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Examination on Mathematics of Information
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Please note:
• Exam duration: 180 minutes
• Maximum number of points: 100
• You are allowed to use a printed annotated version of the lecture notes

and of the exercise notes. Other documents as well as electronic devices
(laptops, calculators, cellphones, etc...) are not allowed.
• Your solutions should be explained in detail and your handwriting needs

to be clean and readable.
• Please do not use red or green pens. You may use pencils.
• Please note that the ETHZ “Disziplinarordnung RSETHZ 361.1” applies.

Before you start:
1. The problem statements consist of 7 pages including this page. Please

verify that you have received all 7 pages.
2. Please fill in your name, student ID card number and sign below.
3. Please place your student ID card at the front of your desk so we can

verify your identity.

During the exam:
4. For your solutions, please use only the empty sheets provided by us.

Should you need additional sheets, please let us know.
5. Each problem consists of several subproblems. If you do not provide a

solution to a subproblem, you may, whenever applicable, nonetheless as-
sume its conclusion in the ensuing subproblems.

After the exam:
6. Please write your name on every sheet and prepare all sheets in a pile. All

sheets, including those containing problem statements, must be handed
in.

7. Please clean up your desk and remain seated and silent until you are
allowed to leave the room in a staggered manner row by row.

8. Please avoid crowding and leave the building by the most direct route.

Family name: . . . . . . . . . . . . . . . . . First name: . . . . . . . . . . . . . . . . .

Legi-No.: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Number of additional sheets handed in: . . . . . . . . . . . . .

Signature: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Problem 1 (25 points)

(a) Let {ek}k∈N be an orthonormal basis for the Hilbert space H. Determine for each
of the following sets whether it is a frame for H or not. For sets that are a frame,
determine the tightest possible frame bounds A,B, else prove that the set is not a
frame.

(i) (2 points)
{hk}k∈N = {(−1)kek}k∈N = {−e1, e2,−e3, e4, . . . }

(ii) (4 points)

{hk}k∈N =

{
e1,

1

2
e2,

1

2
e2,

1

3
e3,

1

3
e3,

1

3
e3,

1

4
e4,

1

4
e4,

1

4
e4,

1

4
e4, . . .

}
(b) Let {ek}k∈N be an orthonormal basis for the Hilbert spaceH. Define the set

{gk}k∈N = {ek + ek+1}k∈N = {e1 + e2, e2 + e3, e3 + e4, . . . }.

(i) (4 points) Show that the set {gk}k∈N is complete forH.
Hint: Recall that ‖x‖ <∞, for all x ∈ H.

(ii) (7 points) Show that the set {gk}k∈N is not a frame forH.
Hint: It may be helpful to consider signals of the form xq =

∑∞
`=1(−q)`−1e` with

q ∈ (0, 1).

(c) The Weyl operator W(T,F )
m,n : L2(R)→ L2(R) is defined as

W(T,F )
m,n : f(•)→ e2πinF•f(• −mT ),

where m,n ∈ N, and T, F > 0 are fixed time- and frequency-shift parameters,
respectively.

(i) (4 points) Show that the adjoint operator of W(T,F )
m,n is given by(

W(T,F )
m,n

)∗
= e−2πinmTF W(T,F )

−m,−n.

(ii) (4 points) Show that W(T,F )
m,n is unitary by establishing that

W(T,F )
m,n (W(T,F )

m,n )∗ = (W(T,F )
m,n )∗W(T,F )

m,n = I,

where I denotes the identity operator on L2(R).
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Problem 2 (25 points)

Notation: For a vector u ∈ CN , a matrix B ∈ Cm×N , and a set S ⊂ {1, . . . , N}, we
define uS ∈ C|S| to be the vector obtained from u by keeping only the entries indexed
by S, and similarly, we defineBS ∈ Cm×|S| to be the matrix obtained fromB by keeping
only the columns indexed by S. Further, Sc := {1, . . . , N}\S denotes the complement
of the set S in {1, . . . , N}. BH stands for the conjugate transpose of the matrix B and
N (B) refers to the null space of B (i.e., N (B) = {v ∈ CN | Bv = 0}).

In compressed sensing, we are given a measurement vector y ∈ Cm obtained accor-
ding to y = Dx, where x ∈ CN , x 6= 0, is the unknown (sparse) vector to be recovered
and D ∈ Cm×N is the so-called measurement matrix. In class, we studied two algo-
rithms for recovering x from the observation y, namely

argmin
x̂

‖x̂‖0 subject to Dx̂ = y (P0)

and

argmin
x̂

‖x̂‖1 subject to Dx̂ = y. (P1)

(a) For this subproblem, we fix

D :=


1 1

2
1
2
−4

5

0 1
2
−1

2
0

0 1
2

1
2

3
5

0 −1
2

1
2

0

 , x :=


1

1

1

0


and hence

y = Dx =


2

0

1

0

 .

(i) (2 points) Compute N (D).

(ii) (1 point) Is the condition ‖x‖0 < spark(D)
2

satisfied? Here, spark(D) is as in
Definition 1 in the Handout.

(iii) (2 points) Is the condition

‖x‖0 <
1

2

(
1 +

1

µ(D)

)
,

satisfied? Here, µ(D) denotes the coherence of D as in Definition 2 in the
Handout.

3



(iv) (1 point) Specify the solution set for the linear system of equations y = Dx̂,
i.e., determine

X := {x̂ | y = Dx̂}.

(v) (2 points) Is x uniquely recovered through (P0)?

(vi) (2 points) Is x uniquely recovered through (P1)?

(b) In the following subproblem, we establish sufficient conditions for recovery
through (P1). Specifically, these conditions are in terms of the sign pattern of the
vector x ∈ CN to be recovered. We define the support set of x as S = {i | xi 6= 0} ⊂
{1, . . . , N}, and let the complex sign-function sgn(•) : CN → CN be given by

(sgn(x))k =

{
xk/|xk|, if xk 6= 0

0, else
.

Throughout we assume that x 6= 0.

(i) (7 points + 1 point for establishing the Hint) Show that x can be recovered
through (P1) if it satisfies the following sufficient condition (C1):∣∣∣∣∣∑

j∈S

vj(sgn(x))j

∣∣∣∣∣ < ∑
k∈Sc

|vk|, for all v ∈ N (D) \ {0}. (C1)

Hint: First show that ∀u, v ∈ CN : |〈u, v〉| ≤ ‖u‖1‖v‖∞. (1 point)

(ii) (7 points) Show that x can be recovered through (P1) if it satisfies the follo-
wing sufficient condition (C2):

N (DS) = {0} and there exists h ∈ Cm s.t.

(DHh)j = sgn(x)j, ∀j ∈ S, |(DHh)k| < 1, ∀k ∈ Sc.
(C2)

Hint: Show that (C2) implies (C1).
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Problem 3 (25 points)

In this problem, we derive a continuous-time version of an uncertainty relation presen-
ted in the lecture. Specifically, we consider a complex-valued signal f ∈ L1(R) ∩ L2(R)
of unit L2-norm, i.e., ‖f‖2 = 1 and write f̂ for its Fourier transform. We further intro-
duce the time-limiting operator PT and the frequency-limiting operator PW , defined
as

(PT f)(t) = 1T (t)f(t) and (PWf)(t) =

∫
W
e2πiwtf̂(w)dw,

where T andW are bounded subsets of R, and 1T is the indicator of T , i.e.,

1T (t) =

{
1, if t ∈ T ,
0, otherwise.

Further, the signal f considered is εT -concentrated to T and εW-concentrated to W
according to

‖f − PT f‖2 ≤ εT and ‖f − PWf‖2 ≤ εW .

For the operator P , we write ‖P‖2→2 := sup‖g‖2=1 ‖Pg‖2 for its operator norm.

(a) (6 points) Show that
‖f − PWPT f‖2 ≤ εT + εW .

Hint: First prove and then use that ‖PW‖2→2 = 1.

(b) (3 points) Show that
‖PWPT ‖2→2 ≥ 1− εT − εW .

Hint: You can use, without proof, the reverse triangle inequality, namely that, for all
g, h ∈ L2(R), one has ‖g − h‖2 ≥ ‖g‖2 − ‖h‖2.

(c) (8 points) Show that, for all g ∈ L1(R) ∩ L2(R) with ‖g‖2 = 1, we have

(PWPT g)(s) =

∫ ∞
−∞

q(s, t)g(t)dt,

for some q(s, t) to be expressed explicitly, and use this relation to prove that

‖PWPT ‖22→2 ≤
∫ ∞
−∞

∫ ∞
−∞
|q(s, t)|2dt ds.

Hint: You can use, without proof, Fubini’s theorem (cf. Handout).
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(d) (6 points) Prove the following identity∫ ∞
−∞

∫ ∞
−∞
|q(s, t)|2dt ds = |W||T |.

Hint: First express the function q in terms of the inverse Fourier transform of an indicator
function and then use the Plancherel identity.

(e) (2 points) Combine the results established in the previous subproblems to prove
that

|W||T | ≥ (1− (εT + εW))
2 .
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Problem 4 (25 points)

Given a compact set K ⊂ Rn, with n ∈ N, we define the Minkowski dimension of K
with respect to the norm ‖ · ‖ as

dim‖·‖(K) := lim
ε→0+

log2N (ε;K, ‖ · ‖)
log2(1/ε)

, (1)

whereN (ε;K, ‖ · ‖) denotes the ε-covering number of K with respect to the norm ‖ · ‖,
and ε ∈ (0, 1). We will only consider compact sets K for which the limit (1) exists.

(a) (i) (3 points) Fix x ∈ Rn and show that

‖x‖2 ≤ ‖x‖1 ≤
√
n‖x‖2,

where ‖ · ‖1 and ‖ · ‖2 are the usual 1- and 2-norm, respectively.

(ii) (4 points) Show that the result in (a)(i) implies the following inequalities
between the corresponding ε-covering numbers

N (ε;K, ‖ · ‖2) ≤ N (ε;K, ‖ · ‖1) ≤ N (ε/
√
n;K, ‖ · ‖2). (2)

(iii) (3 points) Deduce from (2) that

dim‖·‖1(K) = dim‖·‖2(K).

(iv) (5 points) Show that the Minkowski dimension of K is independent of the
choice of the norm on Rn, i.e., given two norms ‖ · ‖ and ‖ · ‖′ on Rn, we have

dim‖·‖(K) = dim‖·‖′(K).

We will denote this common quantity by dim(K), without subscript, hereaf-
ter and refer to it simply as “the Minkowski dimension”.
Hint: Use the equivalence of norms in finite dimensions (cf. Handout).

(b) (i) (5 points) Given a norm ‖ · ‖ on Rn, prove that the Minkowski dimension
of the ball B‖·‖(0, R) (with respect to the norm ‖ · ‖) centered at the origin
and of radius R > 0 satisfies dim(B‖·‖(0, R)) = n, where the unsubscripted
quantity dim(·) is as defined in subproblem (a)(iv).
Hint: First prove the result in the case R = 1 using the relation between me-
tric entropy and the volume ratio (cf. Handout). Then argue, for general R > 0,
that dim(B‖·‖(0, R)) = dim(B‖·‖(0, 1)), using, without proof, the scaling relation
N (ε;B‖·‖(0, 1), ‖ · ‖) = N (Rε;B‖·‖(0, R), ‖ · ‖), for all ε > 0.

(ii) (3 points) Show that the Minkowski dimension of every compact setK ⊂ Rn

is bounded according to dim(K) ≤ n.
Hint: Use the result from subproblem (b)(i).

(iii) (2 points) Provide an example of a compact set K ⊂ Rn with dim(K) < n.
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