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Problem 1

(a) (i) We have

N N
) > B2 = a2 = 1
jg_; del%| gkv - ]z_; |<glv ]>| ||91||2

where we used the fact that {h;}_, is an orthonormal basis for C".

(ii) Let t be a random variable taking values in [N] := {1,2,..., N} and distribu-
ted according to P. We then have

-1 _ ~_2
K = = min < .
G[N]pj /"L] pt /’l’t

Taking the expectation of both sides with respect to ¢ yields k= < E, 5 [ps fi; *].

(iii) We have
N
K <E, 5 [peig?] = ZPtNﬁ (t=34)- pifi;*

7j=1

N /]2

j -2
= —5 =3 Djlt; " = p ~—
;u%mw%“ i +MNZ’ Ik
\\,../

and hence xk > Zjvzl fi3. Moreover, equality holds if and only if
min p; i;° = E, 5 [pefi ]

JE[N]

This is the case if and only if the random variable p; /i, 2 is constant, i.e., there
exists a ¢ € R such that p; /]j_z = ¢, for j € [N]. If this is the case, then, using that
P is a probability distribution, we have

N N
=Y,
k=1 k=1
1 ~
and thus p; = cji} = (fozl ,&z) fi3, forall j € [N],ie., P =P.
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(b) (i) We have

N
5 Afkmk‘Aék’xk’

kk'=1

E [|{z, Y)"] = E | {z, Y) (@, Vi) | = E

N
= Z 2T m Egup [p{1<9k,ht><gk',ht>]

k' =1
N N
- Z TpTp m_Iij 5 (g i) (g hy)
kol =1 j=1
N N
= Z TpTm” <Z<gk7hj>hjagk’>
k' =1 j=1
N
= > wawm g gr) =m i =m
kk'=1 T
= %K/
and so E [X/] = E[|(z,Yy)[’] — £ = 0. Next, for ¢ € [m], applying the Cauchy-
Schwarz inequality and |(g;, ht,)| < fit, yields
@yl < (X 145 Nalf = > mp g e
jEsupp(z Jj€Esupp(x)
- =1, 12 -1
Z m pte Mtg = Ssm pt@ /"Ltg S sm K?
jesupp(z)
and so
| Xo| < max {|(z,Yo)|*, L} <m " max {sk,1} = sm™ ',

where the second inequality follows from x > 3" =1 /3 > 1. Finally, we estimate

E[1X*] =E [[(z,Y)"] — 2E [[{2,Y)*] + &

< sm R [|{, Y] — 2E |z, V)P + %

= 1.1 21, 1 —2
=Sm K — o+ o5 < SMTK,

for all ¢ € [m], as desired.

(i) We have

m

[Az[3 1= [z, V)P —1=>_ X,
(=1 =1

and thus obtain using Bernstein’s inequality

m t2/2
P(||Az|l3 = 1] > ¢) =P ( > X, 2t> < 2exp (_m‘sm%{,_‘_sml,{;%)

=1
t2/2 3t*m

<2exp| — =2exp| — ,

= 2P ( sm~tk + %sm—lm) P ( 8sk )
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fort € (0,1), as desired.

Problem 2

(@) (i) We have

el = Z e = 3 Ja] = Zxk

kes keS
= Zxk sgn(z Zxk sgn(x)), = (z,sgn(z)),
kes
as desired.

(i) Using the triangle inequality, the Holder inequality, and |||/ = ||zs||1 + ||25]|1,
we obtain

[y = (z,sgn(x)) = (2 + v, sgn(z))
< [(z,sgn(@))| + [(v, sgn(z))| = [(zs, sen(zs))| + [{v, sgn(2))]
< llzsll [lsgn(zs)llos + (v, sgn(@))] = [zl = llz5ll + |(v, sgn(x))|
—_———

=1

= [I2[ly = [lvglls + |(v, sgn(2))].

(b) (i) We have

N
0= Av = Z apvy = Zakvk + Z apv, = Asvs + Agvg.

k=1 keS keSS

(ii) First note that
ASUS = —Agl)g = — Z Q.

Using this, the definition of the matrix operator norm, the triangle inequality, and
the definition of a, we can argue as follows

lusllz = [|(A§As) " AGAsvs|| < [[(AgAs) 7 |2l A5 Asvs]l2

— [1(A3As) o] A8 D axer ||| = (A% AS) 1| 3 Al

keS keS

< (A5 As) M2 Y A alzfvxl
kesS
< 11(A2A5) 7 > maxc]| Afayla - 3 [os]
© keS
= affos).

yielding the desired identity.



(c) Asv € ker(A) and u € im(A") = (ker(A4))*, we have (v, u) = 0, and so

(v, sgn(2))] = (v, sgn(x) — u)| = |(vs, sgn(xs) — us) + (vs, sgn(vs) —us)|
\_:zr_/
< |{vs, sgn(es) — us)| + |{vs, —ug)|

< |lus = sgn(zs)lla[lvsll2 + llusllllvsl,
where in the last step we used the Cauchy-Schwarz and the Holder inequality.
(d) (@) Letwv € ker(A) \ {0}. We now have
[{v,sgn(2))| < [lsgn(zs) — usll2l|vslls + lluglloollvs]ly
< [lsgn(zs) — usllz - allvsll + l[ugllollvsl
= (allsgn(zs) — usll2 + llugll) - llvslh,
and hence the desired inequality follows by the condition
a|lsgn(zs) — uslls + [luglleo <1,

provided we can show that ||vg|/; > 0 (this is necessary as we have to prove a
strict inequality between |(v, sgn(z))| and |lvg||1).

Indeed, if ||vglly = 0, we would have ||vg|l2 < aflvg|i = 0, and so vg = 0 and
vs = 0. This, however, stands in contradicton to the assumption v # 0, and hence
we must have ||vg||; > 0, as desired.

(i) Let = € CV \ {z} be such that Az = Az, but otherwise arbitrary, and set
v=a—z2Thenv # 0and Av = Az — Az = 0, and thus v € ker(A) \ {0}. Hence

[zl < llzllv = llvslle + v, sgn(@))] < 2]
As z was arbitrary, this establishes that x is the unique minimizer of

min [|z]|; subjectto Az = Ax.
zeCN



Problem 3

(a) The solution to this problem follows the same structure as the first step of the
proof of Theorem 12.10 in the lecture notes. We first prove that the empirical Ra-
demacher complexity satisfies the bounded difference property. To this end, we
start by noting that the Rademacher complexity is invariant under permutation
of its inputs so that it is sufficient to establish that

R (F (27) /) = R (F (y1) /)] < L, 1)

where L is some positive constant and where we defined 27} = {z1, ..., z,} with
z; € R, i =1,...,n,and y} = {yi,29,...,7,} with y; € R% Developing the
left-hand side of (1), we get

Ron (F (27) /n) = R (F (47) /)]

1 n
= |—E, [sup gi f(x;
1 3=

1
)

€ gig(x;)
- 19(y1) +Z 9(

o
1

sup
geF

1 n
—[E. |sup gif(x;)| — sup
n : f€]—' z:: ( geEF

1

—E, [sup
no|feF
Sup(zgz J:z _51f yl E 57, xz
feF

- {Sup o1 (f(a) — f(yl))l}

n feF

e1g(y1) + Zezg ()
=2

IN

Z':1f hn +Zgz xz

)

:Ez

1

=~ 5
n

20
S N
n
which proves that the empirical Rademacher complexity, seen as a function of
fixed data points satisfies the bounded difference property with L := 22. The con-

ditions are now satisfied for the application of the bounded difference inequality.

For § > 0, we set ¢ = 1/ 221%60/%) 3 get

n n 2b2log(1/6
P E[R, (F (X7) /n)] = Ry (F (X]) /) > %}
2n 2b% log(1/5)

<e wZ

=4.
For the complementary event, we therefore have with probability at least 1 —
that

n n 202 lOg 1/6
R (F) =E[R, (F(XT) /n)] <R, (F (X)) /n) + %



(b) We rewrite the function class 7|, as

‘E":¢O{f1_f2}7

where Fi — Fo ={f1 — fo | i € F1, f» € Fo} and ¢: x — |z| is a 1-Lipschitz func-
tion from R to R such that ¢(0) = 0. Applying the Ledoux-Talagrand contraction
lemma now yields

Ro (Fi (2}) /n) = Ry (¢ 0 {F1 — Fa} (a) /)
<2R, ({F1 — Fa} (2F) /n)

2 n
= —E. sup € (fl(xz) - fz(%))
n | f1:f2€F 1% F2 ;
<2E_sup ief(x) +2E sup iaf(x)
< — KRB iJ1(ZT; — e iJ2(T;
n | fieF | n f2€F2 |7

= 2R (F1(27) /n) + 2R (F2 (27) /).

We first prove that the maximum of two real numbers a and b can be expressed
as

la—bl+a+b
5 :

max{a,b} =

2)
If a > b, then

a—b+a+b |a—bl+a+b
2 B 2 ’

max{a,b} =a =

and if b > q, then
b—a+a+b |la—b+a+b
2 B 2 ’
which establishes the hint. Inserting (2) into the definition of the empirical Rade-
macher complexity of F.x, we obtain

max{a,b} = b=

R (Fows (#8) /) = “Ee|  sup | comac{fu(), fg(wi)}“

| f1.f2eF1x T2 |

1 ~ |fi(m:) = folw)| + fu(w:) + fo(z:)
- 5EE _f17f2selgi><]:2 Zsi 2

|

=1

_ R (Fiy (@1) /n) + R (Fi (27) /) + R (Fo (21) /)
- 2

(Ra (B (@) /) + R (Fa(af) /) ),

where the last inequality follows from the bound established in subproblem (b).

<

DN o



Problem 4

(a) By construction M is the size of a maximal J-packing of Fs in the L;(Q)-norm,
i.e.,

M = M(6; Fs, Li(Q)).

We know from the lecture that, for any metric space (T, p), the following relation
between the J-packing number and the j-covering number holds

N(6;T,p) < M(6;T, p) .
Direct application of this result therefore yields

N(6; Fs, [1(Q)) < M.

(b) Using that {1g,,...,1g,,} is a -packing, we derive
=1—E [Igas,(X)]
=1-E[|15/(X) — 15,(X)|]
<1-—0.

() Sin{Xy,....,X,}and S; N {X;,...,X,} are distinct if and only if there exists k
such that either X, € S; and X, ¢ S, or X, € S; and X, ¢ S;, which is equivalent
to Xk € (SZ A Sj)

(d) From subproblem (b) we know that

P[Xk¢(SZAS])]<1—(5, Vk=1,...,n,
and by the independence assumption on the X}, we get

Taking the union bound over all () pairs of subsets, the probability that there
exists at least one pair of subsets {5;, S;} such that S; N {X;,...,X,} and S; N
{Xi1,...,X,} are identical is upper bounded by (%/)(1 — §)". We are interested
in the complementary event, which hence has probability lower-bounded by 1 —

(V)@ —om.

(e) Setn = 31%(]\4) — 1. Using the result in subproblem (d), the probability that every

set S; picks out a different subset of { X, ..., X, } is lower-bounded according to
M M(M —1)
1— l—8)=1- " (] —§)"
(5 )a-o )
Z 1 _ M26—7’L5

=1 €—n6+210g(M)
—1— e—log(M)-‘r(S

> 0,



(f)

(8)

where the last inequality is a consequence of

) 1
log(M) > (V; ) >0,
which, in turn, follows from v > 2. As 1 — (]‘24 ) (1 —4)" > 0, we can conclude that
there must exist a set of n points {z1, ..., z,} such that
as desired.

As 3log(M) > 6(v + 1), we have n > v. One can therefore apply the Vapnik-
Chervonenkis-Sauer-Shelah lemma, which yields

S({wn. ] < (1) = (?’lgTW)> . @
Combining (3) and (4) yields
M < (—3 1°g5<M >)”. 5)

We first prove the relation given in the hint, namely

sup (t*e”") < (2v)* "
>0

—t

By differentiating the function ¢ — ¢*’¢~*, we find that it attains its maximum at

t* = 2v. Therefore,

sup (t2ue—t) S (2V)2V€_2V S (2V)2V—17
t>0

where in the last inequality we used that te™* < 1, for ¢ > 0. Now, we rewrite
inequality (5) in the previous subproblem as

M2 < (310g(M))2V
s\—5 ) >
which, upon application of >~ < (2v)?~!, for t > 0, with ¢ = log(M), yields
M < (log(]\]y))zy (§>2V < (2u)! (%)21/'
Using the bound
N(0; Fs, L1(Q)) < M

established in the first subproblem, we obtain the desired result:

v Fs L) < o (2)



