Handout Examination on Mathematics of Information August 16, 2023

Definition H1 (ε-covering and covering number). Let (H, ρ) be a normed space, $\mathcal{C} \subseteq H$ a compact subset of (H, ρ), and $\varepsilon>0$. An ε-covering of \mathcal{C} is a collection $X \subseteq \mathcal{C}$ such that for every $x \in \mathcal{C}$, there exists an $x^{\prime} \in X$ satisfying $\rho\left(x-x^{\prime}\right) \leq \varepsilon$. The ε-covering number of \mathcal{C} is the cardinality of an ε-covering of \mathcal{C} with smallest cardinality, and is denoted by $N(\varepsilon, \mathcal{C}, \rho)$.

Theorem H2 (Weak law of large numbers). Let $\left\{X_{i}\right\}_{i=1}^{n}$ be i.i.d. samples taken according to a distribution \mathcal{P} over domain \mathcal{X} and let $g \in L_{1}(\mathcal{P})$. Then, $\frac{1}{n} \sum_{i=1}^{n} g\left(X_{i}\right) \xrightarrow{p} \mathbb{E}[g(X)]$. That is, $\forall \delta>0$,

$$
\lim _{n \rightarrow \infty} \mathbb{P}\left(\left|\left(\frac{1}{n} \sum_{i=1}^{n} g\left(X_{i}\right)\right)-\mathbb{E}[g(X)]\right|>\delta\right)=0 .
$$

Definition H3. Let $d \in \mathbb{N}$. We define the inner product on \mathbb{C}^{d} as

$$
\begin{equation*}
\langle x, y\rangle:=\sum_{j=1}^{d} x_{j} y_{j}^{*}, \text { for } x, y \in \mathbb{C}^{d} \tag{1}
\end{equation*}
$$

We define the Euclidean norm on \mathbb{C}^{d} as

$$
\begin{equation*}
\|x\|_{2}:=\sqrt{\langle x, x\rangle}, \text { for } x \in \mathbb{C}^{d}, \tag{2}
\end{equation*}
$$

as well as the 1-norm according to

$$
\|x\|_{1}:=\sum_{j=1}^{d}\left|x_{j}\right| .
$$

Definition H4 (s-th restricted isometry constant). Let m, N, and $s \in\{1, \ldots, N\}$ be natural numbers and $\Phi \in \mathbb{C}^{m \times N}$. For each integer $s=1, \ldots, N$, we define the s-th restricted isometry constant of Φ as the smallest number δ_{s} such that

$$
\left|\|\Phi x\|_{2}^{2}-\|x\|_{2}^{2}\right| \leq \delta_{s}\|x\|_{2}^{2}
$$

holds for all s-sparse vectors x. A vector is said to be s-sparse if it has at most s nonzero entries.
Theorem H5. Let $d \in \mathbb{N}$ and $x, y \in \mathbb{C}^{d}$. Then,

$$
\begin{equation*}
|\langle x, y\rangle| \leq\|x\|_{2}\|y\|_{2} . \tag{3}
\end{equation*}
$$

Definition H6. Let $d \in \mathbb{N}$. We define the operator norm $\|\cdot\| \|_{2}$ for $M \in \mathbb{C}^{d \times d}$ according to

$$
\begin{equation*}
\|M\|_{2}:=\sup _{\substack{x \in \mathbb{C}^{d} \\\|x\|_{2}=1}}\|M x\|_{2} \tag{4}
\end{equation*}
$$

Theorem H7. Let $d \in \mathbb{N}, M \in \mathbb{C}^{d \times d}$, and $x \in \mathbb{C}^{d}$. Then,

$$
\begin{equation*}
\|M x\|_{2} \leq\|M\|_{2}\|x\|_{2} . \tag{5}
\end{equation*}
$$

Definition H8. Let $d \in \mathbb{N}, N \in \mathbb{N}$, and let $\mathcal{F}:=\left\{e_{1}, \ldots, e_{N}\right\}$ be a collection of N vectors in \mathbb{R}^{d}, with $N \geq d$. If there exists $A>0$ such that

$$
\begin{equation*}
\sum_{n=1}^{N}\left|\left\langle x, e_{n}\right\rangle\right|^{2}=A\|x\|_{2}^{2}, \text { for all } x \in \mathbb{R}^{d} \tag{6}
\end{equation*}
$$

then \mathcal{F} is said to be a finite tight frame in \mathbb{R}^{d}. The quantity A is called the frame bound of \mathcal{F}. If additionally,

$$
\begin{equation*}
\left\|e_{n}\right\|=1, \text { for all } n \in\{1, \ldots, N\} \tag{7}
\end{equation*}
$$

then \mathcal{F} is said to be normalized. If moreover

$$
\begin{equation*}
\sum_{n=1}^{N} e_{n}=0 \tag{8}
\end{equation*}
$$

then \mathcal{F} is said to have the zero-sum property.
Definition H9. Let $d \in \mathbb{N}, N \in \mathbb{N}$, and let $\mathcal{F}=\left\{e_{1}, \ldots, e_{N}\right\}$ be a finite tight frame in \mathbb{R}^{d}. We define the variation of \mathcal{F} as

$$
\begin{equation*}
\sigma(\mathcal{F}):=\sum_{n=1}^{N-1}\left\|e_{n}-e_{n+1}\right\|_{2} \tag{9}
\end{equation*}
$$

Definition H10. Let $d \in \mathbb{N}, N \in \mathbb{N}$, and let $\mathcal{F}=\left\{e_{1}, \ldots, e_{N}\right\}$ be a finite tight frame in \mathbb{R}^{d}. The analysis operator associated with \mathcal{F} is

$$
\mathbb{T}=\left(\begin{array}{c}
e_{1}^{T} \tag{10}\\
\vdots \\
e_{N}^{T}
\end{array}\right) \in \mathbb{R}^{N \times d}
$$

We define the frame operator of \mathcal{F} according to

$$
\begin{equation*}
\mathbb{S}:=\mathbb{T}^{T} \mathbb{T} \in \mathbb{R}^{d} \tag{11}
\end{equation*}
$$

Theorem H11. Let \mathcal{F} be a finite tight frame with frame bound $A>0$. Then,

$$
\begin{equation*}
\left\|\mathbb{S}^{-1}\right\|_{2}=\frac{1}{A} \tag{12}
\end{equation*}
$$

Theorem H12. Let $d \in \mathbb{N}, N \in \mathbb{N}$, and let $\mathcal{F}=\left\{e_{1}, \ldots, e_{N}\right\}$ be a finite frame in \mathbb{R}^{d}. Then,

$$
\begin{equation*}
x=\sum_{n=1}^{N}\left\langle x, e_{n}\right\rangle \mathbb{S}^{-1} e_{n}, \text { for all } x \in \mathbb{R}^{d} \tag{13}
\end{equation*}
$$

Definition H13. For $A=\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{C}^{m \times n}$ with columns $\|\cdot\|_{2}$-normalized to 1 , the coherence is defined as

$$
\mu(A)=\max _{\substack{i, j \\ i \neq j}}\left|a_{i}^{\mathrm{H}} a_{j}\right| .
$$

