach. We replace the compact-support
assumption by the following more robust and physically meaningful
assumption: CH(ν, τ) has a small fraction of its total volume outside
a rectangle of an area that is much smaller than 1. More precisely,
we have the following definition.

Definition 4.1. Let ν0, τ0 ∈ R
+, � ∈ [0, 1], and let H(τ0, ν0, �) be

the set of all Rayleigh-fading WSSUS channels H with scattering
function CH(ν, τ) satisfying

ν0�

−ν0

τ0�

−τ0

CH(ν, τ)dτdν ≥ 1− �. (4.9)

We say that the channels in H(τ0, ν0, �) are underspread if ∆H =
4τ0ν0 � 1 and � � 1.
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Typical wireless channels are (highly) underspread, with most of
the volume of CH(ν, τ) supported over a rectangle of area ∆H ≈
10−3 for land-mobile channels, and ∆H as small as 10−7 for certain
indoor channels with restricted terminal mobility. Note that � = 0
in Definition 4.1 yields the compact-support underspread definition
of Kozek (1997) and Durisi et al. (2010).

4 .2. THE INFORMATION CAPACITY

We are interested in this chapter in the characterization of the ultimate
limit of reliable communication (i.e., of the capacity) of the continuous-
time channel (4.1), under the assumption that both the transmitter
and the receiver are not aware of the realization of H, but are aware of
its stochastic law. We will start by defining the information capacity
and then discuss its achievability.

To define the information capacity of (4.1), we shall follow the
(classic) approach (Gallager, 1968), and represent the complex signals
at the input and output of H in terms of a series expansion with respect
to a complete orthonormal set for the underlying vector space. More
specifically, let L2(B) ⊂ L2(C) be the Hilbert space of L2(C)-signals
that have bandwidth no larger than B, and let {φm(t)}∞m=0 be a
complete orthonormal set for L2(B). We can write every s(t) ∈ L2(B)
as

s(t) =
∞�

m=0

�s(t), φm(t)�� �� �
�sm

φm(t). (4.10)

Even though s(t) has bandwidth no larger than B, the signal ŷ(t) =
(H s)(t) does not satisfy in general a strict bandwidth constraint.
However, if H is underspread in the sense of Definition 4.1, most
of the energy of ŷ(t) will lie (on average) within a bandwidth of
(B + 2ν0)Hz. We assume that this fact is exploited at the receiver
to reduce the impact of thermal noise. More precisely, we assume
that y(t) is passed through an ideal low-pass filter of bandwidth
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(B + 2ν0)Hz, yielding

yf (t) = (BB+2ν0y)(t)

where yf (t) denotes the filtered received signal, and BB+2ν0 is the
frequency-limiting operator (defined in Section H.3). Because of the
low-pass filtering operation at the receiver, yf (t) is a L2(B + 2ν0)-
function, and, hence, it can be written as

yf (t) =
∞�

m=0

�y(t), φ�
m(t)�� �� �

�ym

φ�
m(t) (4.11)

where {φ�
m(t)}∞m=0 is a complete orthonormal set for L2(B+2ν0). Note

that (4.10) and (4.11) yield a discretization of the continuous-time
IO relation (4.1).

Let now Q(B,D, η, P ) be the set of probability measures on s(t)
that satisfy the average-power constraint (4.2) and the approximate
time limitation (4.4). Every probability measure Qs ∈ Q(B,D, η, P )
on s(t) induces a probability measure on {sm}∞m=0. Hence, for a
given Qs ∈ Q(B,D, η, P ) we can define the mutual information
between s(t) and yf (t) as

ID(s(t); yf (t)) � lim
M→∞

I(sM0 ;yM
0 )

where s
M
0 = [s0 s1 · · · sM ]T, and, similarly, yM

0 = [y0 y1 · · · yM ]T.
The information capacity CWSSUS of the channel (4.1) can now be
defined as follows (Gallager, 1968, Eq. (8.1.55))

CWSSUS � lim inf
D→∞

1

D
sup

Qs∈Q(B,D,η,P )
ID(s(t); yf (t)). (4.12)

Note that for the purpose of defining CWSSUS, all pairs of or-
thonormal sets—one complete for L2(B), and the other complete
for L2(B + 2ν0)—work equally well; however, complete orthonormal
sets that are matched to the channel, i.e., that consist of channel
singular functions (Durisi et al., 2010), are better suited to information-
theoretic analysis (Gallager, 1968; Wyner, 1966). For example, the
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characterization of the capacity of continuous-time bandlimited AWGN
channels in (Wyner, 1966) is enabled by a discretization of the IO
relation using prolate spheroidal wave functions (Landau and Pollak,
1960; Slepian and Pollak, 1961; Landau and Pollak, 1962). These
functions are singular functions of the channel operator, which is in
this case the frequency-limiting operator BB .

We conclude this section with some comments on the achievabil-
ity of (4.12). By Fano’s inequality (Cover and Thomas, 2006, The-
orem 2.10.1) no rate above CWSSUS is achievable (see Cover and
Thomas, 2006, for a definition of achievable rate). For the channel of
interest in this chapter, however, it is not clear whether the informa-
tion capacity (4.12) coincides with the supremum of all achievable
rates on the channel. Establishing whether this result holds is an
interesting open problem, which goes beyond the scope of the thesis.
In the remainder of the chapter, we shall refer to information capacity
simply as capacity.

4.2.1. Outline of the Information-Theoretic Analysis

An analytic characterization of CWSSUS for the setting of interest
in this chapter (neither transmitter nor receiver are aware of the
realization of H but perfectly aware of its stochastic law) is difficult.
Hence, our focus in this chapter will be on deriving tight bound
on (4.12) for SNR values of practical interest.

For channels that are underspread according to Definition 4.1, a
simple (yet tight as we shall see) upper bound on (4.12) can be
obtained as follows: first note that

ID(s(t); yf (t)) ≤ ID(ŷf (t); yf (t)) (4.13)

where ŷf (t) = (BB+2ν0 ŷ)(t). The right-hand side of (4.13) can be
interpreted as the capacity of a continuous-time bandlimited AWGN
channel. As most of the energy of ŷ(t) lies in a time interval of
(D + 2τ0) sec and in a frequency interval of (B + 2ν0)Hz, we can
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use (Wyner, 1966, Theorem 2) (see Appendix F.1) and obtain

ID(ŷf (t); yf (t)) ≤ (B+2ν0) log

�
1 +

(1− η)(1− �)P

B + 2ν0

�
+(η+�−η�)P.

(4.14)
The right-hand side of (4.14) can be well-approximated by

CAWGN = B log(1 + snr) (4.15)

whenever ν0, η and � are sufficiently small.
It is now appropriate to provide a preview of the nature of the results

we are going to obtain on the basis of the novel underspread definition
introduced in Section 4.1.2. We will show that, as long as ∆H � 1
and � � 1, the capacity of all channels in H(τ0, ν0, �), independently
of whether their scattering function is compactly supported or not,
is close to the AWGN capacity CAWGN for all SNR values typically
encountered in practical wireless communication systems. To establish
this result, we choose a specific transmit and receive scheme (detailed
in the next section), which yields a capacity lower bound that is close
to the upper bound CAWGN.

4 .3. A LOWER BOUND ON CAPACITY

4.3.1. Discretization of the Input-Output Relation
As discussed above, the starting point for an information-theoretic
analysis of continuous-time channels is a discretization of the corre-
sponding IO relation. The discretization is performed by means of two
sets of orthonormal functions that satisfy the following conditions:
i) the first set is complete for the input space of the channel operator,
and the second set is complete for its output space; ii) both sets are
made of channel singular functions (Wyner, 1966; Gallager, 1968).
This approach is, however, not feasible in our setup. Assume that
the functions in {φm(t)}∞m=0 and {φ�

m(t)}∞m=0 are the right singular
functions and the left singular functions of the channel H, respectively.
To make use of the series expansions (4.10) and (4.11), and, hence,
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discretize the channel, the set {φm(t)}∞m=0 needs to be known at the
transmitter and {φ�

m(t)}∞m=0 at the receiver. But as H is random, its
singular functions are, in general, random as well, and consequently
not known to transmitter and receiver in the noncoherent setting of
interest in this chapter (see Durisi et al., 2011, for a more detailed
discussion on this issue).

In contrast, if the singular functions of the random channel H did
not depend on the particular realization of H, we could diagonalize H

without knowledge of the channel realizations. This is the case, for
example, for linear time-invariant (LTI) channels, where (determin-
istic) complex sinusoids are always eigenfunctions, independently of
the realization of the channel impulse response. This observation is
crucial for the ensuing analysis. Specifically, our discretization strat-
egy is based on the following fundamental property of underspread
LTV channels (see Durisi et al., 2010, and references therein): the
singular functions of a random underspread WSSUS channel can be
well approximated by deterministic functions that are well localized
in time and frequency. More specifically, we discretize the continuous-
time IO relation (4.1) by transmitting and receiving on the highly
structured WH set (g, T, F ) �

�
gk,n(t) = g(t− kT )ei2πnFt

�
k,n∈Z

of
time-frequency shifts of the pulse g(t). We choose g(t), T , and F such
that the following properties are satisfied:

i) g(t) has unit energy, is strictly bandlimited, with bandwidth
F ≤ B, and satisfies g(t) = O(1/

��t
��1+µ),

��t
�� → ∞, for some

µ > 0;

ii) the signals in the WH set (g, T, F ) are orthonormal.

An explicit construction of a family of WH sets (g, T, F ) for which
Properties i) and ii) are satisfied is provided in Section 4.3.9. These
two properties allow us to construct a general class of signals that
satisfy the constraints (4.2)–(4.4). More precisely, we shall proceed
as follows. Fix η in (4.4) and the bandwidth B of s(t). For a given
approximate duration D of the transmit signal s(t) [we will later take
D → ∞ according to (4.12)], the interval [−D/2, D/2] is divided into
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three parts: one interval [− �KT/2, �KT/2] where most of the energy of
the transmit signal will lie, and two guard intervals [−D/2,− �KT/2]
and [ �KT/2, D/2] of length K �T = D/2 − �KT . We will let �K → ∞
as D → ∞. On the contrary, K � does not depend on D, but depends
on g(t) and on η in (4.4) only. For simplicity of notation, we shall
assume in the remainder of the chapter that K � is an integer and that
�K and �N � B/F are odd integers.

Let g(t), T , and F be chosen so that Properties i) and ii) are
satisfied and consider transmit signals of the form

s(t) =
K�

k=−K

N�

n=−N

s[k, n]gk,n(t) (4.16)

where the data symbols s[k, n] ∈ C are chosen such that

K�

k=−K

N�

n=−N

E
�
|s[k, n]|2

�
≤ (2K + 1)TP. (4.17)

Here and in (4.16), N = ( �N − 1)/2 and K = ( �K− 1)/2. The transmit
signal (4.16) satisfies the average-power constraint (4.2) and the
bandwidth constraint (4.3) by construction. Furthermore, as shown in
Appendix F.2, one can choose K � (independently of D) such that s(t)
in (4.16) satisfies the approximate time-limitation constraint (4.4) as
well. Because K � does not depend on D, the loss of degrees of freedom
caused by the presence of the guard interval 2K �T vanishes when one
computes the limit D → ∞ in (4.12).

The received signal yf (t) is projected onto the signal set {gk,n(t)},
k ∈ [−K :K], n ∈ [−N :N ] to obtain

�y, gk,n�� �� �
� y[k,n]

= �H gk,n, gk,n�� �� �
�h[k,n]

s[k, n]

+
K�

l=−K

N�

m=−N
(l,m) �=(k,n)

�H gl,m, gk,n�� �� �
� p[l,m,k,n]

s[l,m] + �w, gk,n�� �� �
�w[k,n]
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= h[k, n]s[k, n] +
K�

l=−K

N�

m=−N
(l,m) �=(k,n)

p[l,m, k, n]s[l,m] + w[k, n] (4.18)

for each time-frequency slot (k, n). We refer to the channel with
IO relation (4.18) as the discretized channel induced by the WH
set (g, T, F ). Note that we do not require that the set (g, T, F ) is
complete for L2(C). Hence, not all signals satisfying (4.2)–(4.4) can
be represented in the form (4.16). As a consequence, the capacity of
the discretized channel (4.18), defined in the next section, is a lower
bound on the capacity of the underlying continuous-time channel (4.1)
defined in (4.12).

The regular time-frequency structure of the WH-set implies that the
channel gains h[k, n] in (4.18) inherit the two-dimensional stationarity
property of the underlying continuous-time channel (see Section 4.3.3),
a fact that is crucial for the ensuing analysis.

The presence of the second term in (4.18), which corresponds to ISI
and ICI, makes the derivation of capacity bounds involved. Fortunately,
to establish our main result (see Section 4.3.6), it will be sufficient
to treat the interference term as noise. The corresponding results are
of practical interest, as receiver algorithms that take the structure of
interference explicitly into account are, in general, computationally
expensive. The variance of the interference term in (4.18) depends
on the time-frequency localization properties of g(t) as will be shown
in Section 4.3.3. We finally note that the orthonormality of (g, T, F )
implies that w[k, n] in (4.18) is i.i.d. CN (0, 1).

4.3.2. Orthonormality, Completeness, and Localization
Orthonormality, completeness, and time-frequency localization are
desirable properties of the WH set (g, T, F ). It is, therefore, sensible
to ask whether complete orthonormal WH sets generated by a g(t)
with prescribed time-frequency localization exist. The answer is as
follows:

i) A necessary condition for the set (g, T, F ) to be orthonormal is
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TF ≥ 1 (Gröchenig, 2001, Corollary 7.5.1, Corollary 7.3.2).

ii) For TF = 1, it is possible to find orthonormal sets (g, T, F ) that
are complete in L2(C) (Christensen, 2003, Theorem 8.3.1). These
sets, however, do not exhibit good time-frequency localization,
as a consequence of the Balian-Low Theorem (Christensen, 2003,
Theorem 4.1.1), which states that if (g, T, F ) is orthonormal and
complete in L2(C), then

� ∞�

−∞

|tg(t)|2dt
�� ∞�

−∞

|fG(f)|2df
�

= ∞

where G(f) = F[g(t)].

iii) For TF > 1, it is possible to have orthonormality and good time-
frequency localization concurrently, but the resulting set (g, T, F )
is necessarily incomplete in L2(C). Lack of completeness entails
a loss of degrees of freedom.

iv) For TF < 1, it is possible to construct WH sets generated by
a well-localized g(t), which are also (over)complete in L2(C).
However, as a consequence of overcompleteness, the resulting
input signal (4.16) cannot be recovered uniquely at the receiver,
even in the absence of noise.

Our choice will be to privilege localization and orthonormality over
completeness. The information-theoretic results in Section 4.4 will
show that this choice is sound.

4.3.3. Statistical Properties
We derive in this section two useful properties of the statistics of h[k, n]
and p[l,m, k, n]. We will need these properties in the proof of the
lower bound to be presented in Theorem 4.1 (see Section 4.3.6).
The first property concerns the autocorrelation of h[k, n]. Let the
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cross-ambiguity function of two signals g(t) and f(t) be defined as

Ag,f (ν, τ) �
∞�

−∞

g(t)f∗(t− τ)e−i2πνtdt (4.19)

and let Ag(ν, τ) � Ag,g(ν, τ). Some basic results about these two
functions that are useful for our analysis are reviewed in Appendix F.3.
We are now ready to compute the autocorrelation of h[k, n], which is
given by

E[h[k, n]h∗[l,m]] = E
�
�H gk,n, gk,n� �H gl,m, gl,m�∗

�

(a)
=

��

R2

CH(ν, τ)A
∗
gk,n

(ν, τ)Agl,m(ν, τ)dτdν

(b)
=

��

R2

CH(ν, τ)|Ag(ν, τ)|2ei2π[(k−l)Tν−(n−m)Fτ ]dτdν

� r[k − l, n−m] (4.20)

where (a) follows from Property 4 in Appendix F.3 and because H is
WSSUS [see (4.7)], while (b) follows from Property 3 in Appendix F.3
[see in particular (F.3)]. As a consequence of (4.20), we have that
{h[k, n]} is stationary both in discrete time k and in discrete fre-
quency n. Because of stationarity, we can associate to the discrete
channel process {h[k, n]} a two-dimensional power spectral density

c(θ, ϕ) �
∞�

k=−∞

∞�

n=−∞
r[k, n]e−i2π(kθ−nϕ), |θ|, |ϕ| ≤ 1/2. (4.21)

The Poisson summation formula together with (4.20) implies that

c(θ, ϕ) =
∞�

k=−∞

∞�

n=−∞
e−i2π(kθ−nϕ)

×
��

R2

CH(ν, τ)|Ag(ν, τ)|2ei2π(kTν−nFτ)dτdν
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=
1

TF

∞�

k=−∞

∞�

n=−∞
CH

�
θ − k

T
,
ϕ− n

F

� ����Ag

�
θ − k

T
,
ϕ− n

F

�����
2.

(4.22)

Another property we shall often use is that

r[0, 0] =

1/2�

−1/2

1/2�

−1/2

c(θ, ϕ)dθdϕ =

��

R2

CH(ν, τ)|Ag(ν, τ)|2dτdν ≤ 1

(4.23)
where the last step follows from Property 1 in Appendix F.3, from the
assumption that g(t) has unit energy and from the normalization (4.8).

We next characterize the variance of p[l,m, k, n]. As p[l,m, k, n]
has zero mean,

E
�
|p[l,m, k, n]|2

�

= E
�
|�H gl,m, gk,n�|2

�

=

��

R2

CH(ν, τ)
��Agk,n,gl,m(ν, τ)

��2dτdν

=

��

R2

CH(ν, τ)|Ag(ν + (m− n)F, τ + (l − k)T )|2dτdν

� σ2
p[k − l, n−m]

(4.24)

where, again, we used first Property 4 in Appendix F.3 together with
the WSSUS property of H, and then Property 3 in Appendix F.3. As a
consequence of (4.24), the variance of p[l,m, k, n] depends only on the
shift difference in the time-frequency plane between the two functions
gl,m(t) and gk,n(t). Also this property will turn out to be crucial in
the ensuing analysis.

4.3.4. Input-Output Relation in Vector-Matrix Form
For each k ∈ [−K :K], we arrange the data symbols s[k, n], the
received signal samples y[k, n], the channel coefficients h[k, n], and

98



4. NONCOHERENT WSSUS CHANNEL

the noise samples w[k, n] in corresponding �N -dimensional vectors as
follows:

s[k] �
�
s[k,−N ] s[k,−N + 1] · · · s[k,N ]

�T

y[k] �
�
y[k,−N ] y[k,−N + 1] · · · y[k,N ]

�T

h[k] �
�
h[k,−N ] h[k,−N + 1] · · · h[k,N ]

�T

w[k] �
�
w[k,−N ] w[k,−N + 1] · · · w[k,N ]

�T
.

To obtain a compact notation, we further stack �K contiguous �N -
dimensional input, output, channel, and noise vectors,2 into cor-
responding �K �N -dimensional vectors s, y, h, and w, respectively,
according to

s �
�
s
T[−K] s

T[−K + 1] · · · s
T[K]

�T (4.25)

y �
�
y
T[−K] y

T[−K + 1] · · · y
T[K]

�T

h �
�
h
T[−K] h

T[−K + 1] · · · h
T[K]

�T

w �
�
w

T[−K] w
T[−K + 1] · · · w

T[K]
�T

.

Finally, we arrange ISI and ICI terms {p[l,m, k, n]} in a �K �N × �K �N
matrix P with entries

[P]n+k �N,m+l �N =

�
p[l −K,m−N, k −K,n−N ], if (l,m) �= (k, n)

0, otherwise

for l, k ∈ [0 : �K − 1] and m,n ∈ [0 : �N − 1]. With these definitions, we
can now compactly express the IO relation (4.18) as

y = h⊙ s+Ps+w. (4.26)

4.3.5. Definition of the Capacity of the Discretized
Channel Induced by (g, T, F )

For a given WH set (g, T, F ) satisfying Properties i) and ii) in Sec-
tion 4.3.1 and a given continuous-time channel H, the capacity
2Recall that �K = 2K + 1 and �N = 2N + 1
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CWSSUS−D of the induced discretized channel (4.18) is given by

CWSSUS−D � lim
�K→∞

1

( �K + 2K �)T
sup
Q

I(y; s). (4.27)

Here, the supremum is taken over the set Q of all distributions on s

that satisfy the average-power constraint (4.17). The value of K �

in (4.27) is chosen so that (4.4) is satisfied (see Appendix F.2). We
recall that, by construction, CWSSUS−D is a lower bound on the
capacity CWSSUS of the continuous-time channel, defined in (4.12).

4.3.6. The Capacity Lower Bound
We next derive a lower bound on CWSSUS−D by treating interference as
noise. We then show that whenever the channel is underspread accord-
ing to Definition 4.1, this lower bound, evaluated for an appropriately
chosen WH set, is close to the AWGN-capacity upper bound CAWGN
in (4.15).

We shall first present a lower bound that is explicit in the power
spectral density of the multivariate stationary channel process {h[k]}

C(θ) �
∞�

k=−∞
R[k]e−i2πkθ, |θ| ≤ 1

2
(4.28)

where R[k� − k] � E
�
h[k�]hH[k]

�
.

Theorem 4.1. Let (g, T, F ) be a WH set satisfying Properties i) and
ii) in Section 4.3.1 and consider an arbitrary Rayleigh-fading WSSUS
channel with the scattering function CH(ν, τ). Then, for a given snr
and a given bandwidth B, the capacity of the discretized channel
induced by (g, T, F ) is lower-bounded as:

CWSSUS−D(snr) ≥ B

TF
Eh

�
log

�
1 +

r[0, 0]TF snr
��h
��2

1 + TF snrσ2
I

��

− inf
0<α<1

�
1

T

1/2�

−1/2

log det

�
I+

TF snr
α

C(θ)

�
dθ
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+
B

TF
log

�
1 +

TF snr
1− α

σ2
I

��
. (4.29 )

Here,

h ∼ CN (0, 1)

r[0, 0] =

��

R2

CH(ν, τ)|Ag(ν, τ)|2dτdν

σ2
I =

∞�

k=−∞

∞�

n=−∞
(k,n) �=(0,0)

��

R2

CH(ν, τ)|Ag(ν − nF, τ − kT )|2dτdν

(4.30 )

and C(θ), defined in (4.28), denotes the matrix-valued power spectral
density of the discretized channel induced by (g, T, F ).

Proof. See Appendix F.4.

The lower bound (4.29) we just obtained is difficult to analyze.
In the corollary below we further lower-bound the right-hand side
of (4.29) to get a less tight expression that is, however, explicit in the
parameters � and ∆H we introduced in Definition 4.1.

Corollary 4.2. Let (g, T, F ) be a WH set satisfying Properties i) and
ii) in Section 4.3.1 and consider an arbitrary Rayleigh-fading WSSUS
channel in the set H(τ0, ν0, �) with the scattering function CH(ν, τ).
Then, for a given snr and a given bandwidth B, and under the
technical condition3 �∆H � 2ν0T < 1, the capacity of the discretized
channel induced by (g, T, F ) is lower-bounded as

CWSSUS−D(snr) ≥ L(snr, g, T, F, τ0, ν0, �)

3This technical condition is not restrictive for underspread channels if T and F are
chosen so that ν0T = τ0F (see Section 4.3.7). In this case, 2ν0T =

√
∆HTF � 1

for all values of TF of practical interest.
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where

L(snr, g, T, F, τ0, ν0, �) =
B

TF

�
Eh

�
log

�
1 +

TF snr(1− �)mg

��h
��2

1 + TF snr(Mg + �)

��

− inf
0<α<1

�
�∆H log

�
1 +

TF snr
α�∆H

�

+ (1− �∆H) log

�
1 +

TF snr �

α(1− �∆H)

�

+ log

�
1 +

TF snr
1− α

(Mg + �)

���
.

(4.31 )

Here, h ∼ CN (0, 1), mg � min
(ν,τ)∈D

|Ag(ν, τ)|2,

Mg � max
(ν,τ)∈D

∞�

k=−∞

∞�

n=−∞
(k,n) �=(0,0)

|Ag(ν − nF, τ − kT )|2

with D � [−ν0, ν0]× [−τ0, τ0].

Proof. See Appendix F.5.

The lower bound L in (4.31) is not useful in the asymptotic
regimes snr → 0 and snr → ∞. In fact, the bound even turns
negative when snr is sufficiently small or sufficiently large. Neverthe-
less, as shown in Section 4.4, for underspread channels, L evaluated
for particular WH sets is close to the capacity upper bound CAWGN
over all SNR values of practical interest. In the next two sections, we
list some properties of L, which will be used in Section 4.4.

4.3.7. Reduction to a Square Setting
The lower bound L(snr, g, T, F, τ0, ν0, �) depends on seven parameters
and is therefore difficult to analyze. We show next that if T and F
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are chosen so that ν0T = τ0F , a condition often referred to as grid
matching rule (Kozek, 1997, Equation (2.75)), two of these seven
parameters can be dropped without loss of generality.

Lemma 4.3. Let (g, T, F ) be a WH set satisfying Properties i) and
ii) in Section 4.3.1. Then, for every β > 0,

L(snr, g(t), T, F, τ0, ν0, �) = L

�
snr,

�
βg(βt),

T

β
, βF,

τ0
β
, βν0, �

�
.

In particular, assume that ν0T = τ0F and let β =
�
T/F =

�
τ0/ν0

and �g(t) =
√
βg(βt). Then,

L(snr, g, T, F, τ0, ν0, �)

= L
�
snr, �g,

√
TF ,

√
TF ,

�
∆H/2,

�
∆H/2, �

�

� Ls(snr, �g, TF,∆H, �) . (4.32 )

Proof. See Appendix F.6.

In the remainder of the chapter, for the sake of simplicity of ex-
position, we will choose T and F so that the grid matching rule
ν0T = τ0F is satisfied. Then, as a consequence of Lemma 4.3,
we can (and will) only consider, without loss of generality, WH
sets of the form (g,

√
TF ,

√
TF ) and WSSUS channels in the class

H(
√
∆H/2,

√
∆H/2, �).

4.3.8. Pulse-Design Criterion and Approximation for mg

and Mg

The lower bound in (4.31) can be tightened by maximizing it over
all WH sets satisfying Properties i) and ii) in Section 4.3.1. This
maximization implicitly provides an information-theoretic design cri-
terion for g(t), T , and F . Classic design rules for g(t) available in the
orthogonal frequency division multiplexing (OFDM) literature (see,
for example, Matz et al., 2007, and references therein) are based on
a maximization of the signal-to-interference ratio (SIR) in (4.18), for
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a fixed value of TF (typically, TF ≈ 1.2). The maximization of the
lower bound (4.31) yields a more complete picture as it explicitly
reveals the interplay between the product TF and the time-frequency
localization properties of g(t), reflected through the quantities mg

and Mg. Unfortunately, the maximization of L over (g, T, F ) seems
complicated, as the dependency of mg and Mg on (g, T, F ) is difficult
to characterize analytically. This problem can be partially overcome
when ∆H � 1. In this case, a first-order Taylor-series expansion of mg

and Mg around ∆H = 0 yields an accurate picture.

Lemma 4.4. Let (g,
√
TF ,

√
TF ) be a WH set satisfying Properties

i) and ii) in Section 4.3.1. Assume that g(t) is real-valued and even,
and that Ag(ν, τ) is differentiable in the points (n

√
TF , k

√
TF ) for

all (n, k) and twice differentiable in (0, 0); let G(f) = F[g(t)] and
define �D = [−

√
∆H/2,

√
∆H/2] × [−

√
∆H/2,

√
∆H/2]. For ∆H � 1,

we have
mg ≈ min

(ν,τ)∈ �D
|Ag(ν, τ)|2 = 1− cm∆H (4.33 )

where cm = π2(a20 + b20) with

a20 =

∞�

−∞

t2|g(t)|2dt, b20 =

∞�

−∞

f2|G(f)|2df.

Moreover, still under the assumption that ∆H � 1, we have

Mg ≈ max
(ν,τ)∈ �D

∞�

k=−∞

∞�

n=−∞
(k,n) �=(0,0)

|Ag(ν − nF, τ − kT )|2

= cM∆H

(4.34 )

where cM =
∞�

k=−∞

∞�

n=−∞
(k,n) �=(0,0)

�
|ak,n|2 + |bk,n|2

�
/4, with

ak,n = −i2π

∞�

−∞

tg(t)g(t+ k
√
TF )ei2πn

√
TFtdt
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bk,n = i2π

∞�

−∞

fG(f − n
√
TF )G(f)e−i2πk

√
TFfdf.

Proof. See Appendix F.7.

4.3.9. A Simple WH Set

We next present an example of a family of WH sets (g,
√
TF ,

√
TF )

satisfying Properties i) and ii) in Section 4.3.1, and for which, in
addition, g(t) is real-valued and even. Take 1 < TF < 2, let ζ =√
TF , δ = TF − 1, and G(f) = F[g(t)]. We choose G(f) as the

(positive) square root of a raised-cosine pulse:

G(f) =






√
ζ, if

��f
�� ≤ 1−δ

2ζ�
ζ
2 (1 + S(f)), if 1−δ

2ζ ≤
��f
�� ≤ 1+δ

2ζ

0, otherwise

(4.35)

where S(f) = cos
�
πζ
δ

���f
��− 1−δ

2ζ

��
. As (1 + δ)/(2ζ) = ζ/2, the func-

tion G(f) has compact support of length ζ =
√
TF . Furthermore, G(f)

has unit energy, is real-valued and even, and satisfies

∞�

n=−∞
G(f − n/ζ)G(f − n/ζ − kζ) = ζδ[k]. (4.36)

By (Christensen, 2003, Theorem 8.7.2), we can, therefore, conclude
that the WH set (g(t), 1/

√
TF , 1/

√
TF ) is a tight WH frame for L2(C),

and, by duality, the WH set (g(t),
√
TF ,

√
TF ) is orthonormal. Finally,

it can be shown that g(t) = O(1/
��t
��2) whenever TF > 1. Note that,

for TF = 1 , the pulse G(f) reduces to the rectangular pulse and,
consequently, g(t) reduces to a sinc function, which has poor time
localization.
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4 .4 . FIN ITE-SNR ANALYSIS OF THE LOWER
BOUND

We now study the behavior of the lower bound Ls in (4.32) evalu-
ated for the WH set constructed in the previous section, under the
assumption that the underlying WSSUS channel is underspread ac-
cording to Definition 4.1, i.e., ∆H � 1 and � � 1. As ∆H � 1, we
can replace mg and Mg in Ls by the first-order term of their Taylor-
series expansions derived in Lemma 4.4 and obtain the following
approximation:

Ls(snr, g, TF,∆H, �)

≈ B

TF

�
Eh

�
log

�
1 +

TF snr(1− �)(1− cm∆H)
��h
��2

1 + TF snr(cM∆H + �)

��

− inf
0<α<1

�
�

∆HTF log

�
1 +

TF snr
α
√
∆HTF

�

+
�
1−

�
∆HTF

�
log

�
1 +

TF snr�
α
�
1−

√
∆HTF

�
�

+ log

�
1 +

TF snr
1− α

(cM∆H + �)

���

� Lu(snr, g, TF,∆H, �).

(4.37)

4.4.1. Trade-off between Interference Reduction and
Maximization of Number of Degrees of Freedom

In Figure 4.1, we plot the ratio Lu(snr, g, TF,∆H, �)/CAWGN for
� = 10−6,∆H = 10−4 and for � = 10−6,∆H = 10−6. The different
curves correspond to different values of TF . We can observe that the
choice TF = 1 is highly suboptimal. The reason for this suboptimality
is the significant reduction in SIR this choice entails. In fact (as already
mentioned), when TF = 1, the pulse g(t) reduces to a sinc function,
which has poor time localization.
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Fig. 4.1.: Lower bounds Lu(snr, g, TF,∆H, �) normalized with respect to the
AWGN capacity. The bounds are computed for WH sets based on a
root-raised-cosine pulse (see (4.35)), for different values of the grid-
parameter product TF . The channel parameters ∆H and � are set to
be ∆H = 10−4, � = 10−6 in (a) and ∆H = � = 10−6 in (b).
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A value of TF slightly above 1 leads to a significant improvement
in the time localization of g(t) and to a corresponding increase in
the lower bound Lu(snr, g, TF,∆H, �) for all SNR values of practical
interest, despite the (small) loss of degrees of freedom. A further
increase of the product TF seems to be detrimental for all but very
high SNR values, where the ratio Lu(snr, g, TF,∆H, �)/CAWGN is
much smaller than 1: the rate loss due to the reduction of the number
of degrees of freedom is more significant than the rate increase due
to the resulting SIR improvement.

4.4.2. Sensitivity of Capacity to the Parameters ∆H and �

The results presented in Figure 4.1 suggest that, for TF = 1.02, the
lower bound Lu(snr, g, TF,∆H, �) is close to the AWGN-capacity upper
bound CAWGN(snr) over a quite large range of SNR values. To make
this statement precise, we compute the SNR interval [snrmin, snrmax]
over which

Lu(snr, g, TF,∆H, �) ≥ 0.75CAWGN(snr). (4.38)

The interval end points snrmin and snrmax can easily be computed
numerically; the corresponding values for snrmin and snrmax are
illustrated in Figure 4.2 for different (∆H, �) pairs. For the WH set
and WSSUS underspread channels considered in this section, we have
that snrmin ∈ [−25 dB,−7 dB] and snrmax ∈ [32 dB, 68 dB].

An analytic characterization of snrmin and snrmax is more diffi-
cult. Insights on how these two quantities are related to the channel
parameters ∆H and � can be obtained by the following crude “back-
of-the-envelope” approximation to Lu(snr, g, TF,∆H, �).

As a first step, we further lower-bound Lu by picking α = 1/2 and
dropping the last two (positive) terms in (4.37) to obtain

Lu ≥ B

TF

�
Eh

�
log

�
1 +

TF snr(1− �)(1− cm∆H)
��h
��2

1 + TF snr(cM∆H + �)

��

−
�
∆HTF log

�
1 +

2TF snr√
∆HTF

��
. (4.39)
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Fig. 4.2.: Minimum SNR value snrmin in (a) and maximum SNR value snrmax
in (b) for which (4.38) holds, as a function of ∆H and �. The lower
bound Ls(snr, g, TF,∆H, �) is computed for a WH set base on a root-
raised-cosine pulse; furthermore, TF = 1.02.
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Next, the choice TF = 1.02 results in cm ≈ 25.87 and cM ≈ 0.77,
which allows us to use the approximation (1 − cm∆H) ≈ 1 and the
bound cM∆H + � ≤ ∆H + � in the first term on the right-hand side
of (4.39). Making further approximations TF ≈ 1, (1 − �) ≈ 1 we
arrive at

Lu(snr, g, TF,∆H, �)

� B

�
Eh

�
log

�
1 +

snr
��h
��2

1 + snr(∆H + �)

��
−

�
∆H log

�
1 +

2snr√
∆H

��
.

(4.40)

Now we see that as long as
√
∆H � snr � ∆H + �, the first term

in (4.40) dominates the second term, and the right-hand side of (4.40)
is close to CAWGN(snr).

The following rule of thumb then holds: the capacity of all WSSUS
underspread channels with scattering function CH(ν, τ) having no
more than � of its volume outside a rectangle (in the Doppler-delay
plane) of area ∆H, is close to CAWGN(snr) for all snr that satisfy√
∆H � snr � 1/(∆H + �), independently of whether CH(ν, τ) is

compactly supported or not, and of its shape. The condition
√
∆H �

snr � 1/(∆H + �) holds for all channels and SNR values of practical
interest.

4 .5 . SUMMARY OF RESULTS

In this chapter, we provided an information-theoretic characterization
of Rayleigh-fading channels that satisfy the WSSUS and the under-
spread assumptions. The information-theoretic analysis is built upon
a discretization of WSSUS underspread channels that takes the under-
spread property explicitly into account to minimize ISI and ICI in the
discretized IO relation. The channel discretization is accomplished by
transmitting and receiving on a WH set generated by a pulse that is
well localized in time and frequency.

We derived a capacity lower bound that is obtained by treating
interference as noise. This lower bound yields valuable insights into the
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capacity of Rayleigh-fading underspread WSSUS channels over a large
range of SNR values of practical interest. On the basis of this lower
bound, we derived an information-theoretic criterion for the design of
capacity-optimal WH sets. This criterion is more fundamental than
criteria based on SIR maximization (see Matz et al., 2007), because
it sheds light on the trade-off between number of degrees of freedom
and time-frequency localization of the pulse g(t). Unfortunately, the
corresponding optimization problem is hard to solve. We simplified the
problem by fixing g(t) to be a root-raised-cosine pulse and performing
an optimization over the grid parameters T and F . Our analysis shows
that the optimal value of the grid-parameter product TF is close to 1
(but strictly larger than 1) for a large range of SNR values of practical
interest. This result suggests that the maximization of the number of
degrees of freedom should be privileged over the SIR maximization in
the design of capacity-maximizing WH sets.

Even though our analysis was confined to a specific pulse shape (i.e.,
root-raised-cosine), we were able to show that for all Rayleigh-fading
WSSUS channels that are underspread according to Definition 4.1, the
corresponding capacity lower bound is close to the AWGN-capacity
upper bound for all SNR values of practical interest, independently
of whether the scattering function is compactly supported or not (a
fine detail of the channel model). In other words, the capacity of
Rayleigh-fading underspread WSSUS channels starts being sensitive
to this fine detail of the channel model only for SNR values that lie
outside the SNR range typically encountered in real-world systems.
Hence, the Rayleigh-fading WSSUS underspread model is a robust
model.

To conclude, an interesting open problem, the solution of which
would strengthen our results, is to obtain an upper bound on the
capacity of (4.1) based on perfect CSI at the receiver.

111





CHAPTER 5

Noncoherent SIMO Channel

It is well known that the coherent-capacity pre-log (i.e., the asymptotic
ratio between capacity and the logarithm of SNR, as SNR goes to
infinity) of a SIMO fading channel is equal to 1 and is, hence, the same
as that of a SISO fading channel (Telatar, 1999). In the practically
more relevant noncoherent setting, where neither transmitter nor
receiver have CSI, but both are aware of the channel statistics, the
effect of multiple antennas on the capacity1 pre-log is understood only
for a specific simple channel model, namely, the constant block-fading
model. In this model, the channel is assumed to remain constant over
a block of D symbols and to change in an independent fashion from
block to block (Marzetta and Hochwald, 1999). For this model, the
SIMO capacity pre-log is again equal to the SISO capacity pre-log, but,
differently from the coherent case, is given by 1 − 1/D (Hochwald
and Marzetta, 2000; Zheng and Tse, 2002).

A more general way of capturing channel variations in time is
to assume that the fading process is stationary. In this case, the
capacity pre-log is known only in the SISO (Lapidoth, 2005) and the
MISO (Koch, 2009, Theorem 4.15) cases. The capacity bounds for the
SIMO stationary-fading channel available in the literature (Koch, 2009,

1In the remainder of this chapter, we consider the noncoherent setting only.
Consequently, we will refer to capacity in the noncoherent setting simply as
capacity. Furthermore, we shall assume Rayleigh fading throughout.
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Theorem 4.13) do not allow one to determine whether the capacity
pre-log in the SIMO case can be larger than that in the SISO case.

In this chapter, we focus on a channel model that can be seen
as lying in between the general stationary-fading model considered
by Lapidoth (2005) and Koch (2009), and the simpler constant block-
fading model analyzed by Marzetta and Hochwald (1999) and Zheng
and Tse (2002). Specifically, we assume that the fading process is
independent across blocks of length D and temporally correlated
within blocks, with the rank of the corresponding D × D channel
covariance matrix given by2 M < D. For this channel model, referred
to as the correlated block-fading model in the following, the SISO
capacity pre-log is equal to 1−M/D (Liang and Veeravalli, 2004).3

The SIMO and MIMO capacity pre-logs are not known in this case.
A conjecture proposed by Liang and Veeravalli (2004) on the MIMO
capacity pre-log implies that the capacity pre-log in the SIMO case
would be the same as that in the SISO case. In this chapter, we disprove
the Liang and Veeravalli (2004) conjecture by showing that in the
SIMO case a capacity pre-log of 1− 1/D can be obtained when the
number of receive antennas is equal to M , and the channel covariance
matrix satisfies a certain technical condition detailed in Theorem 5.1.

5.1. SYSTEM MODEL

We consider a SIMO channel with M receive antennas. The fading in
each component channel follows the correlated block-fading model
described in the previous section, namely, it is independent across
blocks of length D, and correlated within blocks, with the rank of the
corresponding channel covariance matrix given by M < D. Note that
we assume the rank of the channel covariance matrix to be equal to
the number of receive antennas. Our analysis relies heavily on this

2When M = D, capacity is known to grow double-logarithmically in SNR (Lapi-
doth and Moser, 2003), and, hence, the capacity pre-log is zero.
3The constant block-fading model is obviously a special case (M = 1) of the

correlated block-fading model.
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assumption4. Across component channels, the fading is independent
and identically distributed. The IO relation (within every block) for
the mth component channel can be written as

ym =
√

snr diag(hm)s+wm, m ∈ [1 :M ]

where the vector s = [s1 · · · sD]T ∈ C
D contains the D-dimensional

signal transmitted within the block, and the vectors ym,wm ∈ C
D

contain the corresponding received signal and additive noise, respec-
tively, at the mth antenna. Finally, hm ∈ C

D contains the channel
coefficients between the transmit antenna and the mth receive an-
tenna. We assume that wm ∼ CN (0, ID) and hm ∼ CN (0,PP

H)
are mutually independent (and independent across m) and that
P = [pi,j ]i∈[1 : D],j∈[1 : M ] ∈ C

D×M (which is the same for all blocks)
has rank M < D. It will turn out convenient to write the channel-
coefficient vector in whitened form as hm = Pgm, where gm ∼
CN (0, IM ). Finally, we assume that gm and wm change in an inde-
pendent fashion from block to block.

If we define

y
T � [yT

1 · · · yT

M ] g
T = [g1 · · · gM2 ] � [gT

1 · · · gT

M ] (5.1)

w
T � [wT

1 · · ·wT

M ] S � diag(s)

we can write the channel IO relation in the following—more compact—
form

y =
√

snr (IM ⊗SP)g +w. (5.2)

The capacity of the channel (5.2) is defined as

CSIMO(snr) � 1

D
sup
fs(·)

I(s;y) (5.3)

where the supremum is taken over all input distributions fs(·) that
satisfy the average-power constraint E

�
�s�2

�
≤ D.

4The results in this thesis can be generalized to the case when the rank of the
channel covariance matrix is not equal to the number of receive antennas. This
generalization is based on Hironaka’s theorem on resolution of singularities, a
famous result from algebraic geometry. See Riegler et al. (2011) for details.
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5 .2. INTUITIVE ANALYSIS

In this section, we describe a “back-of-the-envelope” method for guess-
ing the capacity pre-log. A formal justification of this procedure is
provided in Section 5.3.

The capacity pre-log characterizes the asymptotic behavior of the
fading-channel capacity at high SNR, i.e., in the regime where the
additive noise can “effectively” be ignored. In order to guess the
capacity pre-log, we therefore consider the problem of identifying the
transmit symbols si, i ∈ [1 :D], from the noise-free (and rescaled)
observation

ŷ = [ŷ1 · · · ŷMD]T � (IM ⊗SP)g. (5.4)

Specifically, we shall ask the question: “How many symbols si can
be identified uniquely from ŷ given that the channel coefficients g

are unknown but the statistics of the channel, i.e., the matrix P, are
known?” The claim we make is that the capacity pre-log is given by
the number of these symbols divided by the block length D.

We start by noting that the unknown variables in (5.4) are g and s,
which means that we have a quadratic system of equations. It turns
out, however, that the simple change of variables zi � 1/si, i ∈ [1 :D],
(we make the technical assumption 0 <

��si
�� < ∞, i ∈ [1 :D], in the

remainder of this section) transforms (5.4) into a system of equations
that is linear in g and zi, i ∈ [1 :D]. Since the transformation zi �
1/si is invertible for 0 < si < ∞, uniqueness of the solution of the
linear system of equations in g and zi, i ∈ [1 :D], is equivalent to
uniqueness of the solution of the quadratic system of equations in g

and si, i ∈ [1 :D]. For simplicity of exposition and concreteness, we
consider the special case D = 3 and M = 2. A direct computation
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reveals that (5.4) is equivalent to





p11 p12 0 0 ŷ1 0 0
p21 p22 0 0 0 ŷ2 0
p31 p32 0 0 0 0 ŷ3
0 0 p11 p12 ŷ4 0 0
0 0 p21 p22 0 ŷ5 0
0 0 p31 p32 0 0 ŷ6









g1
g2
g3
g4
−z1
−z2
−z3





= 0. (5.5)

The solution of this linear system of equations is not unique, as we have
6 equations in 7 unknowns. The si = 1/zi, i ∈ [1 : 3], can, therefore,
not be determined uniquely from ŷ. However, if we transmit one
pilot symbol and two data symbols, the system of equations becomes
solvable. Take for example s1 = 1 and let the receiver know the
value of this (pilot) symbol. Then (5.5) reduces to the following
inhomogeneous system of 6 equations in 6 unknowns





p11 p12 0 0 0 0
p21 p22 0 0 ŷ2 0
p31 p32 0 0 0 ŷ3
0 0 p11 p12 0 0
0 0 p21 p22 ŷ5 0
0 0 p31 p32 0 ŷ6





� �� �
B





g1
g2
g3
g4
−z2
−z3





=





ŷ1
0
0
ŷ4
0
0





. (5.6)

This system of equations has a unique solution if detB �= 0. We prove
in Lemma 5.2 that under the technical condition on P specified in
Theorem 5.1 below, we, indeed, have that detB �= 0 for almost all5

ŷ2, ŷ3, ŷ5, ŷ6. It, therefore, follows that for almost all ŷ, the system of
equations (5.6) has a unique solution. Consequently, we can recover
z2 and z3, and, hence, s2 = 1/z2 and s3 = 1/z3.

Summarizing our findings, we expect that the capacity pre-log of
the channel (5.2), for the special case D = 3 and M = 2, is equal to
2/3. This is larger than the capacity pre-log of the corresponding SISO

5Except for a set of measure zero.
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channel (i.e., the capacity pre-log of one of the component channels),
which is equal to 1−M/D = 1/3 (Liang and Veeravalli, 2004).

In general, we expect that under some technical conditions on P

the capacity pre-log of the SIMO channel as defined in Section 5.1
is equal to (D − 1)/D = 1 − 1/D. This is what we intend to show
rigorously in the next section.

5.3. A LOWER BOUND ON THE CAPACITY
PRE-LOG

The main result of this chapter is the following theorem.

Theorem 5.1. Assume that there exists a subset of indices I ⊂ [1 : D]
of cardinality |I| = M + 1 such that the [(M + 1)×M ]-dimensional
submatrix6 P̃ � [P]I,� of the matrix P in (5.2) satisfies the following
Property (A): Every set of M rows of P̃ is linearly independent. Then,
the capacity of the SIMO channel (5.2) can be lower-bounded as

CSIMO(snr) ≥ (1− 1/D) log(snr) +O(1), snr → ∞. (5.7 )

Remark 5.1. For the special case D = M + 1, (5.7) yields a lower
bound on the capacity pre-log that is tight. A matching upper bound
can be obtained through steps similar to those in the proof of (Liang
and Veeravalli, 2004, Proposition 4). Establishing tight upper bounds
on the capacity pre-log for general values of D, however, seems to be
an open problem. Other tools than those used by Liang and Veeravalli
(2004) are probably needed.

Remark 5.2. When M = 1, the channel in (5.2) reduces to a SISO
constant block-fading channel, and the lower bound (5.7) yields the
correct capacity pre-log of Zheng and Tse (2002) and Hochwald and
Marzetta (2000).

6Notations for subvectors and submatrices used in this chapter are define in Sec-
tion H.5.
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Remark 5.3. Property (A) is not very restrictive and is satisfied by
many practically relevant matrices P. For example, removing arbitrary
set of D−M columns from a D×D discrete Fourier transform (DFT)
matrix, results in a matrix that satisfies Property (A) when D is
prime (Tao, 2005). DFT covariance matrices occur naturally in basis-
expansion models for time-varying channels (Liang and Veeravalli,
2004).

Proof. We choose an input distribution for which the entries si, i ∈
[1 :D], of s, are i.i.d., have zero mean and unit variance, and sat-
isfy E

�
log

��si
��� > −∞ and h(si) > −∞. For example, we can take

si ∼ CN (0, 1). We then lower-bound I(s;y) in (5.3), evaluated for
this input distribution. More precisely, we use I(s;y) = h(y)− h(y | s)
and bound the two differential entropy terms separately. Note that
the class of input distributions for which (5.7) holds is large. This does
not come as a surprise, as we are interested in the capacity pre-log
only.

As y conditional on s is JPG, the conditional differential entropy
h(y | s) can be upper-bounded in a standard fashion as follows:

h(y | s) = MD log(πe)

+ Es

�
log det

�
IMD + snr (IM ⊗SP)Eg

�
gg

H
� �

IM ⊗P
H
S
H
���

= Es

�
log det

�
IMD + snr (IM ⊗SP)

�
IM ⊗P

H
S
H
���

+ c

= Es

�
log det

�
IMD + snr

�
IM ⊗SPP

H
S
H
���

+ c

= M Es

�
log det

�
ID + snr

�
SPP

H
S
H
���

+ c

= M Es

�
log det

�
IM + snr

�
P

H
S
H
SP

���
+ c

(a)
≤ M log det

�
IM + snr

�
P

H
Es

�
S
H
S
�
P
��

+ c

= M
M�

i=1

log
�
1 + snr λi

�
P

H
P
��

+ c

(b)
≤ M2 log(snr) +O(1), snr → ∞, (5.8)

where c, here and in the remainder of this chapter, stands for a con-
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stant7 that is independent of snr; (a) follows from Jensen’s inequality;
(b) holds because P has rank M .

Finding a tight lower bound on h(y) is the main difficulty of the
proof. In fact, the differential entropy of y is often intractable even
for simple input distributions. The main technical contribution of
this chapter is presented in Section 5.3.1 below, where we show that
if Property (A) is satisfied and if the input distribution satisfies the
conditions specified at the beginning of this proof, we have

h(y) ≥ (D − 1 +M2) log(snr) + c. (5.9)

Combining (5.8) and (5.9) then yields the desired result. Note that
in order to establish (5.8) it is sufficient to use that P has rank M ,
whereas the more restrictive Property (A) is crucial to establish (5.9).

5.3.1. A Lower Bound on h(y)

The main idea of our approach is to relate h(y) to h(g, s) = h(g)+h(s),
which is generally much simpler to compute than h(y). It is possible to
relate the entropies of two random vectors in a simple way if the vectors
are of the same dimension and are connected by a deterministic one-
to-one (in the sense of (Rudin, 1987, p.7)) function (see Lemma 5.3
below).

The connection between y and [gT
s
T]T is not deterministic, because

of the presence of noise in the IO relation (5.2). Moreover, the vectors y
and [gT

s
T]T have, in general, different dimensionality. Therefore, it

is hard to establish a direct relationship between h(y) and h(g, s).
The difficulty can be resolved by the following observations.

(i) It is possible to show that if s1 is a fixed parameter, then there
is a deterministic one-to-one function between [gT

s
T

[2 : D]]
T and

a specific subset J ⊂ [1 :DM ] of components of the noiseless
version ŷ of the output vector (see Lemma 5.2 below).

7The value of this constant can change at each appearance.
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(ii) The existence of this deterministic one-to-one function allows us
to relate h(ŷJ | s1) to h(g, s[2 : D] | s1) = h(g, s[2 : D]) in a simple
way (see Lemma 5.3 below).

(iii) This relation will turn out to be sufficient for our purposes as
using that conditioning reduces entropy we can link h(y) to
h(ŷJ | s1) according to (5.25) below.

We now describe the details of the proof program outlined above.

Lemma 5.2. Assume that the matrix P satisfies the conditions of
Theorem 5.1 and take the submatrix P̃ defined in Theorem 5.1 to
consist of the first M + 1 rows of P for simplicity.8 Let

J � [1 : D] ∪ [D + 1 : D +M + 1]

∪ [2D + 1 : 2D +M + 1] ∪ · · ·
∪ [(M − 1)D + 1 : (M − 1)D +M + 1] (5.10 )

where |J | = D − 1 + M2, and consider the vector-valued function
ŷJ : CD−1+M2 → C

D−1+M2

ŷJ
�
g, s[2 : D]

�
= ((IM ⊗SP)g)J (5.11 )

parametrized by s1 �= 0. To simplify the notation we will not indi-
cate this parametrization explicitly. The function ŷJ (·) is one-to-one
almost everywhere (a.e.) on C

D−1+M2
.

Proof. We need to show that the function ŷJ (g, s[2 : D]) is one-to-one
a.e. Hence, we can exclude sets of measure zero from its domain. In par-
ticular, we shall consider the restriction of the function ŷJ (g, s[2 : D])
to the set of pairs (g, s[2 : D]), which satisfy

(i) 0 <
��si

�� < ∞ for all i ∈ [2 :D];

(ii) the matrix G, defined by

G
T = [g1 · · · gM ] (5.12)

is invertible [here [g1 · · · gM ] is related to g according to (5.1)];
8This assumption will be made in the remainder of the chapter, without explicitly

mentioning it again.
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(iii) the sum
�M

m=1 g1mpjm is nonzero for all j ∈ [M + 2 :D].

To show that this restriction of the function ŷJ (·) [which, with
slight abuse of notation we still call ŷJ (·)] is one-to-one, we take an
element ỹ from its range and prove that the equation

ŷJ (g�, s�[2 : D]) = ỹ (5.13)

has a unique solution in the set of pairs (g�, s�[2 : D]) satisfying the
constraints (i)–(iii). We do this in two steps. First, we demonstrate
that equation (5.13) is equivalent to a linear equation. Second, we
show that this linear equation has a unique solution.

Step 1: The element ỹ can be represented as

ỹ = ((IM ⊗SP)g)J (5.14)

with

S = diag

��
s1

s[2 : D]

��

where (g, s[2 : D]) satisfies the constraints (i)–(iii). Hence, (5.13) can
be rewritten in the following way

((IM ⊗S
�
P)g�)J = ((IM ⊗SP)g)J (5.15)

with

S
� = diag

��
s1

s
�
[2 : D]

��
.

To prove that (5.15) has a unique solution, we follow the approach
described in Section 5.2 and convert (5.15) into a linear system of
equations through a change of variables. In particular, thanks to
constraint (i), we can multiply both sides of (5.15) by [IM ⊗S

�]−1
J ,J

and by [IM ⊗S]−1
J ,J and perform the substitution z�i = 1/s�i, i ∈ [2 :D].

We obtain that (5.15) is equivalent to
��
IM ⊗S

−1
P
�
g
��

J = ((IM ⊗Z
�
P)g)J (5.16)
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where
Z

� = diag

��
1/s�1
z
�

��

and z
� = [z�2 · · · z�D]T. Using (Lütkepohl, 1996, Section 7.2, Equation

5), it can be easily shown that (5.16) holds if and only if

��
IM ⊗S

−1
P
�
J ,� − [(G⊗ ID)D(P)]J ,�

�



g
�

1/s�1
z
�



 = 0 (5.17)

where the operator D(·) is defined as

D(P) �




diag([p11 · · · pD1])

...
diag([p1M · · · pDM ])



 . (5.18)

Then, manipulate equation (5.17) such that all the unknowns are on
one side of the equation and all the terms depending on the constant
s�1 are on the other side. This yield the following inhomogeneous linear
system of equations

F

�
g
�

−z
�

�
=

1

s�1
u (5.19)

where

F =
��
IM ⊗S

−1
P
�
J ,� [(G⊗ ID)D(P)]J ,[2 : D]

�
(5.20)

u =
�
p
T

1g1 0 · · · 0� �� �
D−1 times

p
T

1g2 0 · · · 0� �� �
M times

· · · p
T

1gM 0 · · · 0� �� �
M times

�T

and p
T

1 denotes the first row of P.

Step 2: The solution of (5.19) is unique if and only if detF �= 0.
Matrix F depends on S, G, P in a complicated way. The key to our
analysis is to factorize F into a product of terms, each of which can
be easily shown to have a nonzero determinant.

As a consequence of the choice of J in (5.10), each of the last
D−M −1 columns of F has exactly one nonzero element. This allows
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us to use the Laplace formula to expand the determinant along these
columns iteratively to get

|detF| =
���det

��
IM ⊗S

−1
P
�
J ,� [(G⊗ ID)D(P)]J ,[2 : D]

����

=
�

j∈[M+2 : D]

�����

M�

m=1

g1mpjm

�����|det(E)| (5.21)

where

E =
�
IM ⊗ S̃

−1
P̃ (G⊗ IM+1)D̃

�

D̃ =
�
D(P̃)

�

�,[2 : M+1]
, S̃ = [S][1 : M+1],[1 : M+1] .

Next, we factorize E into a product of simple terms and write

E =
��

IM ⊗ S̃
−1

��
IM ⊗ P̃

�
(G⊗ IM+1)D̃

�

=
�
IM ⊗ S̃

−1
�

� �� �
M1(S)

��
IM ⊗ P̃

� �
IM ⊗ S̃

�
(G⊗ IM+1)D̃

�

= M1(S)
��

IM ⊗ P̃

�
(G⊗ IM+1)

�
IM ⊗ S̃

�
D̃

�

= M1(S)

��
IM ⊗ P̃

�
(G⊗ IM+1)D̃

�
S̃

�

[2 : M+1],[2 : M+1]

�

= M1(S)
��

IM ⊗ P̃

�
(G⊗ IM+1)D̃

� �IM2 0

0

�
S̃

�

[2 : M+1],[2 : M+1]

�

� �� �
M2(S)

(5.22)

where the first three equalities are consequences of simple properties
of the Kronecker product and in the fourth equality we used the
block-diagonal structure of D̃. Next, again using simple properties of
the Kronecker product, we can write

��
IM ⊗ P̃

�
(G⊗ IM+1)D̃

�
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= (G⊗ IM+1)
�
(G−1 ⊗ IM+1)

�
IM ⊗ P̃

�
D̃

�

= (G⊗ IM+1)
��

IM ⊗ P̃

�
(G−1 ⊗ IM ) D̃

�

= (G⊗ IM+1)� �� �
M3(G)

��
IM ⊗ P̃

�
D̃

�

� �� �
M4(P)

�
(G−1 ⊗ IM ) 0

0 IM

�

� �� �
M5(G)

. (5.23)

Inserting (5.23) into (5.22) and then inserting the result into (5.21)
and using the multiplicativity of the determinant we obtain the desired
factorization

|detF| =
�

j∈[M+2 : D]

�����

M�

m=1

g1mpjm

�����|detM1(S)||detM2(S)|

× |detM3(G)||detM4(P)||detM5(G)|. (5.24)

The first factor in this product is nonzero by constraint (iii); the sec-
ond and the third factors are nonzero by constrain (i); the fourth and
the sixth factors are nonzero by constraint (ii). The fifth factor in the
product depends only on P, a parameter of the problem. It is curious
to find out that the structure of M4(P) is such that Property (A)
guarantees that

��detM4(P)
�� �= 0. This fact from linear algebra is

proven in Appendix G. Therefore
��detF

�� �= 0 and the proof is com-
pleted.

The following comments on Lemma 5.2 are in order.

Remark 5.4. For D = 3 and M = 2 as in the simple example in
Section 5.2, J = [1 : 6], so that ŷJ = ŷ. Therefore, the one-to-one
correspondence established in this lemma simply means that (5.4)
has a unique solution for fixed s1 �= 0. Note also, that the matrix B

defined in (5.6) is related to F in (5.20) according to B = (I2 ⊗S)F,
and therefore detB �= 0 a.e., as claimed in Section 5.2.

Remark 5.5. For the proof of the lemma, it is crucial that s1 �= 0
is fixed. In fact, one can check that if none of the components of
s is fixed, the resulting equivalent of the function ŷJ (·) cannot be
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one-to-one, no matter how the set J is chosen. Fixing s1 �= 0 in order
to make the function ŷJ (·) be one-to-one corresponds to transmitting
a pilot, as done in the simple example in Section 5.2 by setting s1 = 1.
The cardinality of the set J , which determines the lower bound on the
capacity pre-log, as we shall see below, is dictated by the requirement
that ŷJ and

�
g
T
s
T

[2 : D]

�T are of the same dimension, which implies
that J must contain D − 1 + M2 elements. The specific choice of
J in (5.10) is arbitrary to a certain extent and is made this way to
simplify the proof of the lemma as much as possible.

Lemma 5.2 can be used to relate the conditional differential entropy
h(ŷJ | s1) to h(g, s[2 : D]). Before doing so, we establish a simple lower
bound on h(y) that is explicit in h(ŷJ | s1). Let N be the complement
of J in [1 :MD]. Then

h(y) = h(yJ ,yN ) = h(yJ ) + h(yN |yJ )

≥ h
�√

snrŷJ +wJ
�
+ h(yN |g, s,yJ )

≥ h
�√

snrŷJ +wJ |wJ
�
+ h(wN )

≥ |J | log(snr) + h(ŷJ | s1) + c. (5.25)

Through this chain of inequalities, we got rid of the noise w. This
corresponds to considering the noise-free IO relation (5.4) in the
intuitive explanation given in Section 5.2. Inserting |J | = D−1+M2

into (5.25), we obtain the desired result (5.9) provided that h(ŷJ | s1)
is finite, which will be proved by means of the following lemma.

Lemma 5.3 (Transformation of differential entropy). Assume that
f : CN → C

N is a continuous vector-valued function that is one-to-one
a.e. on C

N . Let u ∈ C
N be a random vector and v = f(u). Then

h(v) = h(u) + 2Eu[log |det(∂f/∂u)|] .

Proof. The proof follows from the change-of-variable theorem for
integrals (Rudin, 1987, Theorem 7.26).
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Let fs1(x) denote the density of s1. Then

h(ŷJ | s1) =
�
fs1(x)h(ŷJ | s1 = x)dx

= h(g, s[2 : D] | s1) + 2Eg,s

�
log

����det
∂ŷJ

∂(g, s[2 : D])

����

�
(5.26)

where in the second equality we applied Lemma 5.3 to h(ŷJ | s1 = x),
using that the function ŷJ (·) in (5.11) is continuous and is one-to-one
a.e. as shown in Lemma 5.2. The first term on the right-hand side
of (5.26) satisfies

h(g, s[2 : D] | s1) = h(g) + h(s[2 : D]) > −∞

where the inequality follows because the si, i ∈ [2 :D], are i.i.d. and
have finite differential entropy. It therefore remains to show that the
second term on the right-hand side of (5.26) is finite as well. As the
right-hand side of (5.11) is linear in g, we have that

∂ŷJ
∂g

= [IM ⊗SP]J ,� .

Furthermore, using (Lütkepohl, 1996, Section 7.2, Equation 5), the
right-hand side of (5.11) can be rewritten as

ŷJ (g, s[2 : D]) = ((G⊗ ID)D(P)s)J . (5.27)

Hence, we have that

∂ŷJ
∂s[2 : D]

= [(G⊗ ID)D(P)]J ,[2 : D] .

To summarize, the Jacobian matrix in (5.26) is given by

∂ŷJ
∂(g, s[2 : D])

=
�
[IM ⊗SP]J ,� [(G⊗ ID)D(P)]J ,[2 : D]

�
. (5.28)

This Jacobian matrix has a structure similar to the matrix F defined
in (5.20) [the only difference is that S−1 in F is replaced by S in (5.28)].
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Therefore, we can factorize the determinant of this Jacobian matrix
in exactly the same way as detF and write
���det

�
[IM ⊗SP]J ,� [(G⊗ ID)D(P)]J ,[2 : D]

����

=
�

j∈[M+2 : D]

�����

M�

m=1

g1mpjm

�����
��detM1(S

−1)
����detM2(S

−1)
��

× |detM3(G)||detM4(P)||detM5(G)|. (5.29)

Hence, we can rewrite the second term on the right-hand side of (5.26)
as

Eg,s

�
log

����det
∂ŷJ

∂(g, s[2 : D])

����

�

=
�

j∈[M+2 : D]

Eg

�
log

�����

M�

m=1

g1mpjm

�����

�

+ Es

�
log

��detM1(S
−1)

���+ Es

�
log

��detM2(S
−1)

���

+ Eg[log |detM3(G)|] + log |detM4(P)|
+ Eg[log |detM5(G)|] . (5.30)

The first and the fourth term on the right-hand side of (5.30) are finite
because G has i.i.d. Gaussian components. The sixth term is finite for
the same reason, because log

��detG−1
�� = − log

��detG
��. The second

and the third term are finite because E
�
log

��si
��� > −∞, i ∈ [1 :D], by

assumption. Finally, as we already mentioned, we show in Appendix G
that the matrix M3(P) has full rank if Property (A) is satisfied. This
then implies that the fifth term on the right-hand side of (5.30) is
also finite.

5.4 . SUMMARY OF RESULTS

In this chapter, we analyzed the noncoherent-capacity pre-log of a
temporally correlated block-fading channel. We showed that, surpris-
ingly, the capacity pre-log in the SIMO case can be larger than that in
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the SISO case. This result was established for the special case of the
number of receive antennas being equal to the rank of the channel
covariance matrix. Interesting open issues include extending the lower
bound in Theorem 5.1 to an arbitrary number of receive antennas
and finding a tight upper bound on the capacity pre-log.
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CHAPTER 6

Conclusions and Outlook

In this thesis, we explored how relays can be used to improve spectral
efficiency in wireless interference networks and we investigated the
impact of the absence of CSI on the capacity of wireless point-to-point
fading channels.

The results in Chapter 2 demonstrate that it is possible to use relay
terminals to make an interference network decouple and “crystallize”,
provided there is CSI at the relays. “Crystallization” means that the
network breaks up into a set of effectively isolated “wires in the air”,
i.e., the links between all source-destination terminal pairs in the
network become nonfading and signal power dominates interference
power in every link. We found that the protocols P1 and P2 trade
off the required (for the network to crystallize) rate of growth of the
number of relay terminals for the amount of CSI at the relay level.

Interpreting our results in terms of capacity scaling, we found
that in a network with n nodes, P1 achieves O

�
1/n2/3

�
per-node

throughput whereas P2 realizes O(1/
√
n). The scaling law for P2 is

exactly the same as the behavior established by Gupta and Kumar
(2002). However, it is interesting to observe that the interference
management technique employed by P2 is completely different from
the one used by Gupta and Kumar. Gupta and Kumar manage the
interference in the network by carefully adjusting the transmit powers.
They exploit the fact that if the signal attenuation is sufficiently high,
then users situated far away do not interfere with each other and,
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therefore, can transmit (to the nearby users) simultaneously. Protocol
P2 does not require any assumptions on the path loss behavior and
handles interference using match-filtering and coherent combining at
the relay level. This technique, however, requires each relay to know
all its backward and all its forward channels.

Özgür et al. (2007) have shown that O(1) throughput can be
achieved in an interference network using hierarchical cooperation.
The protocol developed by Özgür et al. manages interference as follows.
First, it carefully adjusts the power of local transmissions (i.e., the
transmissions to the nearby users), just like in (Gupta and Kumar,
2002). Second, it uses the local transmissions to emulate collocated
antenna arrays by exchanging information between the nearby users
and to create large-scale virtual MIMO links; it then benefits from the
spatial multiplexing gain provided by these links. In order to sustain
the required number of local transmissions simultaneously, the signal
attenuation should be sufficiently strong. The use of the large-scale
virtual MIMO links requires enough CSI: each node must know all the
channels in the network. Such global CSI is difficult to acquire and
to maintain. An interesting problem, therefore, is to determine the
network capacity scaling behavior in the noncoherent case.

As discussed above, to achieve the optimal capacity scaling behavior
in the coherent case, Özgür et al. (2007) relied heavily on the concept
of distributed large-scale virtual MIMO links. The only known upper
bound in network information theory is the cut-set bound; applied
to a wireless network this bound is equal to the capacity of the
corresponding MIMO channel, where nodes on one side of the cut
form the receiver and nodes on the other side of the cut form the
transmitter. These two observations suggest that in order to make
progress in understanding the capacity of noncoherent networks, one
has to understand the capacity behavior of the noncoherent MIMO
point-to-point channel first. Motivated by this idea, we started to
look at the capacity of noncoherent point-to-point channels.

Our results in Chapter 4 demonstrate that in underspread WSSUS
SISO channels (most wireless channels are highly underspread), the
absence of CSI does not play a significant role for all SNR values of
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practical interest, at least in terms of channel capacity. It, however,
remains unclear what the situation in MIMO channels is. It seems dif-
ficult to answer this question using the general WSSUS model, because
the gap between a lower bound based on the ideas from Chapter 4
and the corresponding AWGN upper bound widens as the number
of antennas increases. This is due to the fact that the AWGN upper
bound is insensitive to CSI uncertainty, which becomes important in
multi-antenna channels even when the spread is small. To get first
insights into the capacity behavior of point-to-point channels with
multiple antennas, we decided to use the much simpler correlated
block-fading model in Chapter 5.

The result reported in Chapter 5 is surprising: the capacity pre-log
of the noncoherent SIMO channel is strictly larger than the capacity
pre-log of the corresponding noncoherent SISO channel, an effect that
does not exist in the coherent case. Many interesting problems related
to the work in Chapter 5 remain:

1. Generalizing the lower bound found in Chapter 5 to the case where
the number of receive antennas is not equal to the rank of the
correlation matrix of the channel.

2. Finding the corresponding matching upper bound.

3. Generalizing the SIMO results to the MIMO case.

If the solution to these three problems is found, it will become possible
to analyze the hierarchical cooperation protocol of Özgür et al. in
the noncoherent setting. It will then be interesting to see, what the
noncoherent capacity scaling behavior achieved by the protocol is,
whether O(1) throughput is achievable, and how the capacity scaling
behavior depends on the rank of the channel correlation matrix.
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APPENDIX A

Truncation of Random Variables and
Large Deviations

We start by recalling the famous Hoeffding inequality along with an
important variation that will be central for our developments.

Theorem A.1 (Hoeffding, 1963). Let X1, X2, . . . , XN be independent
real-valued RVs and An ≤ Xn ≤ Bn for n∈[1 :N ]. Let SN =

�N
n=1 Xn.

Then,

P{SN − E[SN ] ≥ Nx} ≤ exp

�
− 2N2x2

�N
n=1(Bn −An)2

�
.

Theorem A.2 (Maurer, 2003). Let X1, X2, . . . , XN be independent
real-valued RVs with Xn ≥ 0 and E

�
X2

n

�
< ∞ for n∈[1 :N ]. Let SN =�N

n=1 Xn. Then,

P{SN − E[SN ] ≤ −Nx} ≤ exp

�
− N2x2

2
�N

n=1 E
�
X2

n

�

�
.

The following theorem builds on the Hoeffding inequality (Theo-
rem A.1) and constitutes the core of the truncation technique.

Theorem A.3. Assume the following on a common probability space.
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• The real-valued RVs X1, X2, . . . , XN (possibly dependent) have
marginal distribution functions FXn(x), n∈[1 :N ]. The tails of
these distributions are exponentially decaying uniformly in n, i.e.,
there exist B > 0, α > 0, β > 0, and x0 > 0 such that for
x ≥ x0 > 0 and n∈[1 :N ]

P

�
|Xn| ≥ x

�
= 1− FXn(x) + FXn(−x) ≤ Be−αxβ

. (A.1 )

• The real-valued RVs φ1, φ2, . . . , φN are jointly independent and
satisfy

−1 ≤ φn ≤ 1, E[φn] = 0, n∈[1 :N ].

• The real-valued deterministic nonnegative coefficients A1, A2, . . .
. . . , AN are uniformly bounded from above, i.e., there exists a
constant A independent of n such that

0 ≤ An ≤ A, n∈[1 :N ].

• The set of RVs {Xn}Nn=1 is independent of the set {φn}Nn=1.
Let SN =

�N
n=1 AnXnφn. Then, for all N > 0 and x > 0 such that

x ≥ x(2+β)/2
0

P

�
|SN | ≥

√
Nx

�
≤ 2max[2, NB] exp

�
−min

�
1

2A2
, α

�
x

2β
2+β

�
.

(A.2 )

Proof. The proof is based on the idea of truncation of the RVs Xn.
We start by fixing N and choosing t such that

�
Nt2

�γ ≥ x0. The
truncation parameter 0 < γ < 1 will be chosen later. Next, we
truncate the RVs Xn, n∈[1 :N ], according to

X̂n � Xn I
�
|Xn| ≤

�
Nt2

�γ�
.

Define ŜN � �N
n=1 AnX̂nφn. Note that the independence of {Xn}Nn=1

and {φn}Nn=1 and the condition E
�
φn

�
= 0 (n∈[1 :N ]) implies that

E
�
SN

�
= E

�
ŜN

�
= 0. Let In denote the event that Xn is equal to its

truncated version, i.e., In �
�
Xn = X̂n

�
and, Ic

n the event that Xn �=

136



A. TRUNCATION OF RANDOM VARIABLES AND LARGE DEVIATIONS

X̂n, i.e., Ic
n �

�
Xn �= X̂n

�
. With these definitions, distinguishing

the events where either all Xn are equal to their truncated version,
i.e.,

�N
n=1 In and where at least one of the Xn is not equal to its

truncated version, i.e.,
�N

n=1 Ic
n, we get

P{|SN | ≥ Nt} = P

�
|SN | ≥ Nt

�����

N�

n=1

In

�
P

�
N�

n=1

In

�

+ P

�
|SN | ≥ Nt

�����

N�

n=1

Ic
n

�
P

�
N�

n=1

Ic
n

�

= P

����ŜN

��� ≥ Nt
�
P

�
N�

n=1

In

�

+ P

�
|SN | ≥ Nt

�����

N�

n=1

Ic
n

�
P

�
N�

n=1

Ic
n

�

≤ P

����ŜN

��� ≥ Nt
�
+

N�

n=1

P{Ic
n} (A.3)

where the last step follows by using the trivial bounds

P

�
N�

n=1

In

�
≤ 1, P

�
|SN | ≥ Nt

�����

N�

n=1

Ic
n

�
≤ 1

and applying the union bound to P
��N

n=1 Ic
n

�
. Since −1 ≤ φn ≤

1, n∈[1 :N ], we obtain the following bounds for the individual terms
in ŜN

−An

�
Nt2

�γ ≤ AnX̂nφn ≤ An

�
Nt2

�γ
, n∈[1 :N ].

Moreover, owing to the independence of the φn, conditioned on the set
X �

�
X̂1, X̂2, . . . , X̂N

�
, the RVs AnX̂nφn are independent. Therefore,

using Bayes’ rule and the Hoeffding inequality (Theorem A.1), noting
that E

�
ŜN | X

�
= 0, we can conclude that

P

����ŜN

��� ≥ Nt
�
= EX

�
P

����ŜN − E

�
ŜN

���X
���� ≥ Nt

���X
��
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≤ 2 exp

�
− N2t2

2
�N

n=1 A
2
n (Nt2)2γ

�

≤ 2 exp

�
−
�
Nt2

�1−2γ

2A2

�
. (A.4)

Next, using (A.1), and assuming [this will be justified in (A.6)]
that

�
Nt2

�γ ≥ x0, we have

P{Ic
n} = P

�
Xn �= X̂n

�

= P

�
|Xn| ≥

�
Nt2

�γ� ≤ Be−α(Nt2)γβ

. (A.5)

To get the fastest possible exponential decay in (A.3), we need to
choose the free parameter γ such that it maximizes min[1− 2γ, γβ],
which is the solution that makes the exponents of t in (A.4) and (A.5)
equal and is given by γ = 1/(2+β). Finally, setting t = x/

√
N results

in �
Nt2

�γ
= x2γ = x2/(2+β) ≥ x0 (A.6)

as required. Combining (A.3), (A.4) and (A.5), we finally obtain

P

�
|SN | ≥

√
Nx

�
≤ 2 exp

�
− 1

2A2
x

2β
2+β

�
+NB exp

�
−αx

2β
2+β

�
.

(A.7)
The final result (A.2) is a trivial upper bound to (A.7).

The following corollary is the generalization of Theorem A.3 to
the complex-valued case and will be used repeatedly in the proofs of
Theorems 2.1 and 2.2.

Corollary A.4. Assume the following on a common probability space.
• The absolute values of the complex-valued (possibly dependent)

RVs X1, X2, . . . , XN have marginal distribution functions FXn(x),
n∈[1 :N ]. The tails of these distributions are exponentially de-
caying uniformly in n, i.e., there exist B > 0, α > 0, β > 0 and
x0 > 0 such that for x ≥ x0 > 0 and n∈[1 :N ]

P{|Xn| ≥ x} = 1− FXn(x) ≤ Be−αxβ

. (A.8 )
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• The real-valued RVs φ1, φ2, . . . , φN are jointly independent and
satisfy φn ∼ U (−π, π) and hence E

�
eiφn

�
= 0 for all n∈[1 :N ].

• The real-valued deterministic nonnegative coefficients A1, A2, . . .
. . . , AN are uniformly bounded from above, i.e., there exists a
constant A independent of n such that

0 ≤ An ≤ A, n∈[1 :N ].

• The set of RVs {Xn}Nn=1 is independent of the set {φn}Nn=1.
Let SN =

�N
n=1 AnXneiφn . Then, for all N > 0 and x > 0 such

that x ≥ x(2+β)/2
0

P

�
|SN | ≥

√
Nx

�
≤ 4max[2, NB] exp

�
−min

�
1

2A2
, α

�
2−

β
β+2x

2β
β+2

�
.

Proof. Apply Theorem A.3 to �SN and �SN separately and combine
the two bounds using the Pythagorean union bound (Lemma B.2).

The following corollary is a modification of Theorem A.3 for the
case of independent nonnegative RVs and will be used repeatedly in
the proofs of Theorems 2.1 and 2.2.

Corollary A.5. Assume the following on a common probability space.
• The real-valued nonnegative RVs X1, X2, . . . , XN are jointly inde-

pendent and have marginal distribution functions FXn(x), n∈[1 :
N ]. The right tails of these distributions are exponentially decay-
ing uniformly in n, i.e., there exist B > 0, α > 0, β > 0 and
x0 > 0 such that for all x ≥ x0 > 0 and n∈[1 :N ]

P{Xn ≥ x} = 1− FXn(x) ≤ Be−αxβ

. (A.9 )

• The expectations E
�
X2

n

�
are uniformly bounded from above, i.e.,

there exists a constant C independent of n such that

E
�
X2

n

�
≤ C, n∈[1 :N ]. (A.10)

• The real-valued deterministic nonnegative coefficients A1, A2, . . .
. . . , AN are uniformly bounded from above, i.e., there exists a
constant A independent of n such that

0 ≤ An ≤ A, n∈[1 :N ]. (A.11)
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Let SN =
�N

n=1 AnXn. Then, for all N > 0 and x > 0 such that
x ≥ x(2+β)/2

0

P

�
|SN − E[SN ]| ≥

√
Nx

�

≤ 3max[1, NB] exp

�
−min

�
2

A2
, α,

1

2A2C

�
x

2β
β+2

�
. (A.12)

Proof. The proof idea of this corollary is similar to that used in
Theorem A.3. However, there are several technical details, which do
not occur in the proof of Theorem A.3. We have, therefore, decided
to present the full version of the proof of Corollary A.5.

Unlike in the proof of Theorem A.3, here we have E
�
SN

�
�= 0. To

obtain an upper bound on P
���SN − E

�
SN

��� ≥
√
Nx

�
, we establish an

upper bound on P
�
SN ≥ E

�
SN

�
+
√
Nx

�
and on P

�
SN ≤ E

�
SN

�
−√

Nx
�

and use the union bound to combine the results.
We start by deriving an upper bound on P

�
SN ≥ E

�
SN

�
+
√
Nx

�
.

Following the same steps as in the proof of Theorem A.3, we define
the truncation parameter 0 < γ < 1, which will be chosen later. Fix
N and choose t such that

�
Nt2

�γ ≥ x0. We truncate the RVs Xn

(n∈[1 :N ]) according to

X̂n � Xn I
�
Xn ≤

�
Nt2

�γ�

and define ŜN � �N
n=1 AnX̂n. It is easily seen that E

�
SN

�
≥ E

�
ŜN

�

and therefore

P

�
SN ≥ E[SN ] +Nt

�
≤ P

�
SN ≥ E

�
ŜN

�
+Nt

�
. (A.13)

Let In denote the event that Xn is equal to its truncated version,
i.e., In �

�
Xn = X̂n

�
, and Ic

n the event that Xn �= X̂n, i.e., Ic
n ��

Xn �= X̂n

�
. With these definitions, distinguishing the events where

either all Xn are equal to their truncated version, i.e.,
�N

n=1 In and
where at least one of the Xn is not equal to its truncated version, i.e.,
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�N
n=1 Ic

n, we get

P

�
SN ≥ E

�
ŜN

�
+Nt

�

= P

�
SN ≥ E

�
ŜN

�
+Nt

�����

N�

n=1

In

�
P

�
N�

n=1

In

�

+ P

�
SN ≥ E

�
ŜN

�
+Nt

�����

N�

n=1

Ic
n

�
P

�
N�

n=1

Ic
n

�

= P

�
ŜN ≥ E

�
ŜN

�
+Nt

�
P

�
N�

n=1

In

�

+ P

�
SN ≥ E

�
ŜN

�
+Nt

�����

N�

n=1

Ic
n

�
P

�
N�

n=1

Ic
n

�

≤ P

�
ŜN ≥ E

�
ŜN

�
+Nt

�
+

N�

n=1

P{Ic
n} (A.14)

where the last step is obtained by using the trivial bounds

P

�
N�

n=1

In

�
≤ 1, P

�
SN ≥ E

�
ŜN

�
+Nt

�����

N�

n=1

Ic
n

�
≤ 1

and applying the union bound to P
��N

n=1 Ic
n

�
. The individual terms

in ŜN are bounded according to

0 ≤ AnX̂n ≤ An

�
Nt2

�γ
, n∈[1 :N ].

Using Bayes’ rule and the Hoeffding inequality (Theorem A.1), we
can conclude that

P

�
ŜN ≥ E

�
ŜN

�
+Nt

�
≤ exp

�
− 2N2t2
�N

n=1 A
2
n (Nt2)2γ

�

≤ exp

�
−
2
�
Nt2

�1−2γ

A2

�
. (A.15)
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Next, using (A.9), and assuming [this will be justified in (A.17)] that�
Nt2

�γ ≥ x0, we have

P{Ic
n} = P

�
Xn �= X̂n

�

= P

�
Xn ≥

�
Nt2

�γ� ≤ Be−α(Nt2)γβ

. (A.16)

To get the fastest possible exponential decay in (A.14), we need
to choose the free parameter γ such that it maximizes min

�
1 −

2γ, γβ
�
, which is the solution that makes the exponents of t in (A.15)

and (A.16) equal and is given by γ = 1/(2 + β). Finally, setting
t = x/

√
N results in

�
Nt2

�γ
= x2γ = x2/(2+β) ≥ x0 (A.17)

as required. Combining (A.13)–(A.16), we obtain

P

�
SN ≥ E[SN ] +

√
Nx

�

≤ exp

�
− 2

A2
x

2β
2+β

�
+NB exp

�
−αx

2β
2+β

�
. (A.18)

It remains to establish an upper bound on P
�
SN ≤ E

�
SN

�
−
√
Nx

�
.

From Theorem A.2 it follows that

P

�
SN ≤ E[SN ]−

√
Nx

�
≤ exp

�
− Nx2

2
�N

n=1 E
�
A2

nX
2
n

�

�

which, using (A.10) and (A.11), can be further upper-bounded as

P

�
SN ≤ E[SN ]−

√
Nx

�
≤ exp

�
− x2

2A2C

�
. (A.19)

Combining (A.18) and (A.19) and using the union bound, we obtain

P

�
|SN − E[SN ]| ≥

√
Nx

�
≤ exp

�
− 2

A2
x

2β
2+β

�

+NB exp
�
−αx

2β
2+β

�
+ exp

�
− x2

2A2C

�
. (A.20)

The final result (A.12) is a trivial upper bound to (A.20).
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APPENDIX B

Union Bounds

In this appendix, as a reference, we present several variations of
union bounds for probability that we use frequently throughout the
Chapter 2.

Lemma B.1 (Union bound for sums). Assume the complex-valued
RVs X1, X2, . . . , XN are such that

P

�
|Xn| ≥ Cn

�
≤ Pn, n∈[1 :N ]

where C1, C2, . . . , CN and P1, P2, . . . , PN are fixed positive constants.
Then,

P

������

N�

n=1

Xn

����� ≥
N�

n=1

Cn

�
≤

N�

n=1

Pn.

Proof. Let An denote the event that
��Xn

�� ≥ Cn, n∈[1 : N ]. Let
B denote the event that

���N
n=1 Xn

�� ≥
�N

n=1 Cn. By inspection, it
follows that B ⇒

�N
n=1 An, which implies P{B} ≤

�N
n=1 P{An}.

The proofs of the remaining union bounds follow exactly the same
pattern as the proof of Lemma B.1 and will hence be omitted.

Lemma B.2 (Pythagorean union bound). Assume the complex-
valued RV X is such that

P

�
|�X| ≥ CR

�
≤ PR and P

�
|�X| ≥ CI

�
≤ PI
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where CR, CI, PR, and PI are fixed positive constants. Then,

P

�
|X| ≥

�
C2

R + C2
I

�
≤ PR + PI.

Lemma B.3 (Union bound for mixed sums). Assume that the
complex-valued RVs X1, X2, . . . , XN are such that

P

�
|Xn| ≥ Cn

�
≤ Pn, n∈[1 :N ]

where C1, C2, . . . , CN and P1, P2, . . . , PN are fixed positive constants;
then, the following statements hold.

1. If the real-valued RVs X �
1, X

�
2, . . . , X

�
N � are such that

P

�
X �

n ≤ C �
n

�
≤ P �

n, n∈[1 :N ]

where C �
1, C

�
2, . . . , C

�
N and P �

1, P
�
2, . . . , P

�
N are fixed positive con-

stants, then

P






������

N�

n=1

Xn +
N ��

n=1

X �
n

������
≤ max



0,
N ��

n=1

C �
n −

N�

n=1

Cn










≤
N�

n=1

Pn +
N ��

n=1

P �
n.

2. If the real-valued RVs X �
1, X

�
2, . . . , X

�
N � are such that

P

�
X �

n ≥ C �
n

�
≤ P �

n, n∈[1 :N ]

then,

P






������

N�

n=1

Xn +
N ��

n=1

X �
n

������
≥

N ��

n=1

C �
n +

N�

n=1

Cn




 ≤
N�

n=1

Pn+
N ��

n=1

P �
n.
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Lemma B.4 (Union bound for products). Assume the complex-valued
RVs X1, X2, . . . , XN are such that

P

�
|Xn| ≥ Cn

�
≤ Pn, n∈[1 :N ]

where C1, C2, . . . , CN and P1, P2, . . . , PN are fixed positive constants.
Then,

P

������

N�

n=1

Xn

����� ≥
N�

n=1

Cn

�
≤

N�

n=1

Pn.

Lemma B.5 (Union bound for fractions). If for real-valued positive
RVs X1 and X2 and positive constants C1, C2 and P1, P2

P

�
X1 ≥ C1

�
≤ P1 and P

�
X2 ≤ C2

�
≤ P2

then
P

�
X1/X2 ≥ C1/C2

�
≤ P1 + P2.

If, in turn,

P

�
X1 ≤ C1

�
≤ P1 and P

�
X2 ≥ C2

�
≤ P2

then
P

�
X1/X2 ≤ C1/C2

�
≤ P1 + P2.
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APPENDIX C

Technical Results from Chapter 2

C.1. PROOF OF THEOREM 2.1
We start by recalling that we want to establish a concentration result
for sinrP1

m , given by (2.22), using the truncation technique throughout.
As already mentioned, this entails establishing the large-deviations
behavior of S(1), S(2), S(3), and S(4). For S(3), this has already been
done in Section 2.3.3.b. It remains to establish the corresponding
(based on the truncation technique) concentration results for S(1),
S(2), and S(4) defined by (2.23), (2.24), and (2.26), respectively.

C.1.1. Analysis of S(1)

The sum S(1) can be written as

S(1) =
�

k:p(k)=m

Cm,m
P1,kZ

(1)
k (C.1)

with
Z(1)
k � |fm,k||hk,m|.

For every k∈[1 :K] such that p(k) = m, we have E
�
Z(1)
k

�
= π/4 and

E
��
Z(1)
k

�2�
= 1. Application of the union bound for products yields

P

�
Z(1)
k ≥ x

�
≤ 2e−x, x ≥ 0.
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Noting that the sum S(1) contains K/M terms, which are jointly
independent, taking into account (2.12), and using Corollary A.5, we
get for x ≥ 0 and K/M ≥ 1

P






������
S(1) − π

4

�

k:p(k)=m

Cm,m
P1,k

������
≥

�
K

M
x




 ≤ 6
K

M
e−∆(1)x2/3

with ∆(1) = min
�
1, 1/

�
2C

2��. Finally, using (2.12), it follows that

P

�
S(1) ≥ π

4
C
K

M
+

�
K

M
x

�
≤ 6

K

M
e−∆(1)x2/3

(C.2)

and

P

�
S(1) ≤ π

4
C
K

M
−

�
K

M
x

�
≤ 6

K

M
e−∆(1)x2/3

(C.3)

for all x ≥ 0 and K/M ≥ 1.

C.1.2. Analysis of S(2)

The sum S(2) can be written as

S(2) =
�

k:p(k) �=m

Cm,m
P1,k Z(2)

k

with
Z(2)
k � f̃∗

p(k),k fm,k h̃
∗
k,p(k) hk,m.

For every k∈[1 : K] such that p(k) �= m, we have E
�
Z(2)
k

�
= 0.

Application of the union bound for products yields

P

����Z(2)
k

��� ≥ x
�
≤ 2e−x, x ≥ 0.

Noting that the sum S(2) contains K(M − 1)/M terms, which are
jointly independent, taking into account (2.12), and using Corol-
lary A.4, we get for x ≥ 0 and K(M − 1)/M ≥ 1

P

����S(2)
��� ≥

�
K(M − 1)

M
x

�
≤ 8

K(M − 1)

M
e−∆(2)x2/3

(C.4)
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with ∆(2) = 2−
1
3 min

�
1, 1/

�
2C

2��.

C.1.3. Analysis of S(4)

The sum S(4) can be written as

S(4) =
K�

k=1

�
Cm

P1,k

�2
Z(4)
k

with

Z(4)
k = |fm,k|2.

Since Z(4)
k is exponentially distributed with parameter λ = 1, we have

P

�
Z(4)
k ≥ x

�
≤ e−x, k∈[1 :K], x ≥ 0.

Noting that the sum S(4) contains K jointly independent terms, taking
into account (2.13) and using

E

�
Z(4)
k

�
= 1 and E

��
Z(4)
k

�2�
= 2, k∈[1 :K]

we get for x ≥ 0 and K ≥ 1

P

������S
(4) −

K�

k=1

�
Cm

P1,k

�2
����� ≥

√
Kx

�
≤ 3Ke−∆(4)x2/3

with ∆(4) = min
�
1, 1/

�
4 c 4

��
. Therefore, using (2.13), it follows that

P

�
S(4) ≥ K c2 +

√
Kx

�
≤ 3Ke−∆(4)x2/3

(C.5)

and
P

�
S(4) ≤ K c2 −

√
Kx

�
≤ 3Ke−∆(4)x2/3

. (C.6)

We are now ready to carry out the final Step v of the program
outlined in the first paragraph of Section 2.3.3. The concentration
result for sinrP1

m is expressed in terms of upper bounds on P
�
sinrP1

m ≥
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ÛP1

�
and P

�
sinrP1

m ≤ L̂P1

�
, where the exact form of ÛP1 and L̂P1

is specified below.
To establish an upper bound on P

�
sinrP1

m ≥ ÛP1

�
, we proceed as

follows:

1. Apply Part 2 of Lemma B.3 to (C.2) and (C.4) to establish a
stochastic upper bound1 for

��S(1) + S(2)
��.

2. Apply Part 1 of Lemma B.3 to (2.45), (2.52), and (2.53) to establish
a stochastic lower bound2 for

��S(3)
��.

3. Apply Part 1 of Lemma B.3 to the result from Step 2) and (C.6)
to establish a stochastic lower bound for S(3) + σ2MS(4) +KMσ2.

4. Apply the union bound for fractions (Lemma B.5) to the stochastic
upper bound from Step 1 and to the stochastic lower bound from
Step 3 to establish the final result:

P

�
sinrP1

m ≥ ÛP1

�
≤ PU

P1 (C.7)

with

ÛP1 � π2

16

C
2

C2
SN

K

M3

ÛN
P1

ÛD
P1

(C.8)

and PU
P1, Û

N
P1, and ÛD

P1 defined as

PU
P1 � 6

K

M
e−∆(1)x2/3

1 + 8
K(M − 1)

M
e−∆(2)x2/3

2

+ 6 (M − 1)Ke−∆(31)x2/5
31

+ 64
(K − 1)K(M − 1)2

M
e−∆(32)x2/7

321

+ 64
(K − 1)K(M − 1)

M
e−∆(32)x2/7

322 + 3Ke−∆(4)x2/3
4 (C.9)

1For a RV X, a “stochastic upper bound” in this context means a bound of the
form P{X ≥ A} ≤ P .
2For a RV X, a “stochastic lower bound” in this context means a bound of the

form P
�
X ≤ A

�
≤ P .
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ÛN
P1 �

�
1 +

4

Cπ

�
M

K
x1 +

4

Cπ

�
M(M − 1)

K
x2

�2

(C.10)

ÛD
P1 � max

�
0,

C2

C2
SN

M − 1

M
− 1

C2
SN

M − 1

M
√
K

x31

− 1

C2
SN

�
(K − 1)(M − 1)2

KM3
x321

− 1

C2
SN

�
(K − 1)(M − 1)

KM3
x322

�

+
σ2

C2
SN

max

�
0, c2 − 1√

K
x4

�
+

σ2

C2
SN

(C.11)

An upper bound on P
�
sinrP1

m ≤ L̂P1

�
can be obtained as follows:

1. Apply Part 1 of Lemma B.3 to (C.3) and (C.4) to establish a
stochastic lower bound for

��S(1) + S(2)
��.

2. Apply Part 2 of Lemma B.3 to (2.44), (2.52), and (2.53) to establish
a stochastic upper bound for

��S(3)
��.

3. Apply Part 2 of Lemma B.3 to the result from Step 2 and to (C.5)
to establish a stochastic upper bound for S(3) + σ2MS(4) +KMσ2.

4. Apply the union bound for fractions to the stochastic lower bound
from Step 1 and to the stochastic upper bound from Step 3 to
establish the final result:

P

�
sinrP1

m ≤ L̂P1

�
≤ PU

P1 (C.12)

with

L̂P1 � π2

16

C2

C
2
SN

K

M3

L̂N
P1

L̂D
P1

(C.13)
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and L̂N
P1 and L̂D

P1 defined as

L̂N
P1 � max

�
0, 1− 4

Cπ

�
M

K
x1 −

4

Cπ

�
M(M − 1)

K
x2

�2

(C.14)

L̂D
P1 � C

2

C
2
SN

M − 1

M
+

1

C
2
SN

M − 1

M
√
K

x31

+
1

C
2
SN

�
(K − 1)(M − 1)2

KM3
x321

+
1

C
2
SN

�
(K − 1)(M − 1)

KM3
x322

+
σ2

C
2
SN

�
c2 +

1√
K

x4

�
+

σ2

C
2
SN

. (C.15)

The result presented in Theorem 2.1 is a simpler and slightly weaker
form of the bounds (C.7) and (C.12). To obtain this simplification we
proceed as follows. Set

x1 = x2 = x31 = x4 = x321 = x322 = x

in (C.9), (C.10), (C.11), (C.14) and (C.15). Note that in this case
LP1(x) ≤ L̂P1(x) and UP1(x) ≥ ÛP1(x) and therefore

P

�
sinrP1

m ≥ UP1

�
≤ P

�
sinrP1

m ≥ ÛP1

�
≤ PU

P1 (C.16)

P

�
sinrP1

m ≤ LP1

�
≤ P

�
sinrP1

m ≤ L̂P1

�
≤ PU

P1. (C.17)

Finally, combine the bounds (C.16) and (C.17) according to

P

��
sinrP1

m ≥ UP1

���
sinrP1

m ≤ LP1

��

≤ P

�
sinrP1

m ≥ UP1

�
+ P

�
sinrP1

m ≤ LP1

�
≤ 2PU

P1

and note that 2PU
P1 is upper bounded by the right-hand side of (2.55).
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C.2. PROOF OF LOWER BOUND IN
THEOREM 2.3

As already mentioned in Chapter 2, the proof of the lower bound
in (2.87) is based on the technique summarized in Appendix C.3.
After straightforward algebra, it follows that the IO relation of the
SISO channel between the terminals Sm and Dm (m∈[1 :M ]) is given
by

ym =
�
F̄m + F̃m

�
sm +Wm

where

F̄m � 1√
Q

Q�

q=1

E
�
am,m
q

�

F̃m � 1√
Q

Q�

q=1

�
am,m
q − E

�
am,m
q

��

Wm �
�

m̂ �=m

sm̂
1√
Q

Q�

q=1

am,m̂
q +

1√
Q

Q�

q=1

bmq h̃
H

q,p(q)zq + wm

and

am,m̂
q � Cm,m̂

P1,q

�
f̃
H

p(q),qfm,q

��
h̃
H

q,p(q)hq,m̂

�

bmq � Cm
P1,q

�
f̃
H

p(q),qfm,q

�

Cm,m̂
P1,q �

�
QdP1,qP̂m,qÊq,m̂

Cm
P1,q �

�
QdP1,qP̂m,q.

It is not difficult, but tedious, to verify that

F̄m =
π

4

L2

√
Q

�

q:p(q)=m

Cm,m
P1,q (C.18)

Var
�
F̃m

�
=

L2

Q

�

q:p(q) �=m

�
Cm,m

P1,q

�2
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+
(L+ (π/4)(L− 1)L)2 − (π2/16)L4

Q

�

q:p(q)=m

�
Cm,m

P1,q

�2

(C.19)

Var[Wm] =
L2 + (π/4)L2(L− 1)

QM

�

m̂ �=m

�

q:p(q)=m

�
Cm,m̂

P1,q

�2

+
L2 + (π/4)L2(L− 1)

QM

�

m̂ �=m

�

q:p(q)=m̂

�
Cm,m̂

P1,q

�2

+
L2

QM

�

m̂ �=m

�

q:p(q) �=m
p(q) �=m̂

�
Cm,m̂

P1,q

�2

+
L2 + (π/4)L2(L− 1)

Q
σ2

�

q:p(q)=m

�
Cm

P1,q

�2

+
L2

Q
σ2

�

q:p(q) �=m

�
Cm

P1,q

�2
+ σ2. (C.20)

Using (2.3), we lower-bound F̄m and upper-bound Var
�
F̃m

�
and

Var
�
Wm

�
, substitute the resulting bounds into (C.22), and obtain

I(ym; sm) ≥ log

�
1 +

π2

16

Q

M3
f(M,L)

�
(C.21)

where

f(M,L) =
P E PrelL2

�
E + π(L−1)

4M E + σ2
��

�(M,L) + C
2
+ σ2c2 + σ2

�

with

�(M,L) =
C

2

M
+

(1 + (π/4)(L− 1))2

M2
C

2

+
(1 + (π/4)(L− 1))

�
2C

2
+ σ2c2

�

M
.

Finally, since L is finite, it follows by inspection that

lim
M→∞

�(M,L) = 0
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and, therefore,

lim
M→∞

f(M,L) =
L2C2

C
2
SN

which, together with (C.21), concludes the proof.

C.3. LOWER BOUND ON CHANNEL CAPACITY
WITH IMPERFECT CHANNEL KNOWLEDGE

The following Lemma is obtained by recognizing that the expression
in (Lapidoth and Shamai (Shitz), 2002, Equation (66)) is trivially a
lower bound to I(X;Y ) in (C.22) below. For completeness, we present
the result in the form needed in this thesis. For the proof of the
(general) statement the interested reader is referred to (Lapidoth and
Shamai (Shitz), 2002).

Lemma C.1. Consider a SISO channel with IO relation

Y = FX +W

where X ∼ CN
�
0, σ2

X

�
, W is zero-mean noise3 with variance σ2

W , F
is the random channel gain with variance σ2

F , and Y is the output of
the channel. Assume that F can be decomposed as

F = F̄ + F̃

where F̄ = E
�
F
�

is known at the receiver and F̃ with E
�
F̃
�
= 0 is not

known at the receiver. Assume that X is statistically independent4

of both F and W . Then, the mutual information I(X;Y ) can be
lower-bounded as follows:

I(X;Y ) ≥ log

�
1 +

F̄ 2σ2
X

σ2
Fσ

2
X + σ2

W

�
. (C.22)

3In contrast to (Médard, 2000, Section III), the noise is not necessarily Gaussian.
4In (Médard, 2000, Section III), it is assumed that X, F , and W are statistically

independent. The condition required here is weaker: F and W need not be
statistically independent.
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APPENDIX D

Some Essentials from Large
Random-Matrix Theory

In this appendix, we briefly summarize the basic definitions and results
from large random-matrix theory used in Chapter 3. An excellent
tutorial on this subject is (Tulino and Verdú, 2004).

Definition D.1 (Stieltjes transform). Let F(x) be a distribution
function with density f(x). The analytic function

GF(z) �
�

f(x)

x− z
dx, z ∈C

+

is called the Stieltjes transform of F(x).

Lemma D.1 (Inversion formula). Let GF(z) be the Stieltjes transform
of a distribution function F(x). The corresponding density function
can be obtained as

f(x) =
1

π
lim

y→0+
� [GF(x+ iy)] . (D.1 )

Theorem D.2 (Silverstein, 1995). Define the following quantities on
a common probability space.

• The random matrix A∈C
N×N �

has i.i.d. zero-mean entries with
variance one.
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• The random matrix B∈C
N×N is Hermitian nonnegative definite

with FN
B
(x), for N → ∞, converging on [0,∞) a.s. to a non-

random distribution function FB(x) with corresponding density
fB(x).

Assume that the matrices A and B are statistically independent. Then,
for N,N � → ∞ with N/N � → β,

FN
(1/N �)AAHB

(x)
a.s.−−→ F(1/N �)AAHB(x)

with its Stieltjes transform GF(1/N�)AAHB
(z) satisfying

GF(1/N�)AAHB
(z) =

∞�

−∞

fB(x)dx

x(1− β − βz GF(1/N�)AAHB
(z))− z

, z ∈C
+.

The solution of this fixed-point equation is unique in the set
�
GF(1/N�)AAHB

(z)∈C

����−
1− β

z
+ β GF(1/N�)AAHB

(z)∈C
+

�
.

We shall furthermore use the Marčenko-Pastur law as stated by Bai
(1999).

Theorem D.3 (Marčenko and Pastur, 1967). Assume that the matrix
A∈C

N×N �
has i.i.d. zero-mean entries with variance d2. Then, for

N,N � → ∞ with N �/N → β, the ESD of (1/N �)AA
H converges a.s.

to a limiting distribution function with density

f(1/N �)AAH(x) =
β

2πxd2

�
(γ2 − x)+ (x− γ1)

+ + [1− β]+δ(x)

where γ1 = d2(1− 1/
√
β)2 and γ2 = d2(1 + 1/

√
β)2.

Under the same assumptions as in the first statement, if, in addition,
the entries of A have finite fourth moments, then a.s.

lim
N �→∞

λmin

�
1

N �AA
H

�
= γ1

lim
N �→∞

λmax

�
1

N �AA
H

�
= γ2.
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APPENDIX E

A calculation for Chapter 3

In the following, we detail the computation of the integral

Î � ρ

η2�

η1

�
(η2 − x) (x− η1) dx

x(1− x)2
�
x
�

1−β
z − βG

�
− 1

� (E.1)

on the right-hand side of (3.10). With the change of variables

t =

�
x− η1
η2 − x

(E.2)

and the notation

µ1 � 1− η1 ν1 � η1

�
1− β

z
− βG

�
− 1

µ2 � 1− η2 ν2 � η2

�
1− β

z
− βG

�
− 1

the integral Î can be written as

Î = 2(η2 − η1)
2ρ

∞�

0

t2(t2 + 1)dt

(η2t2 + η1)(µ2t2 + µ1)2(ν2t2 + ν1)
.

To simplify further, we introduce the notation

κ1 � −η1
η2

, κ2 � −µ1

µ2
, κ3 � −ν1

ν2
, χ � 2(η2 − η1)2

η2 µ2
2 ν2

ρ
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so that

Î = χ

∞�

0

t2(t2 + 1)dt

(t2 − κ1)(t2 − κ2)2(t2 − κ3)
. (E.3)

Upon partial fraction expansion of the integrand in (E.3), we obtain

Î = χ(A1Î1 +A2Î2 +A3Î3 +A4Î4) (E.4)

where

Î1 �
∞�

0

dt

t2 − κ1
Î2 �

∞�

0

dt

(t2 − κ2)2

Î3 �
∞�

0

dt

t2 − κ2
Î4 �

∞�

0

dt

t2 − κ3
(E.5)

with

A1 =
κ1(κ1 + 1)

(κ1 − κ2)2(κ1 − κ3)
(E.6)

A2 =
κ2(κ2 + 1)

(κ2 − κ1)(κ2 − κ3)
(E.7)

A3 =
−κ2

2 − κ1κ2
2 + κ1κ3 + 2κ1κ2κ3 − κ2

2κ3

(κ2 − κ1)2(κ2 − κ3)2
(E.8)

A4 =
κ3(κ3 + 1)

(κ3 − κ1)(κ3 − κ2)2
. (E.9)

The integrals in (E.5) can be evaluated resulting in

Î1 =
1√−κ1

arctan
t√−κ1

����
∞

0

=
π

2
√−κ1

(E.10)

Î2 = − t

2κ2(t2 − κ2)

����
∞

0

− 1

2κ2
√−κ2

arctan
t√−κ2

����
∞

0

= − π

4κ2
√−κ2

(E.11)

Î3 =
1√−κ2

arctan
t√−κ2

����
∞

0

=
π

2
√−κ2

(E.12)
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Î4 =
1√−κ3

arctan
t√−κ3

����
∞

0

=
π

2
√−κ3

. (E.13)

The quantity κ3 is complex-valued, and the arctan and square root
in (E.12) are understood as the principal values of these functions
in C as defined by Abramowitz and Stegun (1972).

Finally, by inspection, combining (E.10)–(E.13) with (E.6)–(E.9)
and resubstituting the values of the parameters κ1, κ2, κ3, χ, ρ,
µ1, µ2, η1, η2, ν1, ν2, γ1, and γ2, after straightforward but tedious
simplifications, we find

χA1Î1 =

�√
β + 1

� ��√β − 1
��

2β

χA2Î2 = − z√
β(Gβz + z + β − 1)

χA3Î3 = −
zd2

�√
β − 1

�2
(Gβz + z + β − 1)

2d2β(Gβz + z + β − 1)2

+
zβ(Gβz + β − 1)

2d2β(Gβz + z + β − 1)2

χA4Î4 = − (Gβz + β − 1)

2d2β(Gβz + z + β − 1)2

×

����d2(Gβz + z + β − 1)
�√

β − 1
�2

+ zβ

d2(Gβz + z + β − 1)
�√

β + 1
�2

+ zβ

×
�
d2(Gβz + z + β − 1)

��
β + 1

�2
+ zβ

�
.
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APPENDIX F

Technical Results from Chapter 4

F.1. AWGN-CAPACITY UPPER BOUND

To prove (4.14), we shall make use of (Wyner, 1966, Theorem 2).
For the application of the theorem (see, in particular, Wyner, 1966,
Equation (47c)), we need a lower bound on the average energy of ŷf (t),
after ŷf (t) is passed through the time-limiting operator DD. To ac-
count for the time-dispersive nature of the channel H, we shall replace
DD with DD+2τ0 . As τ0 does not depend on D, such replacement does
not affect capacity. The signal (DD+2τ0 ŷf )(t) is given by

(DD+2τ0 ŷf )(t)

=






��

R2

SH(ν, τ)
�
BB+2ν0

�
s(t− τ)ei2πtν

��
dτdν, if

��t
�� ≤ D/2 + τ0

0, otherwise

so that its average energy can be computed as

E
�
�(DD+2τ0 ŷf )(t)�2

�

=

��

R2

CH(ν, τ)E





D/2+τ0�

−D/2−τ0

��BB+2ν0

�
s(t− τ)ei2πtν

���2dt



 dτdν
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≥
ν0�

−ν0

τ0�

−τ0

CH(ν, τ)E





D/2+τ0�

−D/2−τ0

��BB+2ν0

�
s(t− τ)ei2πtν

���2dt



 dτdν

where the equality follows form the WSSUS property of H [see (4.7)],
and the inequality follows from the non-negativity of the integrand.
As a consequence of the bandwidth constraint (4.3) and of the ap-
proximate time constraint (4.4) the input signal s(t) is subject to, we
have that, for all (ν, τ) ∈ [−ν0, ν0]× [−τ0, τ0],

E





D/2+τ0�

−D/2−τ0

��BB+2ν0

�
s(t− τ)ei2πtν

���2dt



 ≥ (1− η)E
�
�s(t)�2

�
.

Hence,

E
�
�(DD+2τ0 ŷf )(t)�2

�
≥ (1− η)E

�
�s(t)�2

�
ν0�

−ν0

τ0�

−τ0

CH(ν, τ)dτdν

≥ (1− η)(1− �)E
�
�s(t)�2

�

where the last step follows from the underspread definition (4.9). We
can now apply (Wyner, 1966, Theorem 2) and get

ID(ŷf (t); yf (t)) ≤ (B+2ν0) log

�
1 +

(1− η)(1− �)P

B + 2ν0

�
+(η+�−η�)P

which concludes the proof.

F.2. THE TRANSMIT SIGNAL IN (4.16)
SATISFIES (4.4)

Let s be the vector of dimension �K �N obtained by stacking the data
symbols s[k, n] as in (4.25). Furthermore, let

d[k, n, l,m] =

�

|t|>D/2

gk,n(t)g
∗
l,m(t)dt
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and let D be a square matrix of dimension �K �N × �K �N with entries

[D]m̃+l̃ �N,ñ+k̃ �N = d[k̃ −K, ñ−N, l̃ −K, m̃−N ]

for k̃, l̃ ∈ [0 : �K−1] and ñ, m̃ ∈ [0 : �N −1]. Note that D is a Hermitian
matrix. The average amount of energy of s(t) [defined in (4.16)]
outside an interval of length D can be expressed as a function of s
and D as follows

E
�
�(I− DD)s(t)�2

�
= s

H
Ds ≤ λmax(D)E

�
�s�2

�

where the last step follows from the Rayleigh-Ritz theorem (Horn
and Johnson, 1985, Theorem 4.2.2). We next use Geršgorin’s disc
theorem (Horn and Johnson, 1985, Corollary 6.1.5) to obtain an upper
bound on λmax(D) that is explicit in the entries of D:

λmax(D) ≤ max
k∈[−K : K]
n∈[−N : N]



d[k, n, k, n] +
K�

l=−K

N�

m=−N
(l,m) �=(k,n)

|d[k, n, l,m]|



 .

(F.1)
Our goal is to show that the right-hand side of (F.1) can be made
smaller than η for an appropriate choice of K �. To establish this result,
we bound each term on the right-hand side of (F.1) separately. For
the first term we have that

d[k, n, k, n] =

�

|t|>D/2

|gk,n(t)|2dt

=

∞�

(K+K�+1/2)T

|g(t− kT )|2dt+
−(K+K�+1/2)T�

−∞

|g(t− kT )|2dt

=

∞�

(K+K�−k+1/2)T

|g(t)|2dt+
−(K+K�+k+1/2)T�

−∞

|g(t)|2dt

≤
∞�

(K�+1/2)T

|g(t)|2dt+
−(K�+1/2)T�

−∞

|g(t)|2dt
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=

�

|t|>(K�+1/2)T

|g(t)|2dt.

As g(t) = O(1/
��t
��1+µ) by assumption, there exists a constant γ > 0

such that
��g(t)

�� < γ/
��t
��1+µ for

��t
�� ≥ γ. Hence, if we choose K � such

that K �T > γ, we get

d[k, n, k, n] ≤
�

|t|>(K�+1/2)T

γ2
��t
��2(1+µ)

dt = 2

∞�

(K�+1/2)T

γ2

t2(1+µ)
dt.

We next upper-bound each of the terms
��d[k, n, l,m]

�� in (F.1), still
under the assumption that K �T > γ.

|d[k, n, l,m]| =

�������

�

|t|>(K+K�+1/2)T

gk,n(t)g
∗
l,m(t)dt

�������

≤
�

|t|>(K+K�+1/2)T

��gk,n(t)g∗l,m(t)
��dt

=

�

|t|>(K+K�+1/2)T

|g(t− kT )g∗(t− lT )|dt

≤ γ2

�

|t|>(K+K�+1/2)T

1��t− kT
��1+µ

1��t− lT
��1+µ

dt

= γ2

∞�

(K+K�+1/2)T

1��t− kT
��1+µ

1��t− lT
��1+µ

dt

+ γ2

−(K+K�+1/2)T�

−∞

1��t− kT
��1+µ

1��t− lT
��1+µ

dt

≤ γ2

∞�

(K+K�+1/2)T

1��t−KT
��1+µ

1��t− lT
��1+µ

dt
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+ γ2

−(K+K�+1/2)T�

−∞

1��t+KT
��1+µ

1��t− lT
��1+µ

dt

≤ γ2

∞�

(K�+1/2)T

1��t
��1+µ

1��t− (l −K)T
��1+µ

dt

+ γ2

−(K�+1/2)T�

−∞

1��t
��1+µ

1��t− (l +K)T
��1+µ

dt.

Note that for t ≥ 0

K�

l=−K

1��t− (l −K)T
��1+µ

=
2K�

l=0

1��t+ lT
��1+µ

≤
2K�

l=0

1

(lT )1+µ
≤

∞�

l=0

1

(lT )1+µ
� γ� < ∞

where in the last step we used that µ > 0 and, hence, the series
converges. Similarly, for t < 0

K�

l=−K

1��t− (l +K)T
��1+µ

=
2K�

l=0

1��t− lT
��1+µ

≤
2K�

l=0

1

(lT )1+µ
≤

∞�

l=0

1

(lT )1+µ
= γ�.

Putting all pieces together, we get,
K�

l=−K

N�

m=−N
(l,m) �=(k,n)

|d[k, n, l,m]|

≤
K�

l=−K

N�

m=−N
(l,m) �=(k,n)

γ2




∞�

(K�+1/2)T

1��t
��1+µ

1��t− (l −K)T
��1+µ

dt
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+

−(K�+1/2)T�

−∞

1��t
��1+µ

1��t− (l +K)T
��1+µ

dt





≤ (2N + 1)γ2




∞�

(K�+1/2)T

1��t
��1+µ

K�

l=−K

1��t− (l −K)T
��1+µ

dt

+

−(K�+1/2)T�

−∞

1��t
��1+µ

K�

l=−K

1��t− (l +K)T
��1+µ

dt





≤ 2(2N + 1)γ2γ�
∞�

(K�+1/2)T

1

t1+µ
dt.

To summarize, we obtained the following upper bound on the right-
hand side of (F.1):

λmax(D) ≤ 2γ2



2
∞�

(K�+1/2)T

γ

t2(1+µ)
dt+ (2N + 1)γ�

∞�

(K�+1/2)T

1

t1+µ
dt



 .

The right-hand side of the inequality can be made arbitrarily small
(for sufficiently large D) by choosing K � sufficiently large. In other
words, for sufficiently large D, we can find a finite K � for which the
right-hand side of the inequality falls below η.

F.3. SOME PROPERTIES OF THE AMBIGUITY
FUNCTION

In this appendix, we summarize for completeness some useful proper-
ties of the ambiguity function defined in (4.19).

Property 1. For every function g(t) ∈ L2(C), the ambiguity sur-
face attains its maximum magnitude at the origin:

��Ag(ν, τ)
��2 ≤

�
Ag(0, 0)

�2
= �g(t)�4, for all ν and τ . This property follows directly
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from the Cauchy-Schwarz inequality as shown in (Gröchenig, 2001,
Lemma 4.2.1).

Property 2. Let g(t) ∈ L2(C) and e(t) =
√
βg(βt). Then

Ae(ν, τ) =

∞�

−∞

e(t)e∗(t− τ)e−i2πνtdt

= β

∞�

−∞

g(βt)g∗(β(t− τ))e−i2πνtdt

(a)
=

∞�

−∞

g(z)g∗(z − βτ)e−i2πνz/βdz = Ag

�
ν

β
, βτ

�

where (a) follows from the change of variable z = βt.

Property 3. The cross-ambiguity function between the two time- and
frequency-shifted versions g(α,β)(t) � g(t− α)ei2πβt and g(α�,β�)(t) �
g(t− α�)ei2πβ

�t of a function g(t) ∈ L2(C) is given by

Ag(α,β),g(α�,β�)(ν, τ)

=

∞�

−∞

g(t− α)ei2πβtg∗(t− α� − τ)e−i2πβ�(t−τ)e−i2πνtdt

(a)
= ei2πβ

�τe−i2π(ν+β�−β)α

∞�

−∞

g(t�)g∗(t�−(α�−α)−τ)e−i2π(ν+β�−β)t�dt�

= Ag(ν + β� − β, τ + α� − α)e−i2π(να−τβ�)e−i2π(β�−β)α

(F.2)

where (a) follows from the change of variables t� = t− α. As a direct
consequence of (F.2), we have

Ag(α,β)
(ν, τ) = Ag(ν, τ)e

−i2π(να−τβ). (F.3)
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Property 4. Let SH(ν, τ) be the delay-Doppler spreading function
of the channel H. Then, for all g(t), f(t) ∈ L2(C),

�H g, f� (a)
=

���

R3

SH(ν, τ)g(t− τ)ei2πtνf∗(t)dτdνdt

=

��

R2

SH(ν, τ)

� ∞�

−∞

f(t)g∗(t− τ)e−i2πtνdt

�∗

dτdν

=

��

R2

SH(ν, τ)A
∗
f,g(ν, τ)dτdν = �SH, Af,g�

where in (a) we used (4.6).

F.4 . PROOF OF THEOREM 4.1
We obtain a capacity lower bound by computing the mutual infor-
mation for a specific input distribution. In particular, we take s[k, n]
i.i.d. JPG with zero mean and variance TF snr, so that the average
power constraint (4.2) is satisfied. The corresponding input s is inde-
pendent of h, P, and w, because no feedback from the receiver to the
transmitter is assumed. We use the chain rule for mutual information
and the fact that mutual information is nonnegative to obtain the
following lower bound:

I(y; s) = I(y; s,h)− I(y;h | s)
= I(y;h) + I(y; s |h)− I(y;h | s)
≥ I(y; s |h)− I(y;h | s).

(F.4)

A. The “Coherent” Term

The first term can be further lower-bounded as follows

I(y; s |h) = h(s |h)− h(s |h,y)
(a)
= h(s)− h(s |h,y)
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(b)
=

K�

k=−K

N�

n=−N

�
h
�
s[k, n] | s(k,n)pred

�
− h

�
s[k, n] |h,y, s(k,n)pred

��

(c)
=

K�

k=−K

N�

n=−N

�
h(s[k, n])− h

�
s[k, n] |h,y, s(k,n)pred

��

(d)
≥

K�

k=−K

N�

n=−N

[h(s[k, n])− h(s[k, n] |h[k, n], y[k, n])]

=
K�

k=−K

N�

n=−N

I(y[k, n]; s[k, n] |h[k, n]).

Here, (a) follows because s and h are independent; in (b) we used chain
rule for differential entropy [we denoted by s

(k,n)
pred a [(k+K) �N+n+N ]-

dimensional vector containing the first (k+K) �N +n+N entries of s].
Next, (c) holds because s has i.i.d. entries and (d) follows because
conditioning reduces entropy.

We next seek a lower bound on I(y[k, n]; s[k, n] |h[k, n]) that does
not depend on the time-frequency (TF) slot position [k, n]. Let �w[k, n]
be the sum of the interference and noise term in y[k, n] [see (4.18)],
i.e.,

�w[k, n] �
K�

l=−K

N�

m=−N
(l,m) �=(k,n)

p[l,m, k, n]s[l,m] + w[k, n].

Furthermore, let �wG[k, n] be a proper Gaussian random variable that
has the same variance as �w[k, n]. It follows from (Diggavi and Cover,
2001, Lemma II.2) that I(y[k, n]; s[k, n] |h[k, n]) does not increase if
we replace w[k, n] with �wG[k, n]. In other words, Gaussian noise is
the worst noise for this setting. Hence,

I(y[k, n]; s[k, n] |h[k, n]) = I(h[k, n]s[k, n] + �w[k, n]; s[k, n] |h[k, n])
≥ I(h[k, n]s[k, n] + �wG[k, n]; s[k, n] |h[k, n])

(a)
= Eh[k,n]

�
log

�
1 +

TF snr
��h[k, n]

��2

E
��� �wG[k, n]

��2�
��
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(b)
= Eh

�
log

�
1 +

r[0, 0]TF snr
��h
��2

E
��� �wG[k, n]

��2�
��

(F.5)

where (a) follows because s[k, n] ∼ CN (0, TF snr), and (b) follows be-
cause h[k, n] ∼ CN (0, r[0, 0]) [see (4.20)], so that we can replace h[k, n]
with r[0, 0]h, where h ∼ CN (0, 1). As the input symbols s[k, n] are in-
dependent across TF slots, and as E

���p[l,m, k, n]
��2� = σ2

p[k− l, n−m]
[see (4.24)], we have that

E
�
| �wG[k, n]|2

�
= E

�
| �w[k, n]|2

�

= 1 + TF snr
K�

l=−K

N�

m=−N
(l,m) �=(k,n)

σ2
p[k − l, n−m]. (F.6)

The nonnegativity of σ2
p[k, n] allows us to upper-bound (F.6) as follows

E
�
| �wG[k, n]|2

�
≤ 1 + TF snr

∞�

l=−∞

∞�

m=−∞
(l,m) �=(k,n)

σ2
p[k − l, n−m]

= 1 + TF snr
∞�

l=−∞

∞�

m=−∞
(l,m) �=(0,0)

σ2
p[l,m] = 1 + TF snrσ2

I

(F.7)

where we set

σ2
I �

∞�

l=−∞

∞�

m=−∞
(l,m) �=(0,0)

σ2
p[l,m]. (F.8)

If we now substitute (F.7) into (F.5) we obtain

I(y[k, n]; s[k, n] |h[k, n]) ≥ Eh

�
log

�
1 +

r[0, 0]TF snr
��h
��2

1 + TF snrσ2
I

��

and, consequently,

I(y; s |h) ≥ �K �N Eh

�
log

�
1 +

r[0, 0]TF snr
��h
��2

1 + TF snrσ2
I

��
. (F.9)
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B. The Penalty Term

We next seek an upper bound on the penalty term I(y;h | s) in (F.4).
Let w1 ∼ CN (0, αI) and w2 ∼ CN (0, (1− α)I), where 0 < α < 1, be
two �K �N -dimensional independent JPG vectors. Then,

y = s⊙h+Ps+w

= s⊙h+w1� �� �
�y1

+Ps+w2� �� �
�y2

By the data processing inequality (Cover and Thomas, 2006, Theorem
2.8.1) and the chain rule for mutual information we have that

I(y;h | s) ≤ I(y1,y2;h | s) = I(y1;h | s) + I(y2;h | s,y1). (F.10)

As h is JPG, the first term on the right-hand side of (F.10) admits a
simple closed-form expression, which can be upper-bounded as follows:

I(y1;h | s) = I(h⊙ s+w1;h | s)

= Es

�
log det

�
I+

1

α
diag (s)E

�
hh

H
�
diag (sH)

��

(a)
= Es

�
log det

�
I+

1

α
diag (sH) diag (s)E

�
hh

H
���

(b)
≤ log det

�
I+

TF snr
α

E
�
hh

H
��

. (F.11)

Here, (a) follows from the identity det
�
I+AB

H
�
= det

�
I+B

H
A
�

for all A and B of appropriate dimension (Horn and Johnson, 1985,
Theorem 1.3.20) and (b) from Jensen’s inequality.

For the second term on the right-hand side of (F.10) we note that

I(y2;h | s,y1) = h(y2 | s,y1)− h(y2 | s,y1,h)

(a)
= h(y2 | s,y1)− h(y2 | s,h)
(b)
≤ h(y2 | s)− h(y2 | s,h,P)

(c)
= h(y2 | s)− h(y2 | s,P)

= I(y2;P | s).
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Here, (a) holds because y1 and y2 are conditionally independent
given s and h, in (b) we used that conditioning reduces entropy (Cover
and Thomas, 2006, Theorem 2.6.5), and (c) follows because y2 and h

are conditionally independent given P.
Let K(s) = EP

�
Pss

H
P

H
�

be the �K �N × �K �N covariance matrix of
the vector Ps. We next upper-bound I(y2;P | s) as follows:

I(y2;P | s) = I(Ps+w2;P | s)
(a)
= Es

�
log det

�
I+

1

1− α
K(s)

��

(b)
≤

�K−1�

k̃=0

�N−1�

ñ=0

Es

�
log

�
1 +

1

1− α
[K(s)](ñ+k̃ �N,ñ+k̃ �N)

��

(c)
≤

�K−1�

k̃=0

�N−1�

ñ=0

log

�
1 +

1

1− α
Es

�
[K(s)](ñ+k̃ �N,ñ+k̃ �N)

��

where (a) follows because P is a JPG matrix, in (b) we used Hadamard’s
inequality, and (c) follows from Jensen’s inequality. As the entries
of s are i.i.d. with zero mean, we have that

Es

�
[K(s)](ñ+k̃ �N,ñ+k̃ �N)

�

= Es

�
EP

��
Pss

H
P

H
�
(ñ+k̃ �N,ñ+k̃ �N)

��

= TF snr
K�

l=−K

N�

m=−N

(l,m) �=(k̃−K,ñ−N)

σ2
p[k̃ − l −K, ñ−m− �N ]

≤ TF snrσ2
I

where σ2
I has been defined in (F.8). Hence,

I(y2;P | s) ≤ �K �N log

�
1 +

TF snr
1− α

σ2
I

�
. (F.12)
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If we now substitute (F.11) and (F.12) in (F.10), we get that

I(y;h | s) ≤ log det

�
I+

TF snr
α

E
�
hh

H
��

+ �K �N log

�
1 +

TF snr
1− α

σ2
I

�
.

Furthermore, as the bound holds for all α ∈ (0, 1),

I(y;P | s)

≤ inf
0<α<1

�
log det

�
I+

TF snr
α

E
�
hh

H
��

+ �K �N log

�
1 +

snr
1− α

σ2
I

��
.

(F.13)

C. Putting Pieces Together

We substitute (F.9) and (F.13) in (F.4) and (F.4) in (4.27) to get the
following lower bound on capacity:

CWSSUS−D(snr) ≥
�N
T

Eh

�
log

�
1 +

r[0, 0]TF snr
��h
��2

1 + TF snrσ2
I

��

− inf
0<α<1

�
lim
�K→∞

1

( �K + 2K �)T
log det

�
I+

TF snr
α

E
�
hh

H
��

+
�N
T

log

�
1 +

TF snr
1− α

σ2
I

��
.

(F.14)

By direct application of (Miranda and Tilli, 2000, Theorem 3.4), an ex-
tension of Szegö’s theorem (on the asymptotic eigenvalue distribution
of Toeplitz matrices) to two-level Toeplitz matrices, we obtain

lim
�K→∞

1

( �K + 2K �)T
log det

�
I+

TF snr
α

E
�
hh

H
��

=
1

T

1/2�

−1/2

log det

�
I+

TF snr
α

C(θ)

�
dθ.
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Substituting this expression into (F.14) and noting that

σ2
I =

∞�

k=−∞

∞�

n=−∞
(k,n) �=(0,0)

σ2
p[k, n]

=
∞�

k=−∞

∞�

n=−∞
(k,n) �=(0,0)

��

R2

CH(ν, τ)|Ag(ν − nF, τ − kT )|2dτdν
(F.15)

we complete the proof.

F.5 . PROOF OF COROLLARY 4 .2
To prove the corollary we further lower bound each term in (4.29)
separately.

F.5.1. The log det Term

We start with an upper bound on the log det term on the right-hand
side of (4.29). The matrix C(θ) is Toeplitz. Hence, the entries on the
main diagonal of C(θ) are all equal. Let c0(θ) denote one such entry;
then

c0(θ)
(a)
=

∞�

k=−∞
r[k, 0]e−i2πkθ

(b)
=

1/2�

−1/2

c(θ, ϕ)dϕ, |θ| ≤ 1/2.

(F.16)

Here, (a) follows from (4.28) and (4.20); (b) follows from (4.21) and
from Poisson summation formula. By Hadamard’s inequality, we can
upper-bound the log det term on the right-hand side of (4.29) as
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follows:

1

T

1/2�

−1/2

log det

�
I+

TF snr
α

C(θ)

�
dθ

≤
�N
T

1/2�

−1/2

log

�
1 +

TF snr
α

c0(θ)

�
dθ. (F.17)

We next use that ν0T < 1/2, by assumption, to split the integral in
two parts; the use of Jensen’s inequality on both terms yields

�N
T

1/2�

−1/2

log

�
1 +

TF snr
α

c0(θ)

�
dθ

=
�N
T

�

|θ|<ν0T

log

�
1 +

TF snr
α

c0(θ)

�
dθ

+
�N
T

�

ν0T<|θ|<1/2

log

�
1 +

TF snr
α

c0(θ)

�
dθ

≤ 2ν0T �N
T

log



1 +
TF snr
2ν0Tα

�

|θ|<ν0T

c0(θ)dθ





+
�N
T
(1− 2ν0T ) log



1 +
TF snr

(1− 2ν0T )α

�

ν0T<|θ|<1/2

c0(θ)dθ



 .

(F.18)

Now note that�

|θ|<ν0T

c0(θ)dθ

(a)
=

1/2�

−1/2

�

|θ|<ν0T

c(θ, ϕ)dθdϕ
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(b)
=

1/2�

−1/2

�

|θ|<ν0T

1

TF

∞�

k=−∞

∞�

n=−∞
CH

�
θ − k

T
,
ϕ− n

F

�

×
����Ag

�
θ − k

T
,
ϕ− n

F

�����
2

dθdϕ

(c)
≤ 1

TF

1/2�

−1/2

�

|θ|<ν0T

∞�

k=−∞

∞�

n=−∞
CH

�
θ − k

T
,
ϕ− n

F

�
dθdϕ

≤ 1

TF

1/2�

−1/2

1/2�

−1/2

∞�

k=−∞

∞�

n=−∞
CH

�
θ − k

T
,
ϕ− n

F

�
dθdϕ

=

��

R2

CH(ν, τ)dτdν = 1 (F.19)

where (a) follows from (F.16), (b) follows from (4.22), and (c) follows
from Property 1 in Appendix F.3. Furthermore, with similar steps,
we have that

�

ν0T<|θ|<1/2

c0(θ)dθ

≤ 1

TF

1/2�

−1/2

�

ν0T<|θ|<1/2

∞�

k=−∞

∞�

n=−∞
CH

�
θ − k

T
,
ϕ− n

F

�
dθdϕ

≤
�

|ν|≥ν0

∞�

−∞

CH(ν, τ)dτdν ≤ �

(F.20)

where the last step follows from (4.9). If we now substitute (F.19)
and (F.20) into (F.18), insert the result into (F.17), set �∆H = 2ν0T
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and use B = �NF , we get

1

T

1/2�

−1/2

log det

�
I+

TF snr
α

C(θ)

�
dθ

≤ B �∆H

TF
log

�
1 +

TF snr
α�∆H

�
+

B

TF
(1− �∆H) log

�
1 +

TF snr�
α(1− �∆H)

�
.

(F.21)

F.5.2. Bounds on r[0, 0] and on σ2
I

To further lower bound the right-hand side of (4.29), we next derive
a lower bound on r[0, 0] and an upper bound on σ2

I that are explicit
in ∆H and �. These bounds will be explicit in the ambiguity function
of the prototype pulse g(t).

Let D = {(ν, τ) ∈ [−ν0, ν0]× [−τ0, τ0]} be the rectangular area in
the delay doppler plane over which CH(ν, τ) has at least 1− � of its
volume according to (4.9). The following chain of inequalities holds:

r[0, 0] =

��

R2

CH(ν, τ)|Ag(ν, τ)|2dτdν

≥
��

D

CH(ν, τ)|Ag(ν, τ)|2dτdν

≥ min
(ν,τ)∈D

|Ag(ν, τ)|2
��

D

CH(ν, τ)dτdν

≥ min
(ν,τ)∈D

|Ag(ν, τ)|2(1− �) = mg(1− �).

(F.22)

We now seek an upper bound on σ2
I . Let

M(ν, τ) =
∞�

k=−∞

∞�

n=−∞
(k,n) �=(0,0)

|Ag(ν − nF, τ − kT )|2
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and note that

M(ν, τ) ≤
∞�

k=−∞

∞�

n=−∞
|Ag(ν − nF, τ − kT )|2

≤
∞�

k=−∞

∞�

n=−∞

���g(t+ τ)ei2πνt, gk,n(t)
���2

(a)
≤ |g(t)|4 = 1 (F.23)

where (a) follows from Bessel’s inequality (Kreyszig, 1989, Theo-
rem 3.4-6). The following chain of inequalities holds:

σ2
I =

��

R2

CH(ν, τ)M(ν, τ)dτdν

=

��

D

CH(ν, τ)M(ν, τ)dτdν +

��

R2\D

CH(ν, τ)M(ν, τ)dτdν

≤ max
(ν,τ)∈D

M(ν, τ)

��

D

CH(ν, τ)dτdν

+ max
(τ,ν)∈R2\D

M(ν, τ)

��

R2\D

CH(ν, τ)dτdν

(a)
≤ max

(ν,τ)∈D
M(ν, τ) + � = Mg + �

(F.24)

where (a) follows from (F.23) and (4.8), (4.9).
The proof is completed by substituting (F.21) into (4.29), and

using (F.22) and (F.24).
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F.6. PROOF OF LEMMA 4.3
To prove the lemma, we verify that after the substitutions

e(t) =
�

βg(βt)

�T = T/β

�F = Fβ

�τ0 = τ0/β

�ν0 = ν0β

the lower bound L(snr, g, T, F, τ0, ν0, �) in (4.31) does not change.
Note first that TF = �T �F and that ν0T = �ν0 �T . Furthermore, �e(t)� =
�g(t)� = 1 and, by Property 2 in Appendix F.3, the orthonormality
of {gk,n(t)} implies the orthonormality of {e(t− k �T )ei2πn �Ft}, for all
k, n. Therefore, the triple {e(t), �T , �F} is a valid WH set to be used in
the lower bound. Let now E = [− �ν0, �ν0]× [−�τ0, �τ0]; we have that

mg = min
(ν,τ)∈D

|Ag(ν, τ)|2

= min
(ν,τ)∈D

����Ae

�
βν,

τ

β

�����
2

= min
(ν,τ)∈E

|Ae(ν, τ)|2.

Similarly,

Mg = max
(ν,τ)∈D

∞�

k=−∞

∞�

n=−∞
(k,n) �=(0,0)

|Ag(ν − nF, τ − kT )|2

= max
(ν,τ)∈D

∞�

k=−∞

∞�

n=−∞
(k,n) �=(0,0)

����Ae

�
β(ν − nF ),

τ − kT

β

�����
2

= max
(ν,τ)∈D

∞�

k=−∞

∞�

n=−∞
(k,n) �=(0,0)

����Ae

�
βν − n �F ,

τ

β
− k �T

�����
2
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= max
(ν,τ)∈E

∞�

k=−∞

∞�

n=−∞
(k,n) �=(0,0)

���Ae

�
ν − n �F , τ − k �T

����
2
.

As a last step, we note that for β =
�

T/F and under the assumption
that ν0T = τ0F , we get �T = �F =

√
TF , and �τ0 = �ν0 =

√
∆H/2.

F.7. PROOF OF LEMMA 4.4

F.7.1. Derivative-Based Approximation for mg

Since
��Ag(ν, τ)

�� ≤
��Ag(0, 0)

�� = 1, the gradient of Ag(ν, τ) in (ν, τ) =
(0, 0) is zero. For small ∆H, we can approximate Ag(ν, τ) around (0, 0)
with its second order Taylor-series expansion, and obtain (Wilcox,
1991, Section 6)

|Ag(ν, τ)|2 ≈ 1− 4π2(a20ν
2 + b20τ

2) (F.25)

where

a20 =

∞�

−∞

t2|g(t)|2dt

b20 =

∞�

−∞

f2|G(f)|2df.

Consequently, for small ∆H

mg ≈ min
(ν,τ)∈ �D

�
1− 4π2(a20ν

2 + b20τ
2)
�

= 1− π2(a20 + b20)∆H

= 1− cm∆H.
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F.7.2. Derivative-Based Approximation for Mg

We want to find a small-∆H approximation for

Mg = max
(ν,τ)∈ �D

∞�

k=−∞

∞�

n=−∞
(k,n) �=(0,0)

���Ag

�
ν − n

√
TF , τ − k

√
TF

����
2
. (F.26)

Under the assumption that Ag(ν, τ) is differentiable in (n
√
TF , k

√
TF )

for all (n, k), we can approximate the function to maximize on the
right-hand side of (F.26), with its first-order Taylor-series expansion
around the point (0, 0). Let G(f) = F[g(t)] (note that the assumption
that g(t) is real and even implies that G(f) is real and even as well)
and define

ak,n �
∂Ag

�
ν − n

√
TF , τ − k

√
TF

�

∂ν

������
(0,0)

= −i2π

�

t

tg(t)g(t+ k
√
TF )ei2πn

√
TFtdt (F.27)

bk,n �
∂Ag

�
ν − n

√
TF , τ − k

√
TF

�

∂τ

������
(0,0)

= i2π

∞�

−∞

fG(f − n
√
TF )G(f)e−i2πk

√
TFfdf. (F.28)

Then, around the point (ν, τ) = (0, 0) we have that

Ag

�
ν − n

√
TF , τ − k

√
TF

�
≈ ak,nν + bk,nτ.

Consequently, for ∆H small, the right-hand side of (F.26) can be
approximated as
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∞�

k=−∞

∞�

n=−∞
(k,n) �=(0,0)

���Ag

�
ν − n

√
TF , τ − k

√
TF

����
2

≈
∞�

k=−∞

∞�

n=−∞
(k,n) �=(0,0)

|ak,nν + bk,nτ |2. (F.29)

It follows from (F.27) and (F.28) by direct computation that

ak,−n = −a∗k,n a−k,n = a∗k,n a−k,−n = −ak,n (F.30)
bk,−n = b∗k,n b−k,n = −b∗k,n b−k,−n = −bk,n. (F.31)

But these six relations imply that the sum of the cross products on
the right-hand side of (F.29) vanishes:

∞�

k=−∞

∞�

n=−∞
(k,n) �=(0,0)

�{ak,nb∗k,n}

=
∞�

k=1

�{ak,0b∗k,0 + a−k,0b
∗
−k,0}+

∞�

n=1

�{a0,nb∗0,n + a0,−nb
∗
0,−n}

+
∞�

k=1

∞�

n=1

�{ak,nb∗k,n + a−k,nb
∗
−k,n + ak,−nb

∗
k,−n + a−k,−nb

∗
−k,−n}

=
∞�

k=1

�{ak,0b∗k,0 − (ak,0b
∗
k,0)

∗}+
∞�

n=1

�{a0,nb∗0,n − (a0,nb
∗
0,n)

∗}

+ 2
∞�

k=1

∞�

n=1

�{ak,nb∗k,n − (ak,nb
∗
k,n)

∗}

= 0

where the last step follows because for all z ∈ C, �{z − z∗} = 0.
Hence,

Mg ≈ max
(ν,τ)∈ �D

∞�

k=−∞

∞�

n=−∞
(k,n) �=(0,0)

|ak,nν + bk,nτ |2
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= max
(ν,τ)∈ �D





ν2

∞�

k=−∞

∞�

n=−∞
(k,n) �=(0,0)

|ak,n|2 + τ2
∞�

k=−∞

∞�

n=−∞
(k,n) �=(0,0)

|bk,n|2






=
∆H

4

∞�

k=−∞

∞�

n=−∞
(k,n) �=(0,0)

�
|ak,n|2 + |bk,n|2

�
= cM∆H.
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APPENDIX G

A Result from Linear Algebra

Lemma G.1. Let A be an (N + 1) × N matrix. If every set of N
rows of A is linearly independent, then the N(N + 1) × N(N + 1)

matrix Â defined as Â =
�
(IN ⊗A) [D(A)]�,[2 : N+1]

�
has full rank.

Proof. The proof is by contradiction. Assume that Â does not have
full rank. Then there exists an N(N + 1)-dimensional nonzero vec-
tor u

T =
�
u
T

1 · · · u
T

N

�
, where un ∈ C

N+1, such that u
T
Â = 0.

Because Â =
�
(IN ⊗A) [D(A)]�,[2 : N+1]

�
, we have in particular

that (i) u
T (IN ⊗A) = 0 and (ii) u

T [D(A)]�,[2 : N+1] = 0. We next
analyze these two equalities separately. Equality (i) can be restated
as u

T

nA = 0 for all n ∈ [1 :N ], which implies that all vectors un lie
in the kernel of the N × (N + 1) matrix A

T. Because A
T has rank

N , its kernel must be of dimension 1. Hence, all vectors un must be
collinear, i.e., there exists a vector v and a set of N constants cn such
that un = cnv, for all n ∈ [1 :N ]. The vector v and at least one of
the constants cn must be nonzero because u is nonzero. Furthermore,
because v

T
A = 0, and because every set of N rows of A is linearly

independent by assumption, all components of v must be nonzero.
We now use this property of v to analyze equality (ii), which can

be restated as

u
T [D(A)]�,[2 : N+1] = [c1v

T · · · cNv
T] [D(A)]�,[2 : N+1] = 0
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or, after straightforward manipulations, as

[diag(v)][2 : N+1],[2 : N+1] [A][2 : N+1],�




c1
...
cN



 = 0.

Because all the components of v are nonzero, this last equality implies
that

[A][2 : N+1],�




c1
...
cN



 = 0.

However, this contradicts the assumption that every set of N rows of
A is linearly independent (recall that at least one of the constants cn
is nonzero). Hence, Â must have full rank.
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APPENDIX H

Notation

H.1. MISCELLANEOUS

i
√
−1

� definition
A,B, . . . sets
|A| cardinality of the set A
Ac complement of the set A in some specified superset
R,C,Z,N real line, complex plane, set of all integers, set of

natural numbers, including zero
R

+,C+ set of positive real numbers; set of complex numbers
with positive imaginary part: {z ∈C | �z > 0}

L2(C) Hilbert space of complex-valued finite-energy
signals

�,� real, imaginary part of a complex-valued quantity
[n :m] set of integer numbers {n, n+ 1, . . . ,m}
a⊕ b sum modulo 2π of scalars a and b
�a,b� inner product of the vectors a and b

�f(·), g(·)� inner product of the functions f(·) and g(·)
�a�2; �g(x)�2 squared �2-norm of the vector a: �a�2 � �

i

��[a]i
��2;

squared L2-norm of the function g(x):
�g(x)�2 �

�∞
−∞

��g(x)
��2dx
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H.2. FUNCTIONS

ln(x) logarithm of x to the base e (natural logarithm)
log(x) logarithm of x to the base 2
u(x) unit step function; takes on value 0 for x < 0 and 1

for x ≥ 0
arg(x) argument of x∈C

δ[k] discrete Kronecker Delta; takes on value 1 if k = 0
and 0 else

I[x] = 1 indicator function; takes on value 1 if x is true
and 0 if x is false

δ(x) Dirac delta distribution
f(x) = O(g(x)) |f(x)/g(x)| remains bounded as x → ∞
g(x) = Θ(f(x)) f(x) = O(g(x)) and g(x) = O(f(x))
f(x) = o(g(x)) |f(x)/g(x)| → 0 as x → ∞
�x� smallest integer equal to or larger than x
(x)+ positive part of x; takes value x for x > 0 and 0 else

H.3. OPERATORS

I identity operator
DD time-limiting projection operator; limits the

duration of s(t) ∈ L2(C) to D sec as follows:
(DDs)(t) � I

���t
�� ≤ D/2

�
s(t)

BB frequency-limiting projection operator; limits the
bandwidth of s(t) ∈ L2(C) to BHz as follows:
(BBs)(t) �

�∞
−∞

sin[πB(t−t�)]
π(t−t�) s(t�)dt�

F[·] Fourier transform: Ft→f [g(t)] �
�∞
−∞ g(t)e−i2πftdt

∂g/∂u Jacobian matrix of the vector-valued function g(u),
i.e., the matrix that contains the partial derivative
∂gi/∂uj in its ith row and jth column
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H.4 . PROBABILITY THEORY

P{A} probability of event A
P{A |B} probability of event A conditioned on B
FX(x), fX(x) CDF, PDF of the RV X
MX(s) moment-generating function of the RV X:

MX(s) �
�∞
−∞ esxfX(x)dx

GF(z) Stieltjes transform of the CDF F(·):
GF(z) �

�∞
−∞

f(x)
x−z dx, z ∈C

+; f(·) is the PDF
of F(·)

EX

�
·
�

expectation operator (w.r.t. the random
variable X); if X is omitted, then w.r.t. all random
variables

Var
�
·
�

variance operator
CN (m,C) multivariate jointly proper Gaussian (JPG)

distribution with mean m and covariance matrix C

U (a, b) uniform distribution over the interval [a, b]
∼ “distributed as”
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H.5 . LINEAR ALGEBRA

a,A, b, B . . . scalars
a,b, . . . vectors
A,B, . . . matrices
a
T, AT transpose of the vector a and the matrix A

a∗, a∗, A∗ element-wise complex conjugate of the scalar a, the
vector a, and the matrix A

a
H, AH Hermitian transpose of the vector a and the matrix A

[a]i ith element of the vector a

[A]i,j element in the ith row and jth column of the
matrix A

uI |I|-dimensional subvector of the vector u containing
the elements [ui]i∈I corresponding to the index set I

[A]I,J |I| × |J |-dimensional submatrix of the matrix A

containing the elements [ai,j ]i∈I,j∈J corresponding to
the index sets I and J

[A]�,J , [A]I,� short notations: [A]�,J � [A][1 : M ],J and
[A]I,� � [A]I,[1 : N ] for an M ×N matrix A

I, 0 identity and all zero matrices of appropriate sizes
diag(a) diagonal matrix with vector a on its main diagonal
�A�2F squared Frobenius norm of A: �A�2F � �

i,j |[A]i,j |2
trA, detA trace, determinant of the square matrix A

rankA rank of the matrix A

A⊗B Kronecker product of the matrices A and B

A⊙B Schur-Hadamard product of the matrices A and B

AB⊙
⊗C the standard matrix product takes precedence over

� (AB)⊙
⊗C Kronecker and Hadamard products

λ(A) eigenvalue of matrix A

λn(A) nth eigenvalue of the N ×N matrix A, sorted in
nonincreasing order and including multiplicities, i.e.,
λ1 ≥ · · · ≥ λN

λmin(A) the smallest eigenvalue of the matrix A

λmax(A) the largest eigenvalue of the matrix A
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H. NOTATION

H.6. COMMUNICATION AND INFORMATION
THEORY

snr signal-to-noise ratio
sinr signal-to-interference-plus-noise ratio
h(x) differential entropy of the random vector x

I(x;y) mutual information between the random vectors x

and y

CP1, CP2, CAF per source-destination terminal pair capacity
induced by the protocol P1, the protocol P2, and
the AF protocol, respectively

CWSSUS information capacity of the WSSUS continuous-time
channel

CAWGN capacity of the AWGN channel
CWSSUS−D capacity of the discretized channel induced by WH

set
CSIMO capacity of the noncoherent correlated block-fading

SIMO channel
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Acronyms

AWGN additive white Gaussian noise
AF amplify-and-forward
CDF cumulative distribution function
CSI channel state information
GSM global system for mobile communication
DFT discrete Fourier transform
DMC discrete memoryless channel
ESD empirical spectral distribution
FDMA frequency division multiple access
ICI intercarrier interference
IO input-output
ISI intersymbol interference
JPG jointly proper Gaussian
LOS line of sight
LTI linear time-invariant
LTV linear time-variant
MIMO multiple-input multiple-output
MISO multiple-input single-output
MGF moment generating function
OFDM orthogonal frequency division multiplexing
PDF probability density function
PSD power spectral density
PS-OFDM pulse-shaped orthogonal frequency division multiplexing
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I. ACRONYMS

RV random variable
SIMO single-input multiple-output
SISO single-input single-output
SNR signal-to-noise ratio
SINR signal-to-interference-plus-noise ratio
SIR signal-to-interference ratio
TDMA time division multiple access
TF time-frequency
US uncorrelated scattering
WH Weyl-Heisenberg
WSS wide-sense stationary
WSSUS wide-sense stationary uncorrelated scattering
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