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Please note:
• Exam duration: 180 minutes
• Maximum number of points: 100
• You are allowed to use any printed or handwritten material (i.e., books,

lecture and discussion session notes, summaries), but no computers, ta-
blets, smartphones or other electronic devices.
• Your solutions should be explained in detail and your handwriting needs

to be clean and legible.
• Please do not use red or green pens. You may use pencils.
• Please note that the “ETH Zurich Ordinance on Disciplinary Measures”

applies.

Before you start:
1. The problem statements consist of 6 pages including this page. Please

verify that you have received all 6 pages.
2. Please fill in your name, student ID card number and signature below.
3. Please place your student ID card at the front of your desk so we can

verify your identity.

During the exam:
4. For your solutions, please use only the empty sheets provided by us.

Should you need additional sheets, please let us know.
5. Each problem consists of several subproblems. If you do not provide a

solution to a subproblem, you may, whenever applicable, nonetheless as-
sume its conclusion in the ensuing subproblems.

After the exam:
6. Please write your name on every sheet and prepare all sheets in a pile. All

sheets, including those containing problem statements, must be handed
in.

7. Please clean up your desk and stay seated and silent until you are allo-
wed to leave the room in a staggered manner row by row.

8. Please avoid crowding and leave the building by the most direct route.
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Legi-No.: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Number of additional sheets handed in: . . . . . . . . . . . . .

Signature: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Problem 1 (25 points)

Recall the sparse signal recovery procedure

(P1) x̂ = arg min‖x̃‖1 subject to y = Dx̃,

with observation vector y ∈ Rm and measurement matrix D ∈ Rm×n, where m < n. In
this problem, we are concerned with recovering vectors that are almost sparse.

To this end, we define with s ∈ N, for given x ∈ Rn,

σs(x) := inf{‖x− z‖1 | z ∈ Rn, ‖z‖0 ≤ s}.

Further, for D ∈ Rm×n with m < n, define for s < spark(D),

∆s(D) = max
S⊂[n]
|S|=s

max
v∈ker(D)\0

‖vS‖1
‖vSc‖1

,

where ker (D) = {v ∈ Rn | Dv = 0}, vS ∈ Rn denotes the vector obtained from v

according to

(vS)i =

vi, i ∈ S
0, i /∈ S

,

and Sc stands for the complement of the set S in [n] = {1, . . . , n}. You may assume
throughout that ∆s(D) is well-defined, i.e., that there are S with |S| < spark(D) and v

that achieve the maximum.

(a) (2 Points) Prove that if s < spark(D), then for every set S ⊂ [n] with |S| = s, it
holds that

‖vSc‖1 6= 0, ∀v ∈ ker(D)\0.

(b) (4 Points) Prove the inequality

‖(x− z)Sc‖1 ≤ 2‖xSc‖1 − ‖x‖1 + ‖(x− z)S‖1 + ‖z‖1 , for x, z ∈ Rn, S ⊂ [n].

(c) (11 Points) Fix x ∈ Rn, D ∈ Rm×n, s < spark(D), and assume that ∆s(D) ∈ (0, 1).
Prove that every solution x̂ of (P1) with y = Dx approximates x to within error

‖x− x̂‖1 ≤ 2
1 + ∆s(D)

1−∆s(D)
σs(x).

Hint: You may use the results from subproblems (a) and (b).

(d) (8 Points) Fix D ∈ Rm×n, s < spark(D), and assume that ∆s(D) ∈ (0, 1). Show
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that one can find x ∈ Rn and z ∈ Rn, with ‖x‖1 = ‖z‖1 and Dx = Dz, such that

‖x− z‖1 = 2
1 + ∆s(D)

1−∆s(D)
σs(x).
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Problem 2

In this problem, we are going to study the so-called Zak transform of signals f ∈ L2(R),
defined as

Zf (u, ξ) =
∞∑

k=−∞

ei2πkξf(u− k), ∀(u, ξ) ∈ [0, 1]2. (1)

Let g ∈ L2(R) and consider the set
{
gn,`(x) = g(x− n)ei2π`x

}
(n,`)∈Z2 . Suppose that g

is such that {gn,`}(n,`)∈Z2 constitutes a Bessel sequence (see Definition 11 in the Han-
dout). Let T be the analysis operator (see Definition 12 in the Handout) associated
with {gn,`}(n,`)∈Z2 .

Theorems 1, 2, and 3 in the Handout can be used in the following without proof. Further, the
concepts in Definitions 5 - 14 of the Handout can be useful as well.

(a) (4 points) Let (n, `) ∈ Z2. Prove that

Zgn,`
(u, ξ) = ei2π`ue−i2πnξZg(u, ξ), ∀(u, ξ) ∈ [0, 1]2. (2)

(b) (4 points) Prove that 〈Zf ,Zgn,`
〉L2([0,1]2) = c

ZfZ∗
g

−n,` , ∀f ∈ L2(R), ∀n, ` ∈ Z, where

c
ZfZ∗

g

n,` denotes the 2-dimensional Fourier series coefficients (see Theorem 1 in the
Handout) of the function ZfZ∗g , with Z∗g designating the complex conjugate of
the function Zg.
Hint: Use the result from subproblem (a).

(c) (4 points) Let f1, f2 ∈ L2(R). Show that

〈Tf1,Tf2〉`2 =
∑

(n,`)∈Z2

c
Zf1
Z∗

g

n,`

(
c
Zf2
Z∗

g

n,`

)∗
, (3)

where 〈·, ·〉`2 denotes the inner product on `2 (see Definition 10 in the Handout).

Hint: Use the result from subproblem (b).

(d) (7 points) Prove that {gn,`}(n,`)∈Z2 is a frame (see Definition 13 in the Handout) if
there exist A,B ∈ R, 0 < A < B, such that

A ≤ |Zg(u, ξ)|2 ≤ B, ∀(u, ξ) ∈ [0, 1]2. (4)

Hint: Use Plancherel’s formula (see Theorem 2 in the Handout).

(e) (6 points) Let g ∈ L2(R) be such that (4) is satisfied, and denote the frame ope-
rator corresponding to {gn,`}(n,`)∈Z2 as S = T∗T. Show that 〈ZSf ,Zψ〉L2([0,1]2) =

〈Zf |Zg|2,Zψ〉L2([0,1]2), ∀f, ψ ∈ L2(R).

Hint: Use Plancherel’s formula (see Theorem 2 in the Handout).

4



Problem 3 (25 points)

Fix δ ∈ (0, 1/2). Throughout, ‘log’ denotes logarithm to the base 2. Fix an integer m ≥ 1

and take {xj}mj=1 to be an orthonormal basis for Rm. Also fix an integer k ≥ 1 together
with a function f : Rm → Rk which, for all 1 ≤ i, j ≤ m, satisfies

(1− δ)‖xi − xj‖22 ≤ ‖f(xi)− f(xj)‖22 ≤ (1 + δ)‖xi − xj‖22. (5)

In this problem, we prove a converse to the Johnson-Lindenstrauss Lemma discussed
in the lecture, namely that there exists a constant C > 0 independent of k, m, and δ

such that, if C log(m) > k, there does not exist a function f satisfying (5).

(a) (5 points) Prove that {f(xj)}mj=1 ⊆ B(y, 2), where y := (1/m)
∑m

j=1 f(xj) and
B(y, 2) is the open ball with respect to the ‖ · ‖2-norm centered at y and of ra-
dius 2.

(b) (7 points) Prove that {f(xj)}mj=1 is a 1-packing (as defined in the Handout, Defi-
nition 3) of (B(y, 2), ‖ · ‖2).

(c) (8 points) Prove that the 1-packing number M(1;B(y, 2), ‖ · ‖2) of (B(y, 2), ‖ · ‖2)
satisfies

C log (M(1;B(y, 2), ‖ · ‖2)) ≤ k,

where C > 0 is a constant that does not depend on any of k, m, δ.

Hint: Use the volume ratio estimate provided in the Handout (Lemma 1).

(d) (5 points) Conclude that there exists a constant C > 0 independent of k, m, and δ

such that, if C log(m) > k, there does not exist a function f : Rm → Rk satisfying
(5).
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Problem 4 (25 points)

In this problem, we want to generalize the volume ratio estimate provided in the Han-
dout (Lemma 1) to the Hamming cube. Fix the integer n ≥ 1, define the Hamming cube
as Hn := {0, 1}n, and consider the map

d : Hn ×Hn → N0

(x, y) 7→ #{i ∈ {1, . . . , n} |xi 6= yi}.

We use the notation [n] to designate the set of integers {1, . . . , n} and N0 stands for the
non-negative integers.

(a) (4 points) Prove that d is a metric on Hn.

(b) (6 points) Given x ∈ Hn and an integer m ∈ [n], we define the ball B(x,m),
centered at x and of radius m with respect to the metric d, to be the subset of Hn

given by
B(x,m) := {y ∈ Hn | d(x, y) ≤ m}.

Compute the cardinality of the ball B(x,m).

(c) (6 points) Fix m ∈ [n]. An m-covering of Hn with respect to the metric d is a set
{x1, . . . , xN} ⊂ Hn such that for all x ∈ Hn, there exists an i ∈ {1, . . . , N} so
that d(x, xi) ≤ m. The m-covering number N(m;Hn, d) is the cardinality of the
smallest m-covering. Prove that

N(m;Hn, d) ≥ 2n∑m
k=0

(
n
k

) .
(d) (4 points) Fix m ∈ [n]. An m-packing of Hn with respect to the metric d is a set
{x1, . . . , xM} ⊂ Hn such that d(xi, xj) > m, for all distinct i, j. The m-packing
number M(m;Hn, d) is the cardinality of the largest m-packing. Prove that, for
a maximal m-packing {xj}Mj=1, the balls {B(xj, bm/2c)}Mj=1 are, indeed, disjoint
subsets of Hn.

(e) (4 points) Deduce from the statement in subproblem (d) that

M(m;Hn, d) ≤ 2n∑bm/2c
k=0

(
n
k

) .
(f) (1 point) Prove that

2n∑m
k=0

(
n
k

) ≤ N(m;Hn, d) ≤M(m;Hn, d) ≤ 2n∑bm/2c
k=0

(
n
k

) .
Hint: You can use, without proof, that, for the Hamming cube,N(m;Hn, d) ≤M(m;Hn, d).
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