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Definition 1 (Spark). The spark of a matrix A, denoted by spark(A), is defined as the cardi-
nality of the smallest set of linearly dependent columns.

Definition 2 (Metric). A metric d : X ×X → R on a non-empty set X is a function satisfying
the following properties:

• d(x, x′) ≥ 0, for all x, x′;

• d(x, x′) = 0, if and only if x = x′;

• d(x, x′) = d(x′, x), for all x, x′;

• d(x, x′) ≤ d(x, x̃) + d(x̃, x′), for all x, x′, x̃.

Definition 3 (Covering number). Let (X , d) be a compact metric space and ε ∈ R+. An
ε-covering of X with respect to the metric d is a set {x1, . . . , xN} ⊂ X such that for all x ∈ X ,
there exists an i ∈ {1, . . . , N} so that d(x, xi) ≤ ε. The ε-covering number N(ε;X , d) is the
cardinality of the smallest ε-covering.

Definition 4 (Packing number). Let (X , d) be a compact metric space and ε ∈ R+. An ε-
packing of X with respect to the metric d is a set {x1, . . . , xM} ⊂ X such that d(xi, xj) > ε, for
all distinct i, j. The ε-packing number M(ε;X , d) is the cardinality of the largest ε-packing.

Lemma 1 (Volume ratio estimate of metric entropy). Consider a pair of norms ‖ · ‖ and
‖ · ‖′ on Rd, and let B and B′ be their corresponding unit balls, i.e., B := {x ∈ Rd | ‖x‖ ≤ 1}
and B′ := {x ∈ Rd | ‖x‖′ ≤ 1}. Then, the ε-covering number N(ε;B, ‖ · ‖′) and the ε-packing
number M(ε;B, ‖ · ‖′) of B in the ‖ · ‖′-norm satisfy(

1

ε

)d vol(B)
vol(B′)

≤ N(ε;B, ‖ · ‖′) ≤M(ε;B, ‖ · ‖′) ≤
vol
(
2
ε
B + B′

)
vol(B′)

.

Definition 5. L2(R) denotes the space of square-integrable functions on R, i.e., the set of all
functions f satisfying ∫

R
|f(x)|2dx <∞.

We define the norm ‖f‖L2(R) =

√∫
R
|f(x)|2dx, for f ∈ L2(R).
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Definition 6. L2([0, 1]2) denotes the space of square-integrable functions on [0, 1]2, i.e., the set
of all functions f satisfying ∫∫

[0,1]2
|f(x, y)|2 dxdy <∞.

We define the norm ‖f‖L2([0,1]2) =
√∫∫

[0,1]2
|f(x, y)|2 dxdy, for f ∈ L2([0, 1]2).

Definition 7. Let f, g ∈ L2(R). We define the inner product on L2(R) as

〈f, g〉L2(R) =
∫
R
f(x)g∗(x)dx (1)

Definition 8. Let f, g ∈ L2([0, 1]2). We define the inner product on L2([0, 1]2) as

〈f, g〉L2([0,1]2) =
∫∫

[0,1]2
f(x, y)g∗(x, y) dxdy (2)

Definition 9. Let K be a countable set and {αk}k∈K a sequence of elements taken from R.
{αk}k∈K is an `2-summable sequence, and we write {αk}k∈K ∈ `2, if∑

k∈K

|αk|2 <∞. (3)

We define the norm on `2 as

‖{αk}k∈K‖`2 =
√∑

k∈K

|αk|2. (4)

Definition 10. Let K be a countable set, {αk}k∈K ∈ `2 and {βk}k∈K ∈ `2. We define the inner
product on `2 as

〈{αk}k∈K, {βk}k∈K〉`2 =
∑
k∈K

αkβ
∗
k . (5)

Definition 11. LetH be a Hilbert space with inner product 〈·〉,K a countable set, and {gk}k∈K
a sequence of elements taken fromH. {gk}k∈K is a Bessel sequence if∑

k∈K

|〈x, gk〉|2 <∞, ∀x ∈ H (6)

Definition 12. LetH be a Hilbert space with inner product 〈·〉,K a countable set, and {gk}k∈K
a Bessel sequence of elements taken from H. We define the analysis operator T correlated to
{gk}k∈K as Tx = {〈x, gk〉}k∈K.

Definition 13. Let H be a Hilbert space with inner product 〈·〉 and norm ‖ · ‖, K a countable
set, and {gk}k∈K a Bessel sequence of elements taken fromH. We say that {gk}k∈K is a frame for
H if there exist A,B ∈ R with 0 < A < B such that A‖x‖2 ≤ 〈Tx,Tx〉`2 =

∑
k∈K

|〈x, gk〉|2 ≤

B‖x‖2, ∀x ∈ H.
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Theorem 1. (2-dimensional Fourier series) Every function h ∈ L2([0, 1]2) can be represented
as a 2-dimensional Fourier series according to

h(u, ξ) =
∑

(n,`)∈Z2

chn,` e
i2π`u ei2πξn, ∀(u, ξ) ∈ [0, 1]2, (7)

where {chn,`}(n,`)∈Z2 denotes the 2-dimensional Fourier series coefficients of h, which are given
by

chn,` =

∫∫
[0,1]2

e−i2π`ue−i2πξnh(u, ξ) dudξ, ∀(n, `) ∈ Z2. (8)

Theorem 2. (Plancherel’s formula) Let f1, f2 ∈ L2([0, 1]2). We have

〈{cf1n,`}(n,`)∈Z2 , {cf2n,`}(n,`)∈Z2〉`2 = 〈f1, f2〉L2([0,1]2), (9)

where {cf1n,`}(n,`)∈Z2 and {cf2n,`}(n,`)∈Z2 denote the 2-dimensional Fourier series coefficients of f1
and f2, respectively.

Definition 14. The Zak transform of the signal f ∈ L2(R) is defined as

Zf (u, ξ) =
∞∑

k=−∞

ei2πkξf(u− k), ∀(u, ξ) ∈ [0, 1]2. (10)

Theorem 3. Z is a unitary operator between L2(R) and L2([0, 1]2), i.e.,

〈x, y〉L2(R) = 〈Zx,Zy〉L2([0,1]2). (11)
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