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• Do not turn this page before the official start of the exam.
• The problem statements consist of 6 pages including this page.

Please verify that you have received all 6 pages.
• Throughout the problem statements there are references to definitions and

theorems in the Handout, indicated by e.g. Definition H1 and Theorem H2.
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Problem 1

In this problem, you will investigate quantized finite frame expansions. Let K ∈ N. We
define D := {−K,−K + 1, . . . ,−1, 0, 1, . . . , K − 1, K} and the quantization map

Q : [−K − 1/2, K + 1/2] → D

x 7→ argmind∈D |x− d|.
(1)

By definition, Q satisfies the following inequality:

|Q(t)− t| ≤ 1/2, for all t ∈ [−K − 1/2, K + 1/2]. (2)

Let x ∈
[
− 1√

d
K, 1√

d
K
]d

, N ∈ N, N ≥ d, and let F = {e1, . . . , eN} be a normalized finite

tight frame for Rd with frame bound A > 0 and satisfying the zero-sum property (see
Definition H8). Denote the analysis operator and the frame operator (see Definition
H10) associated with F by T and S, respectively. We write xF := Tx.

(a) (4 points) Show that xF ∈ [−K,K]N .

We next introduce Σ∆-modulation, a concept widely used in practice to reduce quan-
tization errors. To this end we define {u0, u1, . . . , uN} ∈ RN+1 and {q1, . . . , qN} ∈ RN

according to

u0 = 0 (3)

qn = Q
(
un−1 + xF

n

)
, for n ∈ {1, . . . , N} (4)

un = un−1 + xF
n − qn, for n ∈ {1, . . . , N}. (5)

Further, we define x̃F ∈ Rd as

x̃F =
N∑

n=1

qn S−1en. (6)

(b) (6 points) Show that |un| ≤ 1
2
, for all n ∈ {0, . . . , N}.

(c) (7 points) Show that uN = 0.
Hint: Show that uN ∈ Z.

(d) (8 points) Let σ(F) be as in Definition H9. Show that

∥x− x̃F∥2 ≤
σ(F)

2A
, (7)

where A denotes the frame bound of F (see Theorem H11).
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Problem 2

For A ⊆ {1, . . . , N}, DA denotes the N × N diagonal matrix with entries (DA)ii = 1,
for i ∈ A, and (DA)ii = 0, for i ∈ Ac, where Ac := {1, . . . , N} \ A. We further set
PA(V ) := V DAV

H for a unitary matrix V ∈ CN×N . The operator 2-norm of a matrix
C ∈ CN×N is |||C|||2 := maxx∈CN ,∥x∥2=1 ∥Cx∥2, where ∥ · ∥2 stands for the 2-norm on CN .

Let A,B ∈ CN×N be unitary matrices whose columns are denoted by {aj}Nj=1, {bj}Nj=1,
respectively, and define U := ABH. Let S, T ⊆ {1, . . . , N} be such that |S||T | < 1

µ([A B])2
,

where µ([A B]) is the coherence of [A B], see Definition H13. The goal of this problem
is to derive the following uncertainty relation:

∥x∥2 ≤

(
1 +

1

1− µ([A B])
√

|S||T |

)
(∥PSc(A)x∥2 + ∥PT c(B)x∥2) , x ∈ CN . (8)

(a) (2 points) Show that for every x ∈ CN ,

∥PT c(B)x∥2 = ∥PT c(A)Ux∥2.

(b) (5 points) Assume that x ∈ CN is such that supp(AHx) ⊆ S. Show that

∥PT c(B)x∥2 ≥ (1− |||PT (A)UPS(A)|||2)∥PS(A)x∥2.

Hint: Use the result from subproblem (a) and the reverse triangle inequality.

(c) (6 points) Show that for every x ∈ CN , it holds that

∥x∥2 ≤
∥PSc(A)x∥2 + ∥PT c(B)x∥2
1− |||PT (A)UPS(A)|||2

+ ∥PSc(A)x∥2.

Hint: Use the result from subproblem (b).

(d) (5 points) Show that for every matrix C ∈ CN×N ,

|||C|||2 ≤

√√√√ N∑
i,j=1

|⟨ai, Caj⟩|2.

Hint: First show that |||C|||2 ≤
√

Tr(CCH).

(e) (5 points) Use the result in subproblem (d) to show that

|||PT (A)UPS(A)|||2 ≤ µ([A B])
√

|S||T |.

(f) (2 points) Combine the results in subproblems (c) and (e) to derive (8).
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Problem 3

Let F be a class of real-valued, measurable functions with common domain X . Further,
let P be a fixed probability distribution over X . We consider the L1(P)-norm on F that
assigns to f ∈ F the value

∥f∥P := E[|f(X)|],

where the expectation is taken with respect to the random variable X distributed ac-
cording to P . Throughout, we assume that ∥f∥P < ∞ for every f ∈ F , i.e., F ⊆ L1(P).

In this problem, we establish a sufficient condition for F to be Glivenko-Cantelli
with respect to the fixed distribution P . The condition is formulated in terms of the
so-called bracketing number of F , which we define next.

Definition 1. Let ϵ > 0. An ϵ-bracket [ℓ, u] with respect to ∥·∥P is a pair of functions ℓ, u ∈
L1(P) with ℓ(x) ≤ u(x), ∀x ∈ X , and ∥u − ℓ∥P ≤ ϵ. We say that a collection of ϵ-brackets
{[ℓj, uj]}mj=1 (with cardinality m ∈ N) is an ϵ-bracket-covering of F with respect to ∥·∥P if, for
every f ∈ F , there is a j ∈ {1, . . . ,m} such that

ℓj(x) ≤ f(x) ≤ uj(x), for all x ∈ X .

The bracketing number N[ ](ϵ,F , ∥·∥P) is the cardinality of an ϵ-bracket-covering of F with
respect to ∥·∥P with smallest cardinality.

Throughout the problem, P is fixed and all expectations E[·] are understood to be with
respect to P . Furthermore, F is such that N[ ](ϵ,F , ∥·∥P) < ∞ for all ϵ > 0.

(a) (7 points) Prove that, for all ϵ > 0,

N(ϵ,F , ∥·∥P) ≤ N[ ](2ϵ,F , ∥·∥P).

Hint: Use that f(x) ≤ g(x), ∀x ∈ X , implies E[f(X)] ≤ E[g(X)].

(b) (16 points) Fix ϵ > 0 and consider a minimal ϵ-bracket-covering {[ℓj, uj]}mj=1 of F
with respect to ∥·∥P , where m := N[ ](ϵ,F , ∥·∥P) < ∞. Further, let {Xi}ni=1 be i.i.d.
samples taken according to distribution P .

i. (5 points) Show that, for every f ∈ F , there exists a j ∈ {1, . . . ,m} such that(
1

n

n∑
i=1

f(Xi)

)
− E[f(X)] ≤

(
1

n

n∑
i=1

uj(Xi)

)
− E[uj(X)] + ϵ.

ii. (7 points) Use the weak law of large numbers (Theorem H2 in the Handout)
to prove that

lim
n→∞

P

(
sup
f∈F

((
1

n

n∑
i=1

f(Xi)

)
− E[f(X)]

)
> 2ϵ

)
= 0.
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Similarly, one can show that

lim
n→∞

P

(
sup
f∈F

(
E[f(X)]−

(
1

n

n∑
i=1

f(Xi)

))
> 2ϵ

)
= 0. (9)

You may from now on assume (9) to be true without proof.

iii. (4 points) Prove that

lim
n→∞

P

(
sup
f∈F

∣∣∣∣∣
(
1

n

n∑
i=1

f(Xi)

)
− E[f(X)]

∣∣∣∣∣ > 2ϵ

)
= 0.

(c) (2 points) Prove that N[ ](ϵ,F , ∥·∥P) < ∞ for all ϵ > 0 implies that F is Glivenko-
Cantelli for P , i.e., that ∀δ > 0,

lim
n→∞

P

(
sup
f∈F

∣∣∣∣∣
(
1

n

n∑
i=1

f(Xi)

)
− E[f(X)]

∣∣∣∣∣ > δ

)
= 0.
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Problem 4

Let m, N , and s ∈ {1, . . . , N} be natural numbers. Let x ∈ CN and Φ ∈ Cm×N with s-th
restricted isometry constant δs (see Definition H4 in the Handout). Prove that

∥Φx∥2 ≤
√

1 + δs

(
∥x∥2 +

∥x∥1√
s

)
,

where the norms ∥ · ∥1 and ∥ · ∥2 are specified in Definition H3 in the Handout.

Hint: This question is difficult. It might be useful to first prove that, for u ∈ Cs and v ∈ Cs,

if max
i=1,...,s

|ui| ≤ min
i=1,...,s

|vi| , then ∥u∥2 ≤
∥v∥1√

s
, (10)

and then write x as a sum of disjoint (in terms of their support) s-sparse vectors, the norms of
which can be bounded individually using (10). You will get credit for partial results if the ideas
are exposed in a clear manner.
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