Handout

Examination on Mathematics of Information February 15, 2022

Definition 1 (Spark). The spark of a matrix A, denoted by $\operatorname{spark}(A)$, is defined as the cardinality of the smallest set of linearly dependent columns.

Definition 2 (Metric). A metric $d: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ on a non-empty set \mathcal{X} is a function satisfying the following properties:

- $d\left(x, x^{\prime}\right) \geq 0$, for all x, x^{\prime};
- $d\left(x, x^{\prime}\right)=0$, if and only if $x=x^{\prime}$;
- $d\left(x, x^{\prime}\right)=d\left(x^{\prime}, x\right)$, for all x, x^{\prime};
- $d\left(x, x^{\prime}\right) \leq d(x, \tilde{x})+d\left(\tilde{x}, x^{\prime}\right)$, for all x, x^{\prime}, \tilde{x}.

Definition 3 (Covering number). Let (\mathcal{X}, d) be a compact metric space and $\varepsilon \in \mathbb{R}_{+}$. An ε-covering of \mathcal{X} with respect to the metric d is a set $\left\{x_{1}, \ldots, x_{N}\right\} \subset \mathcal{X}$ such that for all $x \in \mathcal{X}$, there exists an $i \in\{1, \ldots, N\}$ so that $d\left(x, x_{i}\right) \leq \varepsilon$. The ε-covering number $N(\varepsilon ; \mathcal{X}, d)$ is the cardinality of the smallest ε-covering.

Definition 4 (Packing number). Let (\mathcal{X}, d) be a compact metric space and $\varepsilon \in \mathbb{R}_{+}$. An ε packing of \mathcal{X} with respect to the metric d is a set $\left\{x_{1}, \ldots, x_{M}\right\} \subset \mathcal{X}$ such that $d\left(x_{i}, x_{j}\right)>\varepsilon$, for all distinct i, j. The ε-packing number $M(\varepsilon ; \mathcal{X}, d)$ is the cardinality of the largest ε-packing.

Lemma 1 (Volume ratio estimate of metric entropy). Consider a pair of norms $\|\cdot\|$ and $\|\cdot\|^{\prime}$ on \mathbb{R}^{d}, and let \mathcal{B} and \mathcal{B}^{\prime} be their corresponding unit balls, i.e., $\mathcal{B}:=\left\{x \in \mathbb{R}^{d} \mid\|x\| \leq 1\right\}$ and $\mathcal{B}^{\prime}:=\left\{x \in \mathbb{R}^{d} \mid\|x\|^{\prime} \leq 1\right\}$. Then, the ε-covering number $N\left(\varepsilon ; \mathcal{B},\|\cdot\|^{\prime}\right)$ and the ε-packing number $M\left(\varepsilon ; \mathcal{B},\|\cdot\|^{\prime}\right)$ of \mathcal{B} in the $\|\cdot\|^{\prime}$-norm satisfy

$$
\left(\frac{1}{\varepsilon}\right)^{d} \frac{\operatorname{vol}(\mathcal{B})}{\operatorname{vol}\left(\mathcal{B}^{\prime}\right)} \leq N\left(\varepsilon ; \mathcal{B},\|\cdot\|^{\prime}\right) \leq M\left(\varepsilon ; \mathcal{B},\|\cdot\|^{\prime}\right) \leq \frac{\operatorname{vol}\left(\frac{2}{\varepsilon} \mathcal{B}+\mathcal{B}^{\prime}\right)}{\operatorname{vol}\left(\mathcal{B}^{\prime}\right)} .
$$

Definition 5. $\mathcal{L}^{2}(\mathbb{R})$ denotes the space of square-integrable functions on \mathbb{R}, i.e., the set of all functions f satisfying

$$
\int_{\mathbb{R}}|f(x)|^{2} d x<\infty
$$

We define the norm $\|f\|_{\mathcal{L}^{2}(\mathbb{R})}=\sqrt{\int_{\mathbb{R}}|f(x)|^{2} d x}$, for $f \in \mathcal{L}^{2}(\mathbb{R})$.

Definition 6. $\mathcal{L}^{2}\left([0,1]^{2}\right)$ denotes the space of square-integrable functions on $[0,1]^{2}$, i.e., the set of all functions f satisfying

$$
\iint_{[0,1]^{2}}|f(x, y)|^{2} d x d y<\infty
$$

We define the norm $\|f\|_{\mathcal{L}^{2}\left([0,1]^{2}\right)}=\sqrt{\iint_{[0,1]^{2}}|f(x, y)|^{2} d x d y}$, for $f \in \mathcal{L}^{2}\left([0,1]^{2}\right)$.
Definition 7. Let $f, g \in \mathcal{L}^{2}(\mathbb{R})$. We define the inner product on $\mathcal{L}^{2}(\mathbb{R})$ as

$$
\begin{equation*}
\langle f, g\rangle_{\mathcal{L}^{2}(\mathbb{R})}=\int_{\mathbb{R}} f(x) g^{*}(x) d x \tag{1}
\end{equation*}
$$

Definition 8. Let $f, g \in \mathcal{L}^{2}\left([0,1]^{2}\right)$. We define the inner product on $\mathcal{L}^{2}\left([0,1]^{2}\right)$ as

$$
\begin{equation*}
\langle f, g\rangle_{\mathcal{L}^{2}\left([0,1]^{2}\right)}=\iint_{[0,1]^{2}} f(x, y) g^{*}(x, y) d x d y \tag{2}
\end{equation*}
$$

Definition 9. Let \mathcal{K} be a countable set and $\left\{\alpha_{k}\right\}_{k \in \mathcal{K}}$ a sequence of elements taken from \mathbb{R}. $\left\{\alpha_{k}\right\}_{k \in \mathcal{K}}$ is an ℓ^{2}-summable sequence, and we write $\left\{\alpha_{k}\right\}_{k \in \mathcal{K}} \in \ell^{2}$, if

$$
\begin{equation*}
\sum_{k \in \mathcal{K}}\left|\alpha_{k}\right|^{2}<\infty . \tag{3}
\end{equation*}
$$

We define the norm on ℓ^{2} as

$$
\begin{equation*}
\left\|\left\{\alpha_{k}\right\}_{k \in \mathcal{K}}\right\|_{\ell^{2}}=\sqrt{\sum_{k \in \mathcal{K}}\left|\alpha_{k}\right|^{2}} . \tag{4}
\end{equation*}
$$

Definition 10. Let \mathcal{K} be a countable set, $\left\{\alpha_{k}\right\}_{k \in \mathcal{K}} \in \ell^{2}$ and $\left\{\beta_{k}\right\}_{k \in \mathcal{K}} \in \ell^{2}$. We define the inner product on ℓ^{2} as

$$
\begin{equation*}
\left\langle\left\{\alpha_{k}\right\}_{k \in \mathcal{K}},\left\{\beta_{k}\right\}_{k \in \mathcal{K}}\right\rangle_{\ell^{2}}=\sum_{k \in \mathcal{K}} \alpha_{k} \beta_{k}^{*} . \tag{5}
\end{equation*}
$$

Definition 11. Let \mathcal{H} be a Hilbert space with inner product $\langle\cdot\rangle, \mathcal{K}$ a countable set, and $\left\{g_{k}\right\}_{k \in \mathcal{K}}$ a sequence of elements taken from $\mathcal{H} .\left\{g_{k}\right\}_{k \in \mathcal{K}}$ is a Bessel sequence if

$$
\begin{equation*}
\sum_{k \in \mathcal{K}}\left|\left\langle x, g_{k}\right\rangle\right|^{2}<\infty, \forall x \in \mathcal{H} \tag{6}
\end{equation*}
$$

Definition 12. Let \mathcal{H} be a Hilbert space with inner product $\langle\cdot\rangle, \mathcal{K}$ a countable set, and $\left\{g_{k}\right\}_{k \in \mathcal{K}}$ a Bessel sequence of elements taken from \mathcal{H}. We define the analysis operator \mathbb{T} correlated to $\left\{g_{k}\right\}_{k \in \mathcal{K}}$ as $\mathbb{T} x=\left\{\left\langle x, g_{k}\right\rangle\right\}_{k \in \mathcal{K}}$.

Definition 13. Let \mathcal{H} be a Hilbert space with inner product $\langle\cdot\rangle$ and norm $\|\cdot\|, \mathcal{K}$ a countable set, and $\left\{g_{k}\right\}_{k \in \mathcal{K}}$ a Bessel sequence of elements taken from \mathcal{H}. We say that $\left\{g_{k}\right\}_{k \in \mathcal{K}}$ is a frame for \mathcal{H} if there exist $A, B \in \mathbb{R}$ with $0<A<B$ such that $A\|x\|^{2} \leq\langle\mathbb{T} x, \mathbb{T} x\rangle_{\ell^{2}}=\sum_{k \in \mathcal{K}}\left|\left\langle x, g_{k}\right\rangle\right|^{2} \leq$ $B\|x\|^{2}, \forall x \in \mathcal{H}$.

Theorem 1. (2-dimensional Fourier series) Every function $h \in \mathcal{L}^{2}\left([0,1]^{2}\right)$ can be represented as a 2-dimensional Fourier series according to

$$
\begin{equation*}
h(u, \xi)=\sum_{(n, \ell) \in \mathbb{Z}^{2}} c_{n, \ell}^{h} e^{i 2 \pi \ell u} e^{i 2 \pi \xi n}, \forall(u, \xi) \in[0,1]^{2}, \tag{7}
\end{equation*}
$$

where $\left\{c_{n, \ell}^{h}\right\}_{(n, \ell) \in \mathbb{Z}^{2}}$ denotes the 2-dimensional Fourier series coefficients of h, which are given by

$$
\begin{equation*}
c_{n, \ell}^{h}=\iint_{[0,1]^{2}} e^{-i 2 \pi \ell u} e^{-i 2 \pi \xi n} h(u, \xi) d u d \xi, \quad \forall(n, \ell) \in \mathbb{Z}^{2} . \tag{8}
\end{equation*}
$$

Theorem 2. (Plancherel's formula) Let $f_{1}, f_{2} \in \mathcal{L}^{2}\left([0,1]^{2}\right)$. We have

$$
\begin{equation*}
\left\langle\left\{c_{n, \ell}^{f_{1}}\right\}_{(n, \ell) \in \mathbb{Z}^{2}},\left\{c_{n, \ell}^{f_{2}}\right\}_{(n, \ell) \in \mathbb{Z}^{2}}\right\rangle_{\ell^{2}}=\left\langle f_{1}, f_{2}\right\rangle_{\mathcal{L}^{2}\left([0,1]^{2}\right)} \tag{9}
\end{equation*}
$$

where $\left\{c_{n, \ell}^{f_{1}}\right\}_{(n, \ell) \in \mathbb{Z}^{2}}$ and $\left\{c_{n, \ell}^{f_{2}}\right\}_{(n, \ell) \in \mathbb{Z}^{2}}$ denote the 2-dimensional Fourier series coefficients of f_{1} and f_{2}, respectively.

Definition 14. The Zak transform of the signal $f \in \mathcal{L}^{2}(\mathbb{R})$ is defined as

$$
\begin{equation*}
\mathcal{Z}_{f}(u, \xi)=\sum_{k=-\infty}^{\infty} e^{i 2 \pi k \xi} f(u-k), \forall(u, \xi) \in[0,1]^{2} \tag{10}
\end{equation*}
$$

Theorem 3. \mathcal{Z} is a unitary operator between $\mathcal{L}^{2}(\mathbb{R})$ and $\mathcal{L}^{2}\left([0,1]^{2}\right)$, i.e.,

$$
\begin{equation*}
\langle x, y\rangle_{\mathcal{L}^{2}(\mathbb{R})}=\left\langle\mathcal{Z}_{x}, \mathcal{Z}_{y}\right\rangle_{\mathcal{L}^{2}\left([0,1]^{2}\right)} . \tag{11}
\end{equation*}
$$

