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Problem 1

(a) Letn € {1,..., N}. Then,
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(@, en)] < lalallenlla = llzll2 < 4| > i) =K (1)
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where (a) is by Theorem HS5, (b) is because F is normalized, and (c) follows from

: 1
the assumption = € [ VLS fK] .

(b) The proof will be effected by induction, starting from uyp = 0 < 1/2. Let n €
{1,..., N} and assume that |u, | < . By subproblem (a), we have =7, € [-K, K],
SO U, 1+, € [-K —1/2, K +1/2]. Then,
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where (a) is by (5) in the problem statement, (b) is by (4) in the problem statement,
and (c) is a consequence of (2) in the problem statement, with ¢ = u,,_; + .
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where (a) follows by iterating (5) in the problem statement and (b) is a conse-
quence of uy = 0. Next, note that as F has the zero-sum property, one gets
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fo:ern < Z >:0, forall z € R%. 4)
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Therefore, we have

- Z qn- (5)



Using (1) and (4) in the problem statement, it follows that ¢, € D C Z, for all
ne{l,...,N}, so that

_ZQn € Z. (6)

As by the result in subproblem (b) we have |ux| < 1/2, it follows that uy = 0.
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where (a) is by Theorem H12, (b) follows from (6) in the problem statement, (c)
is by (5) in the problem statement, (d) is obtained by reorganization of terms and
(e) uses the fact that uy = 0 (see (3) in the problem statement), and uxy = 0 (see
subproblem (c)). Then, we get
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where (a) follows from (11), b) is by |u,| < % (see subproblem (b)) and Theorem
H7, (c) is by Definition H9, and (d) is by Theorem H11.



Problem 2

(a) We have

1Pre(B)all = | BD7B" x|

2 || DreB
= ||DTcAHABHI||2

© | ADF AP ABM o,
where (a) follows by unitarity of B and (b) is by unitarity of A.
(b) Note that if supp(Az) C S, then Ps(A)z = x. Thus,
|1Pr(A)Uz|2 = || Pr(A)UPs(A)z|2
2 |[Pr(A)UPs(A)Ps(A)e];
< WP AP IPs( Ayl (18)

where in (a) we used that Ps(A) is an orthogonal projection (specifically, Ps(A4)? =
Ps(A)) and (b) follows from Theorem H7. Using the result in subproblem (a), we
obtain

| Pre(B)x||2 = || Pre(A)Ux||;
— (T - Pr(A) U]
2 Uz — 1PHAU],
= Ul — IPF(AYU Ps(A) )| Ps(A)zls
D (1 ||PH AU Ps(A)l,)| Ps(A)z]e.

where I denotes the IV x IV identity matrix, (a) is by the reverse triangle inequality,

(b) follows from (18), and in (c) we used that U is unitary as well as the fact that
Ps(A)z = x.

(c) For z € CV, we have

[2]l2 = [[Ps(A)x + Pse(A)z|j5

2 1 Ps(A)zla + | Ps- (A)z]la
© [|Pr-(B)Ps(A)alls
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+ [ Pse(A)x]2
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D |Pre(B)zll2 + || Pre(B)Pse(A)zll>
= (- IPHAUPA,)

© || Pre(B) |2 + || Pse (A)z]|2
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where (a) is by the triangle inequality, (b) follows from the result in subproblem
(b) together with Ps(A)? = Ps(A), in (c) we used Ps(A) = I — Psc(A), (d) holds
by the triangle inequality, and in (e) we used the fact that Py (B) is an orthogonal
projection (specifically, || Pr<(B)y|l2 < ||y|l2, for all y € CV).

(d) Consider the SVD C = UsXV}H, where Uq, Vo € CV*Y are unitary matrices and
¥ € CM*¥V is a diagonal matrix containing the singular values oy > -+ > 0, > 0
of C, where r € {1,..., N} denotes the rank of C. As Uc and V(- are unitary, we
have

Cll, = masx, [Cola = max VoSVl = max Syl = o1

and

Tr(CC") = Te(UeSVEVEEHUE) = Tr(S5) = o7

j=1
Thus, ||C]||, < /Tr(CCH). As A = (a4, ..., ay) is a unitary matrix, we have

Tr(CCY) = Tr(ARCCH A)

i <C’C’ a;, az>

and the desired inequality [|C||, < \/ SN as, Ca,)|? follows.
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(e) Application of the result in subproblem (d) results in
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where in (a) we used that Pr(A)Y = Pr(A), which follows from the fact that
orthogonal projections are self-adjoint.

(f) Thanks to the results in subproblems (c) and (e), we have

[ Pse(A)zlla + || Pre(B)zlla
1= [|Pr(A)U Fs(A)]l,
[ Pse(A)zlla + || Pre(B)xlla

- 1= p(A B)VISIIT]
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< (1+ BT sm) (1Ps-(A)z ] + | Pre(B)al).

]2 < + [ Pse(A)z]2

+ | Pse(A)]|2




Problem 3

(a) Fix e > 0 arbitrarily. Consider a minimal (2¢)-bracket-covering {[/;, u;]}72, of F
with respect to ||-||p, where m = Njj(2e, .7-" |-||»)- Define g;(z) := % for
j € {1,...,m}. We claim that the set {g;}/_, is an e-covering of F with respect
to [|]|p. As the brackets {[(;,u;]}]L, are a (26)-bracket-covermg of F, for every
f € F,thereisa j € {1,...,m} such that ¢;(z) < f(z) < uj(z), forall z € X.

Hence, for all x € X we have

Taking expectations on both sides and using the hint yields 1f = gillp < 3l —
j|lp < e. We have therefore found an e-covering {g;}7, with m elements which
implies that the cardinality of a minimal covering must satisfy N (e, F, ||-||p) <
m = Npj(2¢, F, ||-||»), as desired.

(b) i Fix f € F arbitrarily and let j € {1,...,m} be such that ¢; < f < u;. Now
we estimate

(izf(xi)% (Zf ) (X)) + Bluy (X)) — B[ (X)
(ﬁ Zuj(Xi)> — Efu; (X)] 4 Efu; (X) — £;(X)]

( Zuy ) [u; (X)] + €,

where in (a) we used /; < f < u; in combination with the hint, and in (b) we
employed
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Elu;(X) = 6(X)] = Eflu; (X) = GX)[] = [lu; = Gllp <€

ii. From the result in subproblem (b).i. it follows that

sup ((% me)) - E[f<X)]> et max <(% Zuxm) - E[uj<x>1> .



Hence, the event

We can therefore upper-bound as follows

P (ff;}? ((% if(&)) - E[f(X)}> > 26)

n—oo

>6> LO,

where in (a) we used the union bound and in (b) the weak law of large
numbers.

iii. We have




and hence

n—oo

where in (a) we used the result from subproblem (b).ii. as well as (9) from
the problem statement.

(c) Since, by the assumption in the problem statement, Nj(e, F, ||-|[») < oo holds
for all € > 0, we have in particular Njj($, F, |-[[p) < oco. Thus the result from
subproblem (b).iii. with € =  implies

> 5) =0

1 n
Jim P sup | ; F(Xi) = E[f(X)]
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as desired.



Problem 4

We start by proving the claim in the hint, namely that, for v € C* and v € C°,

if max |u;|] < min ]vz|, then ||ul], < HUHI (19)
=

1,8 i=1,. /s

This is accomplished by first observing that

s s 9 )
lulls = 3wl < > max luifzs(.max |ui|) SS(,min |w|> o)
i—1 1 1=1,...,s i=1,...,s i=1,...,s

where the last inequality is a consequence of the assumption on v and v in (19). One

further has
s min |v; 2:s ! ES min |v] g |v;] M (21)
=15 § L=l ¢ ¢ ’

1=

so that taking square roots in (20) and (21) yields the claim.

Let us now fix a vector z € CV and decompose it into a sum of vectors each of
sparsity s. More concretely, we define the index set S; C {1,..., N} to be given by the
locations of the s largest (in terms of absolute value) entries of z, S, C {1,...,N}\ S to
be the locations of the s largest entries of = that are notin S;, S5 C {1,...,N}\ S; U S,
to be the locations of the s largest entries of x that are not in S; U S;. We continue
this procedure to construct the index sets S5, . .., Sk, for some integer k£ > 1, such that
SiUSU---US, = {1,..., N}, where the last index set S, might contain fewer than
s elements. Given an index set S, we use xg to denote the vector obtained from =z
by setting to zero all the components that are not indexed by S. We then have the
decomposition into disjoint s-sparse vectors according to

k
T = E TSy
i=1

and, by the triangle inequality, we further get

k
| @zll, = Z@xs = > l1ezs ;. (22)

i=1
As the vectors zg,, fori = 1,.. ., k, are s-sparse, by definition of the restricted isometry

constant (Definition H4 in the Handout), we have

|




which directly implies

H(I)xsi 2 SV 1+ 05 ”sz 2" (23)
By construction, for i = 2,...,k, all the non-zero components of =g, are smaller than

or equal to (in absolute value) the non-zero components of zg, ,. Therefore, upon app-
lication of (19) with u the vector containing the non-zero components of x5, and v the
vector containing the non-zero components of zg, ,, we obtain

Hffsi_l ”1

N

Combining the previous results according to

lzs,]l, < foralli=2,... k. (24)

)
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(22) F (23) K i
[z, < ZH%& s < \/1+582Hxsi s =V 1+0s (HivsleJrZHxsi
=1 =1 1=2

yields the desired result.
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