Handout

Examination on Mathematics of Information September 2, 2022

Let (H, ρ) be a normed space. Let $\mathcal{C} \subseteq H$ be a compact subspace of (H, ρ).
Definition 1 (ε-covering and covering number). Let $\varepsilon>0$. An ε-covering of \mathcal{C} is a collection $X \subseteq \mathcal{C}$ such that $\forall x \in \mathcal{C}$, there exists $x^{\prime} \in X$ satisfying $\rho\left(x-x^{\prime}\right) \leq \varepsilon$. The ε-covering number of \mathcal{C} is the cardinality of the ε-covering of \mathcal{C} with lowest cardinality, and is denoted by $N(\varepsilon, \mathcal{C}, \rho)$.

Definition 2 (ε-packing and packing number). Let $\varepsilon>0$. An ε-packing of \mathcal{C} is a collection $X \subseteq \mathcal{C}$ such that $\rho\left(x-x^{\prime}\right)>\epsilon$, for all $x, x^{\prime} \in X, x \neq x^{\prime}$. The ε-packing number of \mathcal{C} is the cardinality of the ε-packing of \mathcal{C} with greatest cardinality, and is denoted by $M(\varepsilon, \mathcal{C}, \rho)$.

Theorem 1.

$$
\begin{equation*}
M(2 \varepsilon, \mathcal{C}, \rho) \leq N(\varepsilon, \mathcal{C}, \rho) \leq M(\varepsilon, \mathcal{C}, \rho), \tag{1}
\end{equation*}
$$

for all $\varepsilon>0$.
Theorem 2. $\varepsilon \mapsto N(\varepsilon, \mathcal{C}, \rho)$ is a non-increasing function.
Definition 3 (Length of a closed interval). Let I be a closed interval of \mathbb{R}, i.e., there exist $a, b \in \mathbb{R}$, with $a \leq b$, such that $I=[a, b]$. The length of I is defined as $|I|=b-a$.

Definition 4 (Distance between two intervals). Let I, J be intervals of \mathbb{R}. The distance between I and J is defined as

$$
\begin{equation*}
d(I, J)=\inf _{x \in I, y \in J}|x-y| . \tag{2}
\end{equation*}
$$

Definition 5 (Restricted orthogonality and isometry constants). Let $m, N \in \mathbb{N}$ and let $\langle\cdot, \cdot\rangle$ denote the standard inner product on \mathbb{C}^{N}. Given a matrix $A \in \mathbb{C}^{m \times N}$, we define its (s, t) restricted orthogonality constant $\theta_{s, t}$ as the smallest $\theta \geq 0$ such that

$$
|\langle A u, A v\rangle| \leq \theta\|u\|_{2}\|v\|_{2},
$$

for all disjointly supported s-sparse and t-sparse vectors $u \in \mathbb{C}^{N}$ and $v \in \mathbb{C}^{N}$, respectively. We further define the s-restricted isometry constant δ_{s} of A as the smallest $\delta \geq 0$ such that

$$
\left|\langle A x, A x\rangle-\|x\|_{2}^{2}\right| \leq \delta\|x\|_{2}^{2},
$$

for all s-sparse vectors $x \in \mathbb{C}^{N}$.

Definition 6 (Convex hull). Let $n \geq 1$ be an integer and $T=\left\{x_{1}, \ldots, x_{d}\right\}$ a set of d points in \mathbb{R}^{n}. The convex hull of T is defined as the set of all convex combinations of points in T, i.e.,

$$
\operatorname{conv}(T):=\left\{x \in \mathbb{R}^{n} \mid \exists \lambda_{1}, \ldots, \lambda_{d} \in[0,1] \text { s.t. } \sum_{i=1}^{d} \lambda_{i}=1 \text { and } x=\sum_{i=1}^{d} \lambda_{i} x_{i}\right\} .
$$

Theorem 3 (Radon's Theorem). Let $n \geq 1$ be an integer. Every set S of $k \geq n+2$ points in \mathbb{R}^{n} can be partitioned according to $S=T_{1} \cup T_{2}$ such that $T_{1} \cap T_{2}=\emptyset$ and $\operatorname{conv}\left(T_{1}\right) \cap$ $\operatorname{conv}\left(T_{2}\right) \neq \emptyset$.

Theorem 4 (Fubini). Let \mathcal{N}, \mathcal{K} be countable index sets and $a_{n, k} \in \mathbb{R}$ with $a_{n, k} \geq 0$, for all $n \in \mathcal{N}$ and $k \in \mathcal{K}$. Then,

$$
\sum_{n \in \mathcal{N}} \sum_{k \in \mathcal{K}} a_{n, k}=\sum_{k \in \mathcal{K}} \sum_{n \in \mathcal{N}} a_{n, k} .
$$

