Handout Examination on Mathematics of Information February 15, 2022

Definition 1 (Spark). *The spark of a matrix* A, *denoted by* spark(A), *is defined as the cardinality of the smallest set of linearly dependent columns.*

Definition 2 (Metric). A metric $d: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ on a non-empty set \mathcal{X} is a function satisfying *the following properties:*

- $d(x, x') \ge 0$, for all x, x';
- d(x, x') = 0, if and only if x = x';
- d(x, x') = d(x', x), for all x, x';
- $d(x, x') \leq d(x, \tilde{x}) + d(\tilde{x}, x')$, for all x, x', \tilde{x} .

Definition 3 (Covering number). Let (\mathcal{X}, d) be a compact metric space and $\varepsilon \in \mathbb{R}_+$. An ε -covering of \mathcal{X} with respect to the metric d is a set $\{x_1, \ldots, x_N\} \subset \mathcal{X}$ such that for all $x \in \mathcal{X}$, there exists an $i \in \{1, \ldots, N\}$ so that $d(x, x_i) \leq \varepsilon$. The ε -covering number $N(\varepsilon; \mathcal{X}, d)$ is the cardinality of the smallest ε -covering.

Definition 4 (Packing number). Let (\mathcal{X}, d) be a compact metric space and $\varepsilon \in \mathbb{R}_+$. An ε packing of \mathcal{X} with respect to the metric d is a set $\{x_1, \ldots, x_M\} \subset \mathcal{X}$ such that $d(x_i, x_j) > \varepsilon$, for
all distinct i, j. The ε -packing number $M(\varepsilon; \mathcal{X}, d)$ is the cardinality of the largest ε -packing.

Lemma 1 (Volume ratio estimate of metric entropy). Consider a pair of norms $\|\cdot\|$ and $\|\cdot\|'$ on \mathbb{R}^d , and let \mathcal{B} and \mathcal{B}' be their corresponding unit balls, i.e., $\mathcal{B} \coloneqq \{x \in \mathbb{R}^d \mid \|x\| \le 1\}$ and $\mathcal{B}' \coloneqq \{x \in \mathbb{R}^d \mid \|x\|' \le 1\}$. Then, the ε -covering number $N(\varepsilon; \mathcal{B}, \|\cdot\|')$ and the ε -packing number $M(\varepsilon; \mathcal{B}, \|\cdot\|')$ of \mathcal{B} in the $\|\cdot\|'$ -norm satisfy

$$\left(\frac{1}{\varepsilon}\right)^{d} \frac{\operatorname{vol}(\mathcal{B})}{\operatorname{vol}(\mathcal{B}')} \leq N(\varepsilon; \mathcal{B}, \|\cdot\|') \leq M(\varepsilon; \mathcal{B}, \|\cdot\|') \leq \frac{\operatorname{vol}\left(\frac{2}{\varepsilon}\mathcal{B} + \mathcal{B}'\right)}{\operatorname{vol}(\mathcal{B}')}$$

Definition 5. $\mathcal{L}^2(\mathbb{R})$ denotes the space of square-integrable functions on \mathbb{R} , i.e., the set of all *functions f satisfying*

 $\int_{\mathbb{R}} |f(x)|^2 dx < \infty.$ We define the norm $\|f\|_{\mathcal{L}^2(\mathbb{R})} = \sqrt{\int_{\mathbb{R}} |f(x)|^2 dx}$, for $f \in \mathcal{L}^2(\mathbb{R})$. **Definition 6.** $\mathcal{L}^2([0,1]^2)$ denotes the space of square-integrable functions on $[0,1]^2$, i.e., the set of all functions f satisfying

$$\iint_{[0,1]^2} |f(x,y)|^2 \, dx \, dy < \infty.$$

We define the norm $||f||_{\mathcal{L}^2([0,1]^2)} = \sqrt{\iint_{[0,1]^2} |f(x,y)|^2} \, dxdy$, for $f \in \mathcal{L}^2([0,1]^2)$.

Definition 7. Let $f, g \in \mathcal{L}^2(\mathbb{R})$. We define the inner product on $\mathcal{L}^2(\mathbb{R})$ as

$$\langle f, g \rangle_{\mathcal{L}^2(\mathbb{R})} = \int_{\mathbb{R}} f(x) g^*(x) dx$$
 (1)

Definition 8. Let $f, g \in \mathcal{L}^2([0,1]^2)$. We define the inner product on $\mathcal{L}^2([0,1]^2)$ as

$$\langle f,g \rangle_{\mathcal{L}^2([0,1]^2)} = \iint_{[0,1]^2} f(x,y) g^*(x,y) \, dx dy$$
 (2)

Definition 9. Let \mathcal{K} be a countable set and $\{\alpha_k\}_{k \in \mathcal{K}}$ a sequence of elements taken from \mathbb{R} . $\{\alpha_k\}_{k \in \mathcal{K}}$ is an ℓ^2 -summable sequence, and we write $\{\alpha_k\}_{k \in \mathcal{K}} \in \ell^2$, if

$$\sum_{k \in \mathcal{K}} |\alpha_k|^2 < \infty.$$
(3)

We define the norm on ℓ^2 *as*

$$\|\{\alpha_k\}_{k\in\mathcal{K}}\|_{\ell^2} = \sqrt{\sum_{k\in\mathcal{K}} |\alpha_k|^2}.$$
(4)

Definition 10. Let \mathcal{K} be a countable set, $\{\alpha_k\}_{k \in \mathcal{K}} \in \ell^2$ and $\{\beta_k\}_{k \in \mathcal{K}} \in \ell^2$. We define the inner product on ℓ^2 as

$$\langle \{\alpha_k\}_{k\in\mathcal{K}}, \{\beta_k\}_{k\in\mathcal{K}} \rangle_{\ell^2} = \sum_{k\in\mathcal{K}} \alpha_k \beta_k^*.$$
 (5)

Definition 11. Let \mathcal{H} be a Hilbert space with inner product $\langle \cdot \rangle$, \mathcal{K} a countable set, and $\{g_k\}_{k \in \mathcal{K}}$ a sequence of elements taken from \mathcal{H} . $\{g_k\}_{k \in \mathcal{K}}$ is a Bessel sequence if

$$\sum_{k \in \mathcal{K}} |\langle x, g_k \rangle|^2 < \infty, \forall x \in \mathcal{H}$$
(6)

Definition 12. Let \mathcal{H} be a Hilbert space with inner product $\langle \cdot \rangle$, \mathcal{K} a countable set, and $\{g_k\}_{k \in \mathcal{K}}$ a Bessel sequence of elements taken from \mathcal{H} . We define the analysis operator \mathbb{T} correlated to $\{g_k\}_{k \in \mathcal{K}}$ as $\mathbb{T}x = \{\langle x, g_k \rangle\}_{k \in \mathcal{K}}$.

Definition 13. Let \mathcal{H} be a Hilbert space with inner product $\langle \cdot \rangle$ and norm $\|\cdot\|$, \mathcal{K} a countable set, and $\{g_k\}_{k \in \mathcal{K}}$ a Bessel sequence of elements taken from \mathcal{H} . We say that $\{g_k\}_{k \in \mathcal{K}}$ is a frame for \mathcal{H} if there exist $A, B \in \mathbb{R}$ with 0 < A < B such that $A\|x\|^2 \leq \langle \mathbb{T}x, \mathbb{T}x \rangle_{\ell^2} = \sum_{k \in \mathcal{K}} |\langle x, g_k \rangle|^2 \leq |\langle x, g_k \rangle|^2$

 $B||x||^2, \forall x \in \mathcal{H}.$

Theorem 1. (2-dimensional Fourier series) Every function $h \in \mathcal{L}^2([0, 1]^2)$ can be represented as a 2-dimensional Fourier series according to

$$h(u,\xi) = \sum_{(n,\ell)\in\mathbb{Z}^2} c_{n,\ell}^h \, e^{i2\pi\ell u} \, e^{i2\pi\xi n}, \, \forall (u,\xi)\in[0,1]^2,$$
(7)

where $\{c_{n,\ell}^h\}_{(n,\ell)\in\mathbb{Z}^2}$ denotes the 2-dimensional Fourier series coefficients of h, which are given by

$$c_{n,\ell}^{h} = \iint_{[0,1]^2} e^{-i2\pi\ell u} e^{-i2\pi\xi n} h(u,\xi) \, dud\xi, \ \forall (n,\ell) \in \mathbb{Z}^2.$$
(8)

Theorem 2. (Plancherel's formula) Let $f_1, f_2 \in \mathcal{L}^2([0,1]^2)$. We have

$$\langle \{c_{n,\ell}^{f_1}\}_{(n,\ell)\in\mathbb{Z}^2}, \{c_{n,\ell}^{f_2}\}_{(n,\ell)\in\mathbb{Z}^2}\rangle_{\ell^2} = \langle f_1, f_2\rangle_{\mathcal{L}^2([0,1]^2)},\tag{9}$$

where $\{c_{n,\ell}^{f_1}\}_{(n,\ell)\in\mathbb{Z}^2}$ and $\{c_{n,\ell}^{f_2}\}_{(n,\ell)\in\mathbb{Z}^2}$ denote the 2-dimensional Fourier series coefficients of f_1 and f_2 , respectively.

Definition 14. The Zak transform of the signal $f \in \mathcal{L}^2(\mathbb{R})$ is defined as

$$\mathcal{Z}_f(u,\xi) = \sum_{k=-\infty}^{\infty} e^{i2\pi k\xi} f(u-k), \ \forall (u,\xi) \in [0,1]^2.$$
(10)

Theorem 3. \mathcal{Z} is a unitary operator between $\mathcal{L}^2(\mathbb{R})$ and $\mathcal{L}^2([0,1]^2)$, *i.e.*,

$$\langle x, y \rangle_{\mathcal{L}^2(\mathbb{R})} = \langle \mathcal{Z}_x, \mathcal{Z}_y \rangle_{\mathcal{L}^2([0,1]^2)}.$$
 (11)