Solutions to the

Examination on Mathematics of Information August 28, 2021

Problem 1

(a) (i) For arbitrary $x \in \mathcal{H}$, we compute

$$
\sum_{k=1}^{\infty}\left|\left\langle x, h_{k}\right\rangle\right|^{2}=\sum_{k=1}^{\infty}\left|\left\langle x,(-1)^{k} e_{k}\right\rangle\right|^{2}=\sum_{k=1}^{\infty}\left|\left\langle x, e_{k}\right\rangle\right|^{2}=\|x\|^{2},
$$

where the last equality holds because $\left\{e_{k}\right\}_{k \in \mathbb{N}}$ is an orthonormal basis (ONB) for \mathcal{H} by assumption. This establishes that the set $\left\{h_{k}\right\}_{k \in \mathbb{N}}$ is a tight frame with frame bounds $A=B=1$.
(ii) For arbitrary $x \in \mathcal{H}$, we compute

$$
\begin{equation*}
\sum_{k=1}^{\infty}\left|\left\langle x, h_{k}\right\rangle\right|^{2}=\sum_{k=1}^{\infty} k\left|\frac{1}{k}\left\langle x, e_{k}\right\rangle\right|^{2}=\sum_{k=1}^{\infty} \frac{1}{k}\left|\left\langle x, e_{k}\right\rangle\right|^{2} . \tag{1}
\end{equation*}
$$

Next, we assume towards a contradiction that there exists a lower frame bound $A>0$, i.e., $A\|x\|^{2} \leq \sum_{k=1}^{\infty}\left|\left\langle x, h_{k}\right\rangle\right|^{2}, \forall x \in \mathcal{H}$. Fix an integer N such that $\frac{1}{N}<A$ and evaluate (1) for $x=e_{N} \in \mathcal{H}$ to get

$$
\sum_{k=1}^{\infty}\left|\left\langle e_{N}, h_{k}\right\rangle\right|^{2}=\frac{1}{N}\left|\left\langle e_{N}, e_{N}\right\rangle\right|^{2}=\frac{1}{N}\left\|e_{N}\right\|_{2}<A\left\|e_{N}\right\|^{2} .
$$

This stands in contradiction to the assumption that A is a lower frame bound. As A was arbitrary no lower frame bound can therefore exist and $\left\{h_{k}\right\}_{k \in \mathbb{N}}$ is thus not a frame.
(b) (i) We prove that $\left\{g_{k}\right\}_{k \in \mathbb{N}}$ is complete by showing that the only signal $x \in \mathcal{H}$ that satisfies $\left\langle x, g_{k}\right\rangle=0, \forall k \in \mathbb{N}$, is $x=0$. Take $x \in \mathcal{H}$ with $0=\left\langle x, g_{k}\right\rangle=\left\langle x, e_{k}+e_{k+1}\right\rangle$, $\forall k \in \mathbb{N}$. Hence,

$$
\left\langle x, e_{k}\right\rangle=-\left\langle x, e_{k+1}\right\rangle, \forall k \in \mathbb{N},
$$

which implies $\left|\left\langle x, e_{k}\right\rangle\right|=C, \forall k \in \mathbb{N}$, for some $C \geq 0$. Further, owing to $x \in \mathcal{H}$, we have $\|x\|<\infty$ and thus

$$
\begin{equation*}
\infty>\|x\|^{2}=\sum_{k=1}^{\infty}\left|\left\langle x, e_{k}\right\rangle\right|^{2}=\sum_{k=1}^{\infty} C^{2}, \tag{2}
\end{equation*}
$$

where we used that $\left\{e_{k}\right\}_{k \in \mathbb{N}}$ is an ONB. The proof is concluded by noting that (2) can hold only if $C=0$ and thus $x=0$.
(ii) We prove that $\left\{g_{k}\right\}_{k \in \mathbb{N}}$ is not a frame by showing that no lower frame bound $A>0$ exists. To this end, we fix $q \in(0,1)$, consider the signal $x_{q}=\sum_{\ell=1}^{\infty}(-q)^{\ell-1} e_{\ell}$ and start by showing that $x_{q} \in \mathcal{H}$. Since $\left\{e_{k}\right\}_{k \in \mathbb{N}}$ is an ONB by assumption, we can write

$$
\left\|x_{q}\right\|^{2}=\sum_{k=1}^{\infty}\left|\left\langle x_{q}, e_{k}\right\rangle\right|^{2}=\sum_{k=1}^{\infty}\left(q^{2}\right)^{k-1}=\frac{1}{1-q^{2}}<\infty, \quad \forall q \in(0,1),
$$

which establishes that $x_{q} \in \mathcal{H}$. Next, we compute

$$
\begin{aligned}
\sum_{k=1}^{\infty}\left|\left\langle x_{q}, g_{k}\right\rangle\right|^{2} & =\sum_{k=1}^{\infty}\left|\left\langle\sum_{\ell=1}^{\infty}(-q)^{\ell-1} e_{\ell}, e_{k}+e_{k+1}\right\rangle\right|^{2} \\
& =\sum_{k=1}^{\infty}\left|(-q)^{k-1}+(-q)^{k}\right|^{2} \\
& =\sum_{k=1}^{\infty}\left|(1-q)(-q)^{k-1}\right|^{2} \\
& =(1-q)^{2} \sum_{k=1}^{\infty}\left(q^{2}\right)^{k-1} \\
& =(1-q)^{2} \frac{1}{1-q^{2}}=(1-q)^{2}\left\|x_{q}\right\|^{2} .
\end{aligned}
$$

The equality $\sum_{k=1}^{\infty}\left|\left\langle x_{q}, g_{k}\right\rangle\right|^{2}=(1-q)^{2}\left\|x_{q}\right\|^{2}$ then establishes that there can be no $A>0$ such that $A\|x\|^{2} \leq \sum_{k=1}^{\infty}\left|\left\langle x, g_{k}\right\rangle\right|^{2}, \forall x \in \mathcal{H}$, as we can always find a $q \in(0,1)$ so that $(1-q)^{2}<A$.
(c) (i) For all $g, f \in L^{2}(\mathbb{R})$, we have

$$
\begin{align*}
&\langle\mathbb{W} \tag{3}\\
& m, n \tag{4}\\
&(T, F) \tag{5}\\
&, f\rangle=\int_{-\infty}^{\infty} e^{2 \pi i n F t} g(t-m T) \overline{f(t)} d t \tag{6}\\
&=\int_{-\infty}^{\infty} e^{2 \pi i n F\left(t^{\prime}+m T\right)} g\left(t^{\prime}\right) \overline{f\left(t^{\prime}+m T\right)} d t^{\prime} \tag{7}\\
&=\int_{-\infty}^{\infty} g\left(t^{\prime}\right) \overline{e^{-2 \pi i n m T F} e^{2 \pi i(-n) F t^{\prime}} f\left(t^{\prime}-(-m) T\right)} d t^{\prime} \tag{8}\\
&=\int_{-\infty}^{\infty} g\left(t^{\prime}\right) \overline{e^{-2 \pi i n m T F}\left(\mathbb{W}_{-m,-n}^{(T, F)} f\right)\left(t^{\prime}\right)} d t^{\prime} \\
&=\left\langle g, e^{-2 \pi i n m T F} \mathbb{W}_{-m,-n}^{(T, F)} f\right\rangle \\
&=\left\langle g,\left(\mathbb{W}_{m, n}^{(T, F)}\right)^{*} f\right\rangle,
\end{align*}
$$

which establishes that $\left(\mathbb{W}_{m, n}^{(T, F)}\right)^{*}=e^{-2 \pi i n m T F} \mathbb{W}_{-m,-n}^{(T, F)}$.
(ii) For every $g \in L^{2}(\mathbb{R})$, we have

$$
\begin{align*}
\left(\mathbb{W}_{m, n}^{(T, F)}\right)^{*} \mathbb{W}_{m, n}^{(T, F)} g & =\left(\mathbb{W}_{m, n}^{(T, F)}\right)^{*}\left(e^{2 \pi i n F \bullet} g(\bullet-m T)\right) \tag{9}\\
& =e^{-2 \pi i n m T F} \mathbb{W}_{-m,-n}^{(T, F)}\left(e^{2 \pi i n F \bullet} g(\bullet-m T)\right) \tag{10}\\
& =e^{-2 \pi i n m T F} e^{-2 \pi i n F \bullet} e^{2 \pi i n F(\bullet+m T)} g(\bullet+m T-m T) \tag{11}\\
& =g, \tag{12}
\end{align*}
$$

and

$$
\begin{align*}
\mathbb{W}_{m, n}^{(T, F)}\left(\mathbb{W}_{m, n}^{(T, F)}\right)^{*} g & =\mathbb{W}_{m, n}^{(T, F)}\left(e^{-2 \pi i n m T F} \mathbb{W}_{-m,-n}^{(T, F)} g\right) \tag{13}\\
& =e^{-2 \pi i n m T F} \mathbb{W}_{m, n}^{(T, F)}\left(e^{-2 \pi i n F \bullet} g(\bullet+m T)\right) \tag{14}\\
& =e^{-2 \pi i n m T F}\left(e^{2 \pi i n F \bullet} e^{-2 \pi i n F(\bullet-m T)} g(\bullet-m T+m T)\right) \tag{15}\\
& =g \tag{16}
\end{align*}
$$

Problem 2

(a) (i) We solve the linear system $D \widehat{x}=0$ to obtain

$$
\mathcal{N}(D)=\operatorname{span}\left(\left(\begin{array}{c}
\frac{7}{5} \\
-\frac{3}{5} \\
-\frac{3}{5} \\
1
\end{array}\right)\right) .
$$

(ii) In (i) we saw that $\mathcal{N}(D) \neq\{0\}$. Therefore, the columns of D are linearly dependent which implies $\operatorname{spark}(D) \leq 4$. As $\|x\|_{0}=3$ the condition $\|x\|_{0}<$ $\frac{\operatorname{spark}(D)}{2}$ hence does not hold.
(iii) From the proof of Theorem 3.2 in the lecture notes we know that $\operatorname{spark}(D) \geq$ $1+1 / \mu(D)$. The condition

$$
\|x\|_{0}<\frac{1}{2}\left(1+\frac{1}{\mu(D)}\right)
$$

together with $\operatorname{spark}(D) \leq 4$ would hence require $\|x\|_{0}<2$. This is not satisfied as we have $\|x\|_{0}=3$.
(iv) We have $\mathcal{X}=x+\mathcal{N}(D)$, where $x=\left(\begin{array}{lll}1 & 1 & 1\end{array}\right)^{T}$ is the particular solution from the problem statement. Hence,

$$
\mathcal{X}=\left\{\left(\begin{array}{l}
1 \tag{17}\\
1 \\
1 \\
0
\end{array}\right)+\lambda\left(\begin{array}{c}
\frac{7}{5} \\
-\frac{3}{5} \\
-\frac{3}{5} \\
1
\end{array}\right): \lambda \in \mathbb{R}\right\}
$$

(v) (P0) identifies the vector

$$
\underset{\widehat{x} \in \mathcal{X}}{\arg \min }\|\widehat{x}\|_{0}
$$

where \mathcal{X} denotes the solution set characterized in (17). We notice, with $\lambda=\frac{5}{3}$ in (17), that the vector

$$
x^{\prime}:=\left(\begin{array}{c}
1+\frac{7}{3} \\
0 \\
0 \\
\frac{5}{3}
\end{array}\right)
$$

is contained in the solution set, i.e., $x^{\prime} \in \mathcal{X}$. Since $\left\|x^{\prime}\right\|_{0}=2<\|x\|_{0}=3$, it
follows that the solution to (P0) is not equal to x. Hence, x is not recovered through (P0).
(vi) (P1) identifies the vector that minimizes

$$
\begin{align*}
\min _{\widehat{x} \in \mathcal{X}}\|\widehat{x}\|_{1} & \left.\left.=\min _{\lambda \in \mathbb{R}}\left\|\left(\begin{array}{l}
1 \\
1 \\
1 \\
0
\end{array}\right)+\lambda\left(\begin{array}{c}
\frac{7}{5} \\
-\frac{3}{5} \\
-\frac{3}{5} \\
1
\end{array}\right)\right\|_{1} \|_{1} \right\rvert\, \begin{array}{l}
\\
\\
\end{array}\right) \min _{\lambda \in \mathbb{R}}\left|1+\frac{7}{5} \lambda\right|+2\left|1-\frac{3}{5} \lambda\right|+|\lambda| \tag{18}\\
& =\min _{\lambda \in \mathbb{R}} f(\lambda) . \tag{19}
\end{align*}
$$

Noting that $f(\lambda)$ has its unique minimum at $\lambda=0$, it follows that (P1) recovers x uniquely.
In order to formally establish that $f(\lambda)$ is minimized at $\lambda=0$, we observe that $f(0)=3$ and for every $\delta \in\left(0, \frac{5}{7}\right)$, we have

$$
f(0+\delta)=1+\frac{7}{5} \delta+2-\frac{6}{5} \delta+\delta=3+\frac{6}{5} \delta>3
$$

and

$$
f(0-\delta)=1-\frac{7}{5} \delta+2+\frac{6}{5} \delta+\delta=3+\frac{4}{5} \delta>3
$$

Hence, $\lambda=0$ is a local minimum and because f is the sum of strictly convex functions also a global minimum.
(b) (i) We first establish the inequality provided in the Hint.

$$
|\langle u, v\rangle|=\left|\sum_{k=1}^{N} u_{k} \overline{v_{k}}\right| \leq \sum_{k=1}^{N}\left|u_{k}\left\|v_{k}\left|\leq \max _{\ell}\right| v_{\ell}\left|\sum_{k=1}^{N}\right| u_{k} \mid=\right\| v\left\|_{\infty}\right\| u \|_{1} .\right.
$$

Next, we show that under (C1) for all $z \neq x$ with $D z=y=D x$, we have $\|z\|_{1}>\|x\|_{1}$ as this implies that the minimization problem (P1) has the unique solution x as desired. To this end, we define $v:=z-x$ and note that $D v=D(z-x)=D z-D x=0$, i.e., $v \in \mathcal{N}(D)$. We now bound

$$
\begin{align*}
\|z\|_{1} & =\|v+x\|_{1}=\left\|v_{S}+x_{S}\right\|_{1}+\left\|v_{S^{c}}\right\|_{1} \tag{21}\\
& =\left\|v_{S}+x_{S}\right\|_{1}\left\|\operatorname{sgn}\left(x_{S}\right)\right\|_{\infty}+\left\|v_{S^{c}}\right\|_{1} \tag{22}\\
& \geq\left|\left\langle x_{S}+v_{S}, \operatorname{sgn}\left(x_{S}\right)\right\rangle\right|+\left\|v_{S^{c}}\right\|_{1} \tag{23}\\
& >\left|\left\langle x_{S}+v_{S}, \operatorname{sgn}\left(x_{S}\right)\right\rangle\right|+\left|\left\langle v_{S}, \operatorname{sgn}\left(x_{S}\right)\right\rangle\right| \tag{24}\\
& \geq\left|\left\langle x_{S}, \operatorname{sgn}\left(x_{S}\right)\right\rangle\right|-\left|\left\langle v_{S}, \operatorname{sgn}\left(x_{S}\right)\right\rangle\right|+\left|\left\langle v_{S}, \operatorname{sgn}\left(x_{S}\right)\right\rangle\right| \tag{25}\\
& =\left|\sum_{k \in S} x_{k} \frac{\overline{x_{k}}}{\left|x_{k}\right|}\right|=\left\|x_{S}\right\|_{1}=\|x\|_{1}, \tag{26}
\end{align*}
$$

where in (22) we used $\left\|\operatorname{sgn}\left(x_{S}\right)\right\|_{\infty}=1$, for $x_{S} \neq 0$, in (23) we applied the Hint, in (24) we used (C1), and in (25) we employed the reverse triangle inequality.
(ii) First note that for all $v \in \mathcal{N}(D) \backslash\{0\}$, we have

$$
\begin{equation*}
0=D v=D_{S} v_{S}+D_{S^{c}} v_{S^{c}} \tag{27}
\end{equation*}
$$

and hence $D_{S} v_{S}=-D_{S^{c}} v_{S^{c}}$. Further, we realize that $\left(D^{H} h\right)_{S}=\left(D_{S}\right)^{H} h, \forall h \in$ \mathbb{C}^{m}. Next, we assume that (C2) holds and show that this implies (C1). Let $h \in \mathbb{C}^{m}$ be such that

$$
\begin{equation*}
\left(D^{H} h\right)_{S}=\operatorname{sgn}\left(x_{S}\right) \text { and }\left\|\left(D^{H} h\right)_{S^{c}}\right\|_{\infty}<1 . \tag{28}
\end{equation*}
$$

Such an $h \in \mathbb{C}^{m}$ exists by assumption (C2). With $\left(D^{H} h\right)_{S}=\left(D_{S}\right)^{H} h$ this implies (C1) as follows,

$$
\begin{align*}
\left|\sum_{j \in S} v_{j} \overline{\overline{\operatorname{sgn}(x))_{j}}}\right| & =\left\langle v_{S}, \operatorname{sgn}\left(x_{S}\right)\right\rangle=\left\langle v_{S},\left(D^{H} h\right)_{S}\right\rangle \tag{29}\\
& =\left|\left\langle v_{S},\left(D_{S}\right)^{H} h\right\rangle\right|=\left|\left\langle D_{S^{\prime}} v_{S}, h\right\rangle\right| \tag{30}\\
& =\left|\left\langle-D_{S^{c}} v_{S^{c}}, h\right\rangle\right|=\left|\left\langle v_{S^{c}},\left(D_{S^{c}}\right)^{H} h\right\rangle\right| \tag{31}\\
& =\left|\left\langle v_{S^{c}},\left(D^{H} h\right)_{S^{c}}\right\rangle\right| \leq\left\|v_{S^{c}}\right\|_{1}\left\|\left(D^{H} h\right)_{S^{c}}\right\|_{\infty} \tag{32}\\
& <\left\|v_{S^{c}}\right\|_{1} . \tag{33}
\end{align*}
$$

To see that the final inequality is, indeed, strict, we note that $v_{S^{c}} \neq 0$ as otherwise $v \neq 0$ would imply $v_{S} \neq 0$ and (27) would imply $D_{S} v_{S}=0$. This would, however, stand in contradiction to $\mathcal{N}\left(D_{S}\right)=\{0\}$. Therefore, we have $\left\|v_{S^{c}}\right\|_{1} \neq 0$. Together with $\left\|\left(D^{H} h\right)_{S^{c}}\right\|_{\infty}<1$, which is by (28), this guarantees strict inequality.

Problem 3

(a) First, recall the definition of the operator norm as $\left\|P_{\mathcal{W}}\right\|_{2 \rightarrow 2}:=\sup _{\|g\|_{2}=1}\left\|P_{\mathcal{W}} g\right\|_{2}$, which implies that, for all $h \in L^{2}(\mathbb{R})$ with $h \neq 0$,

$$
\begin{equation*}
\left\|P_{\mathcal{W}} h\right\|_{2}=\left\|P_{\mathcal{W}} \frac{h}{\|h\|_{2}}\right\|_{2}\|h\|_{2} \leq \sup _{\|g\|_{2}=1}\left\|P_{\mathcal{W}} g\right\|_{2}\|h\|_{2}=\left\|P_{\mathcal{W}}\right\|_{2 \rightarrow 2}\|h\|_{2} . \tag{34}
\end{equation*}
$$

We follow the Hint and observe that for all $g \in L^{1}(\mathbb{R}) \cap L^{2}(\mathbb{R})$,

$$
\left\|P_{\mathcal{W}} g\right\|_{2}^{2} \stackrel{\text { Plancherel }}{=}\left\|\widehat{P_{\mathcal{W}} g}\right\|_{2}^{2}=\int_{\mathcal{W}}|\hat{g}(w)|^{2} d w \leq \int_{-\infty}^{\infty}|\hat{g}(w)|^{2} d w \stackrel{\text { Plancherel }}{=}\|g\|_{2}^{2},
$$

and that if moreover g has its Fourier transform \hat{g} supported on \mathcal{W}, then $P_{\mathcal{W}} g=g$. We have therefore proven that

$$
1 \leq\left\|P_{\mathcal{W}}\right\|_{2 \rightarrow 2} \leq 1
$$

and hence

$$
\begin{equation*}
\left\|P_{\mathcal{W}}\right\|_{2 \rightarrow 2}=1 . \tag{35}
\end{equation*}
$$

Next, we note that

$$
\begin{align*}
& \left\|f-P_{\mathcal{W}} P_{\mathcal{T}} f\right\|_{2} \stackrel{\text { triang. ineq. }}{\leq}\left\|f-P_{\mathcal{W}} f\right\|_{2}+\left\|P_{\mathcal{W}} f-P_{\mathcal{W}} P_{\mathcal{T}} f\right\|_{2} \\
& \stackrel{(34)}{\leq} \quad\left\|f-P_{\mathcal{W}} f\right\|_{2}+\left\|P_{\mathcal{W}}\right\|_{2 \rightarrow 2}\left\|f-P_{\mathcal{T}} f\right\|_{2} \\
& \stackrel{(35)}{=}\left\|f-P_{\mathcal{W}} f\right\|_{2}+\left\|f-P_{\mathcal{T}} f\right\|_{2} \leq \varepsilon_{\mathcal{W}}+\varepsilon_{\mathcal{T}} \text {, } \tag{36}
\end{align*}
$$

where the last inequality holds as f is $\varepsilon_{\mathcal{T}}$-concentrated to \mathcal{T} and simultaneously $\varepsilon_{\mathcal{W}}$-concentrated to \mathcal{W}.
(b) As it has been assumed in the problem statement that $\|f\|_{2}=1$, applying the reverse triangle inequality yields the desired result according to

$$
\begin{aligned}
\left\|P_{\mathcal{W}} P_{\mathcal{T}}\right\|_{2 \rightarrow 2} \stackrel{(34)}{\geq}\left\|P_{\mathcal{W}} P_{\mathcal{T}} f\right\|_{2} & =\left\|f-\left(f-P_{\mathcal{W}} P_{\mathcal{T}} f\right)\right\|_{2} \\
& \stackrel{\text { RTI }}{\geq}\|f\|_{2}-\left\|f-P_{\mathcal{W}} P_{\mathcal{T}} f\right\|_{2} \stackrel{(36)}{\geq} 1-\varepsilon_{\mathcal{T}}-\varepsilon_{\mathcal{W}} .
\end{aligned}
$$

(c) Plugging in the definition of $P_{\mathcal{W}} P_{\mathcal{T}} g$, we obtain

$$
\begin{align*}
\left(P_{\mathcal{W}} P_{\mathcal{T}} g\right)(s) & =\int_{\mathcal{W}} e^{2 \pi i w s}\left(\widehat{\mathbb{1}_{\mathcal{T}} g}\right)(w) d w \\
& =\int_{\mathcal{W}} \int_{-\infty}^{\infty} e^{2 \pi i w(s-t)} \mathbb{1}_{\mathcal{T}}(t) g(t) d t d w \tag{37}\\
& \stackrel{(\stackrel{*}{*})}{=} \int_{-\infty}^{\infty}\left\{\int_{\mathcal{W}} e^{2 \pi i w(s-t)} d w \mathbb{1}_{\mathcal{T}}(t)\right\} g(t) d t \\
& =\int_{-\infty}^{\infty} q(s, t) g(t) d t, \tag{38}
\end{align*}
$$

where ($*$) follows from Fubini's theorem, and we set

$$
q(s, t)=\int_{\mathcal{W}} e^{2 \pi i w(s-t)} d w \mathbb{1}_{\mathcal{T}}(t)
$$

The condition for the application of Fubini's theorem, namely absolute integrability in (37), is satisfied as \mathcal{T} and \mathcal{W} are bounded sets. Now, fixing $g \in L^{1}(\mathbb{R}) \cap L^{2}(\mathbb{R})$ such that $\|g\|_{2}=1$ and using (38), we obtain

$$
\begin{align*}
\left\|P_{\mathcal{W}} P_{\mathcal{T}} g\right\|_{2}^{2} & =\int_{-\infty}^{\infty}\left|\int_{-\infty}^{\infty} q(s, t) g(t) d t\right|^{2} d s \\
& \text { C.S. } \int_{-\infty}^{\infty}\{\int_{-\infty}^{\infty}|q(s, t)|^{2} d t \underbrace{\int_{-\infty}^{\infty}|g(u)|^{2} d u}_{=1}\} d s \\
& =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty}|q(s, t)|^{2} d t d s, \tag{39}
\end{align*}
$$

where C.S. stands for 'Cauchy-Schwarz inequality'. As the right hand side of (39) does not depend on g, we can conclude, by taking the supremum over all g satisfying $\|g\|_{2}=1$, that, as desired,

$$
\left\|P_{\mathcal{W}} P_{\mathcal{T}}\right\|_{2 \rightarrow 2}^{2}=\sup _{\|g\|_{2}=1}\left\|P_{\mathcal{W}} P_{\mathcal{T}} g\right\|_{2}^{2} \leq \int_{-\infty}^{\infty} \int_{-\infty}^{\infty}|q(s, t)|^{2} d t d s
$$

(d) We observe that

$$
q(s+t, t)=\int_{-\infty}^{\infty} e^{2 \pi i w s} \mathbb{1}_{\mathcal{W}}(w) d w \cdot \mathbb{1}_{\mathcal{T}}(t)=\mathcal{F}^{-1}\left\{\mathbb{1}_{\mathcal{W}}\right\}(s) \cdot \mathbb{1}_{\mathcal{T}}(t)
$$

where $\mathcal{F}^{-1}\left\{\mathbb{1}_{\mathcal{W}}\right\}(s)$ is the inverse Fourier transform of the indicator function $\mathbb{1}_{\mathcal{W}}$ evaluated at s. This yields

$$
\begin{align*}
\int_{-\infty}^{\infty}|q(s, t)|^{2} d s & =\int_{-\infty}^{\infty}|q(s+t, t)|^{2} d s \\
& =\int_{-\infty}^{\infty}\left|\mathcal{F}^{-1}\left\{\mathbb{1}_{\mathcal{W}}\right\}(s)\right|^{2} d s \cdot \mathbb{1}_{\mathcal{T}}(t) \\
& \stackrel{\text { Pl. }}{=} \int_{-\infty}^{\infty}\left|\mathcal{F \mathcal { F }}^{-1}\left\{\mathbb{1}_{\mathcal{W}}\right\}(w)\right|^{2} d w \cdot \mathbb{1}_{\mathcal{T}}(t) \\
& =\int_{-\infty}^{\infty} \mathbb{1}_{\mathcal{W}}(w) d w \cdot \mathbb{1}_{\mathcal{T}}(t) \tag{40}
\end{align*}
$$

where we used the Plancherel identity, abbreviated as 'Pl.'. Upon integration over t, (40) results in

$$
\begin{equation*}
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty}|q(s, t)|^{2} d s d t=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \mathbb{1}_{\mathcal{W}}(w) \mathbb{1}_{\mathcal{T}}(t) d w d t=|\mathcal{W} \| \mathcal{T}| . \tag{41}
\end{equation*}
$$

As \mathcal{T} and \mathcal{W} are bounded sets by assumption, the right hand side of (41) is finite
and we can hence apply Fubini's theorem to conclude, as desired, that

$$
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty}|q(s, t)|^{2} d t d s=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty}|q(s, t)|^{2} d s d t=|\mathcal{W} \| \mathcal{T}|
$$

(e) We combine the results established in the previous subproblems according to

$$
\left|\mathcal{W}\left\|\left.\mathcal{T}\left|\stackrel{(d)}{=} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty}\right| q(s, t)\right|^{2} d t d s \stackrel{(c)}{\geq}\right\| P_{\mathcal{W}} P_{\mathcal{T}} \|_{2 \rightarrow 2}^{2} \stackrel{(b)}{\geq}\left(1-\left(\varepsilon_{\mathcal{T}}+\varepsilon_{\mathcal{W}}\right)\right)^{2} .\right.
$$

Problem 4

In this solution, to avoid confusion, we write x_{i} for the i-th vector in the set $\left\{x_{1}, \ldots, x_{N}\right\}$ and $x_{(i)}$ for the i-th component of the vector x.
(a) (i) The first inequality is obtained by taking the square root in the following inequality

$$
\begin{equation*}
\|x\|_{2}^{2}=\sum_{i=1}^{n}\left|x_{(i)}\right|^{2} \leq \sum_{i=1}^{n}\left|x_{(i)}\right|^{2}+\sum_{i, j, i \neq j}\left|x_{(i)}\right|\left|x_{(j)}\right|=\left(\sum_{i=1}^{n}\left|x_{(i)}\right|\right)^{2}=\|x\|_{1}^{2}, \tag{42}
\end{equation*}
$$

and the second one follows by application of the Cauchy-Schwarz inequality according to

$$
\begin{equation*}
\|x\|_{1}=\langle x, \operatorname{sgn}(x)\rangle \stackrel{\text { C.S. }}{\leq}\|x\|_{2}\|\operatorname{sgn}(x)\|_{2} \leq \sqrt{n}\|x\|_{2} \tag{43}
\end{equation*}
$$

with $\operatorname{sgn}(x) \in \mathbb{R}^{n}$ defined as

$$
\operatorname{sgn}(x)_{(i)}:= \begin{cases}-1, & \text { if } x_{(i)}<0 \\ +1, & \text { if } x_{(i)}>0 \\ 0, & \text { if } x_{(i)}=0\end{cases}
$$

(ii) Let $\left\{y_{1}, \ldots, y_{N}\right\} \subset \mathbb{R}^{n}$ be an ε-covering of K with respect to the $\|\cdot\|_{1}$-norm. For every $y \in K$, there hence exists an index $i, 1 \leq i \leq N$, such that $\left\|y-y_{i}\right\|_{1} \leq \varepsilon$ and therefore

$$
\left\|y-y_{i}\right\|_{2} \stackrel{(42)}{\leq}\left\|y-y_{i}\right\|_{1} \leq \varepsilon .
$$

We have hence established that every ε-covering of K with respect to the $\|\cdot\|_{1}$-norm is also an ε-covering of K with respect to the $\|\cdot\|_{2}$-norm, which in turn implies

$$
\mathcal{N}\left(\varepsilon ; K,\|\cdot\|_{2}\right) \leq \mathcal{N}\left(\varepsilon ; K,\|\cdot\|_{1}\right) .
$$

Likewise, let $\left\{z_{1}, \ldots, z_{N}\right\} \subset \mathbb{R}^{n}$ be an (ε / \sqrt{n})-covering of K with respect to the $\|\cdot\|_{2}$-norm. For every $z \in K$, there hence exists an index $i, 1 \leq i \leq N$, such that $\left\|z-z_{i}\right\|_{2} \leq \varepsilon / \sqrt{n}$ and therefore

$$
\left\|z-z_{i}\right\|_{1} \stackrel{(43)}{\leq} \sqrt{n}\left\|z-z_{i}\right\|_{2} \leq \sqrt{n} \frac{\varepsilon}{\sqrt{n}}=\varepsilon
$$

We have hence established that every (ε / \sqrt{n})-covering of K with respect to the $\|\cdot\|_{2}$-norm is also an ε-covering of K with respect to the $\|\cdot\|_{1}$-norm, which in turn implies

$$
\mathcal{N}\left(\varepsilon ; K,\|\cdot\|_{1}\right) \leq \mathcal{N}\left(\varepsilon / \sqrt{n} ; K,\|\cdot\|_{2}\right) .
$$

(iii) First note that from $\mathcal{N}\left(\varepsilon ; K,\|\cdot\|_{2}\right) \leq \mathcal{N}\left(\varepsilon ; K,\|\cdot\|_{1}\right)$, one has for all $\varepsilon>0$,

$$
\frac{\log _{2} \mathcal{N}\left(\varepsilon ; K,\|\cdot\|_{2}\right)}{\log _{2}(1 / \varepsilon)} \leq \frac{\log _{2} \mathcal{N}\left(\varepsilon ; K,\|\cdot\|_{1}\right)}{\log _{2}(1 / \varepsilon)} .
$$

Taking the limit $\varepsilon \rightarrow 0^{+}$on both sides yields

$$
\begin{equation*}
\operatorname{dim}_{\|\cdot\|_{2}}(K) \leq \operatorname{dim}_{\|\cdot\|_{1}}(K) \tag{44}
\end{equation*}
$$

Likewise, it follows from $\mathcal{N}\left(\varepsilon ; K,\|\cdot\|_{1}\right) \leq \mathcal{N}\left(\varepsilon / \sqrt{n} ; K,\|\cdot\|_{2}\right)$, that for all $\varepsilon>0$,

$$
\frac{\log _{2} \mathcal{N}\left(\varepsilon ; K,\|\cdot\|_{1}\right)}{\log _{2}(1 / \varepsilon)} \leq \frac{\log _{2} \mathcal{N}\left(\varepsilon / \sqrt{n} ; K,\|\cdot\|_{2}\right)}{\log _{2}(1 / \varepsilon)}=\frac{\log _{2} \mathcal{N}\left(\varepsilon / \sqrt{n} ; K,\|\cdot\|_{2}\right)}{\log _{2}(\sqrt{n} / \varepsilon)-\log _{2}(\sqrt{n})} .
$$

Taking the limit $\varepsilon \rightarrow 0^{+}$on both sides yields

$$
\begin{equation*}
\operatorname{dim}_{\|\cdot\|_{1}}(K) \leq \operatorname{dim}_{\|\cdot\|_{2}}(K) \tag{45}
\end{equation*}
$$

Combining (44) and (45), we get the desired result

$$
\operatorname{dim}_{\|\cdot\|_{1}}(K)=\operatorname{dim}_{\|\cdot\|_{2}}(K) .
$$

(iv) We proceed as above but for general norms $\|\cdot\|$ and $\|\cdot\|^{\prime}$ on \mathbb{R}^{n}. From the norm equivalence in finite dimensions, it follows that there exists a constant $C \geq 1$ such that

$$
C^{-1}\|x\| \leq\|x\|^{\prime} \leq C\|x\|
$$

for all $x \in \mathbb{R}^{n}$. Let $\left\{y_{1}, \ldots, y_{N}\right\} \subset \mathbb{R}^{n}$ be a $\left(C^{-1} \varepsilon\right)$-covering of K with respect to the $\|\cdot\|$-norm. For every $y \in K$, there hence exists an index $i, 1 \leq i \leq N$, such that $\left\|y-y_{i}\right\| \leq C^{-1} \varepsilon$ and therefore

$$
\left\|y-y_{i}\right\|^{\prime} \leq C\left\|y-y_{i}\right\| \leq C C^{-1} \varepsilon=\varepsilon
$$

We have hence established that every $\left(C^{-1} \varepsilon\right)$-covering of K with respect to the $\|\cdot\|$-norm is an ε-covering with respect to the $\|\cdot\|$ '-norm, which implies

$$
\begin{equation*}
\mathcal{N}\left(\varepsilon ; K,\|\cdot\|^{\prime}\right) \leq \mathcal{N}\left(C^{-1} \varepsilon ; K,\|\cdot\|\right) \tag{46}
\end{equation*}
$$

A similar argument with the roles of the $\|\cdot\|$-norm and the $\|\cdot\|^{\prime}$-norm reversed yields

$$
\begin{equation*}
\mathcal{N}(C \varepsilon ; K,\|\cdot\|) \leq \mathcal{N}\left(\varepsilon ; K,\|\cdot\|^{\prime}\right) \tag{47}
\end{equation*}
$$

Combining (46) and (47) allows us to conclude that

$$
\frac{\log _{2} \mathcal{N}(C \varepsilon ; K,\|\cdot\|)}{\log _{2}(1 /(C \varepsilon))+\log _{2}(C)} \leq \frac{\log _{2} \mathcal{N}\left(\varepsilon ; K,\|\cdot\|^{\prime}\right)}{\log _{2}(1 / \varepsilon)} \leq \frac{\log _{2} \mathcal{N}\left(C^{-1} \varepsilon ; K,\|\cdot\|\right)}{\log _{2}\left(1 /\left(C^{-1} \varepsilon\right)\right)-\log _{2}(C)}
$$

Taking the limit $\varepsilon \rightarrow 0^{+}$yields the desired result

$$
\operatorname{dim}_{\|\cdot\|}(K)=\operatorname{dim}_{\|\cdot\| \|^{\prime}}(K)
$$

(b) (i) We first prove the result for $R=1$. Following the Hint, we use the relation between metric entropy and the volume ratio provided in the Handout and applied to the unit ball $\mathcal{B}=\mathcal{B}^{\prime}=B_{\|\cdot\|}(0,1)$ to obtain

$$
\begin{equation*}
\left(\frac{1}{\varepsilon}\right)^{n} \leq \mathcal{N}(\varepsilon ; \mathcal{B},\|\cdot\|) \leq\left(\frac{2}{\varepsilon}+1\right)^{n} \tag{48}
\end{equation*}
$$

where we used

$$
\operatorname{vol}\left(\frac{2}{\varepsilon} \mathcal{B}+\mathcal{B}^{\prime}\right)=\operatorname{vol}\left(\left(\frac{2}{\varepsilon}+1\right) \mathcal{B}\right)=\left(\frac{2}{\varepsilon}+1\right)^{n} \operatorname{vol}(\mathcal{B}) .
$$

The bounds in (48) now yield $\mathcal{N}(\varepsilon ; \mathcal{B},\|\cdot\|) \asymp \varepsilon^{-n}$, which in turn implies

$$
\operatorname{dim}\left(B_{\|\cdot\|}(0,1)\right)=\lim _{\varepsilon \rightarrow 0^{+}} \frac{\log _{2} \mathcal{N}(\varepsilon ; \mathcal{B},\|\cdot\|)}{\log _{2}(1 / \varepsilon)}=n
$$

For general $R>0$, we observe that, by scaling, according to the Hint, we have

$$
\begin{equation*}
\mathcal{N}\left(\varepsilon ; B_{\|\cdot\|}(0,1),\|\cdot\|\right)=\mathcal{N}\left(R \varepsilon ; B_{\|\cdot\|}(0, R),\|\cdot\|\right), \tag{49}
\end{equation*}
$$

which yields

$$
\begin{aligned}
\operatorname{dim}\left(B_{\|\cdot\|}(0, R)\right) & =\lim _{\varepsilon^{\prime} \rightarrow 0^{+}} \frac{\log _{2} \mathcal{N}\left(\varepsilon^{\prime} ; B_{\|\cdot\|}(0, R),\|\cdot\|\right)}{\log _{2}\left(1 / \varepsilon^{\prime}\right)} \\
& =\lim _{\varepsilon \rightarrow 0^{+}} \frac{\log _{2} \mathcal{N}\left(R \varepsilon ; B_{\|\cdot\|}(0, R),\|\cdot\|\right)}{\log _{2}(1 /(R \varepsilon))} \\
& =\lim _{\varepsilon \rightarrow 0^{+}} \frac{\log _{2} \mathcal{N}\left(R \varepsilon ; B_{\|\cdot\|}(0, R),\|\cdot\|\right)}{\log _{2}(1 / \varepsilon)} \\
& \stackrel{(49)}{=} \lim _{\varepsilon \rightarrow 0^{+}} \frac{\log _{2} \mathcal{N}\left(\varepsilon ; B_{\|\cdot\|}(0,1),\|\cdot\|\right)}{\log _{2}(1 / \varepsilon)} \\
& =\operatorname{dim}\left(B_{\|\cdot\|}(0,1)\right)=n,
\end{aligned}
$$

where we took $\varepsilon^{\prime}=R \varepsilon$.
(ii) Take $R>0$ large enough such that $K \subset B_{\infty}(0, R)$, where $B_{\infty}(0, R)$ is the ball with respect to the infinity norm $\|\cdot\|_{\infty}$ centered at the origin and of radius R. Such an R exists as K is compact. This inclusion now implies a bound on the covering number according to $\mathcal{N}\left(\varepsilon ; K,\|\cdot\|_{\infty}\right) \leq \mathcal{N}\left(\varepsilon ; B_{\infty}(0, R),\|\cdot\|_{\infty}\right)$, for all $\varepsilon>0$, and consequently also on the following ratio

$$
\frac{\log _{2} \mathcal{N}\left(\varepsilon ; K,\|\cdot\|_{\infty}\right)}{\log _{2}(1 / \varepsilon)} \leq \frac{\log _{2} \mathcal{N}\left(\varepsilon ; B_{\infty}(0, R),\|\cdot\|_{\infty}\right)}{\log _{2}(1 / \varepsilon)}
$$

Taking the limit as $\varepsilon \rightarrow 0^{+}$yields the bound $\operatorname{dim}_{\|\cdot\|_{\infty}}(K) \leq \operatorname{dim}_{\|\cdot\|_{\infty}}\left(B_{\infty}(0, R)\right)$. The desired bound according to

$$
\operatorname{dim}(K) \leq \operatorname{dim}\left(B_{\infty}(0, R)\right) \stackrel{(b)(i)}{=} n
$$

is now a consequence of the result in (a)(iv).
(iii) Consider $K=\{x\}$, for $x \in \mathbb{R}^{n}$. For every $\varepsilon>0$, we have $\mathcal{N}\left(\varepsilon ; K,\|\cdot\|_{\infty}\right)=1$, which yields $\operatorname{dim}(K)=0<n$.

