Solutions to the

Examination on Mathematics of Information February 15, 2022

Problem 1

(a) Towards a contradiction, we assume that there are a set $S \subset[n]$, with $|S|=s$, and a vector $v \in \operatorname{ker}(D) \backslash 0$, such that $\left\|v_{S^{c}}\right\|_{1}=0$. This implies that v is supported on S exclusively and hence $D v_{S}=0$ with $v_{S} \neq 0$. The contradiction is now established by noting that for $s<\operatorname{spark}(D)$ (which is by assumption), $D v_{S}=0$ with $v_{S} \neq 0$ is not possible as $\operatorname{spark}(D)$ is the smallest number of linearly dependent columns of D.
(b) The proof is by the following chain of relations

$$
\begin{align*}
\left\|(x-z)_{S^{c}}\right\|_{1} & \leq\left\|x_{S^{c}}\right\|_{1}+\left\|z_{S^{c}}\right\|_{1} \\
& =\left\|x_{S^{c}}\right\|_{1}+\|x\|_{1}-\|x\|_{1}+\left\|z_{S^{c}}\right\|_{1} \\
& =2\left\|x_{S^{c}}\right\|_{1}+\left\|x_{S}\right\|_{1}-\|x\|_{1}+\left\|z_{S^{c}}\right\|_{1} \tag{1}\\
& =2\left\|x_{S^{c}}\right\|_{1}-\|x\|_{1}+\left\|(x-z+z)_{S}\right\|_{1}+\left\|z_{S^{c}}\right\|_{1} \\
& \leq 2\left\|x_{S^{c}}\right\|_{1}-\|x\|_{1}+\left\|(x-z)_{S}\right\|_{1}+\|z\|_{1},
\end{align*}
$$

where we used the triangle inequality twice.
(c) Let $S \subset[n]$ with $|S|=s$ be the indices of the s largest absolute values of x. First, we note that

$$
\begin{equation*}
\sigma_{s}(x)=\left\|x_{S^{c}}\right\|_{1} . \tag{2}
\end{equation*}
$$

Second, \widehat{x}, by virtue of being a solution of (P1) with $y=D x$, fulfills $\|\widehat{x}\|_{1} \leq\|x\|_{1}$ and

$$
D \widehat{x}=y=D x \quad \Leftrightarrow \quad D(x-\widehat{x})=0 .
$$

Hence, the vector $v:=x-\widehat{x}$ lies in the kernel of D. We have $s<\operatorname{spark}(D)$ by assumption and thus, by subproblem (a), $\left\|v_{S^{c}}\right\|_{1} \neq 0$. Further, we have

$$
\begin{equation*}
\frac{\left\|v_{S}\right\|_{1}}{\left\|v_{S^{c}}\right\|_{1}} \leq \Delta_{s}(D) \tag{3}
\end{equation*}
$$

Next, we bound

$$
\begin{align*}
\left\|v_{S^{c}}\right\|_{1} & \leq 2\left\|x_{S^{c}}\right\|_{1}-\|x\|_{1}+\left\|v_{S}\right\|_{1}+\|\widehat{x}\|_{1} \\
& \leq 2\left\|x_{S^{c}}\right\|_{1}+\left\|v_{S}\right\|_{1} \tag{4}\\
& \leq 2\left\|x_{S^{c}}\right\|_{1}+\Delta_{s}(D)\left\|v_{S^{c}}\right\|_{1}
\end{align*}
$$

where the first inequality follows from (1) by setting $z=\widehat{x}$, the second is by $\|\widehat{x}\|_{1} \leq\|x\|_{1}$, and the third is due to (3). Using (2) and $1-\Delta_{s}(D)>0$, which is by assumption, we rewrite (4) as

$$
\left\|v_{S^{c}}\right\|_{1} \leq 2 \frac{1}{1-\Delta_{s}(D)} \sigma_{s}(x)
$$

The proof is now concluded upon noting that

$$
\begin{aligned}
\|x-\widehat{x}\|_{1} & =\|v\|_{1} \\
& =\left\|v_{S}\right\|_{1}+\left\|v_{S^{c}}\right\|_{1} \\
& \leq \Delta_{s}(D)\left\|v_{S^{c}}\right\|_{1}+\left\|v_{S^{c}}\right\|_{1} \\
& =\left(1+\Delta_{s}(D)\right)\left\|v_{S^{c}}\right\|_{1} \\
& \leq 2 \frac{1+\Delta_{s}(D)}{1-\Delta_{s}(D)} \sigma_{s}(x) .
\end{aligned}
$$

(d) Let $\gamma:=\Delta_{s}(D) \in(0,1)$. As $\Delta_{s}(D)$ is well-defined, there exists a set $S \subset[n]$ with $|S|=s$ and a $v \in \operatorname{ker}(D) \backslash 0$ with $\gamma\left\|v_{S^{c}}\right\|_{1}=\left\|v_{S}\right\|_{1}$. We next note, that for every $b \in \mathbb{R}^{n}$,

$$
0=D\left(v_{S}+v_{S^{c}}+b-b\right) \quad \Leftrightarrow \quad D\left(v_{S}+b\right)=D\left(b-v_{S^{c}}\right)
$$

Next, let $x=v_{S}+b$ and $z=b-v_{S^{c}}$ and choose b such that $\|x\|_{1}=\|z\|_{1}$. This can be effected by setting $b=\alpha v_{S^{c}}$, calculating

$$
\begin{aligned}
& \|x\|_{1}=\left\|v_{S}\right\|_{1}+\alpha\left\|v_{S^{c}}\right\|_{1}=(\alpha+\gamma)\left\|v_{S^{c}}\right\|_{1} \\
& \|z\|_{1}=(1-\alpha)\left\|v_{S^{c}}\right\|_{1}
\end{aligned}
$$

and finally choosing $\alpha=\frac{1-\gamma}{2}$. Hence,

$$
x=v_{S}+\frac{1-\gamma}{2} v_{S^{c}} \quad \text { and } \quad z=-\frac{1+\gamma}{2} v_{S^{c}} .
$$

Next, we calculate $\sigma_{s}(x)$. To this end, we first note that $\left|v_{i}\right| \geq\left|v_{j}\right|, \forall i \in S, j \in S^{c}$ as otherwise $\frac{\left\|v_{S^{\prime}}\right\|_{1}}{\left\|v_{S} c\right\|_{1}}$ would not be maximal. Since $\frac{1-\gamma}{2} \in(0,1 / 2)$ for $\gamma \in(0,1)$, it follows that the indices of the s largest absolute values of x are given by the set S. Hence, we calculate $\sigma_{s}(x)=\left\|x_{S^{c}}\right\|_{1}=\frac{1-\gamma}{2}\left\|v_{S^{c}}\right\|_{1}$, or equivalently $\frac{2}{1-\gamma} \sigma_{s}(x)=$ $\left\|v_{S^{c}}\right\|_{1}$, because $\gamma<1$ by assumption. Finally, we note that

$$
\|x-z\|_{1}=\left\|v_{S}+v_{S^{c}}\right\|_{1}=\left\|v_{S}\right\|_{1}+\left\|v_{S^{c}}\right\|_{1}=(1+\gamma)\left\|v_{S^{c}}\right\|_{1}=2 \frac{1+\gamma}{1-\gamma} \sigma_{s}(x)
$$

Problem 2

(a) Let $(n, \ell) \in \mathbb{Z}^{2}$ and $(u, \xi) \in[0,1]^{2}$. We have

$$
\begin{aligned}
\mathcal{Z}_{g_{n, \ell}}(u, \xi)=\sum_{k=-\infty}^{\infty} e^{i 2 \pi k \xi} g_{n, \ell}(u-k) & \stackrel{(a)}{=} \sum_{k=-\infty}^{\infty} e^{i 2 \pi k \xi} g(u-k-n) e^{i 2 \pi \ell(u-k)} \\
& \stackrel{(b)}{=} \sum_{k=-\infty}^{\infty} e^{i 2 \pi(k-n) \xi} g(u-k) e^{i 2 \pi \ell(u-k+n)} \\
& \stackrel{(c)}{=} \sum_{k=-\infty}^{\infty} e^{i 2 \pi(k-n) \xi} g(u-k) e^{i 2 \pi \ell u} \\
& =e^{-i 2 \pi n \xi} e^{i 2 \pi \ell u} \sum_{k=-\infty}^{\infty} e^{i 2 \pi k \xi} g(u-k) \\
& =e^{-i 2 \pi n \xi} e^{i 2 \pi \ell u} \mathcal{Z}_{g}(u, \xi)
\end{aligned}
$$

where (a) is by the definition of $g_{n, \ell}$ (b) follows from the change of variables $k \rightarrow k-n$, and (c) by noting that $e^{i 2 \pi \ell(-k+n)}=1$.
(b) Let $(n, \ell) \in \mathbb{Z}^{2}$ and note that

$$
\begin{align*}
\left\langle\mathcal{Z}_{f}, \mathcal{Z}_{g_{n, \ell}}\right\rangle_{\mathcal{L}^{2}\left([0,1]^{2}\right)} & =\iint_{[0,1]^{2}} \mathcal{Z}_{f}(u, \xi) \mathcal{Z}_{g_{n, \ell}}^{*}(u, \xi) d u d \xi \\
& \stackrel{(a)}{=} \iint_{[0,1]^{2}} e^{i 2 \pi n \xi} e^{-i 2 \pi \ell u} \mathcal{Z}_{f}(u, \xi) \mathcal{Z}_{g}^{*}(u, \xi) d u d \xi \tag{5}\\
& \stackrel{(b)}{=} c_{-n, \ell}^{\mathcal{Z}_{f} \mathcal{Z}_{g}^{*}},
\end{align*}
$$

where (a) follows from the result in subproblem (a), and (b) is a consequence of the definition of the 2-dimensional Fourier series according to Theorem 1 in the Handout.
(c) Let $f_{1}, f_{2} \in \mathcal{L}^{2}(\mathbb{R})$ and note that

$$
\begin{aligned}
\left\langle\mathbb{T} f_{1}, \mathbb{T} f_{2}\right\rangle_{\ell^{2}} & \stackrel{(a)}{=} \sum_{(n, \ell) \in \mathbb{Z}^{2}}\left\langle f_{1}, g_{n, \ell}\right\rangle_{\mathcal{L}^{2}(\mathbb{R})}\left\langle f_{2}, g_{n, \ell}\right\rangle_{\mathcal{L}^{2}(\mathbb{R})}^{*} \\
& \stackrel{(b)}{=} \sum_{(n, \ell) \in \mathbb{Z}^{2}}\left\langle\mathcal{Z}_{f_{1}}, \mathcal{Z}_{g_{n, \ell}}\right\rangle_{\mathcal{L}^{2}\left([0,1]^{2}\right)}\left\langle\mathcal{Z}_{f_{2}}, \mathcal{Z}_{g_{n, \ell}}\right\rangle_{\mathcal{L}^{2}\left([0,1]^{2}\right)}^{*} \\
& \stackrel{(c)}{=} \sum_{(n, \ell) \in \mathbb{Z}^{2}} c_{-n, \ell}^{\mathcal{Z}_{f_{1}} \mathcal{Z}_{g}^{*}}\left(c_{-n, \ell}^{\mathcal{Z}_{f_{2}} \mathcal{Z}_{g}^{*}}\right)^{*} \\
& \stackrel{(d)}{=} \sum_{(n, \ell) \in \mathbb{Z}^{2}} c_{n, \ell}^{\mathcal{Z}_{f_{1}} \mathcal{Z}_{g}^{*}}\left(c_{n, \ell}^{\mathcal{Z}_{f_{2}} \mathcal{Z}_{g}^{*}}\right)^{*},
\end{aligned}
$$

where (a) follows from the definition of \mathbb{T}, (b) is by unitarity of the Zak transform, (c) follows by application of the result from subproblem (b), and (d) is by the change of variables $n \rightarrow-n$.
(d) Let $f \in \mathcal{L}^{2}(\mathbb{R})$ and note that

$$
\begin{align*}
\sum_{(n, \ell) \in \mathbb{Z}^{2}}\left|\left\langle f, g_{n, \ell}\right\rangle_{\mathcal{L}^{2}(\mathbb{R})}\right|^{2} & \stackrel{(a)}{=}\langle\mathbb{T} f, \mathbb{T} f\rangle_{\ell^{2}} \stackrel{(b)}{=} \sum_{(n, \ell) \in \mathbb{Z}^{2}} c_{n, \ell}^{\mathcal{Z}_{f} \mathcal{Z}_{g}^{*}}\left(c_{n, \ell}^{\mathcal{Z}_{f} \mathcal{Z}_{g}^{*}}\right)^{*}=\sum_{(n, \ell) \in \mathbb{Z}^{2}}\left|c_{n, \ell}^{\mathcal{Z}_{f} \mathcal{Z}_{g}^{*}}\right|^{2} \\
& \stackrel{(c)}{=} \iint_{[0,1]^{2}}\left(\mathcal{Z}_{f}(u, \xi) \mathcal{Z}_{g}^{*}(u, \xi)\right)\left(\mathcal{Z}_{f}(u, \xi) \mathcal{Z}_{g}^{*}(u, \xi)\right)^{*} d u d \xi \\
& =\iint_{[0,1]^{2}}\left|\mathcal{Z}_{f}(u, \xi)\right|^{2}\left|\mathcal{Z}_{g}(u, \xi)\right|^{2} d u d \xi \tag{6}
\end{align*}
$$

where (a) follows from the definition of \mathbb{T}, (b) is by the solution of subproblem (c), and (c) is obtained by application of Plancherel's formula.

Therefore, we have

$$
\begin{aligned}
& A \leq\left|\mathcal{Z}_{g}(u, \xi)\right|^{2} \leq B, \forall(u, \xi) \in[0,1]^{2}, 0<A<B \\
& \stackrel{(a)}{\Rightarrow} A \iint_{[0,1]^{2}}\left|\mathcal{Z}_{f}\right|^{2} \leq \iint_{[0,1]^{2}}\left|\mathcal{Z}_{f}\right|^{2}\left|\mathcal{Z}_{g}\right|^{2} \leq B \iint_{[0,1]^{2}}\left|\mathcal{Z}_{f}\right|^{2}, \forall f \in \mathcal{L}^{2}(\mathbb{R}) \\
& \stackrel{(b)}{\Rightarrow} A\left\|\mathcal{Z}_{f}\right\|_{\mathcal{L}^{2}\left([0,1]^{2}\right)}^{2} \leq \sum_{(n, \ell) \in \mathbb{Z}^{2}}\left|\left\langle f, g_{n, \ell}\right\rangle_{\mathcal{L}^{2}(\mathbb{R})}\right|^{2} \leq B\left\|\mathcal{Z}_{f}\right\|_{\mathcal{L}^{2}\left([0,1]^{2}\right)}^{2}, \forall f \in \mathcal{L}^{2}(\mathbb{R}) \\
& \stackrel{(c)}{\Rightarrow} A\|f\|_{\mathcal{L}^{2}(\mathbb{R})}^{2} \leq \sum_{(n, \ell) \in \mathbb{Z}^{2}}\left|\left\langle f, g_{n, \ell}\right\rangle_{\mathcal{L}^{2}(\mathbb{R})}\right|^{2} \leq B\|f\|_{\mathcal{L}^{2}(\mathbb{R})}^{2}, \forall f \in \mathcal{L}^{2}(\mathbb{R}) \\
& \stackrel{(d)}{\Rightarrow}\left\{g_{n, \ell}\right\}_{(n, \ell) \in \mathbb{Z}^{2}} \text { is a frame, with frame bounds } A \text { and } B,
\end{aligned}
$$

where (a) is obtained by multiplying by $\left|\mathcal{Z}_{f}\right|^{2}$ and integrating, (b) follows from (6), and (c) is by the unitarity of the Zak transform.
(e) Let $f \in \mathcal{L}^{2}(\mathbb{R})$. For all $\psi \in \mathcal{L}^{2}(\mathbb{R})$, we have

$$
\begin{aligned}
\left\langle\mathcal{Z}_{\mathbb{S} f}, \mathcal{Z}_{\psi}\right\rangle_{\mathcal{L}^{2}\left([0,1]^{2}\right)} & \stackrel{(a)}{=}\langle\mathbb{S} f, \psi\rangle_{\mathcal{L}^{2}(\mathbb{R})}=\left\langle\mathbb{T}^{*} \mathbb{T} f, \psi\right\rangle_{\mathcal{L}^{2}(\mathbb{R})}=\langle\mathbb{T} f, \mathbb{T} \psi\rangle_{\ell^{2}} \\
& \stackrel{(b)}{=} \sum_{(n, \ell) \in \mathbb{Z}^{2}} c_{n, \ell}^{\mathcal{Z}_{f} \mathcal{Z}_{g}^{*}}\left(c_{n, \ell}^{\mathcal{Z}_{\psi} \mathcal{Z}_{g}^{*}}\right)^{*} \\
& \stackrel{(c)}{=} \iint_{[0,1]^{2}}\left(\mathcal{Z}_{f}(u, \xi) \mathcal{Z}_{g}^{*}(u, \xi)\right)\left(\mathcal{Z}_{\psi}(u, \xi) \mathcal{Z}_{g}^{*}(u, \xi)\right)^{*} d u d \xi \\
& =\iint_{[0,1]^{2}}\left(\mathcal{Z}_{f}(u, \xi)\left|\mathcal{Z}_{g}(u, \xi)\right|^{2}\right)\left(\mathcal{Z}_{\psi}(u, \xi)\right)^{*} d u d \xi \\
& \left.=\left.\left\langle\mathcal{Z}_{f}\right| \mathcal{Z}_{g}\right|^{2}, \mathcal{Z}_{\psi}\right\rangle_{\mathcal{L}^{2}\left([0,1]^{2}\right)},
\end{aligned}
$$

where (a) is by the unitarity of the Zak transform, (b) follows from the result in subproblem (c), and (c) is by Plancherel's formula.

Problem 3

(a) Fix $i \in\{1, \ldots, m\}$. Then,

$$
\begin{aligned}
\left\|f\left(x_{i}\right)-y\right\|_{2} & =\left\|\frac{1}{m} \sum_{j=1}^{m} f\left(x_{i}\right)-\frac{1}{m} \sum_{j=1}^{m} f\left(x_{j}\right)\right\|_{2}=\left\|\frac{1}{m} \sum_{j=1}^{m}\left(f\left(x_{i}\right)-f\left(x_{j}\right)\right)\right\|_{2} \\
& \leq \frac{1}{m} \sum_{j=1}^{m}\left\|f\left(x_{i}\right)-f\left(x_{j}\right)\right\|_{2} \leq \frac{1}{m} \sum_{j=1}^{m} \sqrt{1+\delta}\left\|x_{i}-x_{j}\right\|_{2} \\
& <\frac{1}{m} m \sqrt{2} \cdot \sqrt{2}=2,
\end{aligned}
$$

where the first inequality is by the triangle inequality, the second inequality follows from (5) in the problem statement, and the last inequality is by the assumption $\delta<1 / 2$ and the relation $\left\|x_{i}-x_{j}\right\|_{2}=\sqrt{2}$, which follows from $\left\{x_{j}\right\}_{j=1}^{m}$ being an orthonormal basis. We have therefore established that $\left\|f\left(x_{i}\right)-y\right\|_{2}<2$, or equivalently $f\left(x_{i}\right) \in \mathcal{B}(y, 2)$, and this holds for all i such that $1 \leq i \leq m$.
(b) We have established in the previous subproblem that $\left\{f\left(x_{j}\right)\right\}_{j=1}^{m} \subset \mathcal{B}(y, 2)$, so that we are left with having to show that $\left\|f\left(x_{i}\right)-f\left(x_{j}\right)\right\|_{2}>1$, for $1 \leq i \neq j \leq m$. From (5) in the problem statement, we have

$$
\left\|f\left(x_{i}\right)-f\left(x_{j}\right)\right\|_{2}^{2} \geq(1-\delta)\left\|x_{i}-x_{j}\right\|_{2}^{2}=2(1-\delta)>1,
$$

where the last inequality is thanks to the assumption $\delta<1 / 2$. Taking the square root yields the desired result.
(c) Using the volume ratio estimate provided in the Handout (Lemma 1), one gets

$$
M\left(1 ; \mathcal{B}(y, 2),\|\cdot\|_{2}\right) \leq \frac{\operatorname{vol}(2 \mathcal{B}(y, 2)+\mathcal{B}(y / 2,1))}{\operatorname{vol}(\mathcal{B}(y / 2,1))}
$$

where we chose $\mathcal{B}=\mathcal{B}(y, 2)$ and $\mathcal{B}^{\prime}=\mathcal{B}(y / 2,1)$. Simplifying with the equalities $\mathcal{B}(y, 2)=2 \mathcal{B}(y / 2,1)$ and $\operatorname{vol}(5 \mathcal{B}(y / 2,1))=5^{k} \operatorname{vol}(\mathcal{B}(y / 2,1))$, we obtain

$$
M\left(1 ; \mathcal{B}(y, 2),\|\cdot\|_{2}\right) \leq 5^{k}
$$

Taking the logarithm on both sides, and setting $C:=(\log (5))^{-1}$, yields the desired result according to

$$
C \log \left(M\left(1 ; \mathcal{B}(y, 2),\|\cdot\|_{2}\right)\right) \leq k .
$$

(d) Assume for the sake of contradiction that a function f satisfying (5) in the problem statement exists. From the result of subproblem (b), there would hence exist a 1-packing of $\left(\mathcal{B}(y, 2),\|\cdot\|_{2}\right)$ with m elements, namely $\left\{f\left(x_{j}\right)\right\}_{j=1}^{m}$ with $y=(1 / m) \sum_{j=1}^{m} f\left(x_{j}\right)$, which, in turn, would imply

$$
C \log (m) \leq C \log \left(M\left(1 ; \mathcal{B}(y, 2),\|\cdot\|_{2}\right)\right) \stackrel{(*)}{\leq} k .
$$

Here, (*) has been established in subproblem (c). Therefore, if $C \log (m)>k$, a function $f: \mathbb{R}^{m} \rightarrow \mathbb{R}^{k}$ satisfying (5) in the problem statement cannot exist.

Problem 4

(a) We verify that d satisfies the defining properties of a metric (cf. Handout, Definition 2) on \mathbb{H}^{n} :

- $d(x, y) \geq 0$ for $x, y \in \mathbb{H}^{n}$ is satisfied by definition;
- $d(x, y)=0$ implies that $x_{i}=y_{i}$ for all $i \in[n]$ which, in turn, implies $x=y$;
- $d(x, y)=\#\left\{i \in[n] \mid x_{i} \neq y_{i}\right\}=\#\left\{i \in[n] \mid y_{i} \neq x_{i}\right\}=d(y, x)$;
- Fix $x, y, z \in \mathbb{H}^{n}$ and note that, for all $i \in[n]$ such that $x_{i} \neq z_{i}$, one has either $x_{i} \neq y_{i}$ or $y_{i} \neq z_{i}$. Thus, we get

$$
\begin{aligned}
d(x, z) & =\#\left\{i \in[n] \mid x_{i} \neq z_{i}\right\} \\
& \leq \#\left\{\left\{i \in[n] \mid x_{i} \neq y_{i}\right\} \cup\left\{i \in[n] \mid y_{i} \neq z_{i}\right\}\right\} \\
& \leq \#\left\{i \in[n] \mid x_{i} \neq y_{i}\right\}+\#\left\{i \in[n] \mid y_{i} \neq z_{i}\right\} \\
& =d(x, y)+d(y, z) .
\end{aligned}
$$

(b) $\mathcal{B}(x, m)$ is the set of points at distance d less than or equal to m from x and as such can be expressed as

$$
\mathcal{B}(x, m)=\bigcup_{k=0}^{m}\left\{y \in \mathbb{H}^{n} \mid d(x, y)=k\right\} .
$$

As this union is over disjoint sets, it follows that

$$
\# \mathcal{B}(x, m)=\sum_{k=0}^{m} \#\left\{y \in \mathbb{H}^{n} \mid d(x, y)=k\right\} .
$$

The set $\left\{y \in \mathbb{H}^{n} \mid d(x, y)=k\right\}$ is the set of points in \mathbb{H}^{n} which differ from x in exactly k coordinates. There are $\binom{n}{k}$ possible choices for these coordinates, so that

$$
\begin{equation*}
\# \mathcal{B}(x, m)=\sum_{k=0}^{m}\binom{n}{k} . \tag{7}
\end{equation*}
$$

(c) By definition, for every $x \in \mathbb{H}^{n}$, one can find $x_{j} \in\left\{x_{1}, \ldots, x_{N\left(m ; \mathbb{H}^{n}, d\right)}\right\}$ such that $d\left(x, x_{j}\right) \leq m$, or equivalently, $x \in \mathcal{B}\left(x_{j}, m\right)$. Therefore,

$$
\mathbb{H}^{n} \subseteq \bigcup_{j=1}^{N\left(m ; \mathbb{H}^{n}, d\right)} \mathcal{B}\left(x_{j}, m\right)
$$

which implies

$$
\# \mathbb{H}^{n} \leq \sum_{j=1}^{N\left(m ; \mathbb{H}^{n}, d\right)} \# \mathcal{B}\left(x_{j}, m\right)
$$

Now using $\# \mathbb{H}^{n}=2^{n}$ and, from (7), $\# \mathcal{B}\left(x_{j}, m\right)=\sum_{k=0}^{m}\binom{n}{k}$, we get

$$
2^{n} \leq N\left(m ; \mathbb{H}^{n}, d\right) \sum_{k=0}^{m}\binom{n}{k},
$$

which, after rearranging terms, yields the desired result

$$
\begin{equation*}
\frac{2^{n}}{\sum_{k=0}^{m}\binom{n}{k}} \leq N\left(m ; \mathbb{H}^{n}, d\right) . \tag{8}
\end{equation*}
$$

(d) Take i, j such that $1 \leq i \neq j \leq M\left(m ; \mathbb{H}^{n}, d\right)$, so that $d\left(x_{i}, x_{j}\right)>m$, and fix $x \in \mathcal{B}\left(x_{i},\lfloor m / 2\rfloor\right)$. We need to show that $x \notin \mathcal{B}\left(x_{j},\lfloor m / 2\rfloor\right)$, or, equivalently, that $d\left(x, x_{j}\right)>\lfloor m / 2\rfloor$. By the triangle inequality, one has

$$
d\left(x, x_{j}\right) \geq d\left(x_{i}, x_{j}\right)-d\left(x, x_{i}\right)>m-\lfloor m / 2\rfloor=\lceil m / 2\rceil \geq\lfloor m / 2\rfloor .
$$

Therefore, the balls $\left\{\mathcal{B}\left(x_{j},\lfloor m / 2\rfloor\right)\right\}_{j=1}^{M\left(m ; \mathbb{H}^{n}, d\right)}$ are, indeed, disjoint.
(e) Since $\mathcal{B}\left(x_{j},\lfloor m / 2\rfloor\right) \subseteq \mathbb{H}^{n}$ by definition, one has $\bigcup_{j=1}^{M\left(m ; \mathbb{H}^{n}, d\right)} \mathcal{B}\left(x_{j},\lfloor m / 2\rfloor\right) \subseteq \mathbb{H}^{n}$. This implies the following estimate on the cardinalities:

$$
\#\left\{\bigcup_{j=1}^{M\left(m ; \mathbb{H}^{n}, d\right)} \mathcal{B}\left(x_{j},\lfloor m / 2\rfloor\right)\right\} \leq \# \mathbb{H}^{n}
$$

which, using that the balls are disjoint, yields

$$
\sum_{j=1}^{M\left(m ; \mathbb{H}^{n}, d\right)} \# \mathcal{B}\left(x_{j},\lfloor m / 2\rfloor\right) \leq 2^{n} .
$$

With (7), one therefore gets

$$
M\left(m ; \mathbb{H}^{n}, d\right) \sum_{k=0}^{\lfloor m / 2\rfloor}\binom{n}{k} \leq 2^{n},
$$

which, after rearranging terms, yields the desired result

$$
\begin{equation*}
M\left(m ; \mathbb{H}^{n}, d\right) \leq \frac{2^{n}}{\sum_{k=0}^{\lfloor m / 2\rfloor}\binom{n}{k}} . \tag{9}
\end{equation*}
$$

(f) Following the hint, we have $N\left(m ; \mathbb{H}^{n}, d\right) \leq M\left(m ; \mathbb{H}^{n}, d\right)$. Combining this result with (8) and (9) yields the desired result

$$
\frac{2^{n}}{\sum_{k=0}^{m}\binom{n}{k}} \leq N\left(m ; \mathbb{H}^{n}, d\right) \leq M\left(m ; \mathbb{H}^{n}, d\right) \leq \frac{2^{n}}{\sum_{k=0}^{\lfloor m / 2\rfloor}\binom{n}{k}}
$$

