Handout

Examination on Mathematics of Information February 8, 2021

Theorem 1 (Bernstein's inequality). Let $X_{1, \ldots,}, X_{m}$ be independent complex-valued random variables with zero mean such that $\left|X_{\ell}\right| \leq B$, for $\ell \in[m]$ and some constant $B>0$. Furthermore assume that $\mathbb{E}\left[\left|X_{\ell}\right|^{2}\right] \leq \sigma_{\ell}^{2}$, for constants $\sigma_{\ell}>0, \ell \in[m]$. Then, for all $t>0$,

$$
\mathbb{P}\left(\left|\sum_{\ell=1}^{m} X_{\ell}\right| \geq t\right) \leq 2 \exp \left(-\frac{t^{2} / 2}{\sigma^{2}+B t / 3}\right)
$$

where $\sigma^{2}=\sum_{\ell=1}^{m} \sigma_{\ell}^{2}$.

Lemma (One sided bounded difference inequality). Suppose that $f:\left(\mathbb{R}^{d}\right)^{n} \rightarrow \mathbb{R}$ is such that

$$
\left|f\left(x_{1}, \ldots, x_{i-1}, x_{i}, x_{i+1}, \ldots, x_{n}\right)-f\left(x_{1}, \ldots, x_{i-1}, y, x_{i+1}, \ldots, x_{n}\right)\right| \leq L
$$

for every $i=1, \ldots, n$, every $x_{1}^{n}:=\left(x_{1}, \ldots, x_{n}\right)$, and every $y \in \mathbb{R}^{d}$. Also suppose that the random vector $X=\left(X_{1}, \ldots, X_{n}\right)$ has i.i.d. components. Then, we have

$$
\mathbb{P}[\mathbb{E}[f(X)]-f(X)>\epsilon] \leq e^{-\frac{2 \epsilon^{2}}{n L^{2}}}, \quad \forall \epsilon \geq 0
$$

Lemma (Ledoux-Talagrand contraction). Let $\phi: \mathbb{R} \rightarrow \mathbb{R}$ be an L-Lipschitz function with $\phi(0)=0$ and \mathcal{F} a class of functions. Let $\phi \circ \mathcal{F}:=\{\phi \circ f \mid f \in \mathcal{F}\}$. Then, we have

$$
\mathcal{R}_{n}\left((\phi \circ \mathcal{F})\left(x_{1}^{n}\right) / n\right) \leq 2 L \mathcal{R}_{n}\left(\mathcal{F}\left(x_{1}^{n}\right) / n\right)
$$

Lemma (Vapnik-Chervonenkis, Sauer-Shelah). Consider a set class \mathcal{S} with finite VC-dimension $\nu<\infty$. Then, for any collection of points $P=\left(x_{1}, \ldots, x_{n}\right)$ with $n \geq \nu$, we have

$$
|\mathcal{S}(P)| \leq \sum_{i=0}^{\nu}\binom{n}{i} \leq(n+1)^{\nu}
$$

where $\mathcal{S}(P):=\left\{\left(\mathbb{1}_{S}\left(x_{1}\right), \ldots, \mathbb{1}_{S}\left(x_{n}\right)\right) \mid S \in \mathcal{S}\right\}$.

