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Problem 1
(a) It follows directly from the definition of 0, that 6, ; is the smallest number 6>0
such that
(Au, Av) ~
|(Au, Av)| <4
ullllvll> ||v||z

for all disjointly supported s-sparse and ¢-sparse vectors u € C¥\{0} and v €
CN\{0}, respectively. Therefore,

0510 = max |{Au, Av)|
u,w€CN disjointly s, t-sparse,
l[ull2=(lvll2=1
= max max _ |[(Au, Av)|
STC{1,..N},SNT=0, yeClSl peciT!,
|S|<s,|T|<t [[ufl2=]vll2=1 (1)
= max max _ [(Asu, Arv)|
STC{1,..N},SNT=0, yeClSl pecIT!,
|S|<s,|T|<t [ulla=]lv]l2=1
_ H
= ma max _ [((A7 Ag)u,v)].
S, Tc{1,..., N} SNT=0, weClS! veC!Tl,
IS]<s,|T|<t lull2=llv]l2=1

Note that for every S,7 C {1,..., N} with SNT = (,|S| < s,|T| < tand u €
Cl8 v € CITl with ||u||s = ||v]]2 = 1, the Cauchy-Schwarz inequality yields

(A7 As)u, v)| < [I(A7 As)ullz[[v]l2 = [[(A7 As)ul..

On the other hand, AYAg € C71*ISI and hence (4% Ag)u € CI”l. Therefore, if
(AR Ag)u #0,v = (AL Ag)u/||(A¥ As)u), satisfies v € CIT! with |jv]|, = 1, and we

get
(AR s, 03] = |((AF A, (AF As)u/ | (AR Al
[AZ A i
= = ||[(A7 A :
A Agyul, ~ 14 As)le
Hence,

max |<(A Ag)u,v)| = max ||(AHAS)U||2 = max ||(A Ag)ul|2.

uweClSl yeclTl, ueClS!, ueCls|
lull2=(lv|l2=1 J[ufla=1 lufl2<1



Combining this with (1), we obtain

0., = A4
s,t S7Tc{1,.r_?12\lf)}(,SQT:®7ur€né%§7||( T S)UHQ
SISsITISt Jull2<1
S,Tc{l,.r.?z%}}{,ng:ﬂ” T SHQ
|S|<s,|T|<t

(b) Let u,v € C¥ be disjointly supported s-sparse and ¢-sparse vectors, respectively,
let S := supp(u) U supp(v), and let ug, vs € C'°! be the restrictions of u,v € CV to
S. Since u and v have disjoint supports, we have (ug, vs) = 0 and hence

[(Au, Av)| = [(Asus, Asvs) — (us, vs)| = [((AF As — L5 us, vs)]|-
Applying the Cauchy-Schwarz inequality and the relation

lusll2| A§ As — Tis) |2 = [|us]l2 max 1(A§ As — Tis))zll2 > [|(A§ As — Lis)us]l2,
lzla<1

we get

[(Au, Av)| < (A5 As —Tis)us]l2llvsllz < |45 As = Tis[lo[lus l2]|vs]|2-

Based on the lemma in the problem statement and using ||us||2 = |||z, [|vs]l2 =
||v||2, this allows us to conclude that

[(Au, Av)| < Ogpeflull2]|v]l2,
which, in turn, proves

es,t S 5s+t'

(c) (i) Note that each j € T' belongs to exactly s sets .5;, so that

t t
1 1
u=-—-Y us and |uly=="|lus
S 4 s 2
=1 =1

2
2-

(ii) Using (c)(i) and the triangle inequality, we get

2[|v[2

t t
1 1
Au, Av)| < — Aug,, Av)| < - 0. ||us,
w40} < 53 (us, A0 < (3 00

i=1
2) []]2,

1 t
= 951"_ E ;
T8 (i:l HUSZ

where in the second inequality we used that ug, and v are disjointly suppor-
ted s-sparse and r-sparse vectors, respectively. Moreover, note that the Cauchy-

()
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Schwarz inequality yields

(iillluSille < (ilHUSiH%) (il 1) ﬂ(é ||u5¢||§>‘

This together with (2) and subproblem (c)(i) yields

1/2
\/7? t
[{Au, Av)| < 05— D us iz ] loll
i=1

t
=051/ — v||2-
ol



Problem 2

(a) (i) Let us assume that ||z||2,« = 0. This implies, that for every M > 0,

M2
card({j € {1,....,N}: |z;| > t}) < T forallt > 0.

Hence, for every ¢t > 0,

M2
card({j € {1,...,N}: |a;] > t}) < TR forall M > 0.

Consequently, by choosing M > 0 but arbitrarily small, we get
card({j € {1,...,N}: |zj| > t}) =0, (3)
for every t > 0. Now, taking ¢ in (3) arbitrarily small, we can conclude that z = 0.

(ii) The statement is obvious for A = 0. Hence, we can assume that A # 0. Now,
observe that

{je{l,....N}: | Azj| >t} ={j e {1,....N}: |z;| > t/|A\]}.

Therefore,
M2
| Az]]2,00 = inf{M >0: card({j € {1,...,N}: [Agj| > t}) < TR forall ¢ > O}

2
_ inf{M >0: card({j € {L,...,N}: o] > t/]\}) < ]‘f—Q for all ¢ > 0}

2

= inf{M >0: card({j € {1,...,N}: |z > t}) forall t > O}

< -
M2
= ])\|inf{M >0: card({j € {1,...,N}: |zj] > t}) < TR forallt > 0}

= [Alll]]2,00-

(b) (i) Note that

2, if t<2712
card({j € {1,2}: |z5] > t}) = 1, if 272 <t<1,
0, if t>1.

Therefore, for all ¢t > 0,
) 1
card({j € {1,2}: |z;| > t}) < 2
On the other hand,

card({j € {1,2}: |z;] > 1}) =1,



and hence, we get
M2
l|]|2,00 = inf{M >0: card({j € {1,2}: |z;] > ¢}) < R forall t > O} = 1.
Next, using
card({j € {1,2}: |z;| > t}) = card({j € {1,2}: |y;| > ¢}), forallt >0,
yields

HyHQ,oo = H.THQ,OO =1.

(ii) Thanks to (a)(ii), we have
|2+ ylleo = 11427214+ 2712 lg.00 = (1427 [|(1, 1) |2,00-

We are therefore left with having to calculate ||(1,1)]]2,. Let us fix z := (1,1).
Then

2
card({j € {1,2}: |z > t}) =4
0, if t>1,

if t<1,

and hence
M? 1/2
12]|2,00 = inf{M >0: card({j € {1,2}: |2 > t}) < R forall t > 0} = ol/2

Consequently, we get

Hx + y||2,oo = 21/2(1 + 2_1/2) =27 4+1>2= ||x||2,oo + Hy||2oo

(©) () If |} +--- 4 2%| > t for some j € {1,..., N}, then we have that |2} > t/k for
this j and some i € {1,..., k}. This allows us to conclude that

{je{t,. .., N}yilaj+--+2f| =t} |J {Ge{t,... N}zl > t/k}.
k}

(ii) From (c)(i) we get that
card({j € {1,...,N}: |a:]1++xf\ >t})
< Z card({j € {1,...,N}: |x;| >t/k})

i€ {1, k}

Rl e+ 1203 o)
- E _



We therefore obtain

1/2
a4t e < R0 o -+ 2¥30)

(iii) We have

(2 13 0 + - + [l2*]2.)
(12 a,00 + -+ + [7*]l2.00)°

1 2 k 2
_ 7 |2.00 P [ ]|2.00
(It fl200 + - + [|2*]]2.00) (It 200 + -+ + |2 ]]200)

2 [|2,00 [2]|2,00 1
T (2 20 4 -+ 12 fl2,00) (1 2,00 + - - - =+ [|2%]|2,00)
and hence
1/2
('3 00 + - + 12"115 ) 2 < la oo + - + 12¥l2,00- (4)

Combining this with (c)(ii), we obtain

|2t + - 4 2F]|g.00 < E([[2 200 + - -+ [25][2,00) -

(d) Forevery k € {1,..., N}, we can write

N

Izl =) («;

j=1

)2 > k(x))?

IIM:v

Raising to the power 1/2 and taking the maximum over % yields the desired re-
sult.



Problem 3

()

(i)

(ii)

(iii)

We take two indices ¢ # j and assume that there exists at least one element
0 € H? in the intersection H; N H;. By the triangle inequality and the defini-
tion of H; and H;, we have

d(07,67) < dp(0,0) + d(67,0) < /2 + /2 < e.

However, by definition of an e-packing, we must have dy (6", 67) > ¢, which
results in a contradiction and thereby concludes the proof of the sets {H;},
being disjoint.

For a given integer k € [0,d], the points in H? that are at distance k/d of
¢' are exactly the 6 obtained by flipping & different coordinates of #°. We
can therefore observe that there are exactly ({) points at distance k/d from
¢'. Summing over all the integers k such that k/d < £/2 or, equivalently,
k < de/2, one obtains

| = Z ()

with n = |dz/2).

We argue as follows:

log M (g; H%, dp) + log <Z) = log | M (g;H", dpy) (Z)}

< log | M(; HY, dyy)

~55(0)

M

(a)(i1)

2 1o [z u&m]
=1

CIOI ]
< log |H®| = log2® = dlog 2,

=

Il 3

o
N
T X
~__~

|

where we used the shorthand M for M (g; HY, dy). The last inequality comes
from the fact that the H; are disjoint subsets of H¢, so that the sum of their
cardinalities is bounded by the cardinality of H?. Rearranging terms yields
the desired result according to

d
log M (g;H?, dy) < dlog2 — log ( ) (5)
n
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(b) (i) Following the hint, we note that

Py =4 _  (Q@/ad-n/d"
P =£-1 () (m/d) (1 —nfdy=t
~d—{+1 n/d
4 1-n/d
d—l(+1n
T Td-n © (©)

Both of the fractions in (6) are larger than 1 for / < n and smaller than 1 for
¢ > n. This means that P[Y" = /] is maximized at ¢ = n, which is the desired
result.

(ii) Following the hint, we have

(b) (i
< (d+1)P)Y =n]

=(d+1) (Z) (n/d)"(1 —n/d)*".

Taking the logarithm, we obtain

log (jj) > —log {(d+ 1)(n/d)"(1 — n/d)* "}

= —nlog(n/d) — (d —n)log(l — n/d) —log(d + 1)
=d{—(n/d)log(n/d) — (1 —n/d)log(1 —n/d)} —log(d + 1)
= d¢(n/d) —log(d + 1),

which is the desired result.

(c) We argue as follows:

- {4 (5) log (¢
log M (g;H®, dp) 2 g2 og (%)
d d
(b) (i) log(d + 1
< log2— ¢(n/d) + %

= (n/d)1log2 + (1 — n/d)log2 + (n/d)log(n/d)
(1= n/d)log(1 — n/d) + 282+ D

— (n/d)log (?7/3) (1= n/d) lo: (1 " d) osld £ 1)

= D((n/d))(1/2) + L,




Problem 4

(a) Consider the points z; = 0 and z; = 1 in R. The four possible labelings

(

hi-1,-n(x1) =0 and  hq-1)(z2) =0,
ho0)(21) =1 and Do) (22) =0,
hay(z) =0 and  hqp(xg) =1,
(P (z1) =1 and A (x) =1,

are produced by #,. Therefore, there is a set of 2 points shattered by H;, which
implies dimy¢(H1) > 2.

On the other hand, for any set of three distinct points 2, 22, and x3 that we choose
without loss of generality such that x; < zy < z3, there is no closed interval
containing z; and z3 but not x,. Therefore, there is no set of 3 points shattered by
H1, which implies dimy ¢ (H;) < 3.

We have therefore proven that dimy ¢ () = 2.
(b) (i) The 4 points X; = (—1,0), Xo = (0,—-1), X3 = (1,0), and X, = (0,1) are

shattered by H,. To see this, we fix a labeling (y1, 92, y3,y4) € {0,1}*. The
rectangle h(_y, _y, 4, 4.) € H2 labels correctly all four points:

;

h(*ylﬁ?JZ,yS,?M)( 1
h(—ylv—y27y37y4)(X2 2,
) ( 3,

h(*yh*yLySvZM X3

\h(—y17—y27y3,y4)(X4

The figures below picture the rectangle h(_; _1 ) (left) and the rectangle
h(O,fl,l,l) (rlght)

To €2
o X, X4
X1 X3 Xl
° > L1 ° % » 11
3
XQ XQ




(ii)

(iii)

(iv)

Assume that we can find a4, b1, as, and by such that

h(a1,a2,b1,b2)(07 0) - Oa
h(a1,a2,b1,b2)(_17 0) = h(al,az,bl,bQ)(L 0) = 17
h(alya2,b1,b2)(07 _1) = h(a17a2,b1,b2)(07 1) =1L

Since nay az,61,00) (—1,0) = N(aya,01,60)(1,0) = 1, we must have a; < —1 and
1 < by, which implies a; < 0 < by. Likewise, since hq, a5,61,,)(0, —1) =
P(a1,a0,01,62)(0,1) = 1, we must have a, < —1 and 1 < by, which implies
az < 0 < by. The inequalities a; < 0 < b; and a; < 0 < by together imply
Pay az,b1,02)(0,0) = 1, which yields a contradiction, thereby concluding the
proof.

X2

» 11

X

Take any set of five distinct points in R%. We call X; the “leftmost” point
(the point of smallest first coordinate z;), X, the “lowest” point (the point
of smallest second coordinate x;), X3 the “rightmost” point (the point of
largest first coordinate z1) and X, the “highest” point (the point of largest
second coordinate 7). Note that these extremal points X;, X», X3, and X,
are not necessarily distinct (e.g., there could be a point of both largest first
and largest second coordinates, i.e.,, X3 = X,). We consider the labeling y
that assigns 1 to X3, X3, X3 and X, and 0 to a point X, distinct from X;, X5,
X3, and X, (which exists since we consider 5 points in total). If it exists, a
rectangle h(,, 4,5, 0, realizing the desired labeling has to be such that a; <
zy, rf < by, ay < 25, and 23 < by. Since by construction of X;, X5, X3
and X,, we must have z; < z¥ < 2f and z; < 29 < 27, we necessarily
geta; < 29 < b and ay < 2§ < by, which does not produce the correct
labeling for the point X. This contradiction proves that there is no rectangle
N(ay a,01,50) Yielding the desired labelling y. Therefore, no set of 5 points can
be shattered by H,.

The class H, shatters a set of 4 points but does not shatter any set of 5 points.
By definition of VC dimension, we therefore have dimy ¢ (#H2) = 4.

10



