

Handout Examination on Mathematics of Information August 16, 2023

Definition H1 (ε -covering and covering number). Let (H, ρ) be a normed space, $C \subseteq H$ a compact subset of (H, ρ) , and $\varepsilon > 0$. An ε -covering of C is a collection $X \subseteq C$ such that for every $x \in C$, there exists an $x' \in X$ satisfying $\rho(x - x') \leq \varepsilon$. The ε -covering number of C is the cardinality of an ε -covering of C with smallest cardinality, and is denoted by $N(\varepsilon, C, \rho)$.

Theorem H2 (Weak law of large numbers). Let $\{X_i\}_{i=1}^n$ be *i.i.d.* samples taken according to a distribution \mathcal{P} over domain \mathcal{X} and let $g \in L_1(\mathcal{P})$. Then, $\frac{1}{n} \sum_{i=1}^n g(X_i) \xrightarrow{p} \mathbb{E}[g(X)]$. That is, $\forall \delta > 0$,

$$\lim_{n \to \infty} \mathbb{P}\left(\left| \left(\frac{1}{n} \sum_{i=1}^{n} g(X_i) \right) - \mathbb{E}[g(X)] \right| > \delta \right) = 0.$$

Definition H3. Let $d \in \mathbb{N}$. We define the inner product on \mathbb{C}^d as

$$\langle x, y \rangle := \sum_{j=1}^{d} x_j y_j^*, \text{ for } x, y \in \mathbb{C}^d.$$
 (1)

We define the Euclidean norm on \mathbb{C}^d *as*

$$||x||_2 \coloneqq \sqrt{\langle x, x \rangle}, \text{ for } x \in \mathbb{C}^d,$$
 (2)

as well as the 1-norm according to

$$||x||_1 \coloneqq \sum_{j=1}^d |x_j|.$$

Definition H4 (*s*-th restricted isometry constant). Let m, N, and $s \in \{1, ..., N\}$ be natural numbers and $\Phi \in \mathbb{C}^{m \times N}$. For each integer s = 1, ..., N, we define the *s*-th restricted isometry constant of Φ as the smallest number δ_s such that

$$\left| \left\| \Phi x \right\|_{2}^{2} - \left\| x \right\|_{2}^{2} \right| \le \delta_{s} \left\| x \right\|_{2}^{2}$$

holds for all s-sparse vectors x. A vector is said to be s-sparse if it has at most s nonzero entries.

Theorem H5. Let $d \in \mathbb{N}$ and $x, y \in \mathbb{C}^d$. Then,

$$|\langle x, y \rangle| \le \|x\|_2 \|y\|_2.$$
(3)

Definition H6. Let $d \in \mathbb{N}$. We define the operator norm $||| \cdot |||_2$ for $M \in \mathbb{C}^{d \times d}$ according to

$$|||M|||_{2} := \sup_{\substack{x \in \mathbb{C}^{d} \\ ||x||_{2} = 1}} ||Mx||_{2}.$$
(4)

Theorem H7. Let $d \in \mathbb{N}$, $M \in \mathbb{C}^{d \times d}$, and $x \in \mathbb{C}^d$. Then,

$$\|Mx\|_{2} \le \|M\|_{2} \|x\|_{2}.$$
(5)

Definition H8. Let $d \in \mathbb{N}$, $N \in \mathbb{N}$, and let $\mathcal{F} := \{e_1, \ldots, e_N\}$ be a collection of N vectors in \mathbb{R}^d , with $N \ge d$. If there exists A > 0 such that

$$\sum_{n=1}^{N} |\langle x, e_n \rangle|^2 = A ||x||_2^2, \text{ for all } x \in \mathbb{R}^d,$$
(6)

then \mathcal{F} is said to be a finite tight frame in \mathbb{R}^d . The quantity A is called the frame bound of \mathcal{F} . If additionally,

$$||e_n|| = 1, \text{ for all } n \in \{1, \dots, N\},$$
 (7)

then \mathcal{F} is said to be normalized. If moreover

$$\sum_{n=1}^{N} e_n = 0,$$
 (8)

then \mathcal{F} *is said to have the zero-sum property.*

Definition H9. Let $d \in \mathbb{N}$, $N \in \mathbb{N}$, and let $\mathcal{F} = \{e_1, \ldots, e_N\}$ be a finite tight frame in \mathbb{R}^d . We define the variation of \mathcal{F} as

$$\sigma(\mathcal{F}) := \sum_{n=1}^{N-1} \|e_n - e_{n+1}\|_2.$$
(9)

Definition H10. Let $d \in \mathbb{N}$, $N \in \mathbb{N}$, and let $\mathcal{F} = \{e_1, \ldots, e_N\}$ be a finite tight frame in \mathbb{R}^d . The analysis operator associated with \mathcal{F} is

$$\mathbb{T} = \begin{pmatrix} e_1^T \\ \vdots \\ e_N^T \end{pmatrix} \in \mathbb{R}^{N \times d}.$$
(10)

We define the frame operator of \mathcal{F} according to

$$\mathbb{S} := \mathbb{T}^T \mathbb{T} \in \mathbb{R}^d. \tag{11}$$

Theorem H11. Let \mathcal{F} be a finite tight frame with frame bound A > 0. Then,

$$\|\|\mathbb{S}^{-1}\|\|_2 = \frac{1}{A}.$$
 (12)

Theorem H12. Let $d \in \mathbb{N}$, $N \in \mathbb{N}$, and let $\mathcal{F} = \{e_1, \ldots, e_N\}$ be a finite frame in \mathbb{R}^d . Then,

$$x = \sum_{n=1}^{N} \langle x, e_n \rangle \mathbb{S}^{-1} e_n, \text{ for all } x \in \mathbb{R}^d.$$
(13)

Definition H13. For $A = (a_1, \ldots, a_n) \in \mathbb{C}^{m \times n}$ with columns $\|\cdot\|_2$ -normalized to 1, the coherence is defined as

$$\mu(A) = \max_{\substack{i,j\\i \neq j}} |a_i^{\mathsf{H}} a_j|.$$