Addendum to

Beurling-Type Density Criteria for System Identification

Céline Aubel*, Helmut Bölcskei ${ }^{\dagger}$, and Verner Vlačić ${ }^{\ddagger}$
*Swiss National Bank, Zurich, Switzerland
${ }^{\dagger}$ Chair for Mathematical Information Science, ETH Zurich, Switzerland ${ }^{\ddagger}$ Huawei Zurich Research Center, Switzerland
Email: *celine.aubel@gmail.com, ${ }^{\dagger} h b o e l c s k e i @ e t h z . c h, ~{ }^{\ddagger}$ verner.vlacic@huawei.com

Proofs omitted in the paper

Proof of Lemma 8. Item (i) is a direct consequence of the definition of the upper Beurling class density. To show item (ii), let $\epsilon>0$ be arbitrary, and set $\theta=\mathcal{D}^{+}(\mathcal{L})+\epsilon$. Then, by the definition of $\mathcal{D}^{+}(\mathcal{L})$, we have

$$
\frac{n^{+}\left(\Lambda,(0, R)^{2}\right)}{R^{2}} \leqslant \mathcal{D}^{+}(\mathcal{L})+\epsilon
$$

for every $\Lambda \in \mathcal{L}$ and sufficiently large R, and thus

$$
\begin{equation*}
D^{+}(\Lambda)=\limsup _{R \rightarrow \infty} \frac{n^{+}\left(\Lambda,(0, R)^{2}\right)}{R^{2}} \leqslant \mathcal{D}^{+}(\mathcal{L})+\epsilon \tag{1}
\end{equation*}
$$

Now, as (1) holds for every $\Lambda \in \mathcal{L}$, we deduce that $\sup _{\Lambda \in \mathcal{L}} D^{+}(\Lambda) \leqslant \mathcal{D}^{+}(\mathcal{L})+\epsilon$, and hence, as $\epsilon>0$ was arbitrary, we obtain $\sup _{\Lambda \in \mathcal{L}} D^{+}(\Lambda) \leqslant \mathcal{D}^{+}(\mathcal{L})$.

Proof of Lemma 9. We identify \mathbb{C} with \mathbb{R}^{2} for ease of exposition. For a positive integer q, define the set \mathcal{S}_{q} according to

$$
\mathcal{S}_{q}=\{[q k R, q(k+1) R] \times[q \ell R, q(\ell+1) R]: k, \ell \in \mathbb{Z}\}
$$

and note that \mathcal{S}_{q} is a collection of squares in \mathbb{R}^{2} of side length $q R$ tessellating the plane. A simple counting argument now yields, for all $K \in \mathcal{S}_{q}$,

$$
\#\left(\Omega_{\gamma} \cap K\right) \geqslant\left(q R \gamma^{-1}\right)^{2}-4\left(q R \gamma^{-1}+1\right)
$$

where the subtracted term accounts for the $\left\lceil q R \gamma^{-1}\right\rceil$ points adjacent to each of the edges of the square K, but which might not be inside it. On the other hand, as every element of \mathcal{S}_{q} can be covered by $(q+2)^{2}$ translates of $(0, R)^{2}$, using $n^{+}\left(\Lambda,(0, R)^{2}\right) \leqslant \theta R^{2}$ we have $\#(\Lambda \cap K) \leqslant(q+2)^{2} \cdot \theta R^{2}=$
\ddagger V. Vlačić's work was conducted while with ETH Zurich
$\left((q+2) R \theta^{1 / 2}\right)^{2}$ for all $K \in \mathcal{S}_{q}$. Therefore, as $\gamma^{-1}>\theta^{1 / 2}$ by assumption, there exists a positive integer $q^{\prime}=q^{\prime}(\theta, R, \gamma)$ such that

$$
\left(q^{\prime} R \gamma^{-1}\right)^{2}-4\left(q^{\prime} R \gamma^{-1}+1\right) \geqslant\left(\left(q^{\prime}+2\right) R \theta^{1 / 2}\right)^{2}
$$

We thus have $\#\left(\Omega_{\gamma} \cap K\right) \geqslant \#(\Lambda \cap K)$, for all $K \in \mathcal{S}_{q^{\prime}}$, and can therefore enumerate $\Lambda=$ $\left\{\lambda_{m, n}\right\}_{(m, n) \in \mathcal{I}}$ so that, for every $(m, n) \in \mathcal{I}, \lambda_{m, n}$ and $\omega_{m, n}$ are contained in the same square $K_{m, n} \in \mathcal{S}_{q^{\prime}}$. Setting $R^{\prime}=\sqrt{2} q^{\prime} R$ to be the length of the diagonal of the squares in $\mathcal{S}_{q^{\prime}}$ now yields $\left|\lambda_{m, n}-\omega_{m, n}\right| \leqslant R^{\prime}$, for all $(m, n) \in \mathcal{I}$, as desired.

Proof of Lemma 10. We again identify \mathbb{C} with \mathbb{R}^{2} for ease of exposition. Note that we have $n^{+}\left(\Lambda,\left(0, R^{\prime}\right)^{2}\right) \leqslant$ $n^{+}\left(\Omega_{\gamma},\left(0, R^{\prime}+2 R\right)^{2}\right)$, for all $R^{\prime}>0$ and $\Lambda \in \mathcal{L}$, by the uniform closeness assumption, and so

$$
\mathcal{D}^{+}(\mathcal{L})=\limsup _{R^{\prime} \rightarrow \infty} \sup _{\Lambda \in \mathcal{L}} \frac{n^{+}\left(\Lambda,\left(0, R^{\prime}\right)^{2}\right)}{R^{\prime 2}} \leqslant \limsup _{R^{\prime} \rightarrow \infty} \frac{n^{+}\left(\Omega_{\gamma},\left(0, R^{\prime}+2 R\right)^{2}\right)}{\left(R^{\prime}+2 R\right)^{2}}\left(1+\frac{2 R}{R^{\prime}}\right)^{2}=\gamma^{-2}
$$

Proof of Lemma 14. (i) Suppose that \mathcal{A} is bounded below. Then the operator $\tilde{\mathcal{A}}: X \rightarrow \operatorname{Im}(\mathcal{A})$ given by $\tilde{\mathcal{A}}(x)=\mathcal{A}(x)$, for $x \in X$, is a continuous map between Banach spaces, and has a continuous inverse. In other words, $\tilde{\mathcal{A}}$ is an isomorphism between Banach spaces. Thus $\tilde{\mathcal{A}}^{*}:(\operatorname{Im}(\mathcal{A}))^{*} \rightarrow X^{*}$ is also an isomorphism between Banach spaces, and so, by the inverse mapping theorem [?, Cor. 2.12], so is $\left(\tilde{\mathcal{A}}^{*}\right)^{-1}: X^{*} \rightarrow(\operatorname{Im}(\mathcal{A}))^{*}$. Consider now an arbitrary $f \in X^{*}$, and set $h=\left(\tilde{\mathcal{A}}^{*}\right)^{-1} f$. As h is a continuous linear functional on $\operatorname{Im}(\mathcal{A}) \subset Y$, it follows by the Hahn-Banach theorem [?, Thm. 3.6] that h can be extended to a continuous linear functional h_{Y} defined on Y. Now, since $\left.h_{Y}\right|_{\operatorname{Im}(\mathcal{A})}=h$, we have

$$
\begin{aligned}
\left\langle\mathcal{A}^{*} h_{Y}, x\right\rangle & =\langle h_{Y}, \underbrace{\mathcal{A} x\rangle}_{\in \operatorname{Im}(\mathcal{A})}=\langle h, \mathcal{A} x\rangle=\langle h, \tilde{\mathcal{A}} x\rangle= \\
& =\left\langle\tilde{\mathcal{A}}^{*} h, x\right\rangle=\langle f, x\rangle \text { for } x \in X
\end{aligned}
$$

and thus, as $x \in X$ was arbitrary, we deduce that $\mathcal{A}^{*} h_{Y}=f$. Finally, since f was arbitrary, we have that \mathcal{A}^{*} is surjective.
(ii) Let f be an arbitrary element of X^{*} with $\|f\|=1$, and let $g \in Y^{*}$ be such that $\mathcal{A}^{*} g=f$ and $a\|g\| \leqslant 1$. Note that then $g \neq 0$, and so $g /\|g\|$ is a well-defined element of Y^{*} of unit norm. Therefore,

$$
\|\mathcal{A} x\| \geqslant\left|\left\langle\mathcal{A} x, \frac{g}{\|g\|}\right\rangle\right|=\|g\|^{-1}\left|\left\langle x, \mathcal{A}^{*} g\right\rangle\right| \geqslant a|\langle x, f\rangle|,
$$

for all $x \in X$. Taking the supremum of the right-hand side over $f \in X^{*}$ and using the fact that $\sup _{f \in X^{*},\|f\|=1}|\langle x, f\rangle|=\|x\|$ yields $\|\mathcal{A} x\| \geqslant a\|x\|$, as desired.

