Solutions to the

Examination on Mathematics of Information February 8, 2021

Problem 1

(a) It follows directly from the definition of $\theta_{s, t}$ that $\theta_{s, t}$ is the smallest number $\tilde{\theta} \geq 0$ such that

$$
\left|\frac{|\langle A u, A v\rangle|}{\|u\|_{2}\|v\|_{2}}\right| \leq \tilde{\theta},
$$

for all disjointly supported s-sparse and t-sparse vectors $u \in \mathbb{C}^{N} \backslash\{0\}$ and $v \in$ $\mathbb{C}^{N} \backslash\{0\}$, respectively. Therefore,

$$
\begin{align*}
& \theta_{s, t}=\max _{\substack{u, v \in \mathbb{C}^{N} \text { disjointly } s, t \text {-sparse, } \\
\|u\|_{2}=\|v\|_{2}=1}}|\langle A u, A v\rangle| \\
& =\max _{\substack{S, T \subset\{1, \ldots, N\}, S \cap T=\emptyset,|S| \leq s, T \mid \leq t}} \max _{\substack{u \in \mathbb{C}|S|, v \in \mathbb{C}^{|T|},\|u\|_{2}=\|v\|_{2}=1}}|\langle A u, A v\rangle| \tag{1}\\
& =\max _{\substack{S, T \subset\{1, \ldots, N\}, S \cap T=\emptyset,|S| \leq s, T \mid \leq t}} \max _{\substack{u \in \mathbb{C}^{|S|}, v \in \mathbb{C}^{|T|},\|u\|_{2}=\|v\|_{2}=1}}\left|\left\langle A_{S} u, A_{T} v\right\rangle\right| \\
& =\max _{\substack{S, T \subset\{1, \ldots, N\}, S \cap T=\emptyset \\
|S| \leq s, T \mid \leq t}} \max _{\substack{u \in \mathbb{C}|S|, v \in \mathbb{C}^{|T|},\|u\|_{2}=\|v\|_{2}=1}}\left|\left\langle\left(A_{T}^{H} A_{S}\right) u, v\right\rangle\right| \text {. }
\end{align*}
$$

Note that for every $S, T \subset\{1, \ldots, N\}$ with $S \cap T=\emptyset,|S| \leq s,|T| \leq t$ and $u \in$ $\mathbb{C}^{|S|}, v \in \mathbb{C}^{|T|}$ with $\|u\|_{2}=\|v\|_{2}=1$, the Cauchy-Schwarz inequality yields

$$
\left|\left\langle\left(A_{T}^{H} A_{S}\right) u, v\right\rangle\right| \leq\left\|\left(A_{T}^{H} A_{S}\right) u\right\|_{2}\|v\|_{2}=\left\|\left(A_{T}^{H} A_{S}\right) u\right\|_{2} .
$$

On the other hand, $A_{T}^{H} A_{S} \in \mathbb{C}^{|T| \times|S|}$ and hence $\left(A_{T}^{H} A_{S}\right) u \in \mathbb{C}^{|T|}$. Therefore, if $\left(A_{T}^{H} A_{S}\right) u \neq 0, v=\left(A_{T}^{H} A_{S}\right) u /\left\|\left(A_{T}^{H} A_{S}\right) u\right\|_{2}$ satisfies $v \in \mathbb{C}^{|T|}$ with $\|v\|_{2}=1$, and we get

$$
\begin{aligned}
\left|\left\langle\left(A_{T}^{H} A_{S}\right) u, v\right\rangle\right| & =\left|\left\langle\left(A_{T}^{H} A_{S}\right) u,\left(A_{T}^{H} A_{S}\right) u /\left\|\left(A_{T}^{H} A_{S}\right) u\right\|_{2}\right\rangle\right| \\
& =\frac{\left\|\left(A_{T}^{H} A_{S}\right) u\right\|_{2}^{2}}{\left\|\left(A_{T}^{H} A_{S}\right) u\right\|_{2}}=\left\|\left(A_{T}^{H} A_{S}\right) u\right\|_{2} .
\end{aligned}
$$

Hence,

$$
\max _{\substack{u \in \mathbb{C}^{|S|}, v \in \mathbb{C}^{|T|},\|u\|_{2}=\|v\|_{2}=1}}\left|\left\langle\left(A_{T}^{H} A_{S}\right) u, v\right\rangle\right|=\max _{\substack{u \in \mathbb{C}^{|S|},\|u\|_{2}=1}}\left\|\left(A_{T}^{H} A_{S}\right) u\right\|_{2}=\max _{\substack{u \in \mathbb{C}^{|S|},\|u\|_{2} \leq 1}}\left\|\left(A_{T}^{H} A_{S}\right) u\right\|_{2} .
$$

Combining this with (1), we obtain

$$
\begin{aligned}
\theta_{s, t} & =\underset{\substack{S, T \subset\{1, \ldots, N\}, S \cap T=\emptyset,|S| \leq s,|T| \leq t}}{\max } \max _{\substack{|S| \\
\|u\|_{2} \leq 1}}\left\|\left(A_{T}^{H} A_{S}\right) u\right\|_{2} \\
& =\max _{\substack{S, T \subset\{1, \ldots, N\}, S \cap T=\emptyset,|S| \leq s,|T| \leq t}}\left\|A_{T}^{H} A_{S}\right\|_{2} .
\end{aligned}
$$

(b) Let $u, v \in \mathbb{C}^{N}$ be disjointly supported s-sparse and t-sparse vectors, respectively, let $S:=\operatorname{supp}(u) \cup \operatorname{supp}(v)$, and let $u_{S}, v_{S} \in \mathbb{C}^{|S|}$ be the restrictions of $u, v \in \mathbb{C}^{N}$ to S. Since u and v have disjoint supports, we have $\left\langle u_{S}, v_{S}\right\rangle=0$ and hence

$$
|\langle A u, A v\rangle|=\left|\left\langle A_{S} u_{S}, A_{S} v_{S}\right\rangle-\left\langle u_{S}, v_{S}\right\rangle\right|=\left|\left\langle\left(A_{S}^{H} A_{S}-\mathrm{I}_{|S|}\right) u_{S}, v_{S}\right\rangle\right| .
$$

Applying the Cauchy-Schwarz inequality and the relation

$$
\left\|u_{S}\right\|_{2}\left\|A_{S}^{H} A_{S}-\mathrm{I}_{|S|}\right\|_{2}=\left\|u_{S}\right\|_{2} \max _{\substack{x \in \mathbb{C}^{|S|} \\\|x\|_{2} \leq 1}}\left\|\left(A_{S}^{H} A_{S}-\mathrm{I}_{|S|}\right) x\right\|_{2} \geq\left\|\left(A_{S}^{H} A_{S}-\mathrm{I}_{|S|}\right) u_{S}\right\|_{2},
$$

we get

$$
|\langle A u, A v\rangle| \leq\left\|\left(A_{S}^{H} A_{S}-\mathrm{I}_{|S|}\right) u_{S}\right\|_{2}\left\|v_{S}\right\|_{2} \leq\left\|A_{S}^{H} A_{S}-\mathrm{I}_{|S|}\right\|_{2}\left\|u_{S}\right\|_{2}\left\|v_{S}\right\|_{2}
$$

Based on the lemma in the problem statement and using $\left\|u_{S}\right\|_{2}=\|u\|_{2},\left\|v_{S}\right\|_{2}=$ $\|v\|_{2}$, this allows us to conclude that

$$
|\langle A u, A v\rangle| \leq \delta_{s+t}\|u\|_{2}\|v\|_{2},
$$

which, in turn, proves

$$
\theta_{s, t} \leq \delta_{s+t}
$$

(c) (i) Note that each $j \in T$ belongs to exactly s sets S_{i}, so that

$$
u=\frac{1}{s} \sum_{i=1}^{t} u_{S_{i}} \quad \text { and } \quad\|u\|_{2}^{2}=\frac{1}{s} \sum_{i=1}^{t}\left\|u_{S_{i}}\right\|_{2}^{2}
$$

(ii) Using (c)(i) and the triangle inequality, we get

$$
\begin{align*}
|\langle A u, A v\rangle| & \leq \frac{1}{s} \sum_{i=1}^{t}\left|\left\langle A u_{S_{i}}, A v\right\rangle\right| \leq \frac{1}{s} \sum_{i=1}^{t} \theta_{s, r}\left\|u_{S_{i}}\right\|_{2}\|v\|_{2} \tag{2}\\
& =\theta_{s, r} \frac{1}{s}\left(\sum_{i=1}^{t}\left\|u_{S_{i}}\right\|_{2}\right)\|v\|_{2}
\end{align*}
$$

where in the second inequality we used that $u_{S_{i}}$ and v are disjointly supported s-sparse and r-sparse vectors, respectively. Moreover, note that the Cauchy-

Schwarz inequality yields

$$
\left(\sum_{i=1}^{t}\left\|u_{S_{i}}\right\|_{2}\right)^{2} \leq\left(\sum_{i=1}^{t}\left\|u_{S_{i}}\right\|_{2}^{2}\right)\left(\sum_{i=1}^{t} 1\right)=t\left(\sum_{i=1}^{t}\left\|u_{S_{i}}\right\|_{2}^{2}\right) .
$$

This together with (2) and subproblem (c)(i) yields

$$
\begin{aligned}
|\langle A u, A v\rangle| & \leq \theta_{s, r} \frac{\sqrt{t}}{s}\left(\sum_{i=1}^{t}\left\|u_{S_{i}}\right\|_{2}^{2}\right)^{1 / 2}\|v\|_{2} \\
& =\theta_{s, r} \sqrt{\frac{t}{s}}\|u\|_{2}\|v\|_{2} .
\end{aligned}
$$

Problem 2

(a) (i) Let us assume that $\|x\|_{2, \infty}=0$. This implies, that for every $M>0$,

$$
\operatorname{card}\left(\left\{j \in\{1, \ldots, N\}:\left|x_{j}\right| \geq t\right\}\right) \leq \frac{M^{2}}{t^{2}}, \text { for all } t>0
$$

Hence, for every $t>0$,

$$
\operatorname{card}\left(\left\{j \in\{1, \ldots, N\}:\left|x_{j}\right| \geq t\right\}\right) \leq \frac{M^{2}}{t^{2}}, \text { for all } M>0
$$

Consequently, by choosing $M>0$ but arbitrarily small, we get

$$
\begin{equation*}
\operatorname{card}\left(\left\{j \in\{1, \ldots, N\}:\left|x_{j}\right| \geq t\right\}\right)=0 \tag{3}
\end{equation*}
$$

for every $t>0$. Now, taking t in (3) arbitrarily small, we can conclude that $x=0$.
(ii) The statement is obvious for $\lambda=0$. Hence, we can assume that $\lambda \neq 0$. Now, observe that

$$
\left\{j \in\{1, \ldots, N\}:\left|\lambda x_{j}\right| \geq t\right\}=\left\{j \in\{1, \ldots, N\}:\left|x_{j}\right| \geq t /|\lambda|\right\} .
$$

Therefore,

$$
\begin{aligned}
\|\lambda x\|_{2, \infty} & =\inf \left\{M \geq 0: \operatorname{card}\left(\left\{j \in\{1, \ldots, N\}:\left|\lambda x_{j}\right| \geq t\right\}\right) \leq \frac{M^{2}}{t^{2}}, \text { for all } t>0\right\} \\
& =\inf \left\{M \geq 0: \operatorname{card}\left(\left\{j \in\{1, \ldots, N\}:\left|x_{j}\right| \geq t /|\lambda|\right\}\right) \leq \frac{M^{2}}{t^{2}}, \text { for all } t>0\right\} \\
& =\inf \left\{M \geq 0: \operatorname{card}\left(\left\{j \in\{1, \ldots, N\}:\left|x_{j}\right| \geq t\right\}\right) \leq \frac{M^{2}}{|\lambda|^{2} t^{2}}, \text { for all } t>0\right\} \\
& =|\lambda| \inf \left\{M \geq 0: \operatorname{card}\left(\left\{j \in\{1, \ldots, N\}:\left|x_{j}\right| \geq t\right\}\right) \leq \frac{M^{2}}{t^{2}}, \text { for all } t>0\right\} \\
& =|\lambda|\|x\|_{2, \infty} .
\end{aligned}
$$

(b) (i) Note that

$$
\operatorname{card}\left(\left\{j \in\{1,2\}:\left|x_{j}\right| \geq t\right\}\right)=\left\{\begin{array}{lll}
2, & \text { if } t \leq 2^{-1 / 2} \\
1, & \text { if } 2^{-1 / 2}<t \leq 1 \\
0, & \text { if } t>1
\end{array}\right.
$$

Therefore, for all $t>0$,

$$
\operatorname{card}\left(\left\{j \in\{1,2\}:\left|x_{j}\right| \geq t\right\}\right) \leq \frac{1}{t^{2}}
$$

On the other hand,

$$
\operatorname{card}\left(\left\{j \in\{1,2\}:\left|x_{j}\right| \geq 1\right\}\right)=1
$$

and hence, we get

$$
\|x\|_{2, \infty}=\inf \left\{M \geq 0: \operatorname{card}\left(\left\{j \in\{1,2\}:\left|x_{j}\right| \geq t\right\}\right) \leq \frac{M^{2}}{t^{2}}, \text { for all } t>0\right\}=1
$$

Next, using

$$
\operatorname{card}\left(\left\{j \in\{1,2\}:\left|x_{j}\right| \geq t\right\}\right)=\operatorname{card}\left(\left\{j \in\{1,2\}:\left|y_{j}\right| \geq t\right\}\right), \text { for all } t>0
$$

yields

$$
\|y\|_{2, \infty}=\|x\|_{2, \infty}=1
$$

(ii) Thanks to (a)(ii), we have

$$
\|x+y\|_{2, \infty}=\left\|\left(1+2^{-1 / 2}, 1+2^{-1 / 2}\right)\right\|_{2, \infty}=\left(1+2^{-1 / 2}\right)\|(1,1)\|_{2, \infty} .
$$

We are therefore left with having to calculate $\|(1,1)\|_{2, \infty}$. Let us fix $z:=(1,1)$. Then

$$
\operatorname{card}\left(\left\{j \in\{1,2\}:\left|z_{j}\right| \geq t\right\}\right)= \begin{cases}2, & \text { if } t \leq 1 \\ 0, & \text { if } t>1\end{cases}
$$

and hence

$$
\|z\|_{2, \infty}=\inf \left\{M \geq 0: \operatorname{card}\left(\left\{j \in\{1,2\}:\left|z_{j}\right| \geq t\right\}\right) \leq \frac{M^{2}}{t^{2}}, \text { for all } t>0\right\}=2^{1 / 2}
$$

Consequently, we get

$$
\|x+y\|_{2, \infty}=2^{1 / 2}\left(1+2^{-1 / 2}\right)=2^{1 / 2}+1>2=\|x\|_{2, \infty}+\|y\|_{2, \infty} .
$$

(c) (i) If $\left|x_{j}^{1}+\cdots+x_{j}^{k}\right| \geq t$ for some $j \in\{1, \ldots, N\}$, then we have that $\left|x_{j}^{i}\right| \geq t / k$ for this j and some $i \in\{1, \ldots, k\}$. This allows us to conclude that

$$
\left\{j \in\{1, \ldots, N\}:\left|x_{j}^{1}+\cdots+x_{j}^{k}\right| \geq t\right\} \subset \bigcup_{i \in\{1, \ldots, k\}}\left\{j \in\{1, \ldots, N\}:\left|x_{j}^{i}\right| \geq t / k\right\}
$$

(ii) From (c)(i) we get that

$$
\begin{aligned}
& \operatorname{card}\left(\left\{j \in\{1, \ldots, N\}:\left|x_{j}^{1}+\cdots+x_{j}^{k}\right| \geq t\right\}\right) \\
& \leq \sum_{i \in\{1, \ldots, k\}} \operatorname{card}\left(\left\{j \in\{1, \ldots, N\}:\left|x_{j}^{i}\right| \geq t / k\right\}\right) \\
& \leq \sum_{i \in\{1, \ldots, k\}} \frac{\left\|x^{i}\right\|_{2, \infty}^{2}}{(t / k)^{2}} \\
& =\frac{k^{2}\left(\left\|x^{1}\right\|_{2, \infty}^{2}+\cdots+\left\|x^{k}\right\|_{2, \infty}^{2}\right)}{t^{2}}
\end{aligned}
$$

We therefore obtain

$$
\left\|x^{1}+\cdots+x^{k}\right\|_{2, \infty} \leq k\left(\left\|x^{1}\right\|_{2, \infty}^{2}+\cdots+\left\|x^{k}\right\|_{2, \infty}^{2}\right)^{1 / 2}
$$

(iii) We have

$$
\begin{aligned}
& \frac{\left(\left\|x^{1}\right\|_{2, \infty}^{2}+\cdots+\left\|x^{k}\right\|_{2, \infty}^{2}\right)}{\left(\left\|x^{1}\right\|_{2, \infty}+\cdots+\left\|x^{k}\right\|_{2, \infty}\right)^{2}} \\
& =\left(\frac{\left\|x^{1}\right\|_{2, \infty}}{\left(\left\|x^{1}\right\|_{2, \infty}+\cdots+\left\|x^{k}\right\|_{2, \infty}\right)}\right)^{2}+\cdots+\left(\frac{\left\|x^{k}\right\|_{2, \infty}}{\left(\left\|x^{1}\right\|_{2, \infty}+\cdots+\left\|x^{k}\right\|_{2, \infty}\right)}\right)^{2} \\
& \leq \frac{\left\|x^{1}\right\|_{2, \infty}}{\left(\left\|x^{1}\right\|_{2, \infty}+\cdots+\left\|x^{k}\right\|_{2, \infty}\right)}+\cdots+\frac{\left\|x^{k}\right\|_{2, \infty}}{\left(\left\|x^{1}\right\|_{2, \infty}+\cdots+\left\|x^{k}\right\|_{2, \infty}\right)}=1
\end{aligned}
$$

and hence

$$
\begin{equation*}
\left(\left\|x^{1}\right\|_{2, \infty}^{2}+\cdots+\left\|x^{k}\right\|_{2, \infty}^{2}\right)^{1 / 2} \leq\left\|x^{1}\right\|_{2, \infty}+\cdots+\left\|x^{k}\right\|_{2, \infty} \tag{4}
\end{equation*}
$$

Combining this with (c)(ii), we obtain

$$
\left\|x^{1}+\cdots+x^{k}\right\|_{2, \infty} \leq k\left(\left\|x^{1}\right\|_{2, \infty}+\cdots+\left\|x^{k}\right\|_{2, \infty}\right)
$$

(d) For every $k \in\{1, \ldots, N\}$, we can write

$$
\|x\|_{2}^{2}=\sum_{j=1}^{N}\left(x_{j}^{*}\right)^{2} \geq \sum_{j=1}^{k}\left(x_{j}^{*}\right)^{2} \geq k\left(x_{k}^{*}\right)^{2} .
$$

Raising to the power $1 / 2$ and taking the maximum over k yields the desired result.

Problem 3

(a) (i) We take two indices $i \neq j$ and assume that there exists at least one element $\theta \in \mathbb{H}^{d}$ in the intersection $\mathbb{H}_{i} \cap \mathbb{H}_{j}$. By the triangle inequality and the definition of \mathbb{H}_{i} and \mathbb{H}_{j}, we have

$$
d_{H}\left(\theta^{i}, \theta^{j}\right) \leq d_{H}\left(\theta^{i}, \theta\right)+d_{H}\left(\theta^{j}, \theta\right) \leq \varepsilon / 2+\varepsilon / 2 \leq \varepsilon .
$$

However, by definition of an ε-packing, we must have $d_{H}\left(\theta^{i}, \theta^{j}\right)>\varepsilon$, which results in a contradiction and thereby concludes the proof of the sets $\left\{\mathbb{H}_{i}\right\}_{i=1}^{M}$ being disjoint.
(ii) For a given integer $k \in[0, d]$, the points in \mathbb{H}^{d} that are at distance k / d of θ^{i} are exactly the θ obtained by flipping k different coordinates of θ^{i}. We can therefore observe that there are exactly $\binom{d}{k}$ points at distance k / d from θ^{i}. Summing over all the integers k such that $k / d \leq \varepsilon / 2$ or, equivalently, $k \leq d \varepsilon / 2$, one obtains

$$
\left|\mathbb{H}_{i}\right|=\sum_{k=0}^{n}\binom{d}{k},
$$

with $n=\lfloor d \varepsilon / 2\rfloor$.
(iii) We argue as follows:

$$
\begin{aligned}
\log M\left(\varepsilon ; \mathbb{H}^{d}, d_{H}\right)+\log \binom{d}{n} & =\log \left[M\left(\varepsilon ; \mathbb{H}^{d}, d_{H}\right)\binom{d}{n}\right] \\
& \leq \log \left[M\left(\varepsilon ; \mathbb{H}^{d}, d_{H}\right) \sum_{k=0}^{n}\binom{d}{k}\right] \\
& =\log \left[\sum_{i=1}^{M} \sum_{k=0}^{n}\binom{d}{k}\right] \\
& \stackrel{(a)(i)}{=} \log \left[\sum_{i=1}^{M}\left|\mathbb{H}_{i}\right|\right] \\
& (b)(i) \\
\leq & \log \left|\mathbb{H}^{d}\right|=\log 2^{d}=d \log 2,
\end{aligned}
$$

where we used the shorthand M for $M\left(\varepsilon ; \mathbb{H}^{d}, d_{H}\right)$. The last inequality comes from the fact that the \mathbb{H}_{i} are disjoint subsets of \mathbb{H}^{d}, so that the sum of their cardinalities is bounded by the cardinality of \mathbb{H}^{d}. Rearranging terms yields the desired result according to

$$
\begin{equation*}
\log M\left(\varepsilon ; \mathbb{H}^{d}, d_{H}\right) \leq d \log 2-\log \binom{d}{n} \tag{5}
\end{equation*}
$$

(b) (i) Following the hint, we note that

$$
\begin{align*}
\frac{\mathbb{P}[Y=\ell]}{\mathbb{P}[Y=\ell-1]} & =\frac{\binom{d}{\ell}(n / d)^{\ell}(1-n / d)^{d-\ell}}{\binom{d}{\ell-1}(n / d)^{\ell-1}(1-n / d)^{d-\ell+1}} \\
& =\frac{d-\ell+1}{\ell} \frac{n / d}{1-n / d} \\
& =\frac{d-\ell+1}{d-n} \frac{n}{\ell} . \tag{6}
\end{align*}
$$

Both of the fractions in (6) are larger than 1 for $\ell \leq n$ and smaller than 1 for $\ell>n$. This means that $\mathbb{P}[Y=\ell]$ is maximized at $\ell=n$, which is the desired result.
(ii) Following the hint, we have

$$
\left.\begin{array}{rl}
1 & =\sum_{\ell=0}^{d} \mathbb{P}[Y=\ell] \\
& \quad \leq(d)(i) \\
& =(d+1) \mathbb{P}[Y=n] \\
n \\
n
\end{array}\right)(n / d)^{n}(1-n / d)^{d-n} .
$$

Taking the logarithm, we obtain

$$
\begin{aligned}
\log \binom{d}{n} & \geq-\log \left\{(d+1)(n / d)^{n}(1-n / d)^{d-n}\right\} \\
& =-n \log (n / d)-(d-n) \log (1-n / d)-\log (d+1) \\
& =d\{-(n / d) \log (n / d)-(1-n / d) \log (1-n / d)\}-\log (d+1) \\
& =d \phi(n / d)-\log (d+1)
\end{aligned}
$$

which is the desired result.
(c) We argue as follows:

$$
\begin{aligned}
\frac{\log M\left(\varepsilon ; \mathbb{H}^{d}, d_{H}\right)}{d} & \stackrel{(5)}{\leq} \log 2-\frac{\log \binom{d}{n}}{d} \\
& \stackrel{(b)(i i)}{\leq} \log 2-\phi(n / d)+\frac{\log (d+1)}{d} \\
= & (n / d) \log 2+(1-n / d) \log 2+(n / d) \log (n / d) \\
& +(1-n / d) \log (1-n / d)+\frac{\log (d+1)}{d} \\
= & (n / d) \log \left(\frac{n / d}{1 / 2}\right)+(1-n / d) \log \left(\frac{1-n / d}{1 / 2}\right)+\frac{\log (d+1)}{d} \\
= & D((n / d) \|(1 / 2))+\frac{\log (d+1)}{d}
\end{aligned}
$$

Problem 4

(a) Consider the points $x_{1}=0$ and $x_{2}=1$ in \mathbb{R}. The four possible labelings

$$
\left\{\begin{array}{lll}
h_{(-1,-1)}\left(x_{1}\right)=0 & \text { and } & h_{(-1,-1)}\left(x_{2}\right)=0 \\
h_{(0,0)}\left(x_{1}\right)=1 & \text { and } & h_{(0,0)}\left(x_{2}\right)=0 \\
h_{(1,1)}\left(x_{1}\right)=0 & \text { and } & h_{(1,1)}\left(x_{2}\right)=1 \\
h_{(0,1)}\left(x_{1}\right)=1 & \text { and } & h_{(0,1)}\left(x_{2}\right)=1
\end{array}\right.
$$

are produced by \mathcal{H}_{1}. Therefore, there is a set of 2 points shattered by \mathcal{H}_{1}, which implies $\operatorname{dim}_{V C}\left(\mathcal{H}_{1}\right) \geq 2$.
On the other hand, for any set of three distinct points x_{1}, x_{2}, and x_{3} that we choose without loss of generality such that $x_{1}<x_{2}<x_{3}$, there is no closed interval containing x_{1} and x_{3} but not x_{2}. Therefore, there is no set of 3 points shattered by \mathcal{H}_{1}, which implies $\operatorname{dim}_{V C}\left(\mathcal{H}_{1}\right)<3$.

We have therefore proven that $\operatorname{dim}_{V C}\left(\mathcal{H}_{1}\right)=2$.
(b) (i) The 4 points $X_{1}=(-1,0), X_{2}=(0,-1), X_{3}=(1,0)$, and $X_{4}=(0,1)$ are shattered by \mathcal{H}_{2}. To see this, we fix a labeling $\left(y_{1}, y_{2}, y_{3}, y_{4}\right) \in\{0,1\}^{4}$. The rectangle $h_{\left(-y_{1},-y_{2}, y_{3}, y_{4}\right)} \in \mathcal{H}_{2}$ labels correctly all four points:

$$
\left\{\begin{array}{l}
h_{\left(-y_{1},-y_{2}, y_{3}, y_{4}\right)}\left(X_{1}\right)=y_{1}, \\
h_{\left(-y_{1},-y_{2}, y_{3}, y_{4}\right)}\left(X_{2}\right)=y_{2}, \\
h_{\left(-y_{1},-y_{2}, y_{3}, y_{4}\right)}\left(X_{3}\right)=y_{3}, \\
h_{\left(-y_{1},-y_{2}, y_{3}, y_{4}\right)}\left(X_{4}\right)=y_{4} .
\end{array}\right.
$$

The figures below picture the rectangle $h_{(-1,-1,0,0)}$ (left) and the rectangle $h_{(0,-1,1,1)}$ (right).

(ii) Assume that we can find a_{1}, b_{1}, a_{2}, and b_{2} such that

$$
\left\{\begin{array}{l}
h_{\left(a_{1}, a_{2}, b_{1}, b_{2}\right)}(0,0)=0 \\
h_{\left(a_{1}, a_{2}, b_{1}, b_{2}\right)}(-1,0)=h_{\left(a_{1}, a_{2}, b_{1}, b_{2}\right)}(1,0)=1 \\
h_{\left(a_{1}, a_{2}, b_{1}, b_{2}\right)}(0,-1)=h_{\left(a_{1}, a_{2}, b_{1}, b_{2}\right)}(0,1)=1
\end{array}\right.
$$

Since $h_{\left(a_{1}, a_{2}, b_{1}, b_{2}\right)}(-1,0)=h_{\left(a_{1}, a_{2}, b_{1}, b_{2}\right)}(1,0)=1$, we must have $a_{1} \leq-1$ and $1 \leq b_{1}$, which implies $a_{1} \leq 0 \leq b_{1}$. Likewise, since $h_{\left(a_{1}, a_{2}, b_{1}, b_{2}\right)}(0,-1)=$ $h_{\left(a_{1}, a_{2}, b_{1}, b_{2}\right)}(0,1)=1$, we must have $a_{2} \leq-1$ and $1 \leq b_{2}$, which implies $a_{2} \leq 0 \leq b_{2}$. The inequalities $a_{1} \leq 0 \leq b_{1}$ and $a_{2} \leq 0 \leq b_{2}$ together imply $h_{\left(a_{1}, a_{2}, b_{1}, b_{2}\right)}(0,0)=1$, which yields a contradiction, thereby concluding the proof.

(iii) Take any set of five distinct points in \mathbb{R}^{2}. We call X_{1} the "leftmost" point (the point of smallest first coordinate x_{1}^{-}), X_{2} the "lowest" point (the point of smallest second coordinate x_{2}^{-}), X_{3} the "rightmost" point (the point of largest first coordinate x_{1}^{+}) and X_{4} the "highest" point (the point of largest second coordinate x_{2}^{+}). Note that these extremal points X_{1}, X_{2}, X_{3}, and X_{4} are not necessarily distinct (e.g., there could be a point of both largest first and largest second coordinates, i.e., $X_{3}=X_{4}$). We consider the labeling y that assigns 1 to X_{1}, X_{2}, X_{3} and X_{4} and 0 to a point X_{0} distinct from X_{1}, X_{2}, X_{3}, and X_{4} (which exists since we consider 5 points in total). If it exists, a rectangle $h_{\left(a_{1}, a_{2}, b_{1}, b_{2}\right)}$ realizing the desired labeling has to be such that $a_{1} \leq$ $x_{1}^{-}, x_{1}^{+} \leq b_{1}, a_{2} \leq x_{2}^{-}$, and $x_{2}^{+} \leq b_{2}$. Since by construction of X_{1}, X_{2}, X_{3} and X_{4}, we must have $x_{1}^{-} \leq x_{1}^{0} \leq x_{1}^{+}$and $x_{2}^{-} \leq x_{2}^{0} \leq x_{2}^{+}$, we necessarily get $a_{1} \leq x_{1}^{0} \leq b_{1}$ and $a_{2} \leq x_{2}^{0} \leq b_{2}$, which does not produce the correct labeling for the point X_{0}. This contradiction proves that there is no rectangle $h_{\left(a_{1}, a_{2}, b_{1}, b_{2}\right)}$ yielding the desired labelling y. Therefore, no set of 5 points can be shattered by \mathcal{H}_{2}.
(iv) The class \mathcal{H}_{2} shatters a set of 4 points but does not shatter any set of 5 points. By definition of VC dimension, we therefore have $\operatorname{dim}_{V C}\left(\mathcal{H}_{2}\right)=4$.

