Handout Examination on Mathematics of Information August 28, 2021

Definition 1. The spark of a matrix A, denoted by spark(A), is defined as the cardinality of the smallest set of linearly dependent columns.

Definition 2. For $A = (a_1 \dots a_n) \in \mathbb{C}^{m \times n}$ with columns $\|\cdot\|_2$ -normalized to 1, the coherence is defined as $\mu(A) = \max_{i \neq j} |a_i^H a_j|$.

Definition 3 (Fourier transform). *Given a complex-valued signal* $f \in L^1(\mathbb{R}) \cap L^2(\mathbb{R})$, *its Fourier transform is defined as*

$$\hat{f}(w) = \int_{-\infty}^{\infty} f(t) \, e^{-2\pi i w t} \, dt.$$

Theorem 1 (Plancherel's theorem). *The Fourier transform on* $L^1(\mathbb{R}) \cap L^2(\mathbb{R})$ *is an isometry with respect to the* L^2 *-norm, i.e.,*

$$\|f\|_2 = \|\hat{f}\|_2, \text{ for all } f \in L^1(\mathbb{R}) \cap L^2(\mathbb{R}).$$

Theorem 2 (Fubini's theorem). *Given a Lebesgue-measurable function* $h \in L^1(\mathbb{R}^2)$ *, the following equalities hold*

$$\int \int_{\mathbb{R}^2} h(t,\omega) \, d\big(\lambda_{\{t,\omega\}}\big) = \int_{\mathbb{R}} \left\{ \int_{\mathbb{R}} h(t,\omega) \, dt \right\} \, d\omega = \int_{\mathbb{R}} \left\{ \int_{\mathbb{R}} h(t,\omega) \, d\omega \right\} \, dt$$

where λ is the Lebesgue measure on \mathbb{R}^2 .

Theorem 3 (Equivalence of norms in finite dimensions). Let $\|\cdot\|$ and $\|\cdot\|'$ be norms on \mathbb{R}^n , where $n \ge 1$ is an integer. Then, there exists a constant $C \ge 1$ such that

$$C^{-1}||x|| \le ||x||' \le C||x||, \quad \text{for all } x \in \mathbb{R}^n.$$

Theorem 4 (Relation between metric entropy and volume ratio). *Consider the norms* $\|\cdot\|$ and $\|\cdot\|'$ on \mathbb{R}^n , where $n \ge 1$ is an integer, and let \mathcal{B} and \mathcal{B}' be their corresponding unit balls, i.e., $\mathcal{B} = \{x \in \mathbb{R}^n \mid ||x|| \le 1\}$ and $\mathcal{B}' = \{x \in \mathbb{R}^n \mid ||x||' \le 1\}$. Then, the ε -covering number of \mathcal{B} in the $\|\cdot\|'$ -norm satisfies

$$\left(\frac{1}{\varepsilon}\right)^{n} \frac{\operatorname{vol}\left(\mathcal{B}\right)}{\operatorname{vol}\left(\mathcal{B}'\right)} \leq \mathcal{N}(\varepsilon; \mathcal{B}, \|\cdot\|') \leq \frac{\operatorname{vol}\left(\frac{2}{\varepsilon}\mathcal{B} + \mathcal{B}'\right)}{\operatorname{vol}\left(\mathcal{B}'\right)}.$$