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PROOFS OMITTED IN THE PAPER

Proof of Lemma 8. Item (i) is a direct consequence of the definition of the upper Beurling class

density. To show item (ii), let ϵ > 0 be arbitrary, and set θ = D+(L) + ϵ. Then, by the definition of

D+(L), we have
n+(Λ, (0, R)2)

R2
⩽ D+(L) + ϵ

for every Λ ∈ L and sufficiently large R, and thus

D+(Λ) = lim sup
R→∞

n+(Λ, (0, R)2)

R2
⩽ D+(L) + ϵ. (1)

Now, as (1) holds for every Λ ∈ L, we deduce that supΛ∈LD+(Λ) ⩽ D+(L) + ϵ, and hence, as

ϵ > 0 was arbitrary, we obtain supΛ∈LD+(Λ) ⩽ D+(L).

Proof of Lemma 9. We identify C with R2 for ease of exposition. For a positive integer q, define the

set Sq according to

Sq = {[qkR, q(k + 1)R]× [qℓR, q(ℓ+ 1)R] : k, ℓ ∈ Z},

and note that Sq is a collection of squares in R2 of side length qR tessellating the plane. A simple

counting argument now yields, for all K ∈ Sq,

#(Ωγ ∩K) ⩾ (qRγ−1)2 − 4
(
qRγ−1 + 1

)
,

where the subtracted term accounts for the ⌈qRγ−1⌉ points adjacent to each of the edges of the square

K, but which might not be inside it. On the other hand, as every element of Sq can be covered by

(q + 2)2 translates of (0, R)2, using n+(Λ, (0, R)2) ⩽ θR2 we have #(Λ ∩K) ⩽ (q + 2)2 · θR2 =
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((q + 2)Rθ1/2)2 for all K ∈ Sq. Therefore, as γ−1 > θ1/2 by assumption, there exists a positive

integer q′ = q′(θ,R, γ) such that

(q′Rγ−1)2 − 4
(
q′Rγ−1 + 1

)
⩾

(
(q′ + 2)Rθ1/2

)2
.

We thus have #(Ωγ ∩ K) ⩾ #(Λ ∩ K), for all K ∈ Sq′ , and can therefore enumerate Λ =

{λm,n}(m,n)∈I so that, for every (m,n) ∈ I, λm,n and ωm,n are contained in the same square

Km,n ∈ Sq′ . Setting R′ =
√
2q′R to be the length of the diagonal of the squares in Sq′ now yields

|λm,n − ωm,n| ⩽ R′, for all (m,n) ∈ I, as desired.

Proof of Lemma 10. We again identify C with R2 for ease of exposition. Note that we have n+(Λ, (0, R′)2) ⩽

n+(Ωγ , (0, R
′ + 2R)2), for all R′ > 0 and Λ ∈ L, by the uniform closeness assumption, and so

D+(L) = lim sup
R′→∞

sup
Λ∈L

n+(Λ, (0, R′)2)

R′2 ⩽ lim sup
R′→∞

n+(Ωγ , (0, R
′ + 2R)2)

(R′ + 2R)2

(
1 +

2R

R′

)2

= γ−2.

Proof of Lemma 14. (i) Suppose that A is bounded below. Then the operator Ã : X → Im(A) given

by Ã(x) = A(x), for x ∈ X , is a continuous map between Banach spaces, and has a continuous

inverse. In other words, Ã is an isomorphism between Banach spaces. Thus Ã∗ : (Im(A))∗ → X∗ is

also an isomorphism between Banach spaces, and so, by the inverse mapping theorem [?, Cor. 2.12],

so is (Ã∗)−1 : X∗ → (Im(A))∗. Consider now an arbitrary f ∈ X∗, and set h = (Ã∗)−1f . As h is

a continuous linear functional on Im(A) ⊂ Y , it follows by the Hahn-Banach theorem [?, Thm. 3.6]

that h can be extended to a continuous linear functional hY defined on Y . Now, since hY |Im(A)= h,

we have
⟨A∗hY , x⟩ = ⟨hY , Ax°

∈Im(A)

⟩ = ⟨h,Ax⟩ = ⟨h, Ãx⟩ =

= ⟨Ã∗h, x⟩ = ⟨f, x⟩ for x ∈ X,

and thus, as x ∈ X was arbitrary, we deduce that A∗hY = f . Finally, since f was arbitrary, we have

that A∗ is surjective.

(ii) Let f be an arbitrary element of X∗ with ∥f∥ = 1, and let g ∈ Y ∗ be such that A∗g = f

and a∥g∥ ⩽ 1. Note that then g ̸= 0, and so g/∥g∥ is a well-defined element of Y ∗ of unit norm.

Therefore,

∥Ax∥ ⩾

∣∣∣∣〈Ax,
g

∥g∥

〉∣∣∣∣ = ∥g∥−1 |⟨x,A∗g⟩| ⩾ a |⟨x, f⟩| ,

for all x ∈ X . Taking the supremum of the right-hand side over f ∈ X∗ and using the fact that

supf∈X∗,∥f∥=1 |⟨x, f⟩| = ∥x∥ yields ∥Ax∥ ⩾ a∥x∥, as desired.


