Communication Technology Laboratory Wireless Communications Group Prof. Dr. A. Wittneben ETH Zurich, ETF, Sternwartstrasse 7, 8092 Zurich Tel 41 44 632 36 11 Fax 41 44 632 12 09

Fachpraktikum Digitale Modulation

Versuch KT 35

Die theoretischen Fragen in Kapitel 4,5,6 und 7 müssen vor dem Praktikum gelöst werden. Die praktischen Aufgaben von den Kapiteln 4,5,6 und 7 werden während des Praktikums gelöst.

Ausgabe: Herbst 2015

Stand: 27. August 2015

Inhaltsverzeichnis

1	Einleitung	1
2	Digitale Übertragungssysteme	2
3	Das Versuchssystem	4
	3.1 Datenquelle DCS 297 A	4
	3.2 Leitungscodierer DCS 297 B	5
	3.3 Gegentaktmodulator DCS 297 C	5
	3.4 Phasenschieber DCS 297 D	6
	3.5 Spannungsgesteuerter Oszillator DCS 297 E	7
	3.6 Datentaktregenerator DCS 297 F	8
	3.7 Datendetektor DCS 297 G	8
	3.8 Datenempfänger DCS 297 H	8
	3.9 Resonanzkreis DCS297 L	8
4	Basisbandübertragungssystem	11
	4.1 Aufgaben	11
5	ASK-Systeme (on-off keying)	14
	5.1 Aufgaben \ldots	14
6	FSK-System	16
	6.1 Aufgaben	18
7	PSK-System 7.1 Aufgaben	19 19

Kapitel 1 Einleitung

Sowohl bei der leitungsgebundenen als auch bei der drahtlosen Übertragung wird die Information mehr und mehr in Form von digitalen Signalen übermittelt. Während die zu übertragenden Daten und Messwerte meist schon in digitaler Form vorliegen, muss für die digitale Sprachübertragung zuerst eine Digitalisierung der Quellensignale erfolgen.

Die digitale Modulation unterscheidet sich von der analogen Modulation dadurch, dass die Parameter des Trägersignals nicht analog variiert werden, sondern dass sie nur diskrete Werte annehmen. Der Empfänger hat damit zum voraus Kenntnis über die endliche Zahl der möglichen Signalzustände. Überschreiten die während der Übertragung entstehenden Verzerrungen und Störungen des Nachrichtensignals ein gewisses Ausmass nicht, kann der Empfänger dennoch auf das korrekte, gesendete Signal zurückschliessen. Die Störfestigkeit der Übertragung lässt sich auf diese Weise erheblich steigern.

Kapitel 2 Digitale Übertragungssysteme

In der Abbildung 2.1 ist das Blockschaltbild eines digitalen Übertragungssystems dargestellt. Sofern die Quelle ein analoges Signal liefert, tastet der Quellencodierer s(t) ab und nimmt eine Amplitudenquantisierung der Abtastwerte vor. Jedem Abtastwert wird der entsprechende Code zugeordnet. Es resultiert ein binäres Basisbandsignal $s_Q(t)$ mit der Bitrate R_Q .

Der Übertragungskanal weist nichtideale Eigenschaften auf. Die Signale werden durch die Überlagerung von Rauschen gestört, und - weil ein realer Kanal bandbegrenzt ist bzw. einen nichtidealen Amplituden- und Phasengang aufweist - zudem in ihrer Form verändert. So sind beispielsweise die elektronischen Baublöcke in Sender und Empfänger sehr oft AC-gekoppelt, was bewirkt, dass Gleichanteile der Signale bei der Übertragung verloren gehen.

Der Kanalcodierer erhöht die Redundanz des binären Quellensignals durch Einfügen zusätzlicher

Abbildung 2.1: Blockschaltbild eines digitalen Übertragungssystems.

Bits, was eine Vergrösserung der Bitrate bedeutet. Diese Redundanz dient mehreren Zwecken. So können eine lange Folge gleicher Symbole (störender Gleichanteil) bzw. das Fehlen von Symbolwechseln (Taktrückgewinnung erschwert) vermieden werden. Weiter lässt sich die Redundanz auch für Fehlererkennung und Fehlerkorrektur ausnützen. Auch bei der digitalen Modulation verwendet man sinusförmige Träger, wobei aber die Parameter Amplitude, Momentanfrequenz und Phase nur diskrete Werte annehmen. Abbildung 2.2 zeigt die drei Grundformen der digitalen Modulation (ASK, FSK und PSK), sowie die wichtigste Kombination (QAM: ASK/PSK).

Das vom Modulator erzeugte Signal x(t) gelangt durch den Ubertragungskanal zum Empfänger. Der Demodulator besitzt die Aufgabe, das verformte und gestörte Empfangssignal y(t) in ein Basisbandsignal $r_c(t)$ zu wandeln und zusammen mit dem Kanaldecodierer sicherzustellen, dass die Schätzung $r_Q(t)$ des digitalen Quellensignals $s_Q(t)$ möglichst wenige Fehler aufweist. Für Demodulation und Decodierung müssen abhängig von den angewendeten Verfahren das Trägersignal

Abbildung 2.2: Digitale Modulationsarten.

und der Datentakt aus dem Empfangssignal extrahiert werden. Falls s(t) ursprünglich analog war, erzeugt der Quellendecodierer aus dem digitalen Signal $r_Q(t)$ wiederum ein analoges Signal r(t) und führt dieses dem Empfänger zu.

Kapitel 3

Das Versuchssystem

Mit Hilfe des Versuchssystems für digitale Datenübertragung "DCS 297" sollen die Funktionsweise der digitalen Übertragungsverfahren untersucht und die Resultate der theoretischen Aufgaben überprüft werden.

Das Versuchssystem besteht aus mehreren Baublöcken, mit welchen sich verschiedene digitale Übertragungsverfahren demonstrieren lassen.

Abbildung 3.1: Datenquelle DCS 297 A.

3.1 Datenquelle DCS 297 A (Abb. 3.1)

Die Datenquelle erzeugt ein NRZ-Quellensignal (1) mit einer Datenrate von 80 kBit/s und das entsprechende rechteckförmige Datentaktsignal (2) mit einer Frequenz von 80 kHz. Die Datensequenz ist in Worte mit einer Länge von 8 Bit unterteilt. Der Worttakt (3) legt den Beginn eines Wortes fest. Als Signalquelle dienen das Ausgangssignal des eingebauten A/D-Wandlers (4), eine

Abbildung 3.2: Leitungscodierer DCS 297 B.

pseudozufällige Datensequenz (5) (PRBS) oder ein programmierbares 8 Bit-Wort (6). Es stehen drei Datenformate (8 Datenbits (7), 7 Datenbits + Parity (8), 4 Datenbits + 3 Bit fehlerkorrigierender Code + Parity (9)) zur Auswahl. Es besteht auch die Möglichkeit, ein spezielles Pattern (*recognition word*) zur Synchronisierung des Worttaktes einzublenden (10). Ist die Verbindung (11) geschlossen, wird einmal pro Sekunde das *recognition word* gesendet und damit die Wortsynchronisation sichergestellt. Weiter steht als Träger ein Rechtecksignal mit einer Frequenz von 1.28 MHz zur Verfügung (12). Das 160 kHz-Rechtecksignal muss immer mit dem Eingang *clock in* verbunden sein (13). Zur externen Triggerung des KO eignet sich am besten das Worttaktsignal (3). Wird fortlaufend dasselbe Datenwort übertragen, lässt sich auf diese Weise ein stehendes Bild auf dem KO darstellen.

3.2 Leitungscodierer DCS 297 B (Abb. 3.2)

Diese Einheit wandelt die NRZ-Datensequenz in verschiedene Leitungssignalformate um: RZ (1), biphase (2), bipolar NRZ (3), bipolar RZ (4), ternär (5), quarternär (6).

3.3 Gegentaktmodulator DCS 297 C (Abb. 3.3)

Dieses Modul enthält zwei Gegentaktmodulatoren, welche zur Signalmischung benötigt werden. Mit den Potentiometern lassen sich die Gleichsignalpegel einstellen. Am Ausgang des Modulators resultiert das Produkt $c = a \cdot b$.

Abbildung 3.3: Gegentaktmodulator DCS 297 C.

Abbildung 3.4: Phasenschieber DCS 297 D.

3.4 Phasenschieber DCS 297 D (Abb. 3.4)

Der Phasenschieber erzeugt eine variable Phasenverschiebung zwischen den Ausgangssignalen. Er kann auch verwendet werden, um aus dem 1.28 MHz-Rechtecksignal die Grundharmonische herauszufiltern. Zusätzlich ist noch eine variable Gleichspannungsquelle (bias) eingebaut.

Abbildung 3.5: Spannungsgeteuerter Oszillator DCS 297 E.

Abbildung 3.6: Datentaktregenerator DCS 297 F.

3.5 Spannungsgesteuerter Oszillator DCS 297 E (Abb. 3.5)

Dieses Modul besteht aus einem spannungsgesteuerten Oszillator mit einer Grundfrequenz von 1.28 MHz. Es kann die Grundfrequenz mit 0° (1) oder 90° (2) Phasenlage sowie die doppelte

Grundfrequenz (3) abgegriffen werden.

3.6 Datentaktregenerator DCS 297 F (Abb. 3.6)

Der Datentaktregenerator enthält einem Dioden-Detektor (1), zwei Schwellwertdetektoren (2), einen spannungsgesteuerten Rechteckgenerator (3) mit 40 kHz-, 80 kHz-und 160 kHz-Ausgang sowie die notwendigen Baublöcke (4) für einen *phase-locked loop* zur Datentaktrückgewinnung. **Hinweis**: Bei den Übungen ist es hilfreich die Signale an den Eingängen der Schwellwertdetektoren mittels Oszilloskop zu überprüfen.

3.7 Datendetektor DCS 297 G (Abb. 3.7)

In dieser Einheit sind zwei *integrate and dump*-Detektoren (1), die Wortsynchronisation (2) und die Abtastschaltung (3) zusammengefasst.

3.8 Datenempfänger DCS 297 H (Abb. 3.8)

Der Datenempfänger stellt die übertragenen Datenworte dar (1) und detektiert (2,3) oder korrigiert (4) je nach gewähltem Datenformat die während der Übertragung aufgetretenen Fehler. Zusätzlich verfügt die Einheit noch über einen D/A-Wandler (5). Mit diesem Modul lässt sich die Zuverlässigkeit der Übertragung abschätzen. Zu diesem Zweck wird die Verbindung (11) von der Datenquelle DCS 297 A (Fig. 3.1) unterbrochen. Als Datenformat eignen sich entweder 7 Datenbits + Parity oder 4 Datenbits + 3 Bit fehlerkorrigierender Code + Parity. Zu Beginn der Messung ist das "recognition word" (10) (Fig. 3.1) einzublenden, um das Übertragungssystem zu synchronisieren. Auf Grund der Fehleranzeigen (2) und (3), welche beim Auftreten eines Parity-Fehlers beziehungsweise beim Auftreten von zwei oder mehr Bitfehlern pro codiertem Datenwort ansprechen, kann die Zuverlässigkeit der Übertragung kontrolliert werden.

3.9 Resonanzkreis DCS297 L (Abb. 3.9)

Dieser Baublock enthält einen abstimmbaren Resonanzkreis. Er kann als Filter oder als Frequenz-Diskriminator eingesetzt werden.

Abbildung 3.7: Datendetektor DCS 297 G.

Abbildung 3.8: Datenempfänger DCS 297 H.

Abbildung 3.9: Resonanzkreis DCS 297 L.

Kapitel 4 Basisbandübertragungssystem

In Basisbandübertragungssystemen entfällt die Modulation eines Trägersignals mit dem zu übertragenden binären Signal $s_C(t)$. Als Sendesignal x(t) dient direkt das codierte Signal $s_C(t)$:

$$x(t) = s_C(t) = \sum_{n = -\infty}^{\infty} a_n g(t - nT), \qquad a_n \in \{0, 1\}$$
(4.1)

Dabei bezeichnen a_n das zu übertragende Symbol und $T = 1/R_C$ die Symboldauer. In diesem Versuch wird davon ausgegangen, dass die Pulse einen rechteckförmigen Verlauf aufweisen:

$$g(t) = \begin{cases} 1 & \text{für } |t| \le T/2, \\ 0 & \text{sonst.} \end{cases}$$
(4.2)

Die Basisbandübertragung ist vorwiegend auf leitungsgebundene Systeme beschränkt. Der Basisbandempfänger vergleicht das gestörte Empfangssignal y(t) mit einem Schwellwert y_0 und tastet das Differenzsignal ab (Abb. 4.1). Zur Bestimmung der Abtastzeitpunkte muss der Datentakt aus dem empfangenen Signal extrahiert werden. Eine mögliche Lösung für dieses Problem ist die *early-late gate*-Synchronisationsschaltung (Abb. 4.2). Der spannungsgesteuerte Oszillator (VCO) erzeugt ein 80 kHz-Taktsignal $f_T(t)$. Dieses Rechtecksignal muss bezüglich Frequenz und Phase auf den Sendetakt abgestimmt werden. Die beiden Monoflops erzeugen aus dem Signal $\overline{y}(t)$ die Pulsfolge p(t). Verzögerung und Pulsbreite sind so einzustellen, dass die resultierende Pulsbreite mit der Bitdauer übereinstimmt. Das *early-late gate* entspricht einer spannungsgesteuerten Stromquelle. Die Pulsfolge p(t) legt fest, ob ein Strom fliesst, und das Taktsignal $f_T(t)$ verändert sich die Spannung $u_{VCO}(t)$ über der Kapazität. Diese Spannung dient als Regelgrösse für den VCO. Der PLL (*phase-locked loop*) bewirkt, dass die Spannung über der Kapazität auf einen konstanten Wert einregelt und damit Frequenz und Phase des Signals $f_T(t)$ dem Sendetakt nachgeführt werden.

Die Abbildungen 4.3 und 4.4 zeigen das Verdrahtungsschema des binären Basisbandübertragungssystems mit Schwellwertdetektor und Taktrückgewinnung. Zur Wortsynchronisation ist das *reco*gnition word zu übertragen.

4.1 Aufgaben

- T1) Die Signalverläufe in Abbildung 4.2 sind zu vervollständigen.
- T2) Für den Fall einer fortlaufenden Übertragung des Datenwortes 1011010 ist der Verlauf der Signale $s_C(t)$, x(t), y(t), $\overline{y}(t)$, p(t), $u_{\text{VCO}}(t)$, $f_T(t)$, $r_C(t)$ aufzuzeichnen.
- P1) Das Basisbandübertragungssystem gemäss den Abbildungen 4.3 und 4.4 ist aufzubauen.

Abbildung 4.1: Schwellendetektor.

Abbildung 4.2: early-late gate Synchronisationsschaltung.

P2) Man Vergleiche die Resultate von Aufgabe T2 mit den am System gemessenen Kurvenverläufen. Der Einfluss des Schwellwerts y_0 auf die Zuverlässigkeit des Übertragungssystems ist an Hand der Fehleranzeigen (Abbildung 3.8) zu beobachten.

Hinweise: Die Schwelle y_0 des Schwellwertdetektors ist auf den Mittelwert der beiden Pegel des Empfangssignals y(t) abzugleichen. Verzögerung und Pulsbreite der Synchronisationsschaltung sind gemäss Abb. 4.2 einzustellen.

Abbildung 4.3: Sender Basisbandübertragungssystem.

Abbildung 4.4: Empfänger Basisbandübertragungssystem.

Kapitel 5 ASK-Systeme (on-off keying)

Um die Signale dem Übertragungskanal anzupassen, die Mehrfachausnützung eines Kanals zu ermöglichen oder die Störfestigkeit zu erhöhen, werden digitale Modulationsverfahren eingesetzt. In ASK-Systemen (*amplitude shift keying*) (Abb. 5.1 (a)) wird der Träger f(t) in Funktion des Basisbandsignals $s_C(t)$ ein- und ausgeschaltet. Der Gegentaktmodulator erzeugt das Sendesignal x(t) durch Multiplikation des Basisbandsignals $s_C(t)$ mit dem Trägersignal f(t):

$$x(t) = s_c(t) \cdot f(t) = \begin{cases} A \cdot \cos(\omega_0 t) & \text{für } (n - \frac{1}{2}) \le t < T(n + \frac{1}{2}), a_n = 1\\ 0 & \text{für } (n - \frac{1}{2}) \le t < T(n + \frac{1}{2}), a_n = 0 \end{cases}$$
(5.1)

Die Demodulation des empfangenen Signals y(t) kann mit Hilfe eines Dioden- oder eines squarelaw-Detektors erfolgen (Abb. 5.1 (b)). Im Dioden-Detektor wird das hochfrequente Signal y(t)gleichgerichtet, und anschliessend werden die hochfrequenten Anteile von einem Tiefpass herausgefiltert. Der square-law-Detektor (Abb. 5.1 (c)) quadriert das Signal y(t), bevor es gefiltert wird. Die Weiterverarbeitung des demodulierten Signals $\tilde{y}(t)$ erfolgt analog zur Detektion von Basisbandsignalen.

5.1 Aufgaben

- T3) Das NRZ-Signal $s_C(t)$ mit dem Spektrum $S_C(\omega)$ moduliere die Amplitude eines sinusförmigen Trägersignals $f(t) = \cos(\omega_0 t)$. Man bestimme das Spektrum des modulierten Signals $X(\omega)$.
- T4) Für den Fall einer fortlaufenden Übertragung des Datenwortes 1011010 ist der Verlauf der Signale $s_C(t)$, x(t), y(t), $\tilde{y}(t)$, $\bar{y}(t)$ sowohl für den Dioden- als auch den square-law Detektor aufzuzeichnen.
- P3) Die beiden ASK-Systeme mit Dioden- und *square-law* Detektor sind gemäss Abbildung 5.2 aufzubauen.
- P4) Man vergleiche die Resultate von Aufgabe T4 mit den am Versuchssystem gemessenen Kurvenverläufen.

Hinweise: Die Gleichsignalpegel der Gegentaktmodulatoren (Abb. 5.2) sind an den Trimmpotentiometern so einzustellen, dass die Signale nicht begrenzt werden.

Abbildung 5.1: (a) ASK-Signal (b) Diodendetektor (c) square-law Detektor

Abbildung 5.2: ASK System (a) ASK Modulator (b) Diodendetektor (c) square law Detektor

Kapitel 6

FSK-System

FSK (*frequency shift keying*) ist ein weiteres digitales Modulationsverfahren (Abb. 6.1). Hierbei wird die Trägerfrequenz in Funktion der zu übertragenden Symbole zwischen zwei Werten umgeschaltet:

$$x(t) = \begin{cases} A \cdot \cos[(\omega_0 + \Delta \omega)t - \varphi_1] & \text{für } a_0 = 1, \\ A \cdot \cos[(\omega_0 - \Delta \omega)t - \varphi_0] & \text{für } a_0 = 0. \end{cases}$$
(6.1)

Die Winkel ϕ_1 und ϕ_0 sollen einem eventuell möglichen phasenrichtigen Übergang zwischen den einzelnen Symbolen Rechnung tragen. Dies ist in dieser Form jedoch nur möglich, wenn der Kreisfrequenzhub mit der Symboldauer folgenden Zusammenhang hat: $\Delta \omega = m \cdot \pi/T$, m ganzzahlig. Eine andere Methode, um phasenkontinuierliche Übergänge zu erzielen, ist die Verwendung eines voltage controlled oscillator (VCO, spannungsgesteuerter Oszillator) wie im vorliegenden Versuch. Als FSK-Modulator dient hier ein direkt vom Basisbandsignal $s_C(t)$ gespeister spannungsgesteuerter Oszillator.

Heute sind zwei Demodulationsmethoden stark verbreitet. Im Frequenzdiskriminator (Abb. 6.2 (a)) durchläuft das empfangene Signal y(t) einen auf ω_0 abgestimmten Resonanzkreis $R(\omega)$. Die Phasenverschiebung, welche das Signal $y_R(t)$ aufweist, hängt von der momentanen Frequenz und damit vom übertragenen Symbol ab. Durch Multiplikation des gefilterten Signals mit dem unveränderten Empfangssignal und anschliessender Tiefpassfilterung erhält man das Basisbandsignal $\tilde{y}(t)$. Dieser Vorgang ist am einfachsten an Hand der Darstellung mit komplexen Zeigern zu verstehen. Die zweite weitverbreitete Demodulations-Methode arbeitet mit einem PLL phase-locked loop (Abb. 6.2 (b)). Der PLL erzeugt im Empfänger ein Signal $y_{\rm VCO}(t)$, dessen Frequenz und Phase möglichst genau demjenigen des empfangenen Signals y(t) nachgeregelt wird.

Abbildung 6.1: FSK Modulator

Abbildung 6.2: (a) Frequenz-Diskriminator (b) PLL-Detektor

Das Ausgangssignal des VCO weist in Funktion des Steuersignals v(t) die folgende Form auf:

$$y_{\rm vco}(t) = B \sin\left(\omega_0 t + K \int_{-\infty}^t v(\tau) d\tau\right)$$
(6.2)

wobe
i ${\cal B}$ die Ausgangsamplitude und ${\cal K}$ die Verstärkung des Regel
kreises bezeichnet. Durch Multiplikation des VCO-Signals mit dem Empfangssignal $y(t) = A\cos(\omega t + \phi)$ resultiert am Ausgang des loop-Filters die Steuerspannung

$$v(\tau) = \frac{AB}{2} \sin\left((\omega_0 - \omega)t + K \int_{-\infty}^t v(\tau)d\tau - \phi\right)$$
(6.3)

welche im eingeregelten Zustand einen konstanten Wert $v_0 = (\omega_0 - \omega)/K$ aufweist.

Unter der Voraussetzung, dass die beiden VCO's in Sender und Empfänger identisch sind, müssen

 $\Delta \varphi$

für $y_{\rm VCO}(t) \approx x(t)$ auch die beiden VCO-Steuersignale übereinstimmen: $v(t) = s_C(t)$. Das Tiefpassfilter am Ausgang unterdrückt hochfrequente Störsignale. In den beiden betrachteten FSK-Systemen kann die Weiterverarbeitung von $\tilde{y}(t)$ in derselben Weise erfolgen wie im Basisbandsystem.

Abbildung 6.3: FSK-System (a) Modulator (b) Frequenz-Diskriminator (c) PLL-Detektor.

6.1 Aufgaben

- T5) Man berechne die Ausgangsignale g(t) des Frequenz-Diskriminators für $a_n = 0$ und $a_n = 1$, wenn y(t) = x(t) sei.
- T6) Man bestimme für ein zufälliges Datenwort die folgenden Signale: $s_C(t)$, x(t), y(t), $y_R(t)$, $\tilde{y}(t)$.
- P5) Das FSK-System ist sowohl mit Frequenz-Diskriminator als auch mit PLL-Detektor aufzubauen, und die Resultate der theoretischen Aufgaben sind zu verifizieren (Abb. 6.3). Hinweise: Die Resonanzfrequenz des Resonanzkreises ist auf die Trägerfrequenz ω_0 abzustimmen (Abb. 6.3). Die Gleichsignalpegel des Gegentaktmodulators sind so einzustellen, dass das Ausgangssignal $\tilde{y}(t)$ des PLL-Detektors nicht begrenzt wird.

Kapitel 7 PSK-System

Bei der PSK-Modulation (*phase shift keying*) ist die zu übertragende Information in der Phase des Trägersignals enthalten. Die einfachste Art, ein binäres PSK-Signal zu erzeugen, ist die Multiplikation eines sinusförmigen Trägers $f(t) = \cos(\omega_0 t)$ mit einem bipolaren Basisbandsignal

$$x(t) = s_C(t) = \sum_{n = -\infty}^{\infty} a_n g(t - nT), \qquad a_n \in \{-1, +1\}$$
(7.1)

Die Modulation erfolgt wie beim ASK-System mit Hilfe eines Gegentaktmodulators:

$$\begin{aligned} x(t) &= s_C(t) \cdot f(t) \end{aligned} (7.2) \\ &= \begin{cases} +A\cos(\omega_0 t), & T(n-1/2) \le t < T(n+1/2), a_n = +1 \\ +A\cos(\omega_0 t - \pi) = -A\cos(\omega_0 t), & T(n-1/2) \le t < T(n+1/2), a_n = -1 \end{cases} \end{aligned}$$

Ein Vorzeichenwechsel der Amplitude entspricht einer Phasenänderung um π . Man erkennt leicht die enge Verwandschaft dieser PSK-Modulation mit ASK. Im Gegensatz zum ASK-System fehlt aber bei PSK die Trägerkomponente im empfangenen Signal. Dies erfordert an Stelle der einfachen Demodulationsverfahren, welche in ASK-Systemen eingesetzt werden, eine synchrone Demodulation. Im Empfänger muss dazu ein Signal erzeugt werden, welches in Frequenz und Phase mit dem Trägersignal des Senders übereinstimmt. Im squaring loop (Abb. 7.1 (a)) wird das empfangene Signal y(t) quadriert. Das Signal $y^2(t)$ enthält eine Komponente bei der doppelten Trägerfrequenz $2\omega_0$, welche dem nachfolgenden PLL zugeführt wird. Nach Halbierung der Frequenz des PLL-Ausgangssignals entsteht das für die Demodulation benötigte Signal $f(t) = \cos(\omega_0 t)$. Der Produkt-Demodulator (Abb. 7.1 (b)) multipliziert das empfangene Signal y(t) mit dem erzeugten Trägersignal $\tilde{y}(t)$. Der Produkt-Demodulator kann auch zur Demodulation von ASK-Signalen eingesetzt werden.

7.1 Aufgaben

- T7) Man bestimme für den squaring loop die Signale $y^2(t)$, $f_2(t)$, f(t) für y(t) = x(t).
- T8) Man berechne das Ausgangssignal des Produkt-Demodulators vor und nach dem Tiefpass-Filter.
- P6) Man baue das PSK-System auf (Abb. 7.2) und verifiziere die Resultate der theoretischen Aufgaben.

Hinweise: Der Phasenschieber (Abb. 7.2) filtert aus dem rechteckförmigen Trägersignal

Abbildung 7.1: (a) squaring loop (b) Produkt-Demodulator

die erste Harmonische heraus, welche als sinusförmiger Träger dem Gegentaktmodulator zugeführt wird. Die Gleichsigndpegel des Gegentaktmodulators sind so abzugleichen, dass ein Ausgangssignal x(t) mit konstanter Amplitude resultiert. Die Gleichsignalpegel der Gegentaktmodulatoren des squaring loop und des Produkt-Demodulators sind so einzustellen, dass die Ausgangssignale v(t), $y^2(t)$ und $\tilde{y}(t)$ nicht begrenzt werden.

Abbildung 7.2: PSK-System