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Problem 1

(a) (i) We have
N∑
j=1

µ̃2
j =

N∑
j=1

max
k∈[N ]

|〈gk, hj〉|2 ≥
N∑
j=1

|〈g1, hj〉|2 = ‖g1‖22 = 1,

where we used the fact that {hj}Nj=1 is an orthonormal basis for CN .

(ii) Let t be a random variable taking values in [N ] := {1, 2, . . . , N} and distribu-
ted according to P̃ . We then have

κ−1 = min
j∈[N ]

pj µ̃
−2
j ≤ pt µ̃

−2
t .

Taking the expectation of both sides with respect to t yields κ−1 ≤ Et∼P̃
[
pt µ̃

−2
t

]
.

(iii) We have

κ−1 ≤ Et∼P̃
[
pt µ̃

−2
t

]
=

N∑
j=1

Pt∼P̃ (t = j) · pjµ̃−2j

=
N∑
j=1

µ̃2
j

µ̃2
1 + · · ·+ µ̃2

N

pjµ̃
−2
j =

1

µ̃2
1 + · · ·+ µ̃2

N

N∑
j=1

pj︸ ︷︷ ︸
=1

=
1

µ̃2
1 + · · ·+ µ̃2

N

,

and hence κ ≥
∑N

j=1 µ̃
2
j . Moreover, equality holds if and only if

min
j∈[N ]

pj µ̃
−2
j = Et∼P̃

[
ptµ̃

−2
t

]
.

This is the case if and only if the random variable pt µ̃−2t is constant, i.e., there
exists a c ∈ R such that pj µ̃−2j = c, for j ∈ [N ]. If this is the case, then, using that
P is a probability distribution, we have

c

N∑
k=1

µ̃2
k =

N∑
k=1

pk = 1,

and thus pj = cµ̃2
j =

(∑N
k=1 µ̃

2
k

)−1
µ̃2
j , for all j ∈ [N ], i.e., P = P̃ .
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(b) (i) We have

E
[
|〈x, Y`〉|2

]
= E

[
〈x, Y`〉〈x, Y`〉

]
= E

[
N∑

k,k′=1

A`kxkA`k′xk′

]

=
N∑

k,k′=1

xkxk′ m
−1Et∼P

[
p−1t 〈gk, ht〉〈gk′ , ht〉

]
=

N∑
k,k′=1

xkxk′ m
−1

N∑
j=1

pj · p−1j 〈gk, hj〉〈gk′ , hj〉

=
N∑

k,k′=1

xkxk′ m
−1

〈
N∑
j=1

〈gk, hj〉hj, gk′
〉

=
N∑

k,k′=1

xkxk′ m
−1 〈gk, gk′〉︸ ︷︷ ︸

= δkk′

= m−1‖x‖22 = m−1,

and so E [X`] = E [|〈x, Y`〉|2] − 1
m

= 0. Next, for ` ∈ [m], applying the Cauchy-
Schwarz inequality and |〈gj, ht`〉| ≤ µ̃t` yields

|〈x, Y`〉|2 ≤
( ∑
j∈supp(x)

|A`j|2
)
‖x‖22 =

∑
j∈supp(x)

m−1p−1t`
|〈gj, ht`〉|2

≤
∑

j∈supp(x)

m−1p−1t`
µ̃2
t`
= sm−1p−1t`

µ̃2
t`
≤ sm−1κ,

and so

|X`| ≤ max
{
|〈x, Y`〉|2, 1

m

}
≤ m−1max {sκ, 1} = sm−1κ,

where the second inequality follows from κ ≥
∑N

j=1 µ̃
2
j ≥ 1. Finally, we estimate

E
[
|X`|2

]
= E

[
|〈x, Y`〉|4

]
− 2

m
E
[
|〈x, Y`〉|2

]
+ 1

m2

≤ sm−1κE
[
|〈x, Y`〉|2

]
− 2

m
E
[
|〈x, Y`〉|2

]
+ 1

m2

= sm−1κ 1
m
− 2

m
1
m
+ 1

m2 < sm−2κ,

for all ` ∈ [m], as desired.

(ii) We have

‖Ax‖22 − 1 =
m∑
`=1

|〈x, Y`〉|2 − 1 =
m∑
`=1

X`,

and thus obtain using Bernstein’s inequality

P
(∣∣‖Ax‖22 − 1

∣∣ ≥ t
)
= P

(∣∣∣∣∣
m∑
`=1

X`

∣∣∣∣∣ ≥ t

)
≤ 2 exp

(
− t2/2

m · sm−2κ+ sm−1κ t
3

)
≤ 2 exp

(
− t2/2

sm−1κ+ 1
3
sm−1κ

)
= 2 exp

(
−3t2m

8sκ

)
,
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for t ∈ (0, 1), as desired.

Problem 2

(a) (i) We have

‖x‖1 =
N∑
k=1

|xk| =
∑
k∈S

|xk| =
∑
k∈S

xk ·
xk
|xk|

=
∑
k∈S

xk
(
sgn(x)

)
k
=

N∑
k=1

xk
(
sgn(x)

)
k
= 〈x, sgn(x)〉,

as desired.

(ii) Using the triangle inequality, the Hölder inequality, and ‖z‖1 = ‖zS‖1+ ‖zS‖1,
we obtain

‖x‖1 = 〈x, sgn(x)〉 = 〈z + v, sgn(x)〉

≤ |〈z, sgn(x)〉|+ |〈v, sgn(x)〉| = |〈zS, sgn(xS)〉|+ |〈v, sgn(x)〉|

≤ ‖zS‖1 ‖sgn(xS)‖∞︸ ︷︷ ︸
=1

+ |〈v, sgn(x)〉| = ‖z‖1 − ‖zS‖1 + |〈v, sgn(x)〉|

= ‖z‖1 − ‖vS‖1 + |〈v, sgn(x)〉|.

(b) (i) We have

0 = Av =
N∑
k=1

akvk =
∑
k∈S

akvk +
∑
k∈S

akvk = ASvS + AS vS.

(ii) First note that

ASvS = −AS vS = −
∑
k∈S

akvk.

Using this, the definition of the matrix operator norm, the triangle inequality, and
the definition of α, we can argue as follows

‖vS‖2 = ‖(AH
SAS)

−1AH
SASvS‖ ≤ ‖(AH

SAS)
−1‖2‖AH

SASvS‖2

= ‖(AH
SAS)

−1‖2
∥∥∥AH

S

∑
k∈S

akvk

∥∥∥
2
= ‖(AH

SAS)
−1‖2

∥∥∥∑
k∈S

AH
Sakvk

∥∥∥
2

≤ ‖(AH
SAS)

−1‖2
∑
k∈S

‖AH
Sak‖2|vk|

≤ ‖(AH
SAS)

−1‖2 ·max
k∈S
‖AH

Sak‖2 ·
∑
k∈S

|vk|

= α‖vS‖1,

yielding the desired identity.
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(c) As v ∈ ker(A) and u ∈ im(AH) = (ker(A))⊥, we have 〈v, u〉 = 0, and so

|〈v, sgn(x)〉| = |〈v, sgn(x)− u〉| = |〈vS, sgn(xS)− uS〉+ 〈vS, sgn(xS)︸ ︷︷ ︸
=0

−uS〉|

≤ |〈vS, sgn(xS)− uS〉|+ |〈vS,−uS〉|

≤ ‖uS − sgn(xS)‖2‖vS‖2 + ‖uS‖∞‖vS‖1,

where in the last step we used the Cauchy-Schwarz and the Hölder inequality.

(d) (i) Let v ∈ ker(A) \ {0}. We now have

|〈v, sgn(x)〉| ≤ ‖sgn(xS)− uS‖2‖vS‖2 + ‖uS‖∞‖vS‖1

≤ ‖sgn(xS)− uS‖2 · α‖vS‖1 + ‖uS‖∞‖vS‖1

=
(
α ‖sgn(xS)− uS‖2 + ‖uS‖∞

)
· ‖vS‖1,

and hence the desired inequality follows by the condition

α ‖sgn(xS)− uS‖2 + ‖uS‖∞ < 1,

provided we can show that ‖vS‖1 > 0 (this is necessary as we have to prove a
strict inequality between |〈v, sgn(x)〉| and ‖vS‖1).
Indeed, if ‖vS‖1 = 0, we would have ‖vS‖2 ≤ α‖vS‖1 = 0, and so vS = 0 and
vS = 0. This, however, stands in contradicton to the assumption v 6= 0, and hence
we must have ‖vS‖1 > 0, as desired.

(ii) Let z ∈ CN \ {x} be such that Az = Ax, but otherwise arbitrary, and set
v = x− z. Then v 6= 0 and Av = Ax− Az = 0, and thus v ∈ ker(A) \ {0}. Hence

‖x‖1 ≤ ‖z‖1 − ‖vS‖1 + |〈v, sgn(x)〉| < ‖z‖1.

As z was arbitrary, this establishes that x is the unique minimizer of

min
z∈CN

‖z‖1 subject to Az = Ax.
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Problem 3

(a) The solution to this problem follows the same structure as the first step of the
proof of Theorem 12.10 in the lecture notes. We first prove that the empirical Ra-
demacher complexity satisfies the bounded difference property. To this end, we
start by noting that the Rademacher complexity is invariant under permutation
of its inputs so that it is sufficient to establish that

|Rn (F (xn1 ) /n)−Rn (F (yn1 ) /n)| ≤ L, (1)

where L is some positive constant and where we defined xn1 := {x1, . . . , xn} with
xi ∈ Rd, i = 1, . . . , n, and yn1 := {y1, x2, . . . , xn} with y1 ∈ Rd. Developing the
left-hand side of (1), we get

|Rn (F (xn1 ) /n)−Rn (F (yn1 ) /n)|

=

∣∣∣∣∣ 1nEε
[
sup
f∈F

∣∣∣∣∣
n∑
i=1

εif(xi)

∣∣∣∣∣
]
− 1

n
Eε

[
sup
g∈F

∣∣∣∣∣ε1g(y1) +
n∑
i=2

εig(xi)

∣∣∣∣∣
]∣∣∣∣∣

=

∣∣∣∣∣ 1nEε
[
sup
f∈F

∣∣∣∣∣
n∑
i=1

εif(xi)

∣∣∣∣∣− sup
g∈F

∣∣∣∣∣ε1g(y1) +
n∑
i=2

εig(xi)

∣∣∣∣∣
]∣∣∣∣∣

≤

∣∣∣∣∣ 1nEε
[
sup
f∈F

(∣∣∣∣∣
n∑
i=1

εif(xi)

∣∣∣∣∣−
∣∣∣∣∣ε1f(y1) +

n∑
i=2

εif(xi)

∣∣∣∣∣
)]∣∣∣∣∣

≤ 1

n
Eε

[
sup
f∈F

(∣∣∣∣∣
n∑
i=1

εif(xi)− ε1f(y1)−
n∑
i=2

εif(xi)

∣∣∣∣∣
)]

=
1

n
Eε1
[
sup
f∈F
|ε1 (f(x1)− f(y1))|

]
≤ 2b

n
,

which proves that the empirical Rademacher complexity, seen as a function of
fixed data points satisfies the bounded difference property with L := 2b

n
. The con-

ditions are now satisfied for the application of the bounded difference inequality.

For δ > 0, we set ε :=
√

2b2 log(1/δ)
n

and get

P

[
E[Rn (F (Xn

1 ) /n)]−Rn (F (Xn
1 ) /n) >

√
2b2 log(1/δ)

n

]
≤ e−

2n
4b2

2b2 log(1/δ)
n

= δ.

For the complementary event, we therefore have with probability at least 1 − δ
that

Rn (F) = E[Rn (F (Xn
1 ) /n)] ≤ Rn (F (Xn

1 ) /n) +

√
2b2 log(1/δ)

n
.
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(b) We rewrite the function class F|·| as

F|·| = φ ◦ {F1 −F2},

where F1 −F2 = {f1 − f2 | f1 ∈ F1, f2 ∈ F2} and φ : x 7→ |x| is a 1-Lipschitz func-
tion from R to R such that φ(0) = 0. Applying the Ledoux-Talagrand contraction
lemma now yields

Rn

(
F|·| (xn1 ) /n

)
= Rn (φ ◦ {F1 −F2} (xn1 ) /n)

≤ 2Rn ({F1 −F2} (xn1 ) /n)

=
2

n
Eε

[
sup

f1,f2∈F1×F2

∣∣∣∣∣
n∑
i=1

εi (f1(xi)− f2(xi))

∣∣∣∣∣
]

≤ 2

n
Eε

[
sup
f1∈F1

∣∣∣∣∣
n∑
i=1

εif1(xi)

∣∣∣∣∣
]
+

2

n
Eε

[
sup
f2∈F2

∣∣∣∣∣
n∑
i=1

εif2(xi)

∣∣∣∣∣
]

= 2Rn (F1 (x
n
1 ) /n) + 2Rn (F2 (x

n
1 ) /n) .

(c) We first prove that the maximum of two real numbers a and b can be expressed
as

max{a, b} = |a− b|+ a+ b

2
. (2)

If a ≥ b, then

max{a, b} = a =
a− b+ a+ b

2
=
|a− b|+ a+ b

2
,

and if b ≥ a, then

max{a, b} = b =
b− a+ a+ b

2
=
|a− b|+ a+ b

2
,

which establishes the hint. Inserting (2) into the definition of the empirical Rade-
macher complexity of Fmax, we obtain

Rn (Fmax (x
n
1 ) /n) =

1

n
Eε

[
sup

f1,f2∈F1×F2

∣∣∣∣∣
n∑
i=1

εimax{f1(xi), f2(xi)}

∣∣∣∣∣
]

=
1

n
Eε

[
sup

f1,f2∈F1×F2

∣∣∣∣∣
n∑
i=1

εi
|f1(xi)− f2(xi)|+ f1(xi) + f2(xi)

2

∣∣∣∣∣
]

≤
Rn

(
F|·| (xn1 ) /n

)
+Rn (F1 (x

n
1 ) /n) +Rn (F2 (x

n
1 ) /n)

2

≤ 3

2

(
Rn (F1 (x

n
1 ) /n) +Rn (F2 (x

n
1 ) /n)

)
,

where the last inequality follows from the bound established in subproblem (b).
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Problem 4

(a) By construction M is the size of a maximal δ-packing of FS in the L1(Q)-norm,
i.e.,

M :=M(δ;FS , L1(Q)) .

We know from the lecture that, for any metric space (T, ρ), the following relation
between the δ-packing number and the δ-covering number holds

N(δ;T, ρ) ≤M(δ;T, ρ) .

Direct application of this result therefore yields

N(δ;FS , L1(Q)) ≤M.

(b) Using that {1S1 , . . . ,1SM} is a δ-packing, we derive

P [X /∈ (Si4 Sj)] = 1− P [X ∈ (Si4 Sj)]

= 1− E
[
1Si4Sj(X)

]
= 1− E

[∣∣1Si(X)− 1Sj(X)
∣∣]

< 1− δ.

(c) Si ∩ {X1, . . . , Xn} and Sj ∩ {X1, . . . , Xn} are distinct if and only if there exists k
such that either Xk ∈ Si and Xk /∈ Sj or Xk ∈ Sj and Xk /∈ Si, which is equivalent
to Xk ∈ (Si4 Sj).

(d) From subproblem (b) we know that

P [Xk /∈ (Si4 Sj)] < 1− δ, ∀k = 1, . . . , n,

and by the independence assumption on the Xk, we get

P[Xk /∈ (Si4 Sj), ∀k = 1, . . . , n] < (1− δ)n.

Taking the union bound over all
(
M
2

)
pairs of subsets, the probability that there

exists at least one pair of subsets {Si, Sj} such that Si ∩ {X1, . . . , Xn} and Sj ∩
{X1, . . . , Xn} are identical is upper bounded by

(
M
2

)
(1 − δ)n. We are interested

in the complementary event, which hence has probability lower-bounded by 1−(
M
2

)
(1− δ)n.

(e) Set n = 3 log(M)
δ
− 1. Using the result in subproblem (d), the probability that every

set Si picks out a different subset of {X1, . . . , Xn} is lower-bounded according to

1−
(
M

2

)
(1− δ)n = 1− M(M − 1)

2
(1− δ)n

≥ 1−M2e−nδ

= 1− e−nδ+2 log(M)

= 1− e− log(M)+δ

> 0,
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where the last inequality is a consequence of

log(M) >
δ(ν + 1)

3
≥ δ,

which, in turn, follows from ν ≥ 2. As 1−
(
M
2

)
(1− δ)n > 0, we can conclude that

there must exist a set of n points {x1, . . . , xn} such that

M ≤ |S({x1, . . . , xn})|, (3)

as desired.

(f) As 3 log(M) > δ(ν + 1), we have n > ν. One can therefore apply the Vapnik-
Chervonenkis-Sauer-Shelah lemma, which yields

|S({x1, . . . , xn})| ≤ (n+ 1)ν =

(
3 log(M)

δ

)ν
. (4)

Combining (3) and (4) yields

M ≤
(
3 log(M)

δ

)ν
. (5)

(g) We first prove the relation given in the hint, namely

sup
t≥0

(
t2νe−t

)
≤ (2ν)2ν−1.

By differentiating the function t 7→ t2νe−t, we find that it attains its maximum at
t∗ = 2ν. Therefore,

sup
t≥0

(
t2νe−t

)
≤ (2ν)2νe−2ν ≤ (2ν)2ν−1,

where in the last inequality we used that te−t ≤ 1, for t ≥ 0. Now, we rewrite
inequality (5) in the previous subproblem as

M2 ≤
(
3 log(M)

δ

)2ν

,

which, upon application of t2νe−t ≤ (2ν)2ν−1, for t ≥ 0, with t = log(M), yields

M ≤ (log(M))2ν

M

(
3

δ

)2ν

≤ (2ν)2ν−1
(
3

δ

)2ν

.

Using the bound

N(δ;FS , L1(Q)) ≤M

established in the first subproblem, we obtain the desired result:

N(δ;FS , L1(Q)) ≤ (2ν)2ν−1
(
3

δ

)2ν

.
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