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Problem 1

(@) (i) For arbitrary = € H, we compute

Z\ z, hi)[* Z\ VFel? =D e en)® = |z,

where the last equality holds because {¢; }ren is an orthonormal basis (ONB)
for by assumption. This establishes that the set {h;}rey is a tight frame
with frame bounds A = B = 1.

(ii) For arbitrary x € H, we compute

Z]mhk Zk' T, e) Z%xek ) (1)
k=1 k=1

Next, we assume towards a contradiction that there exists a lower frame
bound 4 > 0, i.e., Aljz|* < Y o, [{z, h)|?, Vo € H. Fix an integer N such
that & < A and evaluate (1) for z = ey € H to get

> 1 1
kz_;| en, )| = N (en.en)|” = N”€N||2 < Allen|f.

This stands in contradiction to the assumption that A is a lower frame bound.
As A was arbitrary no lower frame bound can therefore exist and {hy }ken is
thus not a frame.

(b) (i) We prove that { g }ren is complete by showing that the only signal = € # that
satisfies (z, gx) = 0, Vk € N,isx = 0. Take x € Hwith 0 = (z, gx) = (x, ex + ex11),
Vk € N. Hence,

<$,6k> = _<x7€k+1>a Vk € N7

which implies [(x,e;)| = C, Vk € N, for some C' > 0. Further, owing to
x € H, we have ||z|| < oo and thus

oo > |lz|* =) [e,en)? =) C @)
k=1 k=1



()

where we used that {e; }ren is an ONB. The proof is concluded by noting

that (2) can hold only if C' = 0 and thus x = 0.

(ii) We prove that {gy}rcn is not a frame by showing that no lower frame bound

A > Oexists. To this end, we fix ¢ € (0, 1), consider the signal z, = > _,° (—¢)*"!

and start by showing that x, € H. Since {e };en is an ONB by assumption,

we can write

1

lzgll® =D Kagen)* =D (@) = 1= 2 <00 Vae(0.1),
k=1 k=1

which establishes that z, € H. Next, we compute

<Z(—Q)e_1€£, ek + €kt1

= (1= )*|lzq]I*.

2

The equality Y 72, |{(xq, 9x)[* = (1 — ¢)?||z,]|* then establishes that there can
be no A > 0 such that A||z||* < Y 7, (@, gx)|?, V& € H, as we can always

find a ¢ € (0,1) so that (1 — ¢)% < A.

(i) Forall g, f € L*(R), we have

o0

(Whg, f) = / >l g(t —mT) f(t) dt

[e.e]

_ / ezmnF(t’erT)g(t’)mdt/

3)
(4)

— / g(t’)6—27rianF€27ri(—n)Ft’f(t/ _ (_m)T) dt’ (5)

_ / g(t")e=2minmTE (WD p) (1) g

<g efQﬁzanF W_T F) f>
= (g, (W) £),
which establishes that (W ;" ) = g~ 2minmTF W,TmF) .

(6)

()
(8)
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(ii) Forevery g € LQ(R), we have

(W) Wiig = (WESD) ™ (e g( — mT)) ©)
e’%”””TF W_TmF o (e g(e — mT)) (10)
— o~ 2minmTF o =2minke 2winF(e+mT) o (o LpT —mT)  (11)
=9, (12)

and
WL (WD) g = WD (e Wil ) (13)
= e 2 TEW (L) (€727 g (o + mT)) (14)
_ p—2minmTF (627rinF0672m'nF(OfmT)g(. T+ mT)) (15)
=g. (16)



Problem 2

(@) (i) We solve the linear system Dz = 0 to obtain

[SAEN]

N (D) = span

[S2Y[eN] ol

—_

(ii) In (i) we saw that V(D) # {0}. Therefore, the columns of D are linearly

dependent which implies spark(D) < 4. As ||z||o = 3 the condition ||z|y <

w hence does not hold.

(iif) From the proof of Theorem 3.2 in the lecture notes we know that spark(D) >
1+ 1/u(D). The condition

lzllo < % (1 + ﬁ)

together with spark(D) < 4 would hence require ||z||, < 2. This is not satis-
fied as we have ||z||o = 3.

(iv) We have X = z + N (D), where z = (1 1 1 0)7 is the particular solution from
the problem statement. Hence,

( 3\

7
1 5
1 _3
X = +A| P l:NeR}. (17)
1 _3
5
\ O 1 /

(v) (PO) identifies the vector

arg min||z||o,
TeX

where X denotes the solution set characterized in (17). We notice, with A\ = g
in (17), that the vector

1+2

0

5
3
is contained in the solution set, i.e., ' € X. Since ||2'||p = 2 < ||z|lo = 3, it
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(vi)

(b) @)

follows that the solution to (P0) is not equal to x. Hence, z is not recovered
through (P0).

(P1) identifies the vector that minimizes

1 :
1 _3
min||Z||; = min + A > (18)
TeX AER N
1 —5
0 1
1
—min |14 oA 4 2]1— 2Al £ (19)
“heR| 5 5
=: min f(A). (20)

Noting that f(\) has its unique minimum at A = 0, it follows that (P1) reco-
vers x uniquely.

In order to formally establish that f()) is minimized at A\ = 0, we observe
that f(0) = 3 and for every 6 € (0, 2), we have

FO+6) =1+ 542-9515-3+853
5 5 5
and
4
f(0—5):1-%5+2+§5+5:3+55>3.

Hence, A = 0 is a local minimum and because f is the sum of strictly convex
functions also a global minimum.

We first establish the inequality provided in the Hint.
N

Z (o

k=1

Next, we show that under (C1) for all z # x with Dz = y = Dx, we have
|lz]l1 > ||«|]1 as this implies that the minimization problem (P1) has the un-
ique solution z as desired. To this end, we define v := 2z — z and note that
Dv=D(z—1z)=Dz— Dx=0,ie., v eN(D). We now bound

[{u, v)| =

N N
<> luelloe] < maxfoe] Y furl = [[vlloo ull:-
k=1 k=1

Izll = llo+ 2]l = l|os + zslls + Josellx (21)
= Jlus + zs]l1llsgn(zs)lloc + [[vse |l (22)
> [{(zs +vs,sgn(zs))| + ||vse||: (23)
> |(rg + vs,sgn(zs))| + [(vs, sgn(zs))| (24)
> |(s, sgn(zs))| — (v, sgn(xs))] + |(vs, sgn(zs))] (25)
- Z|— = sl = llzlh, (26)
kes x|




(i)

where in (22) we used |[sgn(zs)|lc = 1, for g # 0, in (23) we applied the
Hint, in (24) we used (C1), and in (25) we employed the reverse triangle
inequality.

First note that for all v € A'(D)\{0}, we have
O — DU — DSUS’ + DSCUSC (27)

and hence Dgvg = —Dgcvge. Further, we realize that (D" h)s = (Dg)"h, Vh €
C™. Next, we assume that (C2) holds and show that this implies (C1). Let
h € C™ be such that

(D¥h)g = sgn(zg) and [[(Dh)ge|s < 1. (28)

Such an h € C™ exists by assumption (C2). With (Dh)s = (Dgs)"h this
implies (C1) as follows,

> wilsgn(x));| = (vs,sgn(zs)) = (vs, (Dh)s) (29)
JES
= |{vs, (Ds)""h)| = |(Dsvs, h)] (30)
= |<—Dsc7)5c,h>| = |<Usc, (DSc)Hh>| (31)
= [(vge, (D" R)ge)| < ||vse|l1 || (D h) se||oo (32)
< HUSC 1- (33)

To see that the final inequality is, indeed, strict, we note that vse # 0 as
otherwise v # 0 would imply vg # 0 and (27) would imply Dgvg = 0. This
would, however, stand in contradiction to V'(Dg) = {0}. Therefore, we have
|lvse|l1 # 0. Together with ||(D#h)sc||o < 1, which is by (28), this guarantees
strict inequality.




Problem 3

(a) First, recall the definition of the operator norm as || Py |22 = supy,—1 [[Pwgll2,
which implies that, for all » € L*(R) with i # 0,

[Pwhll2 = [Plla < sup [[Pw gllallPlla = [[Pwll2s2llbll2 (34)

2 llgllz=1

h
P
‘ R

We follow the Hint and observe that for all g € L'(R) N L*(R),

o0

|| . . Plancherel
Foa, = [ latw)Pdw< [~ la)P dw ™2 gl
W —

(e 9]

’ ‘ ng | ’ g Planc:herel

and that if moreover ¢ has its Fourier transform g supported on W, then Pyyg = g.
We have therefore proven that

1 <||Pwllas2 <1,
and hence
[ Pwll2-2 = 1. (35)

Next, we note that

triang. ineq.

g ineq
I f = PwPrfll: < |[f = Pwflle+[[1Pwf— PwPrfl:

(34)
< 1f = Pwfllz + | Pwllas2llf — Prfll2

35
= Pufla+ If = Prfla<ew+er. (36)

where the last inequality holds as f is er-concentrated to 7 and simultaneously
ew-concentrated to W.

(b) As it has been assumed in the problem statement that || f||. = 1, applying the
reverse triangle inequality yields the desired result according to
(34)
[1PwPrll2se = 1PwPrfll2 = IIf = (f = PwPrf)ll2

RTI (36)
> |[flle = If = PwPrflla = 1 —e7 —ew.
(c) Plugging in the definition of P,y Prg, we obtain

(PwPro)s) = | & (Lrg)(w)du

w

_ / e (1) g(t) dt duw (37)
W J —oco

(;)/oo {/ e2miw(s=t) 1., ﬂT(t)}!](t) dt
—00 w

_ /_ a(s, D)g(t) dt, (38)



where (x) follows from Fubini’s theorem, and we set

q(s,t) :/ 2D doy 1 (t).
w

The condition for the application of Fubini’s theorem, namely absolute integrabi-
lity in (37), is satisfied as T and W are bounded sets. Now, fixing g € L'(R)NL*(R)
such that ||g||z = 1 and using (38), we obtain

Pvpraly= | [~ ats.09 Dai| ds
S/_m{/_w‘ (s, 0)1 dt/_oo| (F du f
S ” T

=1

/ / q(s,)|? dt ds, (39)

where C.S. stands for ‘Cauchy-Schwarz inequality’. As the right hand side of
(39) does not depend on g, we can conclude, by taking the supremum over all g
satisfying ||g||» = 1, that, as desired,

IRoPrl = s Pwpralf < [~ [~ lats.oParas

llgll2=1

(d) We observe that
als +,8) = / Ty (1) dw - 17 (£) = FH{w}(s) - Lr(0),

where F {1y} (s) is the inverse Fourier transform of the indicator function 1,y
evaluated at s. This yields

/ lg(s,8) ds = / a(s + .| ds

o0 [e.9]

/ F A} (s)]* ds - 1)
/ FF{1w}w)[* dw- 17(t)
= /_ h Tyy(w) dw - T(t), (40)

o0

where we used the Plancherel identity, abbreviated as ‘Pl.”. Upon integration over
t, (40) results in

// ols.1)ds dt = //nw V() dwdt = W[ T].  (@41)

As T and W are bounded sets by assumption, the right hand side of (41) is finite
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and we can hence apply Fubini’s theorem to conclude, as desired, that

/ / St|dtd3—/ / q(s,t)|*dsdt = [W||T].

(e) We combine the results established in the previous subproblems according to

(b)
Wi @ / / a(s. D2t ds 5 [ PowPrlEy > (1= (67 +2w))?.



Problem 4

In this solution, to avoid confusion, we write x; for the i-th vector in the set {x1, ..., zy}
and z(;) for the i-th component of the vector .

(@) (i)

(ii)

The first inequality is obtained by taking the square root in the following
inequality

n n n 2
1213 =" |z <3 2o+ Y zo]|zw] = (Z |3?<z'>}> = ||l=|3, (42)
=1 =1 =1

03,175
and the second one follows by application of the Cauchy-Schwarz inequality
according to

Izl = (2, sgn(z)) < [lzll2llsgn(@)ll: < vz, (43)

with sgn(z) € R™ defined as

-1, ifxy <0,
sgn(z)) = 4 +1, if zu >0,
0, if z(; = 0.
Let {y1,...,yn} C R" be an e-covering of K with respect to the || - ||;-norm.

For every y € K, there hence exists an index 7, 1 < ¢ < N, such that
lly — vi||l1 < e and therefore

(42)
ly —wille < lly —willi <e.

We have hence established that every e-covering of K with respect to the
|| - [[i--norm is also an e-covering of K with respect to the || - ||-norm, which
in turn implies

N(& K, || - [l2) S N(e K- )
Likewise, let {z1,...,2x} C R" be an (¢/+/n)-covering of K with respect to

the || - ||o-norm. For every z € K, there hence exists an index i, 1 < i < N,
such that ||z — 2|2 < ¢/y/n and therefore

(43) c
|z — 2zl < Vnlz— 22 < \/ﬁ—n =€.

NG

We have hence established that every (¢//n)-covering of K with respect to
the || - |[2-norm is also an e-covering of K with respect to the || - ||;-norm,
which in turn implies

N K ) £ Ne/vs K| - [l2).
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(iii) First note that from NV(g; K, | - |2) < N(¢; K, || - ||1), one has for all € > 0,

logy N(e: K || - ||l2) _ logy N(&; Ko | - [[)
log,(1/¢) N logy(1/¢)

Taking the limit ¢ — 0% on both sides yields

dimy., (K) < dimy, (K). (44)

Likewise, it follows from N (¢; K, ||||1) < N(e/v/n; K, ||-]|2), that foralle > 0,

logy N (& K || - ) _ loga N(e/V/n; K || - [l2) _ logy N(e/v/ns K || - 12)
logy(1/e)  — log,(1/¢) logy(v/n/e) — logy(v/n)’

Taking the limit ¢ — 0" on both sides yields

dimy., (K7) < dimy, (K). (45)

Combining (44) and (45), we get the desired result
dimy, (K) = dimy, (K).
(iv) We proceed as above but for general norms || - || and || - ||' on R™. From the

norm equivalence in finite dimensions, it follows that there exists a constant
C > 1such that

CHzll < ll=ll" < Cll=l,

forall z € R". Let {y1,...,yn} C R be a (C~'e)-covering of K with respect
to the || - ||-norm. For every y € K, there hence exists an index i, 1 <i < N,
such that ||y — y;|| < C~'e and therefore

ly —will <Clly —wil]| < CC e =e.

We have hence established that every (C~'e)-covering of K with respect to

the || - ||-norm is an e-covering with respect to the || - ||'-norm, which implies

N K1) S NEla K- ). (46)

A similar argument with the roles of the || - ||-norm and the || - ||"-norm rever-
sed yields

N(Ce; K, |- ) <N(e K- ). (47)

Combining (46) and (47) allows us to conclude that

log, N(C&; K || - [])  _ logy N(& K || - [[)) . logp N(C™e; K ] - ]])
logy(1/(Ce)) +10g,(C) = logy(1/e) " logy(1/(C1e)) —logy(C)

Taking the limit ¢ — 0" yields the desired result

dimy. (K) = dimy., (K).
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(b)

(i)

(i)

(iii)

We first prove the result for R = 1. Following the Hint, we use the relation
between metric entropy and the volume ratio provided in the Handout and
applied to the unit ball B = B’ = By(0, 1) to obtain

<1>n§/\/(6;3, -1 < <2+1>"’ (48)
e 9

where we used

vol (§B+B’) = vol (<§+1) B) = <§+1)nvol (B).

The bounds in (48) now yield N (g; B, || - ||) < e™", which in turn implies

. _ o logy N5 B - )
dim(B;(0,1)) = lim g (1/e) "

For general R > 0, we observe that, by scaling, according to the Hint, we
have

N (& By (0, 1), [ - [I) = N(Re; By (0, R), || - 1)), (49)

which yields

dim(By (0, R)) = lim 222N (E B R, - 1)

&0+ log,(1/¢)
iy [0&2 N (B By (0. R), || - )
e—0+ log,(1/(Re))
_ i 1oy N(Re; By (0, R), ] - )
e—0+ log,(1/¢)
a9) 1. 1ogy N By (0, 1), | - II)
e—0+ log,(1/¢)

= dim(By(0,1)) = n,
where we took ¢’ = Re.
Take R > 0 large enough such that X' C B.,(0, R), where B (0, R) is the ball
with respect to the infinity norm || - ||« centered at the origin and of radius
R. Such an R exists as K is compact. This inclusion now implies a bound on
the covering number according to N'(¢; K, || - ||oo) < N(g; B(0, R), || - |loo),
for all € > 0, and consequently also on the following ratio
logy N (& K, | - [loo) _ logy N(€5 Boo(0, R), || - [|oo)
log,(1/¢) B log,(1/¢) .
Taking the limitas e — 0% yields the bound dim . (K) < dimy.j_ (B (0, R)).
The desired bound according to

dim(K) < dim(B.(0, R)) 27 n,

is now a consequence of the result in (a)(iv).

Consider K = {z}, for x € R™. For every ¢ > 0, we have N (&; K, || - ||oo) = 1,
which yields dim(K) = 0 < n.
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