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Problem 1

(a) (i) For arbitrary x ∈ H, we compute
∞∑
k=1

|〈x, hk〉|2 =
∞∑
k=1

|〈x, (−1)kek〉|2 =
∞∑
k=1

|〈x, ek〉|2 = ‖x‖2,

where the last equality holds because {ek}k∈N is an orthonormal basis (ONB)
for H by assumption. This establishes that the set {hk}k∈N is a tight frame
with frame bounds A = B = 1.

(ii) For arbitrary x ∈ H, we compute
∞∑
k=1

|〈x, hk〉|2 =
∞∑
k=1

k

∣∣∣∣1k 〈x, ek〉
∣∣∣∣2 = ∞∑

k=1

1

k
|〈x, ek〉|2. (1)

Next, we assume towards a contradiction that there exists a lower frame
bound A > 0, i.e., A‖x‖2 ≤

∑∞
k=1 |〈x, hk〉|2,∀x ∈ H. Fix an integer N such

that 1
N
< A and evaluate (1) for x = eN ∈ H to get

∞∑
k=1

|〈eN , hk〉|2 =
1

N
|〈eN , eN〉|2 =

1

N
‖eN‖2 < A‖eN‖2.

This stands in contradiction to the assumption thatA is a lower frame bound.
As A was arbitrary no lower frame bound can therefore exist and {hk}k∈N is
thus not a frame.

(b) (i) We prove that {gk}k∈N is complete by showing that the only signal x ∈ H that
satisfies 〈x, gk〉 = 0, ∀k ∈ N, is x = 0. Take x ∈ Hwith 0 = 〈x, gk〉 = 〈x, ek + ek+1〉,
∀k ∈ N. Hence,

〈x, ek〉 = −〈x, ek+1〉, ∀k ∈ N,

which implies |〈x, ek〉| = C, ∀k ∈ N, for some C ≥ 0. Further, owing to
x ∈ H, we have ‖x‖ <∞ and thus

∞ > ‖x‖2 =
∞∑
k=1

|〈x, ek〉|2 =
∞∑
k=1

C2, (2)

1



where we used that {ek}k∈N is an ONB. The proof is concluded by noting
that (2) can hold only if C = 0 and thus x = 0.

(ii) We prove that {gk}k∈N is not a frame by showing that no lower frame bound
A > 0 exists. To this end, we fix q ∈ (0, 1), consider the signal xq =

∑∞
`=1(−q)`−1e`

and start by showing that xq ∈ H. Since {ek}k∈N is an ONB by assumption,
we can write

‖xq‖2 =
∞∑
k=1

|〈xq, ek〉|2 =
∞∑
k=1

(q2)k−1 =
1

1− q2
<∞, ∀q ∈ (0, 1),

which establishes that xq ∈ H. Next, we compute

∞∑
k=1

|〈xq, gk〉|2 =
∞∑
k=1

∣∣∣∣∣
〈
∞∑
`=1

(−q)`−1e`, ek + ek+1

〉∣∣∣∣∣
2

=
∞∑
k=1

|(−q)k−1 + (−q)k|2

=
∞∑
k=1

|(1− q)(−q)k−1|2

= (1− q)2
∞∑
k=1

(q2)k−1

= (1− q)2 1

1− q2
= (1− q)2‖xq‖2.

The equality
∑∞

k=1 |〈xq, gk〉|2 = (1 − q)2‖xq‖2 then establishes that there can
be no A > 0 such that A‖x‖2 ≤

∑∞
k=1 |〈x, gk〉|2, ∀x ∈ H, as we can always

find a q ∈ (0, 1) so that (1− q)2 < A.

(c) (i) For all g, f ∈ L2(R), we have

〈W(T,F )
m,n g, f〉 =

∫ ∞
−∞

e2πinFtg(t−mT )f(t) dt (3)

=

∫ ∞
−∞

e2πinF (t′+mT )g(t′)f(t′ +mT ) dt′ (4)

=

∫ ∞
−∞

g(t′)e−2πinmTF e2πi(−n)Ft′f(t′ − (−m)T ) dt′ (5)

=

∫ ∞
−∞

g(t′)e−2πinmTF (W(T,F )
−m,−nf)(t

′) dt′ (6)

= 〈g, e−2πinmTF W(T,F )
−m,−nf〉 (7)

= 〈g,
(
W(T,F )

m,n

)∗
f〉, (8)

which establishes that
(
W(T,F )

m,n

)∗
= e−2πinmTF W(T,F )

−m,−n.
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(ii) For every g ∈ L2(R), we have(
W(T,F )

m,n

)∗W(T,F )
m,n g =

(
W(T,F )

m,n

)∗ (
e2πinF•g(• −mT )

)
(9)

= e−2πinmTF W(T,F )
−m,−n

(
e2πinF•g(• −mT )

)
(10)

= e−2πinmTF e−2πinF•e2πinF (•+mT )g(•+mT −mT ) (11)

= g, (12)

and

W(T,F )
m,n

(
W(T,F )

m,n

)∗
g = W(T,F )

m,n

(
e−2πinmTF W(T,F )

−m,−ng
)

(13)

= e−2πinmTF W(T,F )
m,n

(
e−2πinF•g(•+mT )

)
(14)

= e−2πinmTF
(
e2πinF•e−2πinF (•−mT )g(• −mT +mT )

)
(15)

= g. (16)
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Problem 2

(a) (i) We solve the linear system Dx̂ = 0 to obtain

N (D) = span





7
5

−3
5

−3
5

1




.

(ii) In (i) we saw that N (D) 6= {0}. Therefore, the columns of D are linearly
dependent which implies spark(D) ≤ 4. As ‖x‖0 = 3 the condition ‖x‖0 <
spark(D)

2
hence does not hold.

(iii) From the proof of Theorem 3.2 in the lecture notes we know that spark(D) ≥
1 + 1/µ(D). The condition

‖x‖0 <
1

2

(
1 +

1

µ(D)

)
together with spark(D) ≤ 4 would hence require ‖x‖0 < 2. This is not satis-
fied as we have ‖x‖0 = 3.

(iv) We have X = x+N (D), where x = (1 1 1 0)T is the particular solution from
the problem statement. Hence,

X =





1

1

1

0


+ λ



7
5

−3
5

−3
5

1


: λ ∈ R


. (17)

(v) (P0) identifies the vector

argmin
x̂∈X

‖x̂‖0,

whereX denotes the solution set characterized in (17). We notice, with λ = 5
3

in (17), that the vector

x′ :=



1 + 7
3

0

0

5
3


is contained in the solution set, i.e., x′ ∈ X . Since ‖x′‖0 = 2 < ‖x‖0 = 3, it
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follows that the solution to (P0) is not equal to x. Hence, x is not recovered
through (P0).

(vi) (P1) identifies the vector that minimizes

min
x̂∈X
‖x̂‖1 = min

λ∈R

∥∥∥∥∥∥∥∥∥∥∥∥∥



1

1

1

0


+ λ



7
5

−3
5

−3
5

1



∥∥∥∥∥∥∥∥∥∥∥∥∥
1

(18)

= min
λ∈R

∣∣∣∣1 + 7

5
λ

∣∣∣∣+ 2

∣∣∣∣1− 3

5
λ

∣∣∣∣+ |λ| (19)

=: min
λ∈R

f(λ). (20)

Noting that f(λ) has its unique minimum at λ = 0, it follows that (P1) reco-
vers x uniquely.
In order to formally establish that f(λ) is minimized at λ = 0, we observe
that f(0) = 3 and for every δ ∈ (0, 5

7
), we have

f(0 + δ) = 1 +
7

5
δ + 2− 6

5
δ + δ = 3 +

6

5
δ > 3

and

f(0− δ) = 1− 7

5
δ + 2 +

6

5
δ + δ = 3 +

4

5
δ > 3.

Hence, λ = 0 is a local minimum and because f is the sum of strictly convex
functions also a global minimum.

(b) (i) We first establish the inequality provided in the Hint.

|〈u, v〉| =

∣∣∣∣∣
N∑
k=1

ukvk

∣∣∣∣∣ ≤
N∑
k=1

|uk||vk| ≤ max
`
|v`|

N∑
k=1

|uk| = ‖v‖∞‖u‖1.

Next, we show that under (C1) for all z 6= x with Dz = y = Dx, we have
‖z‖1 > ‖x‖1 as this implies that the minimization problem (P1) has the un-
ique solution x as desired. To this end, we define v := z − x and note that
Dv = D(z − x) = Dz −Dx = 0, i.e., v ∈ N (D). We now bound

‖z‖1 = ‖v + x‖1 = ‖vS + xS‖1 + ‖vSc‖1 (21)

= ‖vS + xS‖1‖sgn(xS)‖∞ + ‖vSc‖1 (22)

≥ |〈xS + vS, sgn(xS)〉|+ ‖vSc‖1 (23)

> |〈xS + vS, sgn(xS)〉|+ |〈vS, sgn(xS)〉| (24)

≥ |〈xS, sgn(xS)〉| − |〈vS, sgn(xS)〉|+ |〈vS, sgn(xS)〉| (25)

=

∣∣∣∣∣∑
k∈S

xk
xk
|xk|

∣∣∣∣∣ = ‖xS‖1 = ‖x‖1, (26)
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where in (22) we used ‖sgn(xS)‖∞ = 1, for xS 6= 0, in (23) we applied the
Hint, in (24) we used (C1), and in (25) we employed the reverse triangle
inequality.

(ii) First note that for all v ∈ N (D)\{0}, we have

0 = Dv = DSvS +DScvSc (27)

and henceDSvS = −DScvSc . Further, we realize that (DHh)S = (DS)
Hh, ∀h ∈

Cm. Next, we assume that (C2) holds and show that this implies (C1). Let
h ∈ Cm be such that

(DHh)S = sgn(xS) and ‖(DHh)Sc‖∞ < 1. (28)

Such an h ∈ Cm exists by assumption (C2). With (DHh)S = (DS)
Hh this

implies (C1) as follows,∣∣∣∣∣∑
j∈S

vj(sgn(x))j

∣∣∣∣∣ = 〈vS, sgn(xS)〉 = 〈vS, (DHh)S〉 (29)

= |〈vS, (DS)
Hh〉| = |〈DSvS, h〉| (30)

= |〈−DScvSc , h〉| = |〈vSc , (DSc)Hh〉| (31)

= |〈vSc , (DHh)Sc〉| ≤ ‖vSc‖1‖(DHh)Sc‖∞ (32)

< ‖vSc‖1. (33)

To see that the final inequality is, indeed, strict, we note that vSc 6= 0 as
otherwise v 6= 0 would imply vS 6= 0 and (27) would imply DSvS = 0. This
would, however, stand in contradiction toN (DS) = {0}. Therefore, we have
‖vSc‖1 6= 0. Together with ‖(DHh)Sc‖∞ < 1, which is by (28), this guarantees
strict inequality.
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Problem 3

(a) First, recall the definition of the operator norm as ‖PW‖2→2 := sup‖g‖2=1 ‖PWg‖2,
which implies that, for all h ∈ L2(R) with h 6= 0,

‖PWh‖2 =
∥∥∥∥PW h

‖h‖2

∥∥∥∥
2

‖h‖2 ≤ sup
‖g‖2=1

‖PW g‖2‖h‖2 = ‖PW‖2→2‖h‖2. (34)

We follow the Hint and observe that for all g ∈ L1(R) ∩ L2(R),

‖PWg‖22
Plancherel

=
∥∥∥P̂Wg∥∥∥2

2
=

∫
W
|ĝ(w)|2 dw ≤

∫ ∞
−∞
|ĝ(w)|2 dw Plancherel

= ‖g‖22,

and that if moreover g has its Fourier transform ĝ supported onW , then PWg = g.
We have therefore proven that

1 ≤ ‖PW‖2→2 ≤ 1,

and hence

‖PW‖2→2 = 1. (35)

Next, we note that

‖f − PWPT f‖2
triang. ineq.
≤ ‖f − PWf‖2 + ‖PWf − PWPT f‖2
(34)

≤ ‖f − PWf‖2 + ‖PW‖2→2‖f − PT f‖2
(35)
= ‖f − PWf‖2 + ‖f − PT f‖2 ≤ εW + εT , (36)

where the last inequality holds as f is εT -concentrated to T and simultaneously
εW-concentrated toW .

(b) As it has been assumed in the problem statement that ‖f‖2 = 1, applying the
reverse triangle inequality yields the desired result according to

‖PWPT ‖2→2

(34)

≥ ‖PWPT f‖2 = ‖f − (f − PWPT f)‖2
RTI
≥ ‖f‖2 − ‖f − PWPT f‖2

(36)

≥ 1− εT − εW .

(c) Plugging in the definition of PWPT g, we obtain

(PWPT g)(s) =

∫
W
e2πiws

(
1̂T g

)
(w) dw

=

∫
W

∫ ∞
−∞

e2πiw(s−t) 1T (t) g(t) dt dw (37)

(∗)
=

∫ ∞
−∞

{∫
W
e2πiw(s−t) dw 1T (t)

}
g(t) dt

=

∫ ∞
−∞

q(s, t)g(t) dt, (38)
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where (∗) follows from Fubini’s theorem, and we set

q(s, t) =

∫
W
e2πiw(s−t)dw 1T (t).

The condition for the application of Fubini’s theorem, namely absolute integrabi-
lity in (37), is satisfied as T andW are bounded sets. Now, fixing g ∈ L1(R)∩L2(R)
such that ‖g‖2 = 1 and using (38), we obtain

‖PWPT g‖22 =
∫ ∞
−∞

∣∣∣∣∫ ∞
−∞

q(s, t)g(t) dt

∣∣∣∣2 ds
C.S.
≤
∫ ∞
−∞

{∫ ∞
−∞
|q(s, t)|2 dt

∫ ∞
−∞
|g(u)|2 du︸ ︷︷ ︸
=1

}
ds

=

∫ ∞
−∞

∫ ∞
−∞
|q(s, t)|2 dt ds, (39)

where C.S. stands for ‘Cauchy-Schwarz inequality’. As the right hand side of
(39) does not depend on g, we can conclude, by taking the supremum over all g
satisfying ‖g‖2 = 1, that, as desired,

‖PWPT ‖22→2 = sup
‖g‖2=1

‖PWPT g‖22 ≤
∫ ∞
−∞

∫ ∞
−∞
|q(s, t)|2dt ds.

(d) We observe that

q(s+ t, t) =

∫ ∞
−∞

e2πiws1W(w) dw · 1T (t) = F−1{1W}(s) · 1T (t),

where F−1{1W}(s) is the inverse Fourier transform of the indicator function 1W

evaluated at s. This yields∫ ∞
−∞
|q(s, t)|2 ds =

∫ ∞
−∞
|q(s+ t, t)|2 ds

=

∫ ∞
−∞

∣∣F−1{1W}(s)∣∣2 ds · 1T (t)
Pl.
=

∫ ∞
−∞

∣∣FF−1{1W}(w)∣∣2 dw · 1T (t)
=

∫ ∞
−∞

1W(w) dw · 1T (t), (40)

where we used the Plancherel identity, abbreviated as ‘Pl.’. Upon integration over
t, (40) results in∫ ∞

−∞

∫ ∞
−∞
|q(s, t)|2ds dt =

∫ ∞
−∞

∫ ∞
−∞

1W(w)1T (t) dw dt = |W||T |. (41)

As T andW are bounded sets by assumption, the right hand side of (41) is finite
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and we can hence apply Fubini’s theorem to conclude, as desired, that∫ ∞
−∞

∫ ∞
−∞
|q(s, t)|2dt ds =

∫ ∞
−∞

∫ ∞
−∞
|q(s, t)|2ds dt = |W||T |.

(e) We combine the results established in the previous subproblems according to

|W||T | (d)=
∫ ∞
−∞

∫ ∞
−∞
|q(s, t)|2dt ds

(c)

≥ ‖PWPT ‖22→2

(b)

≥ (1− (εT + εW))
2 .
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Problem 4

In this solution, to avoid confusion, we write xi for the i-th vector in the set {x1, . . . , xN}
and x(i) for the i-th component of the vector x.

(a) (i) The first inequality is obtained by taking the square root in the following
inequality

‖x‖22 =
n∑
i=1

∣∣x(i)∣∣2 ≤ n∑
i=1

∣∣x(i)∣∣2+ ∑
i,j,i6=j

∣∣x(i)∣∣ ∣∣x(j)∣∣ = ( n∑
i=1

∣∣x(i)∣∣)2

= ‖x‖21, (42)

and the second one follows by application of the Cauchy-Schwarz inequality
according to

‖x‖1 = 〈x, sgn(x)〉
C.S.
≤ ‖x‖2‖sgn(x)‖2 ≤

√
n‖x‖2, (43)

with sgn(x) ∈ Rn defined as

sgn(x)(i) :=


−1, if x(i) < 0,

+1, if x(i) > 0,

0, if x(i) = 0.

(ii) Let {y1, . . . , yN} ⊂ Rn be an ε-covering of K with respect to the ‖ · ‖1-norm.
For every y ∈ K, there hence exists an index i, 1 ≤ i ≤ N , such that
‖y − yi‖1 ≤ ε and therefore

‖y − yi‖2
(42)

≤ ‖y − yi‖1 ≤ ε.

We have hence established that every ε-covering of K with respect to the
‖ · ‖1-norm is also an ε-covering of K with respect to the ‖ · ‖2-norm, which
in turn implies

N (ε;K, ‖ · ‖2) ≤ N (ε;K, ‖ · ‖1).

Likewise, let {z1, . . . , zN} ⊂ Rn be an (ε/
√
n)-covering of K with respect to

the ‖ · ‖2-norm. For every z ∈ K, there hence exists an index i, 1 ≤ i ≤ N ,
such that ‖z − zi‖2 ≤ ε/

√
n and therefore

‖z − zi‖1
(43)

≤
√
n‖z − zi‖2 ≤

√
n
ε√
n
= ε.

We have hence established that every (ε/
√
n)-covering of K with respect to

the ‖ · ‖2-norm is also an ε-covering of K with respect to the ‖ · ‖1-norm,
which in turn implies

N (ε;K, ‖ · ‖1) ≤ N (ε/
√
n;K, ‖ · ‖2).
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(iii) First note that from N (ε;K, ‖ · ‖2) ≤ N (ε;K, ‖ · ‖1), one has for all ε > 0,

log2N (ε;K, ‖ · ‖2)
log2(1/ε)

≤ log2N (ε;K, ‖ · ‖1)
log2(1/ε)

.

Taking the limit ε→ 0+ on both sides yields

dim‖·‖2(K) ≤ dim‖·‖1(K). (44)

Likewise, it follows fromN (ε;K, ‖·‖1) ≤ N (ε/
√
n;K, ‖·‖2), that for all ε > 0,

log2N (ε;K, ‖ · ‖1)
log2(1/ε)

≤ log2N (ε/
√
n;K, ‖ · ‖2)

log2(1/ε)
=

log2N (ε/
√
n;K, ‖ · ‖2)

log2(
√
n/ε)− log2(

√
n)
.

Taking the limit ε→ 0+ on both sides yields

dim‖·‖1(K) ≤ dim‖·‖2(K). (45)

Combining (44) and (45), we get the desired result

dim‖·‖1(K) = dim‖·‖2(K).

(iv) We proceed as above but for general norms ‖ · ‖ and ‖ · ‖′ on Rn. From the
norm equivalence in finite dimensions, it follows that there exists a constant
C ≥ 1 such that

C−1‖x‖ ≤ ‖x‖′ ≤ C‖x‖,

for all x ∈ Rn. Let {y1, . . . , yN} ⊂ Rn be a (C−1ε)-covering of K with respect
to the ‖ · ‖-norm. For every y ∈ K, there hence exists an index i, 1 ≤ i ≤ N ,
such that ‖y − yi‖ ≤ C−1ε and therefore

‖y − yi‖′ ≤ C‖y − yi‖ ≤ C C−1ε = ε.

We have hence established that every (C−1ε)-covering of K with respect to
the ‖ · ‖-norm is an ε-covering with respect to the ‖ · ‖′-norm, which implies

N (ε;K, ‖ · ‖′) ≤ N (C−1ε;K, ‖ · ‖). (46)

A similar argument with the roles of the ‖ · ‖-norm and the ‖ · ‖′-norm rever-
sed yields

N (Cε;K, ‖ · ‖) ≤ N (ε;K, ‖ · ‖′). (47)

Combining (46) and (47) allows us to conclude that

log2N (Cε;K, ‖ · ‖)
log2(1/(Cε)) + log2(C)

≤ log2N (ε;K, ‖ · ‖′)
log2(1/ε)

≤ log2N (C−1ε;K, ‖ · ‖)
log2(1/(C

−1ε))− log2(C)
.

Taking the limit ε→ 0+ yields the desired result

dim‖·‖(K) = dim‖·‖′(K).
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(b) (i) We first prove the result for R = 1. Following the Hint, we use the relation
between metric entropy and the volume ratio provided in the Handout and
applied to the unit ball B = B′ = B‖·‖(0, 1) to obtain(

1

ε

)n
≤ N (ε;B, ‖ · ‖) ≤

(
2

ε
+ 1

)n
, (48)

where we used

vol

(
2

ε
B + B′

)
= vol

((
2

ε
+ 1

)
B
)

=

(
2

ε
+ 1

)n
vol (B) .

The bounds in (48) now yield N (ε;B, ‖ · ‖) � ε−n, which in turn implies

dim(B‖·‖(0, 1)) = lim
ε→0+

log2N (ε;B, ‖ · ‖)
log2(1/ε)

= n.

For general R > 0, we observe that, by scaling, according to the Hint, we
have

N (ε;B‖·‖(0, 1), ‖ · ‖) = N (Rε;B‖·‖(0, R), ‖ · ‖), (49)

which yields

dim(B‖·‖(0, R)) = lim
ε′→0+

log2N (ε′;B‖·‖(0, R), ‖ · ‖)
log2(1/ε

′)

= lim
ε→0+

log2N (Rε;B‖·‖(0, R), ‖ · ‖)
log2(1/(Rε))

= lim
ε→0+

log2N (Rε;B‖·‖(0, R), ‖ · ‖)
log2(1/ε)

(49)
= lim

ε→0+

log2N (ε;B‖·‖(0, 1), ‖ · ‖)
log2(1/ε)

= dim(B‖·‖(0, 1)) = n,

where we took ε′ = Rε.

(ii) Take R > 0 large enough such that K ⊂ B∞(0, R), where B∞(0, R) is the ball
with respect to the infinity norm ‖ · ‖∞ centered at the origin and of radius
R. Such an R exists as K is compact. This inclusion now implies a bound on
the covering number according to N (ε;K, ‖ · ‖∞) ≤ N (ε;B∞(0, R), ‖ · ‖∞),
for all ε > 0, and consequently also on the following ratio

log2N (ε;K, ‖ · ‖∞)
log2(1/ε)

≤ log2N (ε;B∞(0, R), ‖ · ‖∞)
log2(1/ε)

.

Taking the limit as ε→ 0+ yields the bound dim‖·‖∞(K) ≤ dim‖·‖∞(B∞(0, R)).
The desired bound according to

dim(K) ≤ dim(B∞(0, R))
(b)(i)
= n,

is now a consequence of the result in (a)(iv).

(iii) Consider K = {x}, for x ∈ Rn. For every ε > 0, we have N (ε;K, ‖ · ‖∞) = 1,
which yields dim(K) = 0 < n.
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