Handout Examination on Mathematics of Information September 2, 2022

Let (H, ρ) be a normed space. Let $C \subseteq H$ be a compact subspace of (H, ρ) .

Definition 1 (ε -covering and covering number). Let $\varepsilon > 0$. An ε -covering of C is a collection $X \subseteq C$ such that $\forall x \in C$, there exists $x' \in X$ satisfying $\rho(x - x') \leq \varepsilon$. The ε -covering number of C is the cardinality of the ε -covering of C with lowest cardinality, and is denoted by $N(\varepsilon, C, \rho)$.

Definition 2 (ε -packing and packing number). Let $\varepsilon > 0$. An ε -packing of C is a collection $X \subseteq C$ such that $\rho(x - x') > \epsilon$, for all $x, x' \in X$, $x \neq x'$. The ε -packing number of C is the cardinality of the ε -packing of C with greatest cardinality, and is denoted by $M(\varepsilon, C, \rho)$.

Theorem 1.

$$M(2\varepsilon, \mathcal{C}, \rho) \le N(\varepsilon, \mathcal{C}, \rho) \le M(\varepsilon, \mathcal{C}, \rho), \tag{1}$$

for all $\varepsilon > 0$.

Theorem 2. $\varepsilon \mapsto N(\varepsilon, C, \rho)$ is a non-increasing function.

Definition 3 (Length of a closed interval). Let *I* be a closed interval of \mathbb{R} , *i.e.*, there exist $a, b \in \mathbb{R}$, with $a \leq b$, such that I = [a, b]. The length of *I* is defined as |I| = b - a.

Definition 4 (Distance between two intervals). Let I, J be intervals of \mathbb{R} . The distance between I and J is defined as

$$d(I, J) = \inf_{x \in I, y \in J} |x - y|.$$
 (2)

Definition 5 (Restricted orthogonality and isometry constants). Let $m, N \in \mathbb{N}$ and let $\langle \cdot, \cdot \rangle$ denote the standard inner product on \mathbb{C}^N . Given a matrix $A \in \mathbb{C}^{m \times N}$, we define its (s, t)-restricted orthogonality constant $\theta_{s,t}$ as the smallest $\theta \geq 0$ such that

$$|\langle Au, Av \rangle| \le \theta ||u||_2 ||v||_2,$$

for all disjointly supported *s*-sparse and *t*-sparse vectors $u \in \mathbb{C}^N$ and $v \in \mathbb{C}^N$, respectively. We further define the *s*-restricted isometry constant δ_s of *A* as the smallest $\delta \ge 0$ such that

$$\left|\langle Ax, Ax \rangle - \|x\|_2^2\right| \le \delta \|x\|_2^2,$$

for all s-sparse vectors $x \in \mathbb{C}^N$.

Definition 6 (Convex hull). Let $n \ge 1$ be an integer and $T = \{x_1, \ldots, x_d\}$ a set of d points in \mathbb{R}^n . The convex hull of T is defined as the set of all convex combinations of points in T, i.e.,

$$\operatorname{conv}(T) \coloneqq \left\{ x \in \mathbb{R}^n \mid \exists \lambda_1, \dots, \lambda_d \in [0, 1] \text{ s.t. } \sum_{i=1}^d \lambda_i = 1 \text{ and } x = \sum_{i=1}^d \lambda_i x_i \right\}.$$

Theorem 3 (Radon's Theorem). Let $n \ge 1$ be an integer. Every set S of $k \ge n + 2$ points in \mathbb{R}^n can be partitioned according to $S = T_1 \cup T_2$ such that $T_1 \cap T_2 = \emptyset$ and $\operatorname{conv}(T_1) \cap \operatorname{conv}(T_2) \ne \emptyset$.

Theorem 4 (Fubini). Let \mathcal{N}, \mathcal{K} be countable index sets and $a_{n,k} \in \mathbb{R}$ with $a_{n,k} \geq 0$, for all $n \in \mathcal{N}$ and $k \in \mathcal{K}$. Then,

$$\sum_{n \in \mathcal{N}} \sum_{k \in \mathcal{K}} a_{n,k} = \sum_{k \in \mathcal{K}} \sum_{n \in \mathcal{N}} a_{n,k} \, .$$