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ABSTRACT
Consider a large Boolean network with a feed forward
structure. Given a probability distribution on the inputs,
can one find—possibly small—collections of input nodes
that determine the states of most other nodes in the net-
work? To answer this question, a notion that quantifies
the determinative power of an input over the states in the
network is needed. We argue that the mutual information
(MI) between a given subset of the inputs X = {X1, ...,
Xn} of some node i and its associated function fi(X)
quantifies the determinative power of this subset of in-
puts over node i. We compare the determinative power
of a set of input nodes to the sensitivity to perturbations
to this input nodes, and find that, maybe surprisingly, an
input that has a large sensitivity to perturbations does not
necessarily have large determinative power. However, for
unate functions, which play an important role in genetic
regulatory networks, we find a direct relation between MI
and sensitivity to perturbations. As an application of our
methods, we analyze the large-scale regulatory network
of E. coli numerically: We identify the most determina-
tive nodes and show that a small set of those reduces the
overall uncertainty of network states significantly.

1. INTRODUCTION
A Boolean network (BN) is a discrete dynamical system,
which is often used to study and model a variety of bio-
chemical networks. BNs have been introduced by Kauff-
man [1] as models of gene regulatory networks. Amongst
others, they are used to model large-scale networks such
as the Escherichia coli regulatory network [2] which is
analyzed in Sec. 4. In the analysis of BNs, it is common
to consider measures that quantify the effect of perturba-
tions, whereas determinative power has not received much
attention, even though there are several settings where such
a notion is of interest, e.g., the following. Given a feed-
forward network where the states of the nodes are con-
trolled by the states in the input layer, we might ask whether
a possibly small set of inputs suffices to determine most
states, i.e., reduces the uncertainty about the network’s
states significantly. This can be addressed by quantifying
the determinative power of the input nodes. For example,
in the E. coli regulatory network it turns out that a small
set of metabolites and other inputs determine most genes
that account for E. coli’s metabolism (see Sec. 4).

In this paper, we view the state of each node in the
network as an independent random variable. This mod-
eling assumption applies e.g. for networks with a tree-
like topology, and is standard when studying the effect
of perturbations. For this setting, determinative power
of nodes and measures of perturbations are properties of
single functions, hence the analysis of the BN reduces to
the analysis of single functions. As the main tool for the
analysis, we use Fourier analysis of Boolean functions.
Fourier analytic techniques were first applied in the con-
text of Boolean networks by Kesseli et al. [3], and also in
[4]. However, the setting and problems addressed in [3, 4]
are different to the problem considered here.

The contributions of this paper are as follows. We ar-
gue that the MI between a set of nodes and the state of a
node is a measure of the determinative power of this set of
inputs, as MI is a measure that quantifies the mutual de-
pendence of random variables. If a set of inputs to a node
and the state of this node are strongly mutually dependent,
then this set can be viewed as having large determinative
power over this node. To understand determinative power
and mutual dependencies in Boolean networks better, we
systematically study the MI of a sets of inputs and the state
of a node. We relate the mutual information to measures
of perturbations, and prove that—maybe surprisingly—a
set of inputs that is highly sensitive to perturbations, might
not necessarily have determinative power. Conversely, an
input that has determinative power, must be sensitive to
perturbations to some extent. These results are proven, us-
ing Fourier analytic techniques. Moreover we show, that
for the class of unate functions, which model functional
dependencies in gene regulatory networks well, any input
and the function’s output are statistically dependent. For
unate functions we also prove a direct relation between
the mutual information and the influence of a variable. As
an application of the theoretical results in this paper, we
show that mutual information can be used to identify the
determinative nodes in the large-scale model of the con-
trol network of E. coli’s metabolism [2]. Due to limited
space, proofs and a more detailed exposition are omitted
but can be found in the preprint [5].

2. PRELIMINARIES
We start by shortly stating some standard facts about BNs
and Fourier analysis of Boolean functions and introduce



notation. A Boolean network (BN) can be viewed as a
collection of n nodes with memory. The state of a node
i is described by a binary state xi(t) ∈ {−1,+1} at dis-
crete time t ∈ N. Choosing the alphabet to be {−1,+1}
rather then {0, 1} as more common in the literature on
BNs, will turn out to be advantageous later. However,
both choices are equivalent. In most of the Boolean net-
work models used in biology, fi(x) does not depend on
all arguments x1, ..., xn, but on a small subset only. Obvi-
ously, to study determinative power and tolerance to per-
turbations, a probabilistic setup is needed. In our analysis,
we assume that each state is an independent random vari-
ableXi which follows the distribution Pr [Xi = xi] , xi ∈
{−1,+1}. The assumption of independence holds for net-
works with tree-like topology, but is not feasible for net-
works with strong local dependencies. In many relevant
settings a BN has a tree-like topology, for instance the E.
coli network which is analyzed in Sec. 4.

Notation. We use [n] for the set {1, 2, ..., n}, and all sets
occurring in this paper are subsets of [n]. With

∑
S⊆A

we mean the sum over all sets S that are subsets of A.
Throughout this paper, we use capital letters for random
variables, e.g., X , and lower case letters for their realiza-
tions, e.g., x. Boldface letters denote vectors, e.g., X is a
random vector, and x its realization. For a vector x and a
set A ⊆ [n], xA denotes the subvector of x corresponding
to the entries indexed by A.
Fourier Analysis of Boolean Functions . Let X = (X1,
..., Xn) be a binary, product distributed random vector,
i.e., the entries of X are independent random variables
Xi, i ∈ [n] with distribution Pr [Xi = xi] , xi ∈ {−1,+1}.
Throughout this paper, probabilities Pr [·] and expecta-
tions E[·] are with respect to a product distributed X. We
denote pi , Pr [Xi = 1], Var (Xi) as the variance of Xi,
σi ,

√
Var (Xi) as its standard deviation and finally,

µi , E[Xi] as its mean. The inner product of the Boolean
functions f, g : {−1,+1}n → { − 1,+1} with respect to
the distribution of X is defined as 〈f, g〉 , E[f(X)g(X)]
which induces the norm ‖f‖ =

√
〈f, f〉. An orthonormal

basis is given by the functions [6]

ΦS(x) =
∏
i∈S

xi − µi
σi

, S ⊆ [n] \ ∅

and ΦS(x) = 1, S = ∅. Thus, each function f can
be uniquely expressed as f(x) =

∑
S⊆[n] f̂(S)ΦS(x),

where f̂(S) , 〈f,ΦS〉 are the Fourier coefficients. Note
that this is a representation of the function f as a mul-
tilinear polynomial, and the Fourier coefficients are the
coefficients of that polynomial.
Influence and Average Sensitivity. Next, we discuss
measures of perturbations and their relation to the Fourier
spectrum. We start with the influence of variable i, which
is defined as [6] Ii(f) , Pr [f(X) 6= f(X⊕ ei)] , where
x⊕ ei is the vector obtained from x by flipping its ith en-
try. By definition, the influence of variable i is the prob-
ability that a perturbation of input i, i.e., flipping input i,

changes the function’s output. Hence influence captures
the effect of a single perturbation of input i. In Boolean
networks it is common to study the sum of all influences,
i.e., the average sensitivity of function f . The average
sensitivity of f to the variables in set A is defined as

IA(f) ,
∑
i∈A

Ii(f)

and captures whether flipping an input, chosen uniformly
at random from the set A affects the function’s output.
Most commonly all inputs are taken into account, i.e., the
average sensitivity of f , as(f) , I{1,...,n}(f) is studied.
The average sensitivity with respect to A (and hence the
influence, by setting A = {i}) can be expressed in terms
of Fourier coefficients as

IA(f) =
∑
S⊆[n]

f̂(S)2
∑
i∈S∩A

1

σ2
i

. (1)

From (1) (by setting A = {1, .., n}) it becomes appar-
ent that the average sensitivity as(f) is large if the sum
over the squared Fourier coefficients f̂(S)2 of high de-
gree d = |S|, is large. As

∑
S⊆[n] f̂(S)2 = 1, the terms

f̂(S)2 for which the degree d = |S| is small must then be
small. Hence for f to be tolerant to single perturbations,
i.e., to have a small average sensitivity, the Fourier coef-
ficients must be concentrated on coefficients with low de-
gree. Let’s see an example: Suppose p1 = p2 = p3 = 1/2
and consider the AND3 function, i.e., fAND3(x1, x2, x3)
= 1 if and only if x1 = x2 = x3 = 1. The aver-
age sensitivity of the AND3 function is as(fAND3) =
0.75. Hence, fAND3 is tolerant to perturbations. The
spectrum of fAND3 is concentrated on the coefficients
of low degree. In contrast, consider the parity of three
variables: fPARITY 3(x1, x2, x3) = x1x2x3, for which
as(fPARITY 3) = 3. Hence, PARITY3 is maximal sensi-
tive to perturbations. The spectrum of the PARITY3 func-
tion is maximal concentrated on the coefficient of highest
degree as f̂({1, 2, 3}) = 1.

3. MAIN RESULTS
In this section, we study the mutual information
MI(f(X);XA) between f(X) and XA, where XA con-
sists of the entries of X corresponding to the indices in
the set A ⊆ [n]. Proofs are omitted due to space limita-
tions; those and further details can be found in [5]. We
start by defining the mutual information. Mutual informa-
tion is the reduction of uncertainty of a random variable
Y due to the knowledge of X , hence we define a mea-
sure of uncertainty first, which is entropy. As a reference
for the following definitions see [7]. The entropy H(X)
of a discrete random variable X with alphabet X is de-
fined as H(X) , −

∑
x∈X Pr [X = x] log2 Pr [X = x] .

The conditional entropy H(Y |X) of a pair of discrete and
jointly distributed random variables (Y,X) is defined as
H(Y |X) ,

∑
x∈X Pr [X = x]H(Y |X = x). Finally,

the mutual information MI(Y ;X) between Y and X is
defined as MI(Y ;X) , H(Y ) − H(Y |X). For a bi-
nary random variable X with alphabet X = {x1, x2} and



p , Pr [X = x1], we have H(X) = h(p), where h(p) is
the binary entropy function, defined as

h(p) , −p log2(p)− (1− p) log2(1− p). (2)

Mutual information is a measure of determinative power
because of the following reasons. Consider a single vari-
able Xi of the argument X: If knowledge of Xi reduces
the uncertainty of f(X), then Xi determines the state of
f(X) to some extent, because then knowledge about the
state of Xi helps in predicting f(X). Furthermore, we re-
quire from a measure of determinative power, that not all
variables can have large determinative power simultane-
ously. This is guaranteed for mutual information, as

n∑
i=1

MI(f(X);Xi) ≤ MI(f(X);X) ≤ 1, (3)

which follows from the chain rule [7] of mutual informa-
tion and independence of the variablesXi, i ∈ [n]. Hence,
if MI(f(X);Xi) is large, i.e., close to 1, we can be sure
that Xi has some determinative power over f(X), since
(3) implies that MI(f(X);Xj) must be small for j 6= i.
Influence lacks this property: Each input can have large
influence. An example is the parity function, where each
input has influence 1. If variable i has large influence, this
just implies that input i has power to change the output,
but not to determine it.

Our results are based on the following novel charac-
terization of the mutual information in terms of Fourier
coefficients: Let X be product distributed and let XA =
{Xi : i ∈ A} be a fixed set of arguments, where A ⊆ [n].
Then

MI(f(X);XA) = h
(

1/2(1 + f̂(∅)
)

− E

h
1

2

1 +
∑
S⊆A

f̂(S)ΦS(XA)

 (4)

where h(·) is the binary entropy function as defined in (2).
Let us start with discussing MI(f(X);Xi), based on

(4). As seen by (4), MI(f(X);Xi) just depends on f̂({i}),
f̂(∅) and pi. In Figure 1 we depict MI(f(X);Xi) for
pi = 0.3 as a function of f̂({i}) and f̂(∅). It can be seen
that MI(f(X);Xi) = 0, i.e., f(X) andXi are statistically
independent, if and only if f̂({i}) = 0. Furthermore it
is seen that MI(f(X);Xi) is increasing in |f̂({i})|. Both
observations can be proven rigorously. HenceXi has large
determinative power, i.e., MI(f(X);Xi) is large, if and
only if |f̂({i})| is large (i.e., close to one).

Next, let us consider the (trivial) case where A = [n]
and hence XA = X. Then MI(f(X);X) = h(1/2(1 +

f̂(∅)). It follows that MI(f(X);X) is maximized for f̂(∅)
= 0, i.e, Pr [f(X) = 1] = 1/2, i.e., if the variance of
f(X) is 1. In general, the closer to zero f̂(∅) is, the larger
the mutual information between a function’s output and
all its inputs.

We continue with studying the relation of mutual in-
formation and average sensitivity.

-1.0

-0.5
0.0

0.5
1.0

-1.0
-0.50.00.51.0

0.0

0.2

0.4

0.6

0.8

f̂({i})

f̂(∅)

MI(f(X);Xi)

Figure 1. MI(f(X);Xi) as a function of f̂({i}) and f̂(∅)
for pi = 0.3.

Theorem 1. For any Boolean function f , for any product
distributed X,

IA(f) ≥ min
i∈A

(
1

σ2
i

)
(MI(f(X);XA)−Ψ(Var (f(X))))

(5)
with Ψ(x) , (x)1/ ln(4) − x.

The term Ψ(Var (f(X))) should be understood as an
error term which satisfies 0 ≤ Ψ(Var (f(X))) < 0.12
and which is close to zero for situations (i.e., functions
and distributions of X) of interest. Theorem 1 shows that
a large value of MI(f(X);XA) implies that f must be
sensitive to perturbations of the entries of XA. Moreover,
if IA(f) is small, i.e., if f is tolerant to perturbations of
the entries of XA, then MI(f(X);XA) must be small, i.e.,
the entries of XA do not have large determinative power.
For the case that A = [n], Theorem 1 states that as(f) is
lower-bounded by MI(f(X);X) minus some small term.

Again, we discuss the special case that A = {i}. The-
orem 1 evaluated for the case that A = {i} yields that

Ii(f) ≥ 1/σ2
i (MI(f(X);Xi)−Ψ(Var (f(X))))

which shows that if MI(f(X);Xi) is large, then Ii(f) is
also large. That proves the intuitive idea that if an input
determines f(X) to some extent, this input also has to be
sensitive to errors. Conversely, an input i can have large
influence and still MI(f(X);Xi) = 0. An example of
such a function is the PARITY function, where Ii(f) = 1
and MI(f(X);Xi) = 0.

Interestingly, the influence also has an information the-
oretic interpretation:

Ii(f) =
H
(
f(X)|X[n]\{i}

)
H(Xi)

which shows that the influence of a variable is a measure
for the uncertainty of the function’s output that remains if
all variables except variable i are set.

Finally, we characterize statistical independence of
f(X) and a set of its arguments XA in terms of Fourier
coefficients. This result generalizes a theorem derived by



Xiao and Massey [8] from uniform to product distributed
X.

Theorem 2. LetA ⊆ [n] be fixed, f be a Boolean function
and X be product distributed. Then f(X) and the inputs
XA = {Xi : i ∈ A} are statistically independent if and
only if

f̂(S) = 0 for all S ⊆ A \ ∅.

Theorem 2 shows that if a function is concentrated on
the coefficients of low degree d = |S|, which is the case
for functions that are tolerant to perturbations, then small
sets of inputs and the function’s output are statistically de-
pendent.

Unate Functions. A Boolean function f is said to be
unate in variable xi if for each x = (x1, ..., xn) ∈ {−1,
+1}n and for some fixed ai ∈ {−1,+1}, f(x1, ..., xi =
−ai, ..., xn) ≤ f(x1, ..., xi = ai, ..., xn). The function f
is said to be unate, if f is unate in each variable xi. For
example, each linear threshold function and each nested
canalizing function is unate and one can suppose that the
majority of regulatory interactions in a biological network
are unate. The basic argument is that if an element acts ei-
ther as a repressor or an activator for some gene, but never
as both, then the function determining the gene’s state is
unate by definition. For unate functions, we have that
f̂({i}) = aiσiIi(f), ∀i ∈ [n] where ai ∈ {−1,+1} is
the parameter as given in the definition above. The proof
goes along the same lines as the proof for monotone func-
tions in [6, Lem. 4.5]. With (4) this yields an explicit rela-
tion of Ii(f) and MI(f ;Xi), based on which we find that
for unate functions, the mutual information MI(f ;Xi) is
increasing in the influence |Ii(f)|. Moreover if f is unate,
and xi is a relevant variable, i.e., a variable on which the
function actually depends on, then |f̂({i})| > 0. We fur-
thermore find that if f is unate, the statement “xi is a rel-
evant variable” is equivalent to MI(f(X);Xi) 6= 0. In
a Boolean model of a biological regulatory network, this
implies that if the functions in the network are unate, then
a regulator and the target gene must be statistically depen-
dent.

4. E. COLI REGULATORY NETWORK

In [2], the authors presented a complex computational
model of the E. coli transcriptional regulatory network that
controls central parts of the E. coli metabolism. The net-
work consists of 798 nodes and 1160 edges and has a lay-
ered feed-forward structure, i.e., no feedback-loops exist.
The 133 elements in the first layer can be viewed as the
inputs of the system and the elements in the following 7
layers are interacting genes representing the internal state
of the system. Our investigations showed that all functions
are unate, which is a non-typical property of the network.
We identified the input-nodes that have large determina-
tive power using the MI. To this end, we define the deter-
minative power of input Xj over the states in the network
as

D(j) ,
m∑
i=1

MI(fi(X);Xj)

where the sum is over all m nodes that represent genes,
and hence are functions of the input node’s states. We as-
sumed that Pr [Xj = 1] = 1/2 and computed D(j) for
each input variable and found that D(j) is large just for
some inputs, such as the variables o2 xt (36.9 bit), leu-
l xt (20.9 bit) and glc-d xt (19.3 bit), (here we adopted
the names from the original dataset), but is small for most
other variables. From the previous section, it is clear that
this cannot be explained solely from the fact that nodes
with large values of D(j) tend to have many outgoing
edges, while most other nodes do not. This is also what
we observed from analyzing the E. coli network, e.g., the
state variable glc-d xt has 99 outgoing edges, but D(glc-
d xt) = 19.3 bit, whereas variable o2 xt has out degree
72, but D(o2 xt) = 36.9 bit. Next, let Xτ(1), ..., Xτ(l) be
the inputs with the l largest determinative powers. To see
whether knowledge about a small set of those reduces the
entropy of the networks states significantly, we computed
H(Y|Xτ(1), ..., Xτ(l)) as a function of l and found that
knowledge of merely the states of the most determinative
nodes reduces the uncertainty about the network’s states
significantly. The quantity H(Y|Xτ(1), ..., Xτ(l)) can be
interpreted as a measure of the size of a subset of the over-
all state space where the system is likely to be found, given
knowledge about the states Xτ(1), .., Xτ(l) [5].
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