ADDENDUM to
“Degrees of Freedom 1n

Vector Interference Channels”

David Stotz and Helmut Bolcskei

I. INTRODUCTION

This document is a supplement to [1]]. It provides complete proofs of auxiliary results in [1]],
which are minor extensions of results available in the literature or restatements of results that
appear in the literature without proof.

Notation: All notation conventions are adopted from [1]].

II. PROOFS OF AUXILIARY RESULTS IN [1, APPENDIX B]

The following lemma, which is a straightforward extension of [2, Lem. 4] to the vector case,
provides a sufficient condition for the iterated function system used in the construction of the

random vector in [1, (22))] to satisfy the open set condition.

Lemma 1. Consider the iterated function system {F}, ..., [y, } with Fy(z) = re+w;, for x € R",
r € (0,1), and pairwise different vectors wy, ..., w,, € R". Let furthermore VW := {wy, ..., W, }.
Then, the open set condition (see [I, Definition [2]]) is satisfied if

. m(W)
S mOV) + MOWV)

ey

Proof: The idea is to construct a bounded open set U/ such that under (1)) the images of every
point in this set under different contractions lie sufficiently far apart for F;(U)NF;(U) = ( to hold,
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for all 7 # j, and to moreover ensure that | J;", F;(U) C U. Let U := (a1,b1) X ... X (ay,by),
where a; = % and b, = % Then, for every i, we have F;(U) C U, since both
ray + wiy > a and rby + w;x < by, hold for k = 1, ...,n. We therefore get |J;_, F;(U) C U.
It remains to prove that F;(U) N F;(U) = O for all i # j. Let i, jo with ig # jo be given. We

need to show that there exists at least one k& € {1,...,n} such that
r(be = ax) < [wigr — wjo k! -
For every ¢ we have

max; w; ¢ — min; w; ¢

r(by —ag) =7

1—r
o m(W)(max; w; , — min; w; ¢)
h M(W)
<mW).
In particular, we can choose k as the coordinate for which |w;, — w;, ||« is attained. u

Next, we bound the error in the entropy of the quantized output signals which results from
replacing the input distributions by their fractional parts, a crucial step in the proof of [1,

Theorem [2]].

Lemma 2. Consider the deterministic matrices Hy, ..., Hx € RM*M gnd let XY, ..., XK be

random matrices in RM™*N. For every k € N, we have

[ZK:HJX?] - H [ZK:HJ-(X?)] iH [X¥]) + MNlog?2,

k J=1

where (A) := A — | A| denotes the fractional part of the real matrix A.

Proof: We set

V::2kiﬂj(x§v), W::Qkiﬂjp{;ﬂ,
and show that . .
H(|V+W]|)-H(|V] iH (IXN]) + MNlog2 )
J;l
H([V])-H([V+W]) <) H(|X}])+ MNlog?2, (3)
=1
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which yields the claim since entropy is invariant to scaling. We first bound

H([V+W])-H([V]) <H([V+W][[V]) 4)
< H([[V]+W][[V]) + MN log2 )

< H(|W]) + MN log2 6)

<> H([X)]) +MNlog2, (7)

=1

where (@) follows from the chain rule, (5) holds since ||V ]|+ W] = |V ]| + | W] and thus

<

H(IV+WI][[V]) = H([[V] + W][[V]) SH([V+W][[V][[V]+W]) ()

= H([V+W][[V],[W]) ©)

< MNlog2. (10)

Furthermore, (6) is again due to ||V ]|+ W] = |V | + |[W], and (7) follows from H(|W]) <
H(W) < H(IXY], ..., |XX]) < 2?:1 H(|X}]) where in the first two inequalities we used

that H(f(U)) < H(U) for discrete random matrices U and deterministic functions f. This
proves (2).

The argument leading to (3) goes as follows:

H([V])-H([V+W]) <H([V]|[V+W]) (11
SH(W])+ H([V][[V+W],[W]) (12)
< H(|W])+ MN log2 (13)
f:H [XY]) + MNlog2, (14)

where and follow from the chain rule, holds since given |V + W] and |[W|,
each entry of V is determined up to 1 bit uncertainty, and (14) follows in the same way as
above. [ ]

The following lemma is a straightforward extension of [2, Lem. 14] to the vector case.

Lemma 3. Let V C R" be a set such that 0 < m(V), M(V) < oo and let r > 0 be such that

m(V)

" (V) MOV) >
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Then, for every { € N with { > 1, we have
m(V +rV+ .. +r7W) = im(Y). (16)

Moreover, the mapping V¢ — V +1rV + ...+ 77, (vy, .., v) = v+ 10+ ...+ 17y is a

one-to-one correspondence.

Proof: We begin by proving (I6). Let (vq,...,v¢) and (wy,...,w,) be distinct elements of
VY, and let k := min{i | v; # w;}. Using the reverse triangle inequality, we get

¢
Z v — w;)
i—k

14

Z v — wy)

i=1

¢
> Hrk_l(vk — wk)Hoo — Z r v — w;)
i=k+1 -~
¢
> oy —will = Y T o= will o -
i=k+1
It therefore follows that
¢
LYY S mi k-1 _ -1\
mY+rV+...+77V) 2> glggg{r m(V) — M(V) ';17" } (17)

Here, for £ = ¢, the sum over an empty index set on the RHS of is to be understood as being
equal to 0. The minimum in is attained for k = ¢ as by (15) we have rm(V) < m(V)—rM(V)

and therefore

for k = 1, ..., £. In particular, this shows that the mapping V* — V-+rV+.. . +r71V, (vy, ..., v)

vy + 10y + ...+ 71y, is injective. Since it is clearly also surjective, the proof is completed. M
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III. PROOFS OF VARIOUS SUPPLEMENTARY STATEMENTS
A. Proof of [1, Lemma [I|]

We first show, in the next two lemmata, that restricting to an exponential subsequence of &
in the computation of information dimension [1, (7)] does not change the limit. This extends

corresponding results for random variables in [3] to the vector case.

Lemma 4 ([3, Lem. 16]). Let X be a random vector in R". For p,q € N\{0} we have
H(U0),) < H(O0,) +nog([2] 1))

Proof: By the chain rule we find

H((X)p) = H((X)p, (X)q) = H((X)q[(X)y) (18)
< H((X)p, (X)q) (19)
= H((X)q) + H((X)p | (X)q)- (20)

Qs

(l,...,0,), we have

Further H((X), | (X)s) = Yo or...eyezn Pixs (f) H((X)pHX)q: ) and for fixed ¢ =
i (0,1 (0, = £) = (0,1 x e [ 2,052 ) «

X V—”,€"+1>) (21)
q q q q

st ), (e ol 410
q

— a1l Ipx e | 2, 2 o 2

(22)

< nlog(P-‘ + 1) 23)

-‘—|—1>n possible values of [pX| given that

L

since there are at most ([

1 ‘el n en
pX € [’%, M) X ... X [’i M). Therefore, we get H((X),|(X),) < nlog([’a’-‘ + 1),

q q’ q

SIS

which, upon inserting into (20)) establishes the result. [

Lemma 5 ([3, Prop. 2]). Let X be a random vector in R". For a > 1 we have

= limin M an d — limsu H((X)a)
Q(X)_lé_mf log(a*) 4 dX) le_mp log(at)
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Proof: For a fixed k € N we find ¢ € N such that a*~! < k < a’. By Lemma @ we then
have
H((X)yr) < H({X)g) + nlog2
and
H((X)x) < H((X)ar) +1log2.

Therefore, we find
H((X)y-1) —nlog2 _ H(X)s) _ H((X)u)+nlog?
log(at) = logk log(a‘~1)
and the lemma follows by taking £ (and hence also /) to infinity. [ ]

We are now ready to prove [1, Lemma [I]. For brevity we will only prove the statement
involving d. The proof for d is obtained by replacing each “limsup” by “liminf” in the steps
below.

Proof of [1, Lemmal(l]]: We first argue that it suffices to prove the statement for the ¢(*°-ball.
Then, for the specific case of the ¢*°-ball, we relate E[log u(B(X;e))] to the entropy of [X]
employing an idea already used in the proof of [I, Lemma [5]]. By Lemma [5] this then leads to
d(X) according to

— H([X
d(X) = limsup M (24)
k—o0 k
Suppose we have two norms, || -||a and || - ||g, on R". Since R™ is a finite-dimensional vector

space, these norms are equivalent [4} p. 273] in the following sense: there exist constants ¢, C' > 0

such that for all x € R"
cllz[s < [|z]|a < Ozl

Therefore, for € > 0 we have

c 3
By (fﬂ; 5) C By (x58) € By (”"3 E) ’
where Bj.|(x;¢) denotes the ball with center = and radius € with respect to the norm || - ||. It

now follows that

E [log 1(By i (X3 5))] E[log 11( By, (X;€))]

lim sup < lim sup (25)
£—0 loge c0 loge
E |log u( By (X; £
< limsup EL08# (B (X3 2))] 26)
N loge
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We furthermore have

E[log (B3 (X3 &) E[log pu(By s (X; §))] loge

lim sup = lim sup -
=0 log e £—0 log e log &
E{log pu(B.x (X; €’
o VG HB,( ).
&0 loge

and similarly for C' replaced by c. In summary, it thus follows from (23) and (26)) that

E[log (B, (X: X
lim sup [Ogu(l HINC.SI0) ) - L VI CITNOSD))
e—0 oge e—0 log e

Y

which shows that it suffices to prove the statement for || - |-
Next, we establish the relationship between E [log 11( By .. (X;¢))] and H([X])). Let € > 0

be fixed and determine k € N such that
27F e < 7R (27)

We then decompose R™ into cubes of sidelength 27* according to

R" = U 0,

Qe{Qk(x)|zeR™}

where
Qi(x) := [[ml]k, [z1]k + 2_k) X ... X [[mn]k, [Tn]k + 2_k) (28)
is the (unique) cube containing z, cf. [, (I30)]. Note that H([X];) = E[log m] Since
Qk(l‘) - BH‘IIOO('ZE; 27]6) - B”.HOO(ZL‘;&), it follows that
1
E|l < H([X|g). 29
{Og M(BHAOO(X;e))] () @
Next, we construct cubes which are just large enough to contain B (x;¢) by setting
Ox(x) := [[ea)r — 27" [m]e +3-27%) x oo x [[wale — 275 [ +3-27F)
By we get By (z;¢) C Oy (x), which implies
1 #(B ||oo(X;€>)}
H(| X)) —E|l =E |l 30
(00 B o g | = e o
1(Ok(X))
< E |log xR 2)) 31
% u<9k<x>>] b
s [ u(@4(X))
< logE |AXR2)) 32
% M<Qk<x>>] 2
= nlogh, (33)
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where in (33) we used the fact that for each x € R™ the function p(Q (X)) is constant on the
event X € O (z) and that each Oy (z) is the union of 5" cubes of the form (Z8). Putting (29)
and (33) together and using (27)), we get

H(X],) — nlog5 _ Ellogp(Bl(X:2)] _ H(X])
k h log e S k-1

Sending ¢ — 0 and thereby k& — oo, together with (24)), completes the proof. [ ]

B. Proof of [1, Proposition [2]]

We first consider the extremal cases o = 0 and o« = 1, which will then allow us to deduce

the general result.

Lemma 6. Suppose X is a random vector in R™ with discrete distribution and H(| X |) < oc.

Then, we have
d(X)=0.

Proof: Follows directly from the proof for the scalar case [S, pp. 196—-197], since entropy
does not depend on the values the discrete random variable takes on, but only on the underlying

probabilities. u

Lemma 7. Suppose X is a random vector in R"™ with absolutely continuous distribution and

H(|X]) < oo. Then, we have
d(X) =n.

Proof: The arguments follow the lines of the proof for the scalar case [5, Thm. 1]. For
completeness we detail the proof for the vector setting. By [I, (8)] it suffices to show that
d(X) > n. Since the distribution of X is absolutely continuous it has a density f: R" — R.
The main idea of the proof is to first show the statement for bounded approximations of f and
then consider the limit of the relevant terms to get the statement for f. Specifically, for A > 0,

we define

x), if f(x) <A
PRI LC I FOE

0, otherwise.
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Since f4 — f for A — oo pointwise and monotonically, by Lebesgue’s monotone convergence

theorem, we have

A—o0

S(A) := . fa(z)de —— . f(z)dx = 1.

For { = (¢4, ...,¢,) € Z" and k € N\ {0}, we introduce the notation

[ G+ b 0y +1
Q’f(@‘_{k’ k )X X[k;’ k )
p = f(w)de

Qk(£)

(k) .
P (A) = /Q | fatoe

Since f, is bounded, the integral fRn fa(z)log (%) dx exists and we get

1 1
. fa(z)log <—f,4(x)) do = gl /Qk(f) fa(z)log (f,q(@) dx (34)
< (4 log [ —2 35
<Z€§Lpe (A)log (k;"pék)(A)) (35)
(k) 1
_ (A)1 ~ S(A)nlogk (36)
gz;lpg og <p§’“)(A)> nlog
< H({(X)r) — S(A)nlogk, (37)

where  (35)  follows  from  Jensen’s  inequality —and  (36) holds  since
> rezn pgk) (A) =D yemm ka(K) fa(z) = S(A). For we choose k large enough for pﬁ,k) <1
to hold for all ¢ € Z"; this is possible by absolute continuity of the distribution of X and the
fact that the function z log% is monotonically increasing on [0, %] Note that by Lemma [4{ with
p =k, g =1, and thanks to H(|X|) < oo by assumption, it follows that H((X);) < oo for
k € N\{0}. Moreover, we have

S(4)log (%) < [ gateyios (f#“) dr,

which, when combined with and H((X)) < oo, yields that [, fa(x)log ( fA1($)> dz is

finite. From we therefore obtain the finite lower bound

Jan fa(x)log (—fAl(x)) dx
+ .
log k

H({(X)r)
log k

> S(A)n
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10

For € > 0, we now choose A large enough for n(1 — S(A)) < ¢ to hold, which then allows us

to conclude that

H{(X)x)

d(X) = h,?_l)glf log k >n—c.
Since ¢ can be arbitrarily small, it follows that d(X) > n, which was to be proven. [ |

We are now ready to prove [1, Proposition [2]] for general . As in the proof of Lemma [7] we

" by lo+1
k' k ’

set

Qu(l) = {%7&;1> X

and define further
P = u(Qu(0))
00" = 11a(Qi(0))
ri = 1a(Qi(0))
)
16 (k)
Iz—‘;), for p,” #0
0, otherwise,

for £ € N\{0} and ¢ € Z". Note that ;& = o, + (1 — ) f1q implies pgk) = aqék) +(1— a)rék).
Denoting the binary entropy function by H,(-), we find that

(k) (k)
P p
P H () = agfVlog | = | + (1= a)r log | ——55
a (1—a)r,
1 1
= ozqék) log (W) + aqék) log (—)
4y «

k 1 k 1
— ozqé )log (m +(1- oz)ré )log 5
Dy Ty

k 1 k 1
+(1—a)ré )log<1_a) —(1—04)7“é ' og (@) .

Summing over ¢ then yields

0 < oH ((Xaeh) + (1 — ) H((Xa)) + Hy(a) = H(X)p) = > P H,(Y), (38

Lezn

where X, and Xy are distributed according to . and pq4, respectively. Note that the series

on the RHS of (38) converges because Hb()\ék)) <land ),/ p((gk) = 1. By [1, Lemma |
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11

the assumption H(| X |) < oo implies H((X)x) < oo for all & € N\ {0}, and therefore
yields a finite upper bound on aH ({(X,c)r) + (1 — ) H((Xq)x) for all £ € N\{0}. In particular,
H(|X,]) < 0o and H(|X4]) < oo, which allows us to apply Lemmata [6] and [7] Dividing (38)
by log k and taking £ — oo yields

— P Oéd(Xac) + (1 — Oé)d(Xd) = na,

as desired. [ ]

C. Proof of [I, Proposition

By assumption the distribution of each X, decomposes into a mixture of an absolutely
continuous and a discrete part according to u) = « pd) +(1—ay) ,u((jj ), where a; € [0, 1]. Thanks
to det H; ; # 0, for all ¢, 7, again by assumption, all H; ; are isomorphisms. Since absolutely
continuous and discrete distributions are preserved under isomorphisms, the distribution of
Zj.il H, ; X; is given by a convolution of discrete-continuous mixtures with mixture coefficients
«;. Expanding this convolution yields a sum of distributions which are all absolutely continuous
except for the term that arises as the convolution of all discrete parts (note that a convolution
of distributions is absolutely continuous if one of the factors is absolutely continuous (cf. [1,
(T04)]), whereas the convolution of discrete distributions is again discrete). Thus, the distribution
of Z]K:l H; ; X, is again a discrete-continuous mixture with mixture coefficient 1 —Hle(l —a;j).

By [} Proposition [2]] and [1, (24))], it therefore follows that

dof(X1, ... X; H) = M <Z [(1 o I ) [ [( aj))]) (39)

i=1 j=1 jAi

K K

i=1  j#i
< M, 41
where is a consequence of
K
oK)= a;[J(1—0ay) <1 (42)
=1 j#i
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12

The inequality in (42]) can be shown by induction: For K = 1, the statement is immediate (using

the convention that a product over an empty index set equals 1). For the induction step, we get

K
(K +1) = e(K)(1 — axq) + axer [[(1 = ay) (43)
j=1
K
< (1= agy1 + agqr) max{c(K), H(l —a;)} (44)
j=1
K
= max{c(K), H(l — o)} 45)
j=1
<1, (46)
where in (46) we used the induction hypothesis. [

D. dof(Xy, Xo, X3;H) = 3 for K =3 and M = 2 proving [, (64)]

We set

~ (1 ~ [1 ~ (1
Xl = Xl 5 X2 = X2 5 X3 = X3 5 (47)
1 1 1

where )Nfl, )N(Q, )N(g, are independent random variables with absolutely continuous distributions,

and hence d()?l) =1, for i = 1,2, 3, by [, Proposition . From [1, (24)] we get

dof(X1, Xo, X H) = d Xlam + (X + X3) M -a M5+Kﬁl
al2] 1 1
~ (b[] - - (1 (
+d| Xs + (X1 + X3) — X1+X3
b[2] 1
~ [ c[1] ~ ~ 1
+d| X; + (X1 + d[1]X,) —d| (X1 +d[1]X>)
c[2] 1 1

—2-1+2-1+42-1=3,

where we used [1, (T8)], [1, (I9)], and the fact that each pair

is linearly independent as a[1] # a[2], b[1] # b[2], and ¢[1] # ¢[2], all by assumption.
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E. Proof of the extension of [2, Thm. 8] to the vector case

We begin with a lemma showing that “more” interference always leads to a decrease in the

terms inside the sum in [1, 24)].

Lemma 8 ([2, Lem. 1]). Let X, Y, and Z be independent random vectors in R". Then,
AX+Y+2)—dY+2)<dX+Y)—-d(Y), (48)
provided that all appearing information dimension terms exist.

Proof: First, we note that for independent discrete random vectors U, V, W we have by the

data processing inequality [(U;U +V + W) < I(U;U 4 V') and hence
HU+V+W)-HV+W)<HU+V)-H(V). (49)

Applying @9) to [kX |, |kY ], [kZ] and using [I, Lemma [9] thrice with 6 = 1 and ¢ obtained

from
0< |K(X+Y +2)| — ([kX] + [kY | + |kZ]) < 2,
0< [k(Y +2)] = (kY] + |kZ]) < 1,
0< KX +Y)] = ([kX] + [kY]) <1,

we find that

HUX +Y + 2)) — H{Y + Z)) < H(X +Y)) — H{(Y)1) 4+ nlog3 + 2nlog 2.

Dividing this inequality by log & and taking & — oo yields the claim. [ ]
We are now able to show that for rational entries in the subchannel matrices, the normalized

DoF of the parallel IC are strictly less than K/2.

Proposition 1. Consider a parallel IC with fully connected channel matrices in standard form
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where a[m], blm], c[m],d[m]| # 0, m = 1, ..., M, are rational and a[l] = ... = a[M] =: a. Then,

we have
DoF(H) 3
_— < .
M 2
Proof: We define
a 0 1
H[m]=[11 1|, m=1,..,M,
0 01

and denote the overall channel matrix of the corresponding parallel IC by H'. Since all entries
of H and H' are rational, the DoF-formula [1, (26)] holds by [I, Theorem 4] for both H and
H'. Note that each H'[m] is obtained by setting three entries of the corresponding H[m/| matrix
to zero and then rescaling the second column and the third row. It follows from [1I, (26)] and
Lemma [§] applied to [, (53)] that the DoF can only increase if we delete a given interference link
over all m, i.e., if we replace h; ;{m/], for a fixed pair (7, j) with ¢ # j, by O forallm =1, ..., M.
By [1, Lemma [3]] scaling of rows and columns with nonzero constants does not change the DoF.
In summary, we find that DoF(H) < DoF(H’). For general transmit vectors X, X5, X3, we get

3M
dOf(Xl,XQ,X3; H/) = Ei((le + Xg) — d(Xl + X3) —|—d(X1 + X2 + Xg)/ < T,

<M/2 <M
where d(aX; + X3) — d(Xy + X3) < M/2 for a € Q follows by extending [2, Thm. 3] to the
vector case. (The proof of this extension follows along the lines of the arguments used in [2,
App. B], except for inequality [2, Eq. (327)], where the “2” has to be replaced by “2M/”, which
then results in the upper bound M /2 — ¢ instead of 1/2 — ¢ as in [2, Thm. 3].) |
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