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Problem 1

(a) We have ∫ ∞
−∞
|f1(x)|2 dx =

∫ ∞
−∞

1

(1 + |x|)2
dx

= 2

∫ ∞
0

1

(1 + x)2
dx

= 2 · −1

1 + x

∣∣∣∣∞
0

= 2 <∞,

so f1 ∈ L2(R) with ‖f1‖L2(R) =
√

2. On the other hand,∫ ∞
−∞
|f1(x)| dx =

∫ ∞
−∞

1

1 + |x|
dx

≥
∫ ∞

1

1

1 + x
dx

= log(1 + x)
∣∣∣∞
1

=∞,

so f1 /∈ L1(R).

(b) Let f2 be the function given by f2(x) = 1(0,1](x) 1√
x
, x ∈ R. We then have∫ ∞

−∞
|f2(x)|dx =

∫ 1

0

1√
x

dx =
1

2

√
x

∣∣∣∣1
0

=
1

2
<∞,

so f2 ∈ L1(R). Moreover,∫ ∞
−∞
|f2(x)|2 dx =

∫ 1

0

1

x
dx = log x |10 =∞,

so f2 /∈ L2(R).

(c) (i) As f is an element ofL1(R), its Fourier transform f̂ : R→ C is, indeed, defined.
Furthermore, as f is also an element of L2(R), so is f̂ , by Plancherel’s theorem.
Therefore, applying the triangle inequality in the space L2(R), we have

‖Gf‖L2(R) = ‖|f̂ |+ |Hf |‖L2(R) ≤ ‖f̂‖L2(R) + ‖Hf‖L2(R) <∞,

as f̂ ∈ L2(R) by the above and Hf ∈ L2(R) by assumption.
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(ii) We estimate

‖f̂‖L1(R) =

∫ ∞
−∞
|f̂(ω)| dω

=

∫ ∞
−∞

1

1 + |ω|
·Gf (ω) dω

C−S
≤
(∫ ∞
−∞

1

(1 + |ω|)2
dω

) 1
2
(∫ ∞
−∞
|Gf (ω)|2 dω

) 1
2

=
√

2 ‖Gf‖L2(R).

As Gf ∈ L2(R) by (i) above, we have ‖f̂‖L1(R) ≤
√

2 ‖Gf‖L2(R) < ∞, and thus
f̂ ∈ L1(R).

(iii) Denote the Fourier transform of f by g, i.e., g = f̂ , and let f− be the time-
reversal of f , i.e., f−(x) = f(−x), x ∈ R. We have shown in (ii) that g ∈ L1(R), so
its Fourier transform ĝ is defined, and additionally we know that ĝ is continuous.
Hence ĝ = ˆ̂f = f− is continuous. Thus, as the time-reversal of f is continuous, so
is f itself.
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Problem 2

(a) For `, n, `′, n′ ∈ {1, . . . ,m}, we have

〈E(`,n), E(`′,n′)〉 =
m∑

j,k=1

E
(`,n)
jk E

(`′,n′)
jk =

1, if ` = `′ and n = n′

0 else
,

which proves that E is an orthonormal system. To see that this system is complete,
and hence an orthonormal basis, note that every A ∈ Cm×m can be expanded as

A =
m∑

j,k=1

Aj,k E
(j,k).

As Cm×m has a basis of size m ·m = m2, namely E , the dimension of Cm×m is m2.

(b) Note that D acts on vectors v ∈ Cm as the forward cyclic rotation according to
D · (v1, v2, . . . , vm)T = (vm, v1, . . . , vm−1)T , and so, for n ∈ Z, Dn acts on vectors
as the forward cyclic rotation by n places if n > 0, and as the backward cyclic
rotation if n < 0. For `, n, `′, n′ ∈ {0, . . . ,m− 1}, we have

〈G(`,n), G(`′,n′)〉 = tr
(

(G(`′,n′))H G(`,n)
)

=
1

m
tr
(
D−n

′
M−`′M `Dn

)
=

1

m
tr
(
Dn−n′M `−`′

)
=

1

m
δn,n′ tr

(
M `−`′

)
= δn,n′

1

m

m−1∑
k=0

e−
2πik(`−`′)

m

= δn,n′δ`,`′ ,

where δa,b denotes the Kronecker delta, and we used that, for every A ∈ Cm×m,
the matrix DnA is obtained by cycling each column of A by n places. Concretely,
if n − n′ 6= 0, the diagonal of Dn−n′M `−`′ is identically zero. This establishes that
G is an orthonormal system in Cm×m. Noting that #G = m2 = dim(Cm×m), i.e.,
G is a linearly independent subset of Cm×m of the same size as the dimension of
Cm×m, it follows that G is an orthonormal basis for Cm×m.

(c) Let `, n ∈ {1, . . . ,m} and `′, n′ ∈ {0, . . . ,m−1} be arbitrary. Then |〈E(`,n), G(`′,n′)〉| =
|G(`′,n′)

`,n |. As all the nonzero entries of G(`′,n′) have modulus 1√
m

, we find that

µ(E ,G) = max
(`,n)∈{1,...,m}2

(`′,n′)∈{0,...,m−1}2

|〈E(`,n), G(`′,n′)〉| = 1√
m
.

(d) Let B1 = {U1, . . . , Um2} and B2 = {V1, . . . , Vm2} be arbitrary orthonormal bases
for Cm×m. By way of contradiction, suppose that µ(B1,B2) < 1

m
. Now, as B2 is an
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orthonormal basis for Cm×m, U1 has the following expansion:

U1 =
m2∑
n=1

〈U1, Vn〉Vn,

and, moreover, we have the energy conservation relation

‖U1‖2 := 〈U1, U1〉 =
m2∑
n=1

|〈U1, Vn〉|2.

Now, using the assumption µ(B1,B2) < 1
m

, we can conclude that

‖U1‖2 =
m2∑
n=1

|〈U1, Vn〉|2 ≤
m2∑
n=1

(µ(B1,B2))2 <

m2∑
n=1

1

m2
= m2 · 1

m2
= 1.

But this contradicts the fact that U1, as an element of an orthonormal basis, has
unit norm. Therefore, our assumption must be wrong, and hence we deduce that
µ(B1,B2) ≥ 1

m
.
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Problem 3

We refer to the chapter “Orthonormal Wavelets” of the discussion session notes as
“OW”.

(a) Let j, k, ` ∈ Z be arbitrary. Then,

〈ϕj,k, ϕj,`〉 =

∫ ∞
−∞

2
j
2ϕ(2jx− k)2

j
2ϕ(2jx− `) dx

u=2jx
=

∫ ∞
−∞

ϕ(u− k)ϕ(u− `) dx = 〈ϕ0,k, ϕ0,`〉,

so it suffices to establish that {ϕ0,k = ϕ( · − k) : k ∈ Z} is an orthonormal system.
Owing to OW Proposition 2.1, it is sufficient to verify that∑

n∈Z

|(Fϕ)(ω + n)|2 = 1, (1)

for all ω ∈ R. Due to the 1-periodicity of
∑

n∈Z |(Fϕ)(ω + n)|2, it suffices to verify
(1) on an interval of length 1, for instance [−1

3
, 2

3
]. The identity (1) clearly holds

when ω ∈ [−1
3
, 1

3
], as in this case only one summand participates and equals to

1, while all the remaining ones evaluate to 0. When ω ∈ [1
3
, 2

3
], we perform an

explicit calculation using the properties of β as follows:∑
n∈Z

|ϕ̂(ω + n)|2 = cos2
(π

2
β(3ω − 1)

)
+ cos2

(π
2
β(3(1− ω)− 1)

)
= cos2

(π
2
β(3ω − 1)

)
+ cos2

(π
2
β(1− (3ω − 1))

)
= cos2

(π
2
β(3ω − 1)

)
+ cos2

(π
2

(1− β(3ω − 1))
)

= cos2
(π

2
β(3ω − 1)

)
+ sin2

(π
2
β(3ω − 1)

)
= 1,

as desired.

(b) Denote B0 = {ϕ( · − k) : k ∈ Z}. As B0 is an orthonormal system by (a), and V0 =

span(B0), the set B0 is an orthonormal basis for V0. Therefore, we have ϕ−1,0 ∈ V0

if and only if there exists a sequence {h[k]}k∈Z ∈ `2(Z) such that

ϕ−1,0 =
∑
k∈Z

h[k]ϕ( · − k). (2)

Taking the L2-Fourier transform of both sides of (2), we see that (2) is equivalent
to √

2(Fϕ)(2ω) = H(ω)(Fϕ)(ω), for all ω ∈ R, (3)

where the 1-periodic L2[−1
2
, 1

2
) function H is given by H(ω) := DTFT{h}(2πω) =∑

k∈Z h[k]e−2πikω. Equality (3) implies that on the interval [−1
2
, 1

2
) the function H

must be given by

H(ω) =

√
2(Fϕ)(2ω)

(Fϕ)(ω)
, ω ∈ [−1

2
, 1

2
)

=


√

2(Fϕ)(2ω), ω ∈ [−1
3
, 1

3
)

0, ω ∈ [−1
2
,−1

3
) ∪ [1

3
, 1

2
)
.

(4)
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A straightforward check shows that (3) indeed holds for H as given by (4), and
moreover,

‖H‖2
L2[− 1

2
, 1
2

)
=

∫ 1
3

− 1
3

|
√

2(Fϕ)(2ω)|2 dω

ω=θ/2
=

∫ 2
3

− 2
3

|(Fϕ)(θ)|2 dθ = ‖Fϕ‖2
L2(R) = ‖ϕ‖2

L2(R) <∞.

Thus, by the Parseval relation, {h[k]}k∈Z ∈ `2(Z). This establishes that ϕ−1,0 ∈ V0.

To show that Vj ⊂ Vj+1, for all j ∈ Z, it suffices to establish that V−1 ⊂ V0, as
the general statement then follows by (F2) according to: Suppose f ∈ Vj . Then
f(2−(j+1)·) ∈ V−1 ⊂ V0, and so f = f

(
2−(j+1)(2j+1·)

)
∈ Vj+1, as desired. We thus

proceed by showing that V−1 ⊂ V0. To this end, note that (2) (with {h[k]}k∈Z as
specified in the preceding paragraph) implies

ϕ−1,r = ϕ−1,0(· − 2r) =
∑
k∈Z

h[k]ϕ( · − 2r − k)
m=k+2r

=
∑
m∈Z

h[m− 2r]ϕ( · −m) ∈ V0,

for all r ∈ Z. Therefore, as V0 is a linear space, we have span{ϕ−1,r : r ∈ Z} ⊂ V0,
and as V0 is closed, we have span{ϕ−1,r : r ∈ Z} ⊂ V0, i.e., V−1 ⊂ V0, as desired.

(c) According to OW Definition 1, we need to show that {Vj}j∈Z is a sequence of
closed subspaces of L2(R) satisfying the following five properties:

(i) Vj ⊂ Vj+1, for all j ∈ Z,

(ii) Vj+1 = {f(2 ·) : f ∈ Vj}, for all j ∈ Z.

(iii)
⋂
j∈Z Vj = {0},

(iv)
⋃
j∈Z Vj is dense in L2(R), and

(v) {ϕ(· − k)}k∈Z is an orthonormal basis for V0.

The spaces Vj , j ∈ Z, are closed by definition. Property (i) follows by part (b) of
the problem, Property (ii) is simply (F2), and Property (v) follows from part (a)
of the problem and the definition of V0. Now, as Properties (i), (ii), and (v) are
satisfied, then so is Property (iii), by OW Theorem 1. Finally, as ϕ ∈ L1(R)∩L2(R)
and ϕ̂(0) = 1 6= 0, Property (iv) follows by OW Theorem 2.
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Problem 4

(a)(i)

𝑇 2𝑇 3𝑇 4𝑇 5𝑇−𝑇
1
2
3
4

𝑡

𝑥(𝑡)

We can write x =
∑

n∈Z cn φ( · − nT ), where φ = 1[0,T ), and

cn =


1, n ∈ {0, 2}

2, n = 1

4, n = 3

0, else

.

(ii) The Fourier transform of φ = 1[0,T ) is given by

φ̂(ω) =

∫ T

0

e−2πiωtdt =
e−2πitω

−2πiω

∣∣∣∣T
t=0

=
1− e−2πiTω

2πiω

= Te−πiTω
eπiTω − e−πiTω

2πiTω
= Te−πiTωsinc(Tω), ω ∈ R,

(5)

where sinc(θ) := sin(πθ)
πθ

, θ ∈ R. Therefore, as x is a linear combination of time-
shifted versions of φ, we have

x̂(ω) =

(
3∑

n=0

cn e
−2πinTω

)
︸ ︷︷ ︸

p(ω)

· φ̂(ω), ω ∈ R.

Note that x̂(ω) = 0 if and only if at least one of p(ω) and φ̂(ω) is zero. We have
{ω ∈ R : φ̂(ω) = 0} = { n

T
}n∈Z\{0} from the explicit expression (5). Moreover,

as p(ω) is a non-zero trigonometric polynomial, the set {ω ∈ R : p(ω) = 0} is
discrete. Therefore

{ω ∈ R : x̂(ω) = 0} = {ω ∈ R : φ̂(ω) = 0} ∪ {ω ∈ R : p(ω) = 0}

is discrete, and hence x is not bandlimited.
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(iii) The fact that x can be reconstructed by sampling it at integer multiples of T even
though it is not bandlimited does not contradict the sampling theorem as the
sampling theorem only states that bandlimitedness is sufficient for reconstruction,
but does not claim necessity.

(b)(i)

Note that
x(kT ) =

∑
n∈Z

cnφ(kT − nT ), for all k ∈ Z,

so we simply set φφφn = {φ((k − n)T )}k∈Z to obtain

x =
∑
n∈Z

cnφφφ
n. (6)

(ii) Note that, as DTFT : `2(Z) → L2[0, 2π) is continuous and (6) converges uncondi-
tionally, we have∑

k∈Z

x(kT )e−ikθ = DTFT{x}(θ) = DTFT
{∑
n∈Z

cnφφφ
n
}

(θ)

=
∑
n∈Z

cn DTFT{φφφn}(θ)

=
∑
n∈Z

cne
−inθ DTFT{φφφ0}(θ)

= DTFT{{cn}n∈Z}(θ) ·
∑
k∈Z

φ(kT )e−ikθ, θ ∈ [0, 2π). (7)

Now, let α > 0 be such that
∣∣∣∑k∈Z φ(kT ) e−ikθ

∣∣∣ ≥ α > 0, for all θ ∈ [0, 2π), as per
the problem assumptions. We can then divide both sides of (7) to obtain

DTFT{{cn}n∈Z}(θ) =

∑
k∈Z x(kT )e−ikθ∑
k∈Z φ(kT )e−ikθ

, θ ∈ [0, 2π).

Finally, inverting the discrete-time Fourier transform, we find

cn =
1

2π

∫ 2π

0

∑
k∈Z x(kT )e−ikθ∑
k∈Z φ(kT )e−ikθ

einθdθ, n ∈ Z.

(c)(i)

We first note that

σT
2

(
kT

2

)
=

1, k = 0

0, k 6= 0
, k ∈ Z.

Therefore

φ

(
kT

2

)
=



1
2
, k = 0

k
4
, |k| = 1

−1
2
, |k| = 2

0, otherwise

, k ∈ Z.
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Now compute ∑
n∈Z

φ(nT ) e−inθ =
∑

n∈{−1,0,1}

φ(nT ) e−inθ

= −1

2
eiθ +

1

2
− 1

2
e−iθ =

1

2
− cos(θ).

We note that this expression evaluates to 0 at θ ∈ {π
3
, 5π

3
}, so there does not exist

an α > 0 such that
∣∣∣∑n∈Z φ(nT ) e−inθ

∣∣∣ ≥ α, for all θ ∈ [0, 2π), i.e., Condition (∗) is
not satisfied.

(ii) Recalling (7), we have∑
k∈Z

x(kT )e−ikθ =
∑
n∈Z

cne
−inθ ·

∑
k∈Z

φ(kT )e−ikθ

= DTFT{{cn}n∈Z}(θ) ·
(

1

2
− cos(θ)

)
, θ ∈ [0, 2π).

(8)

A derivation analogous to (7) yields∑
k∈Z

x
(
kT + T

2

)
e−ikθ =

∑
n∈Z

cne
−inθ ·

∑
k∈Z

φ
(
kT + T

2

)
e−ikθ, θ ∈ [0, 2π).

We again compute∑
k∈Z

φ
(
kT + T

2

)
e−ikθ =

∑
k∈{−1,0}

φ
(
kT + T

2

)
e−ikθ

= −1

4
eiθ +

1

4
= −ie

iθ
2

2
sin(θ/2),

and so∑
k∈Z

x
(
kT + T

2

)
e−ikθ = DTFT{{cn}n∈Z}(θ) ·

−ie iθ2
2

sin(θ/2), θ ∈ [0, 2π). (9)

Now note that

Ψ(θ) :=

∣∣∣∣12 − cos(θ)

∣∣∣∣2 + 4

∣∣∣∣∣−ie
iθ
2

2
sin(θ/2)

∣∣∣∣∣
2

> 0, θ ∈ [0, 2π],

because there is no θ ∈ [0, 2π] for which both cos(θ) = 1/2 and sin(θ/2) = 0.
Since Ψ(θ) > 0 on the compact interval [0, 2π], there must exist α > 0 such that
Ψ(θ) ≥ α on this interval. Now, (8) and (9) can be multiplied by 1

2
− cos(θ) and

2i e−iθ/2 sin(θ/2), respectively, and added together to yield(
1
2
− cos(θ)

)∑
k∈Z

x(kT ) e−ikθ +
(
2i e−iθ/2 sin(θ/2)

)∑
k∈Z

x
(
kT + T

2

)
e−ikθ

=
∑
n∈Z

cne
−inθ ·

[∣∣1
2
− cos(θ)

∣∣2 + 4
∣∣∣− ie

iθ
2

2
sin(θ/2)

∣∣∣2] = DTFT{{cn}n∈Z}(θ) ·Ψ(θ),

for θ ∈ [0, 2π). The coefficients {cn}n∈Z can therefore be extracted by inverting the
discrete-time Fourier transform according to

cn =
1

2π

∫ 2π

0

[
1/2−cos(θ)

Ψ(θ)

∑
k∈Z

x(kT ) e−ikθ+2i e−iθ/2 sin(θ/2)
Ψ(θ)

∑
k∈Z

x
(
kT + T

2

)
e−ikθ

]
einθdθ, n ∈ Z.
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Appendix: Results from “Orthonormal Wavelets”

Definition 1 (Multiresolution approximation). A multiresolution approximation of L2(R)
is a sequence {Vj}j∈Z of closed linear subspaces of L2(R) with the following properties:

(i) Vj ⊂ Vj+1, for all j ∈ Z,

(ii) for all f ∈ L2(R) and all j ∈ Z, f ∈ Vj ⇐⇒ f(2 ·) ∈ Vj+1,

(iii)
⋂
j∈Z Vj = {0},

(iv)
⋃
j∈Z Vj is dense in L2(R), and

(v) there exists a function ϕ ∈ V0, known as the scaling function, such that {ϕ(· − k)}k∈Z is
an orthonormal basis of the space V0.

Proposition 2.1. Let g ∈ L2(R). Then {g(· − k) : k ∈ Z} is an orthonormal system if and
only if ∑

n∈Z

|(Fg)(ω + n)|2 = 1, for all ω ∈ R.

Theorem 1. Let {Vj}j∈Z be a sequence of closed linear subspaces ofL2(R) satisfying conditions
(i), (ii), and (v) of Definition 1. Then (iii) is satisfied as well.

Theorem 2. Let {Vj}j∈Z be a sequence of closed linear subspaces ofL2(R) satisfying conditions
(i), (ii), and (v) of Definition 1. Assume ϕ ∈ L1(R) ∩ L2(R), and ϕ̂ is continuous at 0. Then

ϕ̂(0) 6= 0 ⇐⇒
⋃
j∈Z

Vj = L2(R).

Moreover, if either of the two equivalent statements holds, then ϕ̂(0) = 1.
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