Examination on Mathematics of Information

August 16, 2023

- Do not turn this page before the official start of the exam.
- The problem statements consist of 6 pages including this page. Please verify that you have received all 6 pages.
- Throughout the problem statements there are references to definitions and theorems in the Handout, indicated by e.g. Definition H1 and Theorem H2.

Problem 1

In this problem, you will investigate quantized finite frame expansions. Let $K \in \mathbb{N}$. We define $D:=\{-K,-K+1, \ldots,-1,0,1, \ldots, K-1, K\}$ and the quantization map

$$
\begin{align*}
Q:[-K-1 / 2, K+1 / 2] & \rightarrow D \\
x & \mapsto \arg \min _{d \in D}|x-d| . \tag{1}
\end{align*}
$$

By definition, Q satisfies the following inequality:

$$
\begin{equation*}
|Q(t)-t| \leq 1 / 2, \text { for all } t \in[-K-1 / 2, K+1 / 2] . \tag{2}
\end{equation*}
$$

Let $x \in\left[-\frac{1}{\sqrt{d}} K, \frac{1}{\sqrt{d}} K\right]^{d}, N \in \mathbb{N}, N \geq d$, and let $\mathcal{F}=\left\{e_{1}, \ldots, e_{N}\right\}$ be a normalized finite tight frame for \mathbb{R}^{d} with frame bound $A>0$ and satisfying the zero-sum property (see Definition H8). Denote the analysis operator and the frame operator (see Definition H10) associated with \mathcal{F} by \mathbb{T} and \mathbb{S}, respectively. We write $x^{\mathcal{F}}:=\mathbb{T} x$.
(a) (4 points) Show that $x^{\mathcal{F}} \in[-K, K]^{N}$.

We next introduce $\Sigma \Delta$-modulation, a concept widely used in practice to reduce quantization errors. To this end we define $\left\{u_{0}, u_{1}, \ldots, u_{N}\right\} \in \mathbb{R}^{N+1}$ and $\left\{q_{1}, \ldots, q_{N}\right\} \in \mathbb{R}^{N}$ according to

$$
\begin{align*}
& u_{0}=0 \tag{3}\\
& q_{n}=Q\left(u_{n-1}+x_{n}^{\mathcal{F}}\right), \text { for } n \in\{1, \ldots, N\} \tag{4}\\
& u_{n}=u_{n-1}+x_{n}^{\mathcal{F}}-q_{n}, \text { for } n \in\{1, \ldots, N\} . \tag{5}
\end{align*}
$$

Further, we define $\tilde{x}^{\mathcal{F}} \in \mathbb{R}^{d}$ as

$$
\begin{equation*}
\tilde{x}^{\mathcal{F}}=\sum_{n=1}^{N} q_{n} \mathbb{S}^{-1} e_{n} \tag{6}
\end{equation*}
$$

(b) (6 points) Show that $\left|u_{n}\right| \leq \frac{1}{2}$, for all $n \in\{0, \ldots, N\}$.
(c) (7 points) Show that $u_{N}=0$.

Hint: Show that $u_{N} \in \mathbb{Z}$.
(d) (8 points) Let $\sigma(\mathcal{F})$ be as in Definition H9. Show that

$$
\begin{equation*}
\left\|x-\tilde{x}^{\mathcal{F}}\right\|_{2} \leq \frac{\sigma(\mathcal{F})}{2 A}, \tag{7}
\end{equation*}
$$

where A denotes the frame bound of \mathcal{F} (see Theorem H11).

Problem 2

For $\mathcal{A} \subseteq\{1, \ldots, N\}, D_{\mathcal{A}}$ denotes the $N \times N$ diagonal matrix with entries $\left(D_{\mathcal{A}}\right)_{i i}=1$, for $i \in \mathcal{A}$, and $\left(D_{\mathcal{A}}\right)_{i i}=0$, for $i \in \mathcal{A}^{c}$, where $\mathcal{A}^{c}:=\{1, \ldots, N\} \backslash \mathcal{A}$. We further set $P_{\mathcal{A}}(V):=V D_{\mathcal{A}} V^{\mathrm{H}}$ for a unitary matrix $V \in \mathbb{C}^{N \times N}$. The operator 2-norm of a matrix $C \in \mathbb{C}^{N \times N}$ is $\|C\|_{2}:=\max _{x \in \mathbb{C}^{N},\|x\|_{2}=1}\|C x\|_{2}$, where $\|\cdot\|_{2}$ stands for the 2-norm on \mathbb{C}^{N}.

Let $A, B \in \mathbb{C}^{N \times N}$ be unitary matrices whose columns are denoted by $\left\{a_{j}\right\}_{j=1}^{N},\left\{b_{j}\right\}_{j=1}^{N}$, respectively, and define $U:=A B^{\mathrm{H}}$. Let $\mathcal{S}, \mathcal{T} \subseteq\{1, \ldots, N\}$ be such that $|\mathcal{S} \| \mathcal{T}|<\frac{1}{\mu([A B])^{2}}$, where $\mu\left(\left[\begin{array}{ll}A & B\end{array}\right]\right.$ is the coherence of $\left[\begin{array}{ll}A & B\end{array}\right]$, see Definition H13. The goal of this problem is to derive the following uncertainty relation:

$$
\begin{equation*}
\|x\|_{2} \leq\left(1+\frac{1}{1-\mu([A B]) \sqrt{|\mathcal{S}||\mathcal{T}|}}\right)\left(\left\|P_{\mathcal{S}^{c}}(A) x\right\|_{2}+\left\|P_{\mathcal{T}^{c}}(B) x\right\|_{2}\right), \quad x \in \mathbb{C}^{N} \tag{8}
\end{equation*}
$$

(a) (2 points) Show that for every $x \in \mathbb{C}^{N}$,

$$
\left\|P_{\mathcal{T}^{c}}(B) x\right\|_{2}=\left\|P_{\mathcal{T}^{c}}(A) U x\right\|_{2} .
$$

(b) (5 points) Assume that $x \in \mathbb{C}^{N}$ is such that $\operatorname{supp}\left(A^{\mathrm{H}} x\right) \subseteq \mathcal{S}$. Show that

$$
\left\|P_{\mathcal{T} c}(B) x\right\|_{2} \geq\left(1-\left\|P_{\mathcal{T}}(A) U P_{\mathcal{S}}(A)\right\|_{2}\right)\left\|P_{\mathcal{S}}(A) x\right\|_{2} .
$$

Hint: Use the result from subproblem (a) and the reverse triangle inequality.
(c) (6 points) Show that for every $x \in \mathbb{C}^{N}$, it holds that

$$
\|x\|_{2} \leq \frac{\left\|P_{\mathcal{S}^{c}}(A) x\right\|_{2}+\left\|P_{\mathcal{T}^{c}}(B) x\right\|_{2}}{1-\left\|P_{\mathcal{T}}(A) U P_{\mathcal{S}}(A)\right\|_{2}}+\left\|P_{\mathcal{S}^{c}}(A) x\right\|_{2}
$$

Hint: Use the result from subproblem (b).
(d) (5 points) Show that for every matrix $C \in \mathbb{C}^{N \times N}$,

$$
\|C\|_{2} \leq \sqrt{\sum_{i, j=1}^{N}\left|\left\langle a_{i}, C a_{j}\right\rangle\right|^{2}}
$$

Hint: First show that $\|C\|_{2} \leq \sqrt{\operatorname{Tr}\left(C C^{H}\right)}$.
(e) (5 points) Use the result in subproblem (d) to show that

$$
\left\|P_{\mathcal{T}}(A) U P_{\mathcal{S}}(A)\right\|_{2} \leq \mu([A B]) \sqrt{|\mathcal{S} \| \mathcal{T}|} .
$$

(f) (2 points) Combine the results in subproblems (c) and (e) to derive (8).

Problem 3

Let \mathcal{F} be a class of real-valued, measurable functions with common domain \mathcal{X}. Further, let \mathcal{P} be a fixed probability distribution over \mathcal{X}. We consider the $L_{1}(\mathcal{P})$-norm on \mathcal{F} that assigns to $f \in \mathcal{F}$ the value

$$
\|f\|_{\mathcal{P}}:=\mathbb{E}[|f(X)|],
$$

where the expectation is taken with respect to the random variable X distributed according to \mathcal{P}. Throughout, we assume that $\|f\|_{\mathcal{P}}<\infty$ for every $f \in \mathcal{F}$, i.e., $\mathcal{F} \subseteq L_{1}(\mathcal{P})$.

In this problem, we establish a sufficient condition for \mathcal{F} to be Glivenko-Cantelli with respect to the fixed distribution \mathcal{P}. The condition is formulated in terms of the so-called bracketing number of \mathcal{F}, which we define next.

Definition 1. Let $\epsilon>0$. An ϵ-bracket $[\ell, u]$ with respect to $\|\cdot\|_{\mathcal{P}}$ is a pair of functions $\ell, u \in$ $L_{1}(\mathcal{P})$ with $\ell(x) \leq u(x), \forall x \in \mathcal{X}$, and $\|u-\ell\|_{\mathcal{P}} \leq \epsilon$. We say that a collection of ϵ-brackets $\left\{\left[\ell_{j}, u_{j}\right]\right\}_{j=1}^{m}$ (with cardinality $m \in \mathbb{N}$) is an ϵ-bracket-covering of \mathcal{F} with respect to $\|\cdot\|_{\mathcal{P}}$ if, for every $f \in \mathcal{F}$, there is a $j \in\{1, \ldots, m\}$ such that

$$
\ell_{j}(x) \leq f(x) \leq u_{j}(x), \quad \text { for all } x \in \mathcal{X} .
$$

The bracketing number $N_{[]}\left(\epsilon, \mathcal{F},\|\cdot\|_{\mathcal{P}}\right)$ is the cardinality of an ϵ-bracket-covering of \mathcal{F} with respect to $\|\cdot\|_{\mathcal{P}}$ with smallest cardinality.
Throughout the problem, \mathcal{P} is fixed and all expectations $\mathbb{E}[\cdot]$ are understood to be with respect to \mathcal{P}. Furthermore, \mathcal{F} is such that $N_{[]}\left(\epsilon, \mathcal{F},\|\cdot\|_{\mathcal{P}}\right)<\infty$ for all $\epsilon>0$.
(a) (7 points) Prove that, for all $\epsilon>0$,

$$
N\left(\epsilon, \mathcal{F},\|\cdot\|_{\mathcal{P}}\right) \leq N_{[]}\left(2 \epsilon, \mathcal{F},\|\cdot\|_{\mathcal{P}}\right) .
$$

Hint: Use that $f(x) \leq g(x), \forall x \in \mathcal{X}$, implies $\mathbb{E}[f(X)] \leq \mathbb{E}[g(X)]$.
(b) (16 points) Fix $\epsilon>0$ and consider a minimal ϵ-bracket-covering $\left\{\left[\ell_{j}, u_{j}\right]\right\}_{j=1}^{m}$ of \mathcal{F} with respect to $\|\cdot\|_{\mathcal{P}}$, where $m:=N_{[]}\left(\epsilon, \mathcal{F},\|\cdot\|_{\mathcal{P}}\right)<\infty$. Further, let $\left\{X_{i}\right\}_{i=1}^{n}$ be i.i.d. samples taken according to distribution \mathcal{P}.
i. (5 points) Show that, for every $f \in \mathcal{F}$, there exists a $j \in\{1, \ldots, m\}$ such that

$$
\left(\frac{1}{n} \sum_{i=1}^{n} f\left(X_{i}\right)\right)-\mathbb{E}[f(X)] \leq\left(\frac{1}{n} \sum_{i=1}^{n} u_{j}\left(X_{i}\right)\right)-\mathbb{E}\left[u_{j}(X)\right]+\epsilon .
$$

ii. (7 points) Use the weak law of large numbers (Theorem H2 in the Handout) to prove that

$$
\lim _{n \rightarrow \infty} \mathbb{P}\left(\sup _{f \in \mathcal{F}}\left(\left(\frac{1}{n} \sum_{i=1}^{n} f\left(X_{i}\right)\right)-\mathbb{E}[f(X)]\right)>2 \epsilon\right)=0 .
$$

Similarly, one can show that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \mathbb{P}\left(\sup _{f \in \mathcal{F}}\left(\mathbb{E}[f(X)]-\left(\frac{1}{n} \sum_{i=1}^{n} f\left(X_{i}\right)\right)\right)>2 \epsilon\right)=0 . \tag{9}
\end{equation*}
$$

You may from now on assume (9) to be true without proof.
iii. (4 points) Prove that

$$
\lim _{n \rightarrow \infty} \mathbb{P}\left(\sup _{f \in \mathcal{F}}\left|\left(\frac{1}{n} \sum_{i=1}^{n} f\left(X_{i}\right)\right)-\mathbb{E}[f(X)]\right|>2 \epsilon\right)=0 .
$$

(c) (2 points) Prove that $N_{[]}\left(\epsilon, \mathcal{F},\|\cdot\|_{\mathcal{P}}\right)<\infty$ for all $\epsilon>0$ implies that \mathcal{F} is GlivenkoCantelli for \mathcal{P}, i.e., that $\forall \delta>0$,

$$
\lim _{n \rightarrow \infty} \mathbb{P}\left(\sup _{f \in \mathcal{F}}\left|\left(\frac{1}{n} \sum_{i=1}^{n} f\left(X_{i}\right)\right)-\mathbb{E}[f(X)]\right|>\delta\right)=0
$$

Problem 4

Let m, N, and $s \in\{1, \ldots, N\}$ be natural numbers. Let $x \in \mathbb{C}^{N}$ and $\Phi \in \mathbb{C}^{m \times N}$ with s-th restricted isometry constant δ_{s} (see Definition H4 in the Handout). Prove that

$$
\|\Phi x\|_{2} \leq \sqrt{1+\delta_{s}}\left(\|x\|_{2}+\frac{\|x\|_{1}}{\sqrt{s}}\right)
$$

where the norms $\|\cdot\|_{1}$ and $\|\cdot\|_{2}$ are specified in Definition H3 in the Handout.
Hint: This question is difficult. It might be useful to first prove that, for $u \in \mathbb{C}^{s}$ and $v \in \mathbb{C}^{s}$,

$$
\begin{equation*}
\text { if } \max _{i=1, \ldots, s}\left|u_{i}\right| \leq \min _{i=1, \ldots, s}\left|v_{i}\right|, \quad \text { then }\|u\|_{2} \leq \frac{\|v\|_{1}}{\sqrt{s}} \tag{10}
\end{equation*}
$$

and then write x as a sum of disjoint (in terms of their support) s-sparse vectors, the norms of which can be bounded individually using (10). You will get credit for partial results if the ideas are exposed in a clear manner.

