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1. Problem 1

The Hilbert space L2(R2) consists of all F : R2 → C such that ‖F‖L2(R2) < ∞,
where

‖F‖2L2(R2) =

∫
R2

|F (x, y)|2 dx dy =

∫
R2

|F (x, y)|2 dy dx.

(a) Write down the definition of a unitary operator on a general Hilbert space.

(b) Let f, g ∈ L2(R). We define the short-time Fourier transform Vgf : R2 → C of f
with respect to window g by

(Vgf)(x, ω) =

∫
R
f(t)g(t− x)e−2πiωtdt.

Consider the following two transformations:

(i) The asymmetric coordinate transform Ta is defined for a function
F : R2 → C by

TaF (x, y) = F (y, y − x).

Show that Ta is a unitary operator on L2(R2).
[Hint: First show that Ta maps L2(R2) functions to L2(R2) functions, and
then compute the adjoint T ∗a explicitly.]

(ii) The partial Fourier transform F2 : L
2(R2)→ L2(R2) is the unique bounded

linear operator on L2(R2) with the following property:
Whenever F ∈ L2(R2) is such that F (x, ·) ∈ L1(R) for all x ∈ R, meaning
that ∫

R
|F (x, y)| dy <∞ for all x ∈ R,

F2F is given by the formula

(F2F )(x, ω) =

∫
R
F (x, t)e−2πiωtdt, for all (x, ω) ∈ R2. (1)

You may use—without proof—the fact that F2 is a unitary operator.

Show carefully that

Vgf = F2Ta(f ⊗ g) for all f, g ∈ L2(R), (2)

where for two functions h1, h2 : R→ C we write h1 ⊗ h2 to denote the function
(h1 ⊗ h2)(x, y) = h1(x)h2(y).
[Please note that if you want to use (1) to compute F2F for a function
F ∈ L2(R2), you first have to verify that F satisfies the additional assumption
that F (x, ·) ∈ L1(R) for all x ∈ R.]

(c) Using (2) deduce that Vgf ∈ L2(R2) for all f, g ∈ L2(R), and that

〈Vg1f1, Vg2f2〉 = 〈f1, f2〉〈g1, g2〉, for all f1, f2, g1, g2 ∈ L2(R). (3)
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Problem 2

A multiresolution approximation is an increasing sequence {Vj}j∈Z of closed li-
near subspaces of L2(R) such that

(I)
⋂
j∈Z Vj = {0} and

⋃
j∈Z Vj is dense in L2(R),

(II) for all f ∈ L2(R) and j ∈ Z, f ∈ Vj ⇐⇒ f(2 ·) ∈ Vj+1,

(III) for all f ∈ L2(R) and k ∈ Z, f ∈ V0 ⇐⇒ f(· − k) ∈ V0,

(IV) there exists a function ϕ ∈ V0 such that {ϕ(· − k) : k ∈ Z} is a Riesz basis of
the space V0.

Let ϕ ∈ L2(R) be given in the Fourier domain by

ϕ̂(ξ) =


1, |ξ| ≤ 1

3

cos
(
π
2
ν(3|ξ| − 1)

)
, 1

3
< |ξ| ≤ 2

3

0, otherwise
,

where

ν(x) =


0, x < 0

x, 0 ≤ x < 1

1, 1 ≤ x

.

(a) (i) Sketch ϕ̂ on the interval [−1, 1].
(ii) Show that {ϕ(· − k) : k ∈ Z} is an orthonormal system, that is

〈ϕ(· − k), ϕ(· − l)〉 =

{
0, k 6= l

1, k = l
for all k, l ∈ Z.

You may use — without proof — the fact that, for any given g ∈ L2(R),
we have that {g(· − k) : k ∈ Z} is an orthonormal system if and only if∑

n∈Z |ĝ(ξ + n)|2 = 1, for all ξ ∈ R.

(b) Define V0 to be the closure of span{ϕ(· − k) : k ∈ Z}, and let
Vj = {f(2j·) : f ∈ V0} for j ∈ Z.

(i) Let PVj denote the orthogonal projection onto Vj . You may use — without
proof—that {ϕj,k := 2

j
2ϕ(2j · −k) : k ∈ Z} is an orthonormal basis for Vj ,

and that ‖PVjf‖L2(R) is given by the following expression:

‖PVjf‖2L2(R) =
∑
k∈Z

∣∣∣∣∫
R
f(x)ϕj,k(x)dx

∣∣∣∣2 , for all f ∈ L2(R). (4)

By applying the Plancherel identity to (4) show that

‖PVjf‖2L2(R) + ‖PVj(f(· − 2−(j+1)))‖2L2(R) = 2‖ϕ̂(2−j · )f̂‖2L2(R), (5)

for all j ∈ Z and f ∈ L2(R).
[Hint: The Plancherel identity states that for any two functions h1, h2 ∈
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L2(R) we have 〈h1, h2〉 = 〈ĥ1, ĥ2〉. After applying this identity, combine the
expression you obtain into one sum. Then reinterpret the resulting expres-
sion as an expansion in

E = {em(ξ) = 2−
j+1
2 e

−2πiξm

2j+1 : m ∈ Z}.

For this you will need to use the fact that ϕ̂ is zero outside a finite interval
to replace the limits of the integrals accordingly. You may use — without
proof—that E is an orthonormal basis for L2([−2j, 2j]). ]

(ii) For the remainder of the question you may use—without proof—that

lim
j→∞
‖f̂ − ϕ̂(2−j · )f̂‖L2(R) = 0, and

lim
j→−∞

‖ϕ̂(2−j · )f̂‖L2(R) = 0,

for any f ∈ L2(R). Use these facts together with (5) to show that

lim
j→∞
‖PVjf‖L2(R) = ‖f‖L2(R).

Deduce that limj→∞ ‖f − PVjf‖L2(R) = 0.
[Hint: Recall the following facts, which you may use without proof, about
orthonormal projections: PVj

2 = PVj , P
∗
Vj

= PVj , and ‖PVjg‖L2(R) ≤ ‖g‖L2(R),
for all g ∈ L2(R).]

(iii) Use (5) to show that limj→−∞ ‖PVjf‖L2(R) = 0.

(c) Use the results you have obtained so far to prove that {Vj}j∈Z defined in (b) is
a multiresolution approximation of L2(R).
[Hint: Use (b)(ii) and (b)(iii) to prove item (I) in the definition of a multire-
solution approximation. To show that

⋃
j∈Z Vj is dense in L2(R), it suffices to

establish that for any ε > 0, there exist a j ∈ Z and a function f̃ ∈ Vj , such that
‖f − f̃‖L2(R) < ε. To show this you can use limj→∞ ‖f − PVjf‖L2(R) = 0.]
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Problem 3

For this problem we use the two-indices notation fx,y to denote time-frequency
shifts, that is, if f : R → C is a function and x, y ∈ R, then we shall write
fx,y(t) = e2πiytf(t− x).

You may use—without proof—that for all f, h ∈ L2(R) the function
(x, y) 7→ 〈f, hx,y〉 is an L2(R2) function, that is∫

R2

|〈f, hx,y〉|2 dx dy <∞.

Furthermore, you may also use—without proof—the following identity:∫
R2

〈f, gx,y〉〈u, vx,y〉 dx dy = 〈f, u〉〈g, v〉 for all f, g, u, v ∈ L2(R). (IR)

(a) Consider a Weyl-Heisenberg system G = {gmT,nF}m,n∈Z with time-frequency
parameters T > 0 and F > 0. Assume that G is a frame for L2(R). Let S be the cor-
responding frame operator and g̃ = S−1g the canonical dual function. We know
that G̃ = {g̃mT,nF}m,n∈Z is the canonical dual frame to G, and that the following
reconstruction formula holds:

f =
∑
m,n∈Z

〈f, g̃mT,nF 〉gmT,nF for all f ∈ L2(R).

Using this reconstruction formula, prove that

〈f, h〉 =
∑
m,n∈Z

〈f, g̃mT+x,nF+y〉〈gmT+x,nF+y, h〉 (6)

for all f, h ∈ L2(R) and all x, y ∈ R.
[Hint: Expand f−x,−y using the reconstruction formula, and then take the inner
product of both sides with h−x,−y.]

(b) By integrating both sides of (6) over (x, y) ∈ [0, T ) × [0, F ) for a fixed pair of
functions f and h, show that 〈g, g̃〉 = TF . Justify the validity of any manipulati-
ons you do by verifying the following absolute convergence property:∑

m,n∈Z

∫ F

0

∫ T

0

|〈f, g̃mT+x,nF+y〉〈gmT+x,nF+y, h〉| dx dy <∞.

[Hint: For both calculations, rewrite the resulting expression as an integral over
R2 which does not involve infinite summation.]

(c) Assume the following result from the lectures without proof:

Lemma. Denote by K a countable index set. Let {hk}k∈K be a frame for a Hilbert space
H and {h̃k}k∈K its canonical dual frame. For a fixed z ∈ H, let ck = 〈z, h̃k〉 so that
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z =
∑

k∈K ckhk. If it is possible to find scalars {ak}k∈K such that z =
∑

k∈K akhk, then
we must have ∑

k∈K

|ak|2 =
∑
k∈K

|ck|2 +
∑
k∈K

|ck − ak|2.

Find two distinct sets {am,n}m,n∈Z such that g =
∑

m,n∈K am,ngmT,nF , and then use
the Lemma to deduce that TF ≤ 1.
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Problem 4

Define the following local-averaging operator

(Ax)n =

∫ n+1/2

n−1/2
x(t)dt, n ∈ Z,

that takes in a function x ∈ L2(R) and yields a sequence {(Ax)n}n∈Z of local ave-
rages.

(a) Verify that A is a bounded linear operator from L2(R) to `2(Z) and compute
the adjoint A∗ : `2(Z)→ L2(R) of A.

(b) Show that ‖A∗y‖L2(R) = ‖y‖`2(Z) for all y ∈ `2(Z).

(c) Define Im(A∗) = {A∗y : y ∈ `2(Z)}. You may use — without proof — that
Im(A∗) is a closed subspace of L2(R), and thus a Hilbert space in its own right.
For each n ∈ Z let en = 1[n−1/2, n+1/2] be the indicator function of the interval
[n − 1/2, n + 1/2]. Show that G := {en : n ∈ Z} is a subset of Im(A∗), and that
G is a frame for Im(A∗). Show that A can be interpreted as the analysis operator
associated with the frame G.
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