

Dept. ITET Prof. Dr. Helmut Bölcskei

Problem solutions "Mathematics of Information" August 29, 2018

1. Problem 1

(a) A unitary operator on a general Hilbert space \mathcal{X} is a bounded linear operator $U : \mathcal{X} \to \mathcal{X}$ that is invertible and satisfies $U^{-1} = U^*$.

(b)(i) Let *F* be a function in the space $L^2(\mathbb{R}^2)$. Then we have

$$\begin{aligned} \|\mathcal{T}_{a}F\|_{L^{2}(\mathbb{R}^{2})}^{2} &= \int_{\mathbb{R}^{2}} |F(y,y-x)|^{2} \,\mathrm{d}x \,\mathrm{d}y \\ &= \int_{\mathbb{R}} \left(\int_{\mathbb{R}} |F(y,y-x)|^{2} \,\mathrm{d}x \right) \mathrm{d}y \\ \stackrel{x \mapsto y-v}{=} \int_{\mathbb{R}} \left(\int_{\mathbb{R}} |F(y,y-(y-v))|^{2} \,\mathrm{d}v \right) \mathrm{d}y \\ &= \int_{\mathbb{R}} \left(\int_{\mathbb{R}} |F(y,v)|^{2} \,\mathrm{d}y \right) \mathrm{d}v = \|F\|_{L^{2}(\mathbb{R}^{2})}^{2}. \end{aligned}$$

Thus \mathcal{T}_a is a well-defined map on $L^2(\mathbb{R}^2)$. Now let F and G be two $L^2(\mathbb{R}^2)$ functions. Then

$$\langle \mathcal{T}_a F, G \rangle = \int_{\mathbb{R}^2} F(y, y - x) \overline{G(x, y)} \, \mathrm{d}x \, \mathrm{d}y \\ \stackrel{x \mapsto y - v}{=} \int_{\mathbb{R}^2} F(y, v) \overline{G(y - v, y)} \, \mathrm{d}v \, \mathrm{d}y \\ = \langle F, \mathcal{T}_a^* G \rangle,$$

where $\mathcal{T}_a^*G(u,v) = G(u-v,u)$. Now for any $F \in L^2(\mathbb{R}^2)$ and $(x,y) \in \mathbb{R}^2$ we have

$$\mathcal{T}_{a}^{*}\mathcal{T}_{a}F(x,y) = (\mathcal{T}_{a}F)(x-y,x) = F(x,x-(x-y)) = F(x,y),$$

$$\mathcal{T}_{a}\mathcal{T}_{a}^{*}F(x,y) = (\mathcal{T}_{a}^{*}F)(y,y-x) = F(y-(y-x),y) = F(x,y).$$

Therefore $\mathcal{T}_a^*\mathcal{T}_a = \mathcal{T}_a\mathcal{T}_a^* = \mathrm{Id}$ and hence \mathcal{T}_a is invertible with inverse \mathcal{T}_a^* .

(ii) Take any $f, g \in L^2(\mathbb{R})$. First note that $f \otimes \overline{g} \in L^2(\mathbb{R}^2)$, and thus also $\mathcal{T}_a(f \otimes \overline{g}) \in L^2(\mathbb{R}^2)$. Therefore $\mathcal{T}_a(f \otimes \overline{g})$ lies in the domain of \mathcal{F}_2 and so $\mathcal{F}_2\mathcal{T}_a(f \otimes \overline{g})$ is well defined. Now note that $(\mathcal{T}_a(f \otimes \overline{g}))(x,t) = f(t)\overline{g(t-x)}$. Applying the Cauchy-Schwarz inequality for an arbitrary, but fixed $x \in \mathbb{R}$, yields

$$\int_{\mathbb{R}} |f(t)\overline{g(t-x)}| dt = \langle |f|, |g(\cdot-x)| \rangle$$

$$\leq ||f||_{L^{2}(\mathbb{R})} ||g(\cdot-x)||_{L^{2}(\mathbb{R})}$$

$$= ||f||_{L^{2}(\mathbb{R})} ||g||_{L^{2}(\mathbb{R})} < \infty,$$

where in the last step we used $f, g \in L^2(\mathbb{R})$. Therefore $(\mathcal{T}_a(f \otimes \overline{g}))(x, \cdot) \in L^1(\mathbb{R})$, for all $x \in \mathbb{R}$, and thus the partial Fourier transform formula applies to $\mathcal{T}_a(f \otimes \overline{g})$. Finally, for any $(x, \omega) \in \mathbb{R}^2$ we have

$$\mathcal{F}_{2}\mathcal{T}_{a}(f\otimes\overline{g})(x,\omega) = \int_{\mathbb{R}} \left(\mathcal{T}_{a}(f\otimes\overline{g})\right)(x,t)e^{-2\pi i\omega t} \mathrm{d}t$$
$$= \int_{\mathbb{R}} f(t)\overline{g(t-x)}e^{-2\pi i\omega t} \mathrm{d}t = (V_{g}f)(x,\omega),$$

as desired.

(c) Now, $V_g f \in L^2(\mathbb{R}^2)$ for $f, g \in L^2(\mathbb{R})$ follows since $f \otimes \overline{g} \in L^2(\mathbb{R}^2)$ for such f and g, and \mathcal{T}_a and \mathcal{F}_2 are well-defined operators mapping $L^2(\mathbb{R}^2)$ functions to $L^2(\mathbb{R}^2)$ functions. Since \mathcal{T}_a and \mathcal{F}_2 are unitary, we have

$$\begin{split} \langle V_{g_1} f_1, V_{g_2} f_2 \rangle &= \langle \mathcal{F}_2 \mathcal{T}_a(f_1 \otimes \overline{g_1}), \mathcal{F}_2 \mathcal{T}_a(f_2 \otimes \overline{g_2}) \rangle \\ &= \langle \mathcal{T}_a(f_1 \otimes \overline{g_1}), \mathcal{T}_a(f_2 \otimes \overline{g_2}) \rangle \\ &= \langle f_1 \otimes \overline{g_1}, f_2 \otimes \overline{g_2} \rangle \\ &= \langle f_1, f_2 \rangle \overline{\langle g_1, g_2 \rangle}, \end{split}$$

for all $f_1, f_2, g_1, g_2 \in L^2(\mathbb{R})$.

Problem 2

(a)(i)

(ii) It is sufficient to verify that $\sum_{n \in \mathbb{Z}} |\hat{\varphi}(\xi + n)|^2 = 1$, for all $\xi \in \mathbb{R}$. Due to the 1-periodicity of $\sum_{n \in \mathbb{Z}} |\hat{\varphi}(\xi + n)|^2$, it suffices to verify this on an interval of length 1, for instance $[-\frac{1}{3}, \frac{2}{3}]$. Equality clearly holds when $\xi \in [-\frac{1}{3}, \frac{1}{3}]$, as in this case one summand evaluates to 1, and all the remaining ones evaluate to 0. When $\xi \in [\frac{1}{3}, \frac{2}{3}]$, we have

$$\sum_{n \in \mathbb{Z}} |\hat{\varphi}(\xi + n)|^2 = \cos^2 \left(\frac{\pi}{2}(3\xi - 1)\right) + \cos^2 \left(\frac{\pi}{2}(3(1 - \xi) - 1)\right)^2$$
$$= \sin^2 \left(\frac{3\pi}{2}\xi\right) + \cos^2 \left(\frac{3\pi}{2}\xi\right) = 1, \tag{1}$$

as desired.

(b)(i) First calculate

$$\begin{aligned} \widehat{\varphi_{j,k}}(\xi) &= \int_{\mathbb{R}} 2^{\frac{j}{2}} \varphi(2^{j}x - k) e^{-2\pi i \xi x} \, \mathrm{d}x \\ &\stackrel{x \mapsto 2^{-j}(y+k)}{=} \int_{\mathbb{R}} 2^{\frac{j}{2}} \varphi(y) e^{-2\pi i \xi 2^{-j} y} e^{-2\pi i \xi 2^{-j} k} 2^{-j} \, \mathrm{d}y \\ &= 2^{-\frac{j}{2}} e^{\frac{-2\pi i \xi k}{2^{j}}} \int_{\mathbb{R}} \varphi(y) e^{-2\pi i \left(\frac{\xi}{2^{j}}\right) y} \, \mathrm{d}y \\ &= 2^{-\frac{j}{2}} \hat{\varphi}\left(\frac{\xi}{2^{j}}\right) e^{\frac{-2\pi i \xi k}{2^{j}}}. \end{aligned}$$

Now we have

$$\begin{aligned} \|P_{V_j}f\|_{L^2(\mathbb{R})}^2 + \|P_{V_j}(f(\cdot - 2^{-(j+1)}))\|_{L^2(\mathbb{R})}^2 &= \\ &= \sum_{k \in \mathbb{Z}} \left| \int_{\mathbb{R}} f(x) \cdot \overline{\varphi_{j,k}(x)} \mathrm{d}x \right|^2 + \sum_{k \in \mathbb{Z}} \left| \int_{\mathbb{R}} f(x - 2^{-(j+1)}) \cdot \overline{\varphi_{j,k}(x)} \mathrm{d}x \right|^2 \\ &= \sum_{k \in \mathbb{Z}} \left| \int_{\mathbb{R}} \hat{f}(\xi) \cdot 2^{-\frac{j}{2}} \hat{\varphi}\left(\frac{\xi}{2^j}\right) e^{\frac{2\pi i\xi k}{2^j}} \mathrm{d}\xi \right|^2 + \sum_{k \in \mathbb{Z}} \left| \int_{\mathbb{R}} \hat{f}(\xi) e^{-\frac{2\pi i\xi}{2^{j+1}}} \cdot 2^{-\frac{j}{2}} \hat{\varphi}\left(\frac{\xi}{2^j}\right) e^{\frac{2\pi i\xi k}{2^j}} \mathrm{d}\xi \right|^2 \end{aligned}$$

$$\tag{2}$$

$$= \sum_{\substack{m \in \mathbb{Z} \\ m \text{ even}}} \left\{ \left| \int_{\mathbb{R}} \hat{f}(\xi) \cdot 2^{-\frac{j}{2}} \hat{\varphi}\left(\frac{\xi}{2^{j}}\right) e^{\frac{2\pi i\xi m}{2^{j+1}}} \mathrm{d}\xi \right|^{2} + \left| \int_{\mathbb{R}} \hat{f}(\xi) 2^{-\frac{j}{2}} \hat{\varphi}\left(\frac{\xi}{2^{j}}\right) e^{\frac{2\pi i\xi (m-1)}{2^{j+1}}} \mathrm{d}\xi \right|^{2} \right\}$$

$$= \sum_{m \in \mathbb{Z}} \left| \int_{\mathbb{R}} \hat{f}(\xi) \hat{\varphi}\left(\frac{\xi}{2^{j}}\right) 2^{-\frac{j}{2}} e^{\frac{2\pi i \xi m}{2^{j+1}}} \mathrm{d}\xi \right|^{2}$$
(3)

$$= \sum_{m \in \mathbb{Z}} \left| \int_{-2^{j}}^{2^{j}} \hat{f}(\xi) \hat{\varphi}\left(\frac{\xi}{2^{j}}\right) 2^{\frac{1}{2}} 2^{-\frac{j+1}{2}} e^{\frac{2\pi i \xi m}{2^{j+1}}} \mathrm{d}\xi \right|^{2}$$
(4)

$$= 2 \left\| \hat{\varphi}(2^{-j} \cdot) \hat{f} \right\|_{L^2([-2^j, 2^j])}^2 \tag{5}$$

$$= 2 \left\| \hat{\varphi}(2^{-j} \cdot) \hat{f} \right\|_{L^2(\mathbb{R})}^2, \tag{6}$$

where we used the Plancherel identity in (2), (4) and (6) hold since $\sup \hat{\varphi}(2^{-j} \cdot) \subset [-2^j, 2^j]$, and (5) follows since $\{e_m(\xi) = 2^{-\frac{j+1}{2}}e^{-\frac{2\pi i\xi m}{2^j+1}} : m \in \mathbb{Z}\}$ is an orthonormal basis for $L^2([-2^j, 2^j])$.

(ii) Since $\|\hat{\varphi}(2^{-j}\cdot)\hat{f} - \hat{f}\|_{L^2(\mathbb{R}^2)} \to 0$ as $j \to \infty$, we have $\lim_{j\to\infty} \|\hat{\varphi}(2^{-j}\cdot)\hat{f}\|_{L^2(\mathbb{R})} = \|\hat{f}\|_{L^2(\mathbb{R})} = \|f\|_{L^2(\mathbb{R})}$. Now we have

$$\begin{split} \liminf_{j \to \infty} \|P_{V_j} f\|_{L^2(\mathbb{R})}^2 &= \liminf_{j \to \infty} \left[2 \|\hat{\varphi}(2^{-j} \cdot) \hat{f}\|_{L^2(\mathbb{R})}^2 - \|P_{V_j}(f(\cdot - 2^{-(j+1)}))\|_{L^2(\mathbb{R})}^2 \right] \\ &= 2 \|f\|_{L^2(\mathbb{R})}^2 - \limsup_{j \to \infty} \|P_{V_j} f(\cdot - 2^{-(j+1)}))\|_{L^2(\mathbb{R})}^2 \\ &\geq 2 \|f\|_{L^2(\mathbb{R})}^2 - \limsup_{j \to \infty} \|f(\cdot - 2^{-(j+1)}))\|_{L^2(\mathbb{R})}^2 \\ &= 2 \|f\|_{L^2(\mathbb{R})}^2 - \limsup_{j \to \infty} \|f\|_{L^2(\mathbb{R})}^2 \\ &= \|f\|_{L^2(\mathbb{R})}^2, \end{split}$$
(7)

where in (7) we used the fact that projections are norm-bounded by 1. On the other hand $||P_{V_j}f||_{L^2(\mathbb{R})} \leq ||f||_{L^2(\mathbb{R})}$ for all $j \in \mathbb{Z}$, so $||P_{V_j}f||_{L^2(\mathbb{R})} \rightarrow ||f||_{L^2(\mathbb{R})}$ as $j \rightarrow \infty$. We can now finally deduce

$$\|f - P_{V_j}f\|_{L^2(\mathbb{R})}^2 = \|f\|_{L^2(\mathbb{R})}^2 - \underbrace{\langle f - P_{V_j}f, P_{V_j}f \rangle}_{= 0} - \|P_{V_j}f\|_{L^2(\mathbb{R})}^2 \to 0, \text{ as } j \to \infty,$$
(8)

where $\langle f - P_{V_j} f, P_{V_j} f \rangle = 0$ follows by the properties $P_{V_j}^2 = P_{V_j}$ and $P_{V_j}^* = P_{V_j}$.

(iii) We have

$$\begin{aligned} \|P_{V_j}f\|_{L^2(\mathbb{R})}^2 &\leq \|P_{V_j}f\|_{L^2(\mathbb{R})}^2 + \|P_{V_j}(f(\cdot - 2^{-(j+1)}))\|_{L^2(\mathbb{R})}^2 \\ &= 2\left\|\hat{\varphi}(2^{-j}\cdot)\hat{f}\right\|_{L^2(\mathbb{R})}^2 \to 0 \quad \text{as } j \to -\infty, \end{aligned}$$
(9)

where the last step follows from the assumption in the problem statement.

(c) We verify the four conditions in the definition of the multiresolution approximation:

- (I) Let $f \in \bigcap_{j \in \mathbb{Z}} V_j$, i.e., $f \in V_j$ for all $j \in \mathbb{Z}$. Then $f = P_{V_j} f$ for all $j \in \mathbb{Z}$, so by (b)(iii) we have $||f||_{L^2(\mathbb{R})} = ||P_{V_j}f||_{L^2(\mathbb{R})} \to 0$ as $j \to -\infty$, and hence $||f||_{L^2(\mathbb{R})} = 0$. Therefore $\bigcap_{j \in \mathbb{Z}} V_j = 0$, which implies f = 0. Now, let $f \in L^2(\mathbb{R})$ be arbitrary. Then by (b)(ii) we have that for any $\epsilon > 0$ we can find a $j_{\epsilon} \in \mathbb{Z}$ such that $||f - P_{V_{j_{\epsilon}}}f||_{L^2(\mathbb{R})} < \epsilon$. Since $P_{V_{j_{\epsilon}}}f \in V_{j_{\epsilon}} \subset \bigcup_{j \in \mathbb{Z}} V_j$, and ϵ was arbitrary, we deduce that $\bigcup_{i \in \mathbb{Z}} V_j$ is dense in $L^2(\mathbb{R})$.
- (II) Let $f \in L^2(\mathbb{R})$. By definition of V_j , we have $f \in V_j$ if and only if $f(2^{-j} \cdot) \in V_0$. But $f(2^{-j} \cdot) = f(2^{-(j+1)}(2 \cdot))$, so $f \in V_j$ is equivalent to $f(2^{-(j+1)}(2 \cdot)) \in V_0$. Now, by definition of V_{j+1} , we see that $f(2^{-(j+1)}(2 \cdot)) \in V_0$ is equivalent to $f(2 \cdot) \in V_{j+1}$. Therefore, we have shown that $f \in V_j$ if and only if $f(2 \cdot) \in V_{j+1}$.
- (III) Since $\{\varphi(\cdot k) : k \in \mathbb{Z}\}$ is an orthonormal basis for V_0 , we can expand an arbitrary $f \in V_0$ according to

$$f = \sum_{l \in \mathbb{Z}} a_l \, \varphi(\cdot - l),$$

for some $\{a_l\}_{l \in \mathbb{Z}} \in \ell^2(\mathbb{Z})$. Then, we have

$$f(\cdot - k) = \sum_{l \in \mathbb{Z}} a_l \,\varphi(\cdot - k - l) \stackrel{l \mapsto l+k}{=} \sum_{l \in \mathbb{Z}} a_{l+k} \,\varphi(\cdot - l),$$

and so $f(\cdot - k) \in V_0$, for all $k \in \mathbb{Z}$ and $f \in V_0$.

(IV) Since $\{\varphi(\cdot - k) : k \in \mathbb{Z}\}$ is an orthonormal basis for V_0 , it is, in particular, a Riesz basis for V_0 .

Problem 3

(a) Let $f, g \in L^2(\mathbb{R})$ and $x, y \in \mathbb{R}$ be arbitrary. We have the following reconstruction formula:

$$f_{-x,-y} = \sum_{m,n\in\mathbb{Z}} \langle f_{-x,-y}, \tilde{g}_{mT,nF} \rangle g_{mT,nF}$$
$$= \sum_{m,n\in\mathbb{Z}} \langle f_{-x,0}, \tilde{g}_{mT,nF+y} \rangle g_{mT,nF}$$
$$= \sum_{m,n\in\mathbb{Z}} \langle f, e^{-2\pi i (nF+y)x} \tilde{g}_{mT+x,nF+y} \rangle g_{mT,nF}.$$

Now we take the inner product of both sides of this equation with $h_{-x,-y}$ to obtain

$$\begin{split} \langle f_{-x,-y}, h_{-x,-y} \rangle &= \sum_{m,n \in \mathbb{Z}} \langle f, e^{-2\pi i (nF+y)x} \, \tilde{g}_{mT+x,nF+y} \rangle \langle g_{mT,nF}, h_{-x,-y} \rangle \\ &= \sum_{m,n \in \mathbb{Z}} \langle f, e^{-2\pi i (nF+y)x} \, \tilde{g}_{mT+x,nF+y} \rangle \langle g_{mT,nF+y}, h_{-x,0} \rangle \\ &= \sum_{m,n \in \mathbb{Z}} \langle f, e^{-2\pi i (nF+y)x} \, \tilde{g}_{mT+x,nF+y} \rangle \langle e^{-2\pi i (nF+y)x} \, g_{mT+x,nF+y}, h \rangle \\ &= \sum_{m,n \in \mathbb{Z}} \langle f, \tilde{g}_{mT+x,nF+y} \rangle \langle g_{mT+x,nF+y}, h \rangle. \end{split}$$

Finally, note that $\langle f_{-x,-y}, h_{-x,-y} \rangle = \langle f, h \rangle$. Together with the previous equation, this yields the desired identity.

(b) Integrating as suggested, we get

$$TF\langle f,h\rangle = \int_{0}^{F} \int_{0}^{T} \sum_{m,n\in\mathbb{Z}} \langle f, \tilde{g}_{mT+x,nF+y} \rangle \langle g_{mT+x,nF+y},h\rangle \,\mathrm{d}x \,\mathrm{d}y$$

$$= \sum_{m,n\in\mathbb{Z}} \int_{0}^{F} \int_{0}^{T} \langle f, \tilde{g}_{mT+x,nF+y} \rangle \langle g_{mT+x,nF+y},h\rangle \,\mathrm{d}x \,\mathrm{d}y$$

$$= \sum_{m,n\in\mathbb{Z}} \int_{nF}^{(n+1)F} \int_{mT}^{(m+1)T} \langle f, \tilde{g}_{x,y} \rangle \langle g_{x,y},h \rangle \,\mathrm{d}x \,\mathrm{d}y$$

$$= \int_{\mathbb{R}^{2}} \langle f, \tilde{g}_{x,y} \rangle \langle g_{x,y},h \rangle \,\mathrm{d}x \,\mathrm{d}y = \int_{\mathbb{R}^{2}} \langle f, \tilde{g}_{x,y} \rangle \overline{\langle h, g_{x,y} \rangle} \,\mathrm{d}x \,\mathrm{d}y$$

$$= \langle f,h \rangle \overline{\langle \tilde{g},g \rangle},$$
(10)

where the last step follows by the identity (IR) given in the problem statement. Since *f* and *h* were arbitrary (and in particular can be chosen so that $\langle f, h \rangle = 1$), we deduce $\langle g, \tilde{g} \rangle = TF$. To justify the change of order of summation and integration in (10), observe that

$$\sum_{m,n\in\mathbb{Z}} \int_{0}^{F} \int_{0}^{T} |\langle f, \tilde{g}_{mT+x,nF+y} \rangle \langle g_{mT+x,nF+y}, h \rangle| \, \mathrm{d}x \, \mathrm{d}y =$$

=
$$\int_{\mathbb{R}^{2}} |\langle f, \tilde{g}_{x,y} \rangle| \, |\langle g_{x,y}, h \rangle| \, \mathrm{d}x \, \mathrm{d}y$$

=
$$\langle F_{1}, F_{2} \rangle_{L^{2}(\mathbb{R}^{2})} \leq ||F_{1}||_{L^{2}(\mathbb{R}^{2})} ||F_{2}||_{L^{2}(\mathbb{R}^{2})} < \infty, \qquad (11)$$

where $F_1(x, y) = |\langle f, \tilde{g}_{x,y} \rangle|$ and $F_2(x, y) = |\langle h, g_{x,y} \rangle|$ are $L^2(\mathbb{R}^2)$ functions by the assumption at the beginning of the problem statement.

(c) We have the following two expansions:

$$g = \sum_{m,n \in \mathbb{Z}} \langle g, \tilde{g}_{mT,nF} \rangle g_{mT,nF} = 1 \cdot g_{0,0} + \sum_{\substack{m,n \in \mathbb{Z} \\ (m,n) \neq (0,0)}} 0 \cdot g_{mT,nF}.$$

Now, by the Lemma given in the problem statement, we have

$$1^{2} + \sum_{\substack{m,n \in \mathbb{Z} \\ (m,n) \neq (0,0)}} 0^{2} = \sum_{\substack{m,n \in \mathbb{Z} \\ (m,n) \neq (0,0)}} |\langle g, \tilde{g}_{mT,nF} \rangle|^{2} + |\langle g, \tilde{g}_{0,0} \rangle - 1|^{2} + \sum_{\substack{m,n \in \mathbb{Z} \\ (m,n) \neq (0,0)}} |\langle g, \tilde{g}_{0,0} \rangle|^{2} + |\langle g, \tilde{g}_{0,0} \rangle - 1|^{2} \ge |\langle g, \tilde{g} \rangle|^{2} = (TF)^{2},$$
(12)

where the first inequality is obtained by discarding all the terms on the right-hand side of the first equality except for the summands with (m, n) = (0, 0). Thus, we have shown that $TF \leq 1$.

Problem 4

(a) Let $e_n = \mathbb{1}_{[n-1/2, n+1/2]}$ be the indicator function of the interval [n - 1/2, n + 1/2]. Note that $||e_n||_{L^2(\mathbb{R})} = 1$, and so $e_n \in L^2(\mathbb{R})$. Then, by the Cauchy-Schwarz inequality we have

$$\left| \int_{n-1/2}^{n+1/2} x(t) \, \mathrm{d}t \right| = |\langle e_n, x \rangle| \le ||e_n||_{L^2(\mathbb{R})} ||x||_{L^2(\mathbb{R})} = ||x||_{L^2(\mathbb{R})}$$

for any $x \in L^2(\mathbb{R})$ and $n \in \mathbb{Z}$, and thus $(\mathcal{A}x)_n$ is well-defined for all $x \in L^2(\mathbb{R})$ and $n \in \mathbb{Z}$. To show that $\mathcal{A}x \in \ell^2(\mathbb{Z})$ whenever $x \in L^2(\mathbb{R})$, we again use the Cauchy-Schwarz inequality to get

$$\|\mathcal{A}x\|_{\ell^{2}(\mathbb{Z})}^{2} = \sum_{n \in \mathbb{Z}} |(\mathcal{A}x)_{n}|^{2} = \sum_{n \in \mathbb{Z}^{2}} \left| \int_{n-1/2}^{n+1/2} x(t) \, \mathrm{d}t \right|^{2}$$
$$\leq \sum_{n \in \mathbb{Z}^{2}} \int_{n-1/2}^{n+1/2} |x(t)|^{2} \, \mathrm{d}t = \int_{\mathbb{R}} |x(t)|^{2} \, \mathrm{d}t = \|x\|_{L^{2}(\mathbb{R})}^{2},$$

for all $x \in L^2(\mathbb{R})$. In particular, we have $\|\mathcal{A}x\|_{\ell^2(\mathbb{Z})} < \infty$, and so \mathcal{A} is well-defined. Also, \mathcal{A} is linear, because integration is a linear operation. Finally, since $\|\mathcal{A}x\|_{\ell^2(\mathbb{Z})}^2 \leq \|x\|_{L^2(\mathbb{R})}$, for all $x \in L^2(\mathbb{R})$, we have that \mathcal{A} is bounded.

By definition of adjoint operators, A^* is the unique operator such that

$$\langle \mathcal{A}x, y \rangle_{\ell^2(\mathbb{Z})} = \langle x, \mathcal{A}^*y \rangle_{L^2(\mathbb{R})},$$

for all $x \in L^2(\mathbb{R})$ and $y \in \ell^2(\mathbb{Z})$. For arbitrary, but fixed x and y, we calculate

$$\langle \mathcal{A}x, y \rangle_{\ell^{2}(\mathbb{Z})} = \sum_{n \in \mathbb{Z}} (\mathcal{A}x)_{n} \cdot \overline{y_{n}} = \sum_{n \in \mathbb{Z}} \int_{n-1/2}^{n+1/2} x(t) \, \mathrm{d}t \cdot \overline{y_{n}}$$

$$= \sum_{n \in \mathbb{Z}} \int_{n-1/2}^{n+1/2} x(t) \, \overline{y_{n}} \, \mathrm{d}t$$

$$= \int_{\mathbb{R}} x(t) (\mathcal{A}^{*}y)(t) \, \mathrm{d}y,$$

$$(13)$$

where $\mathcal{A}^* y$ is the piecewise-constant function given by $(\mathcal{A}^* y)(t) = y_n$ for $t \in [n - \frac{1}{2}, n + \frac{1}{2})$.

(b) It follows from the (a) that

$$\|\mathcal{A}^* y\|_{L^2(\mathbb{R})}^2 = \sum_{n \in \mathbb{Z}} \int_{n-1/2}^{n+1/2} |y_n|^2 \, \mathrm{d}t = \sum_{n \in \mathbb{Z}} |y_n|^2 = \|y\|_{\ell^2(\mathbb{Z})}^2 \quad \text{for all } y \in \ell^2(\mathbb{Z}),$$

as desired.

(c) Let $\{e_n\}_{n\in\mathbb{Z}}$ be the indicator functions defined at the beginning of (a). To show that $\mathcal{G} = \{e_n : n \in \mathbb{Z}\}$ is a frame for $\operatorname{Im}(\mathcal{A}^*)$, take an arbitrary $x = \mathcal{A}^* y \in \operatorname{Im}(\mathcal{A}^*)$.

Then, we have

$$\sum_{n \in \mathbb{Z}} |\langle x, e_n \rangle|^2 = \sum_{n \in \mathbb{Z}} |\langle \mathcal{A}^* y, e_n \rangle|^2 = \sum_{n \in \mathbb{Z}} \left| \int_{n-1/2}^{n+1/2} y_n \, \mathrm{d}t \right|^2$$
$$= \|y\|_{\ell^2(\mathbb{Z})}^2 = \|\mathcal{A}^* y\|_{L^2(\mathbb{R})}^2 = \|x\|_{L^2(\mathbb{R})}^2,$$

and so \mathcal{G} is a (tight) frame for $\operatorname{Im}(\mathcal{A}^*)$. Thus we have

$$\mathcal{A}x = \{ \langle x, e_n \rangle : n \in \mathbb{Z} \},\$$

for all $x \in \text{Im}(\mathcal{A}^*) \subset L^2(\mathbb{R})$, and so \mathcal{A} is the analysis operator associated with the frame \mathcal{G} for the Hilbert space $\text{Im}(\mathcal{A}^*)$.