1. The authors are grateful to Weigutian Ou for pointing out an issue affecting Lemma II. 6 and Lemma A. 8. Specifically, in Lemma II. 6 and Lemma A. 8, $\mathcal{B}(\Psi) = \max_i \{|a_i|\mathcal{B}(\Phi_i)\}$ should be replaced by

$$\mathcal{B}(\Psi) \le \max\left\{\sum_{i=1}^{n} |a_i| \mathcal{B}(\Phi_i), \max_{i \in \{1,\dots,n\}} \mathcal{B}(\Phi_i), \max_{i \in \{1,\dots,n\}} |a_i| \mathcal{B}(\Phi_i)\right\}.$$
 (1)

In Lemma II. 6 this bound is obtained as follows. Given networks $\Phi_i \in \mathcal{N}_{d_i,d'}$ with associated matrix-vector pairs $(A^i_{\ell}, b^i_{\ell}), i \in \{1, \ldots, n\}, \ell \in \{1, \ldots, L\}$, the first L-1 matrix-vector pairs of the network $\Psi \in \mathcal{N}_{\sum_{i=1}^n d_i,d'}$ are obtained as

$$A_{\ell} = \text{diag}(A_{\ell}^{1}, A_{\ell}^{2}, \dots, A_{\ell}^{n}), \quad b_{\ell} = (b_{\ell}^{1}, b_{\ell}^{2}, \dots, b_{\ell}^{n}).$$

Hence, we have, for all $\ell \in \{1, \ldots, L-1\}$, that $||A_{\ell}||_{\infty} \leq \max_{i} \mathcal{B}(\Phi_{i})$ and $||b_{\ell}||_{\infty} \leq \max_{i} \mathcal{B}(\Phi_{i})$. In the last layer, i.e., for $\ell = L$, we have

$$A_L = (a_1 A_L^1, a_2 A_L^2, \dots, a_n A_L^n), \quad b_L = \sum_{i=1}^n a_i b_{L_1}^i$$

and therefore $||A_L||_{\infty} \leq \max_i \{|a_i|\mathcal{B}(\Phi_i)\}$ and $||b_L||_{\infty} \leq \sum_{i=1}^n |a_i|\mathcal{B}(\Phi_i)$. In the case of Lemma A.8, (1) follows upon noting that the network $\Psi \in \mathcal{N}_{d,d'}$ is specified by the same matrix-vector pairs as in the modified Lemma II.6, except for the matrix A_1 , which is instead given by

$$A_1 = \begin{pmatrix} A_1^1 \\ \vdots \\ A_1^n \end{pmatrix}$$

Note that in the special case $a_i \ge 1$, $b_L^i = 0$, both for all $i \in \{1, \ldots, n\}$, the original claim $\mathcal{B}(\Psi) = \max_i \{|a_i| \mathcal{B}(\Phi_i)\}$ remains correct.

These corrections do not affect the instances where Lemma II.6 and Lemma A.8 are applied. Specifically, in the proof of Theorem VII.2,

$$\mathcal{B}(\Psi_{f,M}) \leq \pi_3(M), \text{ for all } f \in \mathcal{C}, M \in \mathbb{N},$$

still holds for some (other) polynomial π_3 due to $I_{f,M} \subseteq \{1, \ldots, \pi_1(M)\}$ and $\max_{i \in I_{f,M}} |c_i| \leq \pi_1(M)$.

In the proof of Theorem VIII. 10, the modification resulting from the correction in Lemma II. 6 yields an upper bound on the weight magnitude of the networks approximating ψ_m which continues to be independent of ε and, as such, does not lead to changes in the subsequent arguments.

Finally, in the proof of Lemma IX.5, we consider a linear combination (with $a_i = 1$, for all $i \in \{1, \ldots, d\}$) of squaring networks in order to

obtain an approximation of $f(x) = \sum_{i=1}^{d} x_i^2$. As $b_{m+1} = 0$ in the proof of Proposition III. 2, the bound $\mathcal{B}(\Psi_{d,D,\varepsilon}) \leq 1$ in (84) remains valid thanks to the comment at the end of the first paragraph in this document.

- 2. In the third paragraph on p. 32, the formulation "let $\mathcal{D} = \{\varphi_i\}_{i \in \mathbb{N}}$ be an ordered orthonormal basis for \mathcal{C} " is meant to say that $\mathcal{D} = \{\varphi_i\}_{i \in \mathbb{N}}$ is an ordered orthonormal basis for a space that contains \mathcal{C} .
- 3. In the paragraph following Definition IV.3, "for a given $x \in \mathcal{X}$ " should read "for a given $x \in \mathcal{C}$ " and "the resulting error satisfies $||D(E(x)) - x|| \le \varepsilon$ " should read "the resulting error satisfies $\rho(D(E(x)), x) \le \varepsilon$ ".
- 4. In Definition IV. 4, " $M(\varepsilon; \mathcal{X}, \rho)$ " should read " $M(\varepsilon; \mathcal{C}, \rho)$ ".
- 5. In the caption of Table 1 it should say "bounded Lipschitz domain" instead of "Lipschitz domain".
- 6. On p. 29, the second and third display should read as follows: Now, note that

$$\left\|\sum_{i\in\tilde{I}_{f,\tilde{M}}}\tilde{c}_{i}\tilde{\varphi}_{i}\right\|_{L^{2}(\Omega)} = \left\|f - \left(f - \sum_{i\in\tilde{I}_{f,\tilde{M}}}\tilde{c}_{i}\tilde{\varphi}_{i}\right)\right\|_{L^{2}(\Omega)}$$
$$\leq \|f\|_{L^{2}(\Omega)} + \left\|f - \sum_{i\in I_{f,M}}c_{i}\varphi_{i}\right\|_{L^{2}(\Omega)}.$$

Making use of the orthonormality of the $\tilde{\varphi}_i$, we can conclude that

$$\sum_{i \in \tilde{I}_{f,\widetilde{M}}} |\tilde{c}_i|^2 \le \left(\sup_{f \in \mathcal{C}} \|f\|_{L^2(\Omega)} + CM^{-\gamma} \right)^2.$$

7. The authors are grateful to Erwin Riegler for pointing out the following issues in Appendix B. The first sentence should read "We consider, for $m \in \mathbb{R}_+$ and $p, q \in [1, \infty]$, the Besov space..." and the first paragraph on p. 75 should be replaced by the following:

In order to find an upper bound on $\|(\|A_n(f)\|_{\ell^2})_{n=N+1}^{\infty}\|_{\ell^2}$, we first note that

$$\|\cdot\|_{\ell^{\alpha}} \le \|\cdot\|_{\ell^{\beta}}, \qquad \le \beta \le \alpha \le \infty, \tag{2}$$

holds for sequences as well as vectors. For $x \in \mathbb{R}^d$ and $\alpha \in [2, \infty]$, we have, in addition, that

$$\|x\|_{\ell^2} \le d^{\frac{1}{2} - \frac{1}{\alpha}} \|x\|_{\ell^{\alpha}},\tag{3}$$

which is a direct consequence of Hölder's inequality applied to the vectors (x_1^2, \ldots, x_d^2) and $(1, \ldots, 1)$ with corresponding Hölder exponents $\frac{\alpha}{2}$ and $\frac{\alpha}{\alpha-2}$, respectively. Upon noting that the $A_n(f)$ are vectors of length $|\mathcal{D}_n| = 2^n$, application of (3) combined with (2) yields, for $p \in [1, \infty]$, that

$$\|A_n(f)\|_{\ell^2} \le 2^{n(\frac{1}{2} - \frac{1}{p})_+} \|A_n(f)\|_{\ell^p},\tag{4}$$

where $x_+ := \max\{0, x\}$. Consequently, we get, for all $f \in \mathcal{U}(B^m_{p,q}([0,1]))$, $p \in [1,\infty], q \in [1,2]$, that

$$\begin{split} \|(\|A_{n}(f)\|_{\ell^{2}})_{n=N+1}^{\infty}\|_{\ell^{2}} \\ & \stackrel{(a)}{\leq} \|(2^{n(\frac{1}{2}-\frac{1}{p})_{+}}\|A_{n}(f)\|_{\ell^{p}})_{n=N+1}^{\infty}\|_{\ell^{q}} \\ & \stackrel{(b)}{\leq} 2^{-(N+1)(m-(\frac{1}{p}-\frac{1}{2})_{+})}\|(2^{n(m+\frac{1}{2}-\frac{1}{p})}\|A_{n}(f)\|_{\ell^{p}})_{n=N+1}^{\infty}\|_{\ell^{q}} \\ & \stackrel{(c)}{\leq} 2^{-(N+1)(m-(\frac{1}{p}-\frac{1}{2})_{+})}\|f\|_{m,p,q} \\ & \stackrel{(d)}{\leq} (2^{N+1})^{-(m-(\frac{1}{p}-\frac{1}{2})_{+})}, \end{split}$$

which establishes (94) with C = 1 and $\beta = m - (\frac{1}{p} - \frac{1}{2})_+$. Note that for (a) we used (4) for the inner norm and (2) for the outer norm. For (b) we employed the fact that the sequence starts with index n = N + 1 and we used that $(a - b)_+ = (b - a)_+ + a - b$, for $a, b \in \mathbb{R}$, which yields

$$2^{n(\frac{1}{2} - \frac{1}{p})_{+}} = 2^{n((\frac{1}{p} - \frac{1}{2})_{+} + \frac{1}{2} - \frac{1}{p})}$$
$$= 2^{-n(m - (\frac{1}{p} - \frac{1}{2})_{+})} 2^{n(m + \frac{1}{2} - \frac{1}{p})},$$

for $n, m \in \mathbb{R}$ and $p \in [1, \infty]$, with the convention $\frac{1}{\infty} = 0$. Finally, (c) and (d) follow by application of the definitions in (92) and (93), respectively.