Problem solutions
 "Mathematics of Information" August 29, 2018

1. Problem 1

(a) A unitary operator on a general Hilbert space \mathcal{X} is a bounded linear operator $U: \mathcal{X} \rightarrow \mathcal{X}$ that is invertible and satisfies $U^{-1}=U^{*}$.
(b)(i) Let F be a function in the space $L^{2}\left(\mathbb{R}^{2}\right)$. Then we have

$$
\begin{aligned}
&\left\|\mathcal{T}_{a} F\right\|_{L^{2}\left(\mathbb{R}^{2}\right)}^{2}=\int_{\mathbb{R}^{2}}|F(y, y-x)|^{2} \mathrm{~d} x \mathrm{~d} y \\
&=\int_{\mathbb{R}}\left(\int_{\mathbb{R}}|F(y, y-x)|^{2} \mathrm{~d} x\right) \mathrm{d} y \\
& x \stackrel{x \mapsto y-v}{ } \int_{\mathbb{R}}\left(\int_{\mathbb{R}}|F(y, y-(y-v))|^{2} \mathrm{~d} v\right) \mathrm{d} y \\
&=\int_{\mathbb{R}}\left(\int_{\mathbb{R}}|F(y, v)|^{2} \mathrm{~d} y\right) \mathrm{d} v=\|F\|_{L^{2}\left(\mathbb{R}^{2}\right)}^{2} .
\end{aligned}
$$

Thus \mathcal{T}_{a} is a well-defined map on $L^{2}\left(\mathbb{R}^{2}\right)$. Now let F and G be two $L^{2}\left(\mathbb{R}^{2}\right)$ functions. Then

$$
\begin{aligned}
\left\langle\mathcal{T}_{a} F, G\right\rangle & =\int_{\mathbb{R}^{2}} F(y, y-x) \overline{G(x, y)} \mathrm{d} x \mathrm{~d} y \\
x \mapsto \underline{=}-v & \int_{\mathbb{R}^{2}} F(y, v) \overline{G(y-v, y)} \mathrm{d} v \mathrm{~d} y \\
& =\left\langle F, \mathcal{T}_{a}^{*} G\right\rangle,
\end{aligned}
$$

where $\mathcal{T}_{a}^{*} G(u, v)=G(u-v, u)$. Now for any $F \in L^{2}\left(\mathbb{R}^{2}\right)$ and $(x, y) \in \mathbb{R}^{2}$ we have

$$
\begin{aligned}
& \mathcal{T}_{a}^{*} \mathcal{T}_{a} F(x, y)=\left(\mathcal{T}_{a} F\right)(x-y, x)=F(x, x-(x-y))=F(x, y), \\
& \mathcal{T}_{a} \mathcal{T}_{a}^{*} F(x, y)=\left(\mathcal{T}_{a}^{*} F\right)(y, y-x)=F(y-(y-x), y)=F(x, y) .
\end{aligned}
$$

Therefore $\mathcal{T}_{a}{ }^{*} \mathcal{T}_{a}=\mathcal{T}_{a} \mathcal{T}_{a}{ }^{*}=\mathrm{Id}$ and hence \mathcal{T}_{a} is invertible with inverse $\mathcal{T}_{a}{ }^{*}$.
(ii) Take any $f, g \in L^{2}(\mathbb{R})$. First note that $f \otimes \bar{g} \in L^{2}\left(\mathbb{R}^{2}\right)$, and thus also $\mathcal{T}_{a}(f \otimes \bar{g}) \in$ $L^{2}\left(\mathbb{R}^{2}\right)$. Therefore $\mathcal{T}_{a}(f \otimes \bar{g})$ lies in the domain of \mathcal{F}_{2} and so $\mathcal{F}_{2} \mathcal{T}_{a}(f \otimes \bar{g})$ is well defined. Now note that $\left(\mathcal{T}_{a}(f \otimes \bar{g})\right)(x, t)=f(t) \overline{g(t-x)}$. Applying the CauchySchwarz inequality for an arbitrary, but fixed $x \in \mathbb{R}$, yields

$$
\begin{aligned}
\int_{\mathbb{R}}|f(t) \overline{g(t-x)}| \mathrm{d} t & =\langle | f|,|g(\cdot-x)|\rangle \\
& \leq\|f\|_{L^{2}(\mathbb{R})}\|g(\cdot-x)\|_{L^{2}(\mathbb{R})} \\
& =\|f\|_{L^{2}(\mathbb{R})}\|g\|_{L^{2}(\mathbb{R})}<\infty,
\end{aligned}
$$

where in the last step we used $f, g \in L^{2}(\mathbb{R})$. Therefore $\left(\mathcal{T}_{a}(f \otimes \bar{g})\right)(x, \cdot) \in L^{1}(\mathbb{R})$, for all $x \in \mathbb{R}$, and thus the partial Fourier transform formula applies to $\mathcal{T}_{a}(f \otimes \bar{g})$. Finally, for any $(x, \omega) \in \mathbb{R}^{2}$ we have

$$
\begin{aligned}
\mathcal{F}_{2} \mathcal{T}_{a}(f \otimes \bar{g})(x, \omega) & =\int_{\mathbb{R}}\left(\mathcal{T}_{a}(f \otimes \bar{g})\right)(x, t) e^{-2 \pi i \omega t} \mathrm{~d} t \\
& =\int_{\mathbb{R}} f(t) \overline{g(t-x)} e^{-2 \pi i \omega t} \mathrm{~d} t=\left(V_{g} f\right)(x, \omega),
\end{aligned}
$$

as desired.
(c) Now, $V_{g} f \in L^{2}\left(\mathbb{R}^{2}\right)$ for $f, g \in L^{2}(\mathbb{R})$ follows since $f \otimes \bar{g} \in L^{2}\left(\mathbb{R}^{2}\right)$ for such f and g, and \mathcal{T}_{a} and \mathcal{F}_{2} are well-defined operators mapping $L^{2}\left(\mathbb{R}^{2}\right)$ functions to $L^{2}\left(\mathbb{R}^{2}\right)$ functions. Since \mathcal{T}_{a} and \mathcal{F}_{2} are unitary, we have

$$
\begin{aligned}
\left\langle V_{g_{1}} f_{1}, V_{g_{2}} f_{2}\right\rangle & =\left\langle\mathcal{F}_{2} \mathcal{T}_{a}\left(f_{1} \otimes \overline{g_{1}}\right), \mathcal{F}_{2} \mathcal{T}_{a}\left(f_{2} \otimes \overline{g_{2}}\right)\right\rangle \\
& =\left\langle\mathcal{T}_{a}\left(f_{1} \otimes \overline{g_{1}}\right), \mathcal{T}_{a}\left(f_{2} \otimes \overline{g_{2}}\right)\right\rangle \\
& =\left\langle f_{1} \otimes \overline{g_{1}}, f_{2} \otimes \overline{g_{2}}\right\rangle \\
& =\left\langle f_{1}, f_{2}\right\rangle\left\langle\left\langle g_{1}, g_{2}\right\rangle,\right.
\end{aligned}
$$

for all $f_{1}, f_{2}, g_{1}, g_{2} \in L^{2}(\mathbb{R})$.

Problem 2

(a)(i)

(ii) It is sufficient to verify that $\sum_{n \in \mathbb{Z}}|\hat{\varphi}(\xi+n)|^{2}=1$, for all $\xi \in \mathbb{R}$. Due to the 1-periodicity of $\sum_{n \in \mathbb{Z}}|\hat{\varphi}(\xi+n)|^{2}$, it suffices to verify this on an interval of length 1 , for instance $\left[-\frac{1}{3}, \frac{2}{3}\right]$. Equality clearly holds when $\xi \in\left[-\frac{1}{3}, \frac{1}{3}\right]$, as in this case one summand evaluates to 1 , and all the remaining ones evaluate to 0 . When $\xi \in\left[\frac{1}{3}, \frac{2}{3}\right]$, we have

$$
\begin{align*}
\sum_{n \in \mathbb{Z}}|\hat{\varphi}(\xi+n)|^{2} & =\cos ^{2}\left(\frac{\pi}{2}(3 \xi-1)\right)+\cos ^{2}\left(\frac{\pi}{2}(3(1-\xi)-1)\right)^{2} \\
& =\sin ^{2}\left(\frac{3 \pi}{2} \xi\right)+\cos ^{2}\left(\frac{3 \pi}{2} \xi\right)=1 \tag{1}
\end{align*}
$$

as desired.
(b)(i) First calculate

$$
\begin{aligned}
\widehat{\varphi_{j, k}}(\xi) & =\int_{\mathbb{R}} 2^{\frac{j}{2}} \varphi\left(2^{j} x-k\right) e^{-2 \pi i \xi x} \mathrm{~d} x \\
x \mapsto 2^{-j}(y+k) & =\int_{\mathbb{R}} 2^{\frac{j}{2}} \varphi(y) e^{-2 \pi i \xi 2^{-j} y} e^{-2 \pi i \xi 2^{-j} k} 2^{-j} \mathrm{~d} y \\
& =2^{-\frac{j}{2}} e^{\frac{-2 \pi i j k}{2 j}} \int_{\mathbb{R}} \varphi(y) e^{-2 \pi i\left(\frac{\xi}{2 j}\right) y} \mathrm{~d} y \\
& =2^{-\frac{j}{2}} \hat{\varphi}\left(\frac{\xi}{2^{j}}\right) e^{\frac{-2 \pi i \xi k}{2 j}} .
\end{aligned}
$$

Now we have

$$
\begin{align*}
&\left\|P_{V_{j}} f\right\|_{L^{2}(\mathbb{R})}^{2}+\left\|P_{V_{j}}\left(f\left(\cdot-2^{-(j+1)}\right)\right)\right\|_{L^{2}(\mathbb{R})}^{2}= \\
&= \sum_{k \in \mathbb{Z}}\left|\int_{\mathbb{R}} f(x) \cdot \overline{\varphi_{j, k}(x)} \mathrm{d} x\right|^{2}+\sum_{k \in \mathbb{Z}}\left|\int_{\mathbb{R}} f\left(x-2^{-(j+1)}\right) \cdot \overline{\varphi_{j, k}(x)} \mathrm{d} x\right|^{2} \\
&= \sum_{k \in \mathbb{Z}}\left|\int_{\mathbb{R}} \hat{f}(\xi) \cdot 2^{-\frac{j}{2}} \hat{\varphi}\left(\frac{\xi}{2^{j}}\right) e^{\frac{2 \pi i \xi k}{2 j}} \mathrm{~d} \xi\right|^{2}+\sum_{k \in \mathbb{Z}}\left|\int_{\mathbb{R}} \hat{f}(\xi) e^{-\frac{2 \pi i \xi}{2^{j+1}}} \cdot 2^{-\frac{j}{2}} \hat{\varphi}\left(\frac{\xi}{2^{j}}\right) e^{\frac{2 \pi i \xi k k}{2^{j}}} \mathrm{~d} \xi\right|^{2} \\
& \stackrel{k=m / 2}{=} \sum_{\substack{m \in \mathbb{Z} \\
m \text { even }}}\left\{\left|\int_{\mathbb{R}} \hat{f}(\xi) \cdot 2^{-\frac{j}{2}} \hat{\varphi}\left(\frac{\xi}{2^{j}}\right) e^{\frac{2 \pi j \xi m}{2^{j+1}}} \mathrm{~d} \xi\right|^{2}+\left|\int_{\mathbb{R}} \hat{f}(\xi) 2^{-\frac{j}{2}} \hat{\varphi}\left(\frac{\xi}{2^{j}}\right) e^{\frac{2 \pi i \xi(m-1)}{2^{j+1}}} \mathrm{~d} \xi\right|^{2}\right\} \tag{2}\\
&= \sum_{m \in \mathbb{Z}}\left|\int_{\mathbb{R}} \hat{f}(\xi) \hat{\varphi}\left(\frac{\xi}{2^{j}}\right) 2^{-\frac{j}{2}} e^{\frac{2 \pi i \xi m}{2 j+1}} \mathrm{~d} \xi\right|^{2} \tag{3}\\
&= \sum_{m \in \mathbb{Z}}\left|\int_{-2^{j}}^{2^{j}} \hat{f}(\xi) \hat{\varphi}\left(\frac{\xi}{2^{j}}\right) 2^{\frac{1}{2}} 2^{-\frac{j+1}{2}} e^{\frac{2 \pi i \xi m m}{2 j+1}} \mathrm{~d} \xi\right|^{2} \tag{4}\\
&= 2\left\|\hat{\varphi}\left(2^{-j} \cdot\right) \hat{f}\right\|_{L^{2}\left(\left[-2^{j}, 2^{2 j]}\right)\right.}^{2} \tag{5}\\
&= 2\left\|\hat{\varphi}\left(2^{-j} \cdot\right) \hat{f}\right\|_{L^{2}(\mathbb{R})}^{2} \tag{6}
\end{align*}
$$

where we used the Plancherel identity in (2), (4) and (6) hold since $\operatorname{supp} \hat{\varphi}\left(2^{-j} \cdot\right) \subset\left[-2^{j}, 2^{j}\right]$, and (5) follows since $\left\{e_{m}(\xi)=2^{-\frac{j+1}{2}} e^{-\frac{2 \pi i \xi m}{2^{j+1}}}: m \in \mathbb{Z}\right\}$ is an orthonormal basis for $L^{2}\left(\left[-2^{j}, 2^{j}\right]\right)$.
(ii) Since $\left\|\hat{\varphi}\left(2^{-j} \cdot\right) \hat{f}-\hat{f}\right\|_{L^{2}\left(\mathbb{R}^{2}\right)} \rightarrow 0$ as $j \rightarrow \infty$, we have $\lim _{j \rightarrow \infty}\left\|\hat{\varphi}\left(2^{-j} \cdot\right) \hat{f}\right\|_{L^{2}(\mathbb{R})}=$ $\|\hat{f}\|_{L^{2}(\mathbb{R})}=\|f\|_{L^{2}(\mathbb{R})}$. Now we have

$$
\begin{align*}
\liminf _{j \rightarrow \infty}\left\|P_{V_{j}} f\right\|_{L^{2}(\mathbb{R})}^{2} & =\underset{j \rightarrow \infty}{\liminf }\left[2\left\|\hat{\varphi}\left(2^{-j} \cdot\right) \hat{f}\right\|_{L^{2}(\mathbb{R})}^{2}-\left\|P_{V_{j}}\left(f\left(\cdot-2^{-(j+1)}\right)\right)\right\|_{L^{2}(\mathbb{R})}^{2}\right] \\
& \left.=2\|f\|_{L^{2}(\mathbb{R})}^{2}-\underset{j \rightarrow \infty}{\limsup } \| P_{V_{j}} f\left(\cdot-2^{-(j+1)}\right)\right) \|_{L^{2}(\mathbb{R})}^{2} \\
& \left.\geq 2\|f\|_{L^{2}(\mathbb{R})}^{2}-\underset{j \rightarrow \infty}{\limsup } \| f\left(\cdot-2^{-(j+1)}\right)\right) \|_{L^{2}(\mathbb{R})}^{2} \tag{7}\\
& =2\|f\|_{L^{2}(\mathbb{R})}^{2}-\underset{j \rightarrow \infty}{\limsup }\|f\|_{L^{2}(\mathbb{R})}^{2} \\
& =\|f\|_{L^{2}(\mathbb{R})}^{2},
\end{align*}
$$

where in (7) we used the fact that projections are norm-bounded by 1 . On the other hand $\left\|P_{V_{j}} f\right\|_{L^{2}(\mathbb{R})} \leq\|f\|_{L^{2}(\mathbb{R})}$ for all $j \in \mathbb{Z}$, so $\left\|P_{V_{j}} f\right\|_{L^{2}(\mathbb{R})} \rightarrow\|f\|_{L^{2}(\mathbb{R})}$ as $j \rightarrow \infty$. We can now finally deduce

$$
\begin{equation*}
\left\|f-P_{V_{j}} f\right\|_{L^{2}(\mathbb{R})}^{2}=\|f\|_{L^{2}(\mathbb{R})}^{2}-\underbrace{\left\langle f-P_{V_{j}} f, P_{V_{j}} f\right\rangle}_{=0}-\left\|P_{V_{j}} f\right\|_{L^{2}(\mathbb{R})}^{2} \rightarrow 0, \text { as } j \rightarrow \infty, \tag{8}
\end{equation*}
$$

where $\left\langle f-P_{V_{j}} f, P_{V_{j}} f\right\rangle=0$ follows by the properties $P_{V_{j}}{ }^{2}=P_{V_{j}}$ and $P_{V_{j}}^{*}=P_{V_{j}}$.
(iii) We have

$$
\begin{align*}
\left\|P_{V_{j}} f\right\|_{L^{2}(\mathbb{R})}^{2} & \leq\left\|P_{V_{j}} f\right\|_{L^{2}(\mathbb{R})}^{2}+\left\|P_{V_{j}}\left(f\left(\cdot-2^{-(j+1)}\right)\right)\right\|_{L^{2}(\mathbb{R})}^{2} \\
& =2\left\|\hat{\varphi}\left(2^{-j} \cdot\right) \hat{f}\right\|_{L^{2}(\mathbb{R})}^{2} \rightarrow 0 \quad \text { as } j \rightarrow-\infty, \tag{9}
\end{align*}
$$

where the last step follows from the assumption in the problem statement.
(c) We verify the four conditions in the definition of the multiresolution approximation:
(I) Let $f \in \bigcap_{j \in \mathbb{Z}} V_{j}$, i.e., $f \in V_{j}$ for all $j \in \mathbb{Z}$. Then $f=P_{V_{j}} f$ for all $j \in \mathbb{Z}$, so by (b)(iii) we have $\|f\|_{L^{2}(\mathbb{R})}=\left\|P_{V_{j}} f\right\|_{L^{2}(\mathbb{R})} \rightarrow 0$ as $j \rightarrow-\infty$, and hence $\|f\|_{L^{2}(\mathbb{R})}=0$. Therefore $\bigcap_{j \in \mathbb{Z}} V_{j}=0$, which implies $f=0$.
Now, let $f \in L^{2}(\mathbb{R})$ be arbitrary. Then by (b)(ii) we have that for any $\epsilon>0$ we can find a $j_{\epsilon} \in \mathbb{Z}$ such that $\left\|f-P_{V_{j_{\epsilon}}} f\right\|_{L^{2}(\mathbb{R})}<\epsilon$. Since $P_{V_{j_{\epsilon}}} f \in V_{j_{\epsilon}} \subset \bigcup_{j \in \mathbb{Z}} V_{j}$, and ϵ was arbitrary, we deduce that $\bigcup_{j \in \mathbb{Z}} V_{j}$ is dense in $L^{2}(\mathbb{R})$.
(II) Let $f \in L^{2}(\mathbb{R})$. By definition of V_{j}, we have $f \in V_{j}$ if and only if $f\left(2^{-j}.\right) \in V_{0}$. But $f\left(2^{-j}.\right)=f\left(2^{-(j+1)}(2 \cdot)\right)$, so $f \in V_{j}$ is equivalent to $f\left(2^{-(j+1)}(2 \cdot)\right) \in V_{0}$. Now, by definition of V_{j+1}, we see that $f\left(2^{-(j+1)}(2 \cdot)\right) \in V_{0}$ is equivalent to $f(2 \cdot) \in V_{j+1}$. Therefore, we have shown that $f \in V_{j}$ if and only if $f(2 \cdot) \in$ V_{j+1}.
(III) Since $\{\varphi(\cdot-k): k \in \mathbb{Z}\}$ is an orthonormal basis for V_{0}, we can expand an arbitrary $f \in V_{0}$ according to

$$
f=\sum_{l \in \mathbb{Z}} a_{l} \varphi(\cdot-l),
$$

for some $\left\{a_{l}\right\}_{l \in \mathbb{Z}} \in \ell^{2}(\mathbb{Z})$. Then, we have

$$
f(\cdot-k)=\sum_{l \in \mathbb{Z}} a_{l} \varphi(\cdot-k-l) \stackrel{l \mapsto l+k}{=} \sum_{l \in \mathbb{Z}} a_{l+k} \varphi(\cdot-l),
$$

and so $f(\cdot-k) \in V_{0}$, for all $k \in \mathbb{Z}$ and $f \in V_{0}$.
(IV) Since $\{\varphi(\cdot-k): k \in \mathbb{Z}\}$ is an orthonormal basis for V_{0}, it is, in particular, a Riesz basis for V_{0}.

Problem 3

(a) Let $f, g \in L^{2}(\mathbb{R})$ and $x, y \in \mathbb{R}$ be arbitrary. We have the following reconstruction formula:

$$
\begin{aligned}
f_{-x,-y} & =\sum_{m, n \in \mathbb{Z}}\left\langle f_{-x,-y}, \tilde{g}_{m T, n F}\right\rangle g_{m T, n F} \\
& =\sum_{m, n \in \mathbb{Z}}\left\langle f_{-x, 0}, \tilde{g}_{m T, n F+y}\right\rangle g_{m T, n F} \\
& =\sum_{m, n \in \mathbb{Z}}\left\langle f, e^{-2 \pi i(n F+y) x} \tilde{g}_{m T+x, n F+y}\right\rangle g_{m T, n F}
\end{aligned}
$$

Now we take the inner product of both sides of this equation with $h_{-x,-y}$ to obtain

$$
\begin{aligned}
\left\langle f_{-x,-y}, h_{-x,-y}\right\rangle & =\sum_{m, n \in \mathbb{Z}}\left\langle f, e^{-2 \pi i(n F+y) x} \tilde{g}_{m T+x, n F+y}\right\rangle\left\langle g_{m T, n F}, h_{-x,-y}\right\rangle \\
& =\sum_{m, n \in \mathbb{Z}}\left\langle f, e^{-2 \pi i(n F+y) x} \tilde{g}_{m T+x, n F+y}\right\rangle\left\langle g_{m T, n F+y}, h_{-x, 0}\right\rangle \\
& =\sum_{m, n \in \mathbb{Z}}\left\langle f, e^{-2 \pi i(n F+y) x} \tilde{g}_{m T+x, n F+y}\right\rangle\left\langle e^{-2 \pi i(n F+y) x} g_{m T+x, n F+y}, h\right\rangle \\
& =\sum_{m, n \in \mathbb{Z}}\left\langle f, \tilde{g}_{m T+x, n F+y}\right\rangle\left\langle g_{m T+x, n F+y}, h\right\rangle .
\end{aligned}
$$

Finally, note that $\left\langle f_{-x,-y}, h_{-x,-y}\right\rangle=\langle f, h\rangle$. Together with the previous equation, this yields the desired identity.
(b) Integrating as suggested, we get

$$
\begin{align*}
T F\langle f, h\rangle & =\int_{0}^{F} \int_{0}^{T} \sum_{m, n \in \mathbb{Z}}\left\langle f, \tilde{g}_{m T+x, n F+y}\right\rangle\left\langle g_{m T+x, n F+y}, h\right\rangle \mathrm{d} x \mathrm{~d} y \\
& =\sum_{m, n \in \mathbb{Z}} \int_{0}^{F} \int_{0}^{T}\left\langle f, \tilde{g}_{m T+x, n F+y}\right\rangle\left\langle g_{m T+x, n F+y}, h\right\rangle \mathrm{d} x \mathrm{~d} y \tag{10}\\
& =\sum_{m, n \in \mathbb{Z}} \int_{n F}^{(n+1) F} \int_{m T}^{(m+1) T}\left\langle f, \tilde{g}_{x, y}\right\rangle\left\langle g_{x, y}, h\right\rangle \mathrm{d} x \mathrm{~d} y \\
& =\int_{\mathbb{R}^{2}}\left\langle f, \tilde{g}_{x, y}\right\rangle\left\langle g_{x, y}, h\right\rangle \mathrm{d} x \mathrm{~d} y=\int_{\mathbb{R}^{2}}\left\langle f, \tilde{g}_{x, y}\right\rangle \overline{\left\langle h, g_{x, y}\right\rangle} \mathrm{d} x \mathrm{~d} y \\
& =\langle f, h\rangle \overline{\langle\tilde{g}, g\rangle},
\end{align*}
$$

where the last step follows by the identity (IR) given in the problem statement. Since f and h were arbitrary (and in particular can be chosen so that $\langle f, h\rangle=1$), we deduce $\langle g, \tilde{g}\rangle=T F$. To justify the change of order of summation
and integration in (10), observe that

$$
\begin{align*}
& \sum_{m, n \in \mathbb{Z}} \int_{0}^{F} \int_{0}^{T}\left|\left\langle f, \tilde{g}_{m T+x, n F+y}\right\rangle\left\langle g_{m T+x, n F+y}, h\right\rangle\right| \mathrm{d} x \mathrm{~d} y= \\
& =\int_{\mathbb{R}^{2}}\left|\left\langle f, \tilde{g}_{x, y}\right\rangle\right|\left|\left\langle g_{x, y}, h\right\rangle\right| \mathrm{d} x \mathrm{~d} y \\
& =\left\langle F_{1}, F_{2}\right\rangle_{L^{2}\left(\mathbb{R}^{2}\right)} \leq\left\|F_{1}\right\|_{L^{2}\left(\mathbb{R}^{2}\right)}\left\|F_{2}\right\|_{L^{2}\left(\mathbb{R}^{2}\right)}<\infty, \tag{11}
\end{align*}
$$

where $F_{1}(x, y)=\left|\left\langle f, \tilde{g}_{x, y}\right\rangle\right|$ and $F_{2}(x, y)=\left|\left\langle h, g_{x, y}\right\rangle\right|$ are $L^{2}\left(\mathbb{R}^{2}\right)$ functions by the assumption at the beginning of the problem statement.
(c) We have the following two expansions:

$$
g=\sum_{m, n \in \mathbb{Z}}\left\langle g, \tilde{g}_{m T, n F}\right\rangle g_{m T, n F}=1 \cdot g_{0,0}+\sum_{\substack{m, n \in \mathbb{Z} \\(m, n) \neq(0,0)}} 0 \cdot g_{m T, n F} .
$$

Now, by the Lemma given in the problem statement, we have

$$
\begin{align*}
1^{2}+\sum_{\substack{m, n \in \mathbb{Z} \\
(m, n) \neq(0,0)}} 0^{2} & =\sum_{m, n \in \mathbb{Z}}\left|\left\langle g, \tilde{g}_{m T, n F}\right\rangle\right|^{2}+\left|\left\langle g, \tilde{g}_{0,0}\right\rangle-1\right|^{2}+\sum_{\substack{m, n \in \mathbb{Z} \\
(m, n) \neq(0,0)}}\left|\left\langle g, \tilde{g}_{m T, n F}\right\rangle-0\right|^{2} \\
& \geq\left|\left\langle g, \tilde{g}_{0,0}\right\rangle\right|^{2}+\left|\left\langle g, \tilde{g}_{0,0}\right\rangle-1\right|^{2} \geq|\langle g, \tilde{g}\rangle|^{2}=(T F)^{2}, \tag{12}
\end{align*}
$$

where the first inequality is obtained by discarding all the terms on the right-hand side of the first equality except for the summands with $(m, n)=(0,0)$. Thus, we have shown that $T F \leq 1$.

Problem 4

(a) Let $e_{n}=\mathbb{1}_{[n-1 / 2, n+1 / 2]}$ be the indicator function of the interval $[n-1 / 2, n+$ $1 / 2]$. Note that $\left\|e_{n}\right\|_{L^{2}(\mathbb{R})}=1$, and so $e_{n} \in L^{2}(\mathbb{R})$. Then, by the Cauchy-Schwarz inequality we have

$$
\left|\int_{n-1 / 2}^{n+1 / 2} x(t) \mathrm{d} t\right|=\left|\left\langle e_{n}, x\right\rangle\right| \leq\left\|e_{n}\right\|_{L^{2}(\mathbb{R})}\|x\|_{L^{2}(\mathbb{R})}=\|x\|_{L^{2}(\mathbb{R})},
$$

for any $x \in L^{2}(\mathbb{R})$ and $n \in \mathbb{Z}$, and thus $(\mathcal{A} x)_{n}$ is well-defined for all $x \in L^{2}(\mathbb{R})$ and $n \in \mathbb{Z}$. To show that $\mathcal{A} x \in \ell^{2}(\mathbb{Z})$ whenever $x \in L^{2}(\mathbb{R})$, we again use the Cauchy-Schwarz inequality to get

$$
\begin{aligned}
\|\mathcal{A} x\|_{\ell^{2}(\mathbb{Z})}^{2} & =\sum_{n \in \mathbb{Z}}\left|(\mathcal{A} x)_{n}\right|^{2}=\sum_{n \in \mathbb{Z}^{2}}\left|\int_{n-1 / 2}^{n+1 / 2} x(t) \mathrm{d} t\right|^{2} \\
& \leq \sum_{n \in \mathbb{Z}^{2}} \int_{n-1 / 2}^{n+1 / 2}|x(t)|^{2} \mathrm{~d} t=\int_{\mathbb{R}}|x(t)|^{2} \mathrm{~d} t=\|x\|_{L^{2}(\mathbb{R})}^{2},
\end{aligned}
$$

for all $x \in L^{2}(\mathbb{R})$. In particular, we have $\|\mathcal{A} x\|_{\ell^{2}(\mathbb{Z})}<\infty$, and so \mathcal{A} is well-defined. Also, \mathcal{A} is linear, because integration is a linear operation. Finally, since $\|\mathcal{A} x\|_{\ell^{2}(\mathbb{Z})}^{2} \leq\|x\|_{L^{2}(\mathbb{R})}$, for all $x \in L^{2}(\mathbb{R})$, we have that \mathcal{A} is bounded.
By definition of adjoint operators, \mathcal{A}^{*} is the unique operator such that

$$
\langle\mathcal{A} x, y\rangle_{\ell^{2}(\mathbb{Z})}=\left\langle x, \mathcal{A}^{*} y\right\rangle_{L^{2}(\mathbb{R})},
$$

for all $x \in L^{2}(\mathbb{R})$ and $y \in \ell^{2}(\mathbb{Z})$. For arbitrary, but fixed x and y, we calculate

$$
\begin{align*}
\langle\mathcal{A} x, y\rangle_{\ell^{2}(\mathbb{Z})} & =\sum_{n \in \mathbb{Z}}(\mathcal{A} x)_{n} \cdot \overline{y_{n}}=\sum_{n \in \mathbb{Z}} \int_{n-1 / 2}^{n+1 / 2} x(t) \mathrm{d} t \cdot \overline{y_{n}} \\
& =\sum_{n \in \mathbb{Z}} \int_{n-1 / 2}^{n+1 / 2} x(t) \overline{y_{n}} \mathrm{~d} t \\
& =\int_{\mathbb{R}} x(t)\left(\mathcal{A}^{*} y\right)(t) \mathrm{d} y, \tag{13}
\end{align*}
$$

where $\mathcal{A}^{*} y$ is the piecewise-constant function given by $\left(\mathcal{A}^{*} y\right)(t)=y_{n}$ for $t \in\left[n-\frac{1}{2}, n+\frac{1}{2}\right)$.
(b) It follows from the (a) that

$$
\left\|\mathcal{A}^{*} y\right\|_{L^{2}(\mathbb{R})}^{2}=\sum_{n \in \mathbb{Z}} \int_{n-1 / 2}^{n+1 / 2}\left|y_{n}\right|^{2} \mathrm{~d} t=\sum_{n \in \mathbb{Z}}\left|y_{n}\right|^{2}=\|y\|_{\ell^{2}(\mathbb{Z})}^{2} \quad \text { for all } y \in \ell^{2}(\mathbb{Z}),
$$

as desired.
(c) Let $\left\{e_{n}\right\}_{n \in \mathbb{Z}}$ be the indicator functions defined at the beginning of (a). To show that $\mathcal{G}=\left\{e_{n}: n \in \mathbb{Z}\right\}$ is a frame for $\operatorname{Im}\left(\mathcal{A}^{*}\right)$, take an arbitrary $x=\mathcal{A}^{*} y \in \operatorname{Im}\left(\mathcal{A}^{*}\right)$.

Then, we have

$$
\begin{aligned}
\sum_{n \in \mathbb{Z}}\left|\left\langle x, e_{n}\right\rangle\right|^{2} & =\sum_{n \in \mathbb{Z}}\left|\left\langle\mathcal{A}^{*} y, e_{n}\right\rangle\right|^{2}=\sum_{n \in \mathbb{Z}}\left|\int_{n-1 / 2}^{n+1 / 2} y_{n} \mathrm{~d} t\right|^{2} \\
& =\|y\|_{\ell^{2}(\mathbb{Z})}^{2}=\left\|\mathcal{A}^{*} y\right\|_{L^{2}(\mathbb{R})}^{2}=\|x\|_{L^{2}(\mathbb{R})}^{2},
\end{aligned}
$$

and so \mathcal{G} is a (tight) frame for $\operatorname{Im}\left(\mathcal{A}^{*}\right)$. Thus we have

$$
\mathcal{A} x=\left\{\left\langle x, e_{n}\right\rangle: n \in \mathbb{Z}\right\}
$$

for all $x \in \operatorname{Im}\left(\mathcal{A}^{*}\right) \subset L^{2}(\mathbb{R})$, and so \mathcal{A} is the analysis operator associated with the frame \mathcal{G} for the Hilbert space $\operatorname{Im}\left(\mathcal{A}^{*}\right)$.

