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Problem 1

(a) Let n ∈ {1, . . . , N}. Then,

|⟨x, en⟩|
(a)

≤ ∥x∥2∥en∥2
(b)
= ∥x∥2

(c)

≤

√√√√ d∑
i=1

(
1√
d
K

)2

= K, (1)

where (a) is by Theorem H5, (b) is because F is normalized, and (c) follows from

the assumption x ∈
[
− 1√

d
K, 1√

d
K
]d

.

(b) The proof will be effected by induction, starting from u0 = 0 ≤ 1/2. Let n ∈
{1, . . . , N} and assume that |un−1| ≤ 1

2
. By subproblem (a), we have xF

n ∈ [−K,K],
so un−1 + xF

n ∈ [−K − 1/2, K + 1/2]. Then,

|un|
(a)
= |un−1 + xF

n − qn|
(b)
= |un−1 + xF

n −Q(un−1 + xF
n )|

(c)

≤ 1/2, (2)

where (a) is by (5) in the problem statement, (b) is by (4) in the problem statement,
and (c) is a consequence of (2) in the problem statement, with t = un−1 + xF

n .

(c)

uN
(a)
= u0 +

N∑
n=1

xF
n −

N∑
n=1

qn
(b)
=

N∑
n=1

xF
n −

N∑
n=1

qn, (3)

where (a) follows by iterating (5) in the problem statement and (b) is a conse-
quence of u0 = 0. Next, note that as F has the zero-sum property, one gets

N∑
n=1

xF
n =

N∑
n=1

⟨x, en⟩ =

〈
x,

N∑
n=1

en

〉
= 0, for all x ∈ Rd. (4)

Therefore, we have

uN = −
N∑

n=1

qn. (5)
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Using (1) and (4) in the problem statement, it follows that qn ∈ D ⊆ Z, for all
n ∈ {1, . . . , N}, so that

uN = −
N∑

n=1

qn ∈ Z. (6)

As by the result in subproblem (b) we have |uN | ≤ 1/2, it follows that uN = 0.

(d)

x− x̃F (a)
=

N∑
n=1

xF
n S−1en − x̃F (b)

=
N∑

n=1

xF
n S−1en −

N∑
n=1

qnS−1en (7)

=
N∑

n=1

(xF
n − qn)S−1en (8)

(c)
=

N∑
n=1

(un − un−1)S−1en (9)

(d)
=

N−1∑
n=1

unS−1(en − en+1)− u0S−1e1 + uNS−1eN (10)

(e)
=

N−1∑
n=1

unS−1(en − en+1), (11)

where (a) is by Theorem H12, (b) follows from (6) in the problem statement, (c)
is by (5) in the problem statement, (d) is obtained by reorganization of terms and
(e) uses the fact that u0 = 0 (see (3) in the problem statement), and uN = 0 (see
subproblem (c)). Then, we get

∥x− x̃F∥2
(a)
=

∥∥∥∥∥
N−1∑
i=1

un S−1 (en − en+1)

∥∥∥∥∥
2

≤
N−1∑
i=1

∥∥un S−1 (en − en+1)
∥∥
2

(12)

≤
N−1∑
i=1

|un|
∥∥S−1 (en − en+1)

∥∥
2

(13)

(b)

≤
N−1∑
i=1

(1/2)
∣∣∣∣∣∣S−1

∣∣∣∣∣∣
2
∥en − en+1∥2 (14)

= (1/2)
∣∣∣∣∣∣S−1

∣∣∣∣∣∣
2

N−1∑
i=1

∥en − en+1∥2 (15)

(c)
= (1/2)

∣∣∣∣∣∣S−1
∣∣∣∣∣∣

2
σ(F), (16)

(d)
=

σ(F)

2A
, (17)

where (a) follows from (11), b) is by |un| ≤ 1
2

(see subproblem (b)) and Theorem
H7, (c) is by Definition H9, and (d) is by Theorem H11.
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Problem 2

(a) We have

∥PT c(B)x∥2 = ∥BDT cBHx∥2
(a)
= ∥DT cBHx∥2
= ∥DT cAHABHx∥2
(b)
= ∥ADT cAHABHx∥2,

where (a) follows by unitarity of B and (b) is by unitarity of A.

(b) Note that if supp(AHx) ⊆ S, then PS(A)x = x. Thus,

∥PT (A)Ux∥2 = ∥PT (A)UPS(A)x∥2
(a)
= ∥PT (A)UPS(A)PS(A)x∥2
(b)
≤ |||PT (A)UPS(A)|||2∥PS(A)x∥2, (18)

where in (a) we used that PS(A) is an orthogonal projection (specifically, PS(A)
2 =

PS(A)) and (b) follows from Theorem H7. Using the result in subproblem (a), we
obtain

∥PT c(B)x∥2 = ∥PT c(A)Ux∥2
= ∥(I − PT (A))Ux∥2
(a)
≥ ∥Ux∥2 − ∥PT (A)Ux∥2
(b)
≥ ∥Ux∥2 − |||PT (A)UPS(A)|||2∥PS(A)x∥2
(c)
= (1− |||PT (A)UPS(A)|||2)∥PS(A)x∥2,

where I denotes the N×N identity matrix, (a) is by the reverse triangle inequality,
(b) follows from (18), and in (c) we used that U is unitary as well as the fact that
PS(A)x = x.

(c) For x ∈ CN , we have

∥x∥2 = ∥PS(A)x+ PSc(A)x∥2
(a)
≤ ∥PS(A)x∥2 + ∥PSc(A)x∥2
(b)
≤ ∥PT c(B)PS(A)x∥2

(1− |||PT (A)UPS(A)|||2)
+ ∥PSc(A)x∥2

(c)
≤ ∥PT c(B)(x− PSc(A)x)∥2

(1− |||PT (A)UPS(A)|||2)
+ ∥PSc(A)x∥2
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(d)
≤ ∥PT c(B)x∥2 + ∥PT c(B)PSc(A)x∥2

(1− |||PT (A)UPS(A)|||2)
+ ∥PSc(A)x∥2

(e)
≤ ∥PT c(B)x∥2 + ∥PSc(A)x∥2

(1− |||PT (A)UPS(A)|||2)
+ ∥PSc(A)x∥2,

where (a) is by the triangle inequality, (b) follows from the result in subproblem
(b) together with PS(A)

2 = PS(A), in (c) we used PS(A) = I − PSc(A), (d) holds
by the triangle inequality, and in (e) we used the fact that PT c(B) is an orthogonal
projection (specifically, ∥PT c(B)y∥2 ≤ ∥y∥2, for all y ∈ CN ).

(d) Consider the SVD C = UCΣV
H
C , where UC , VC ∈ CN×N are unitary matrices and

Σ ∈ CN×N is a diagonal matrix containing the singular values σ1 ≥ · · · ≥ σr > 0

of C, where r ∈ {1, . . . , N} denotes the rank of C. As UC and VC are unitary, we
have

|||C|||2 = max
∥x∥2=1

∥Cx∥2 = max
∥x∥2=1

∥UCΣV
H
C x∥2 = max

∥y∥2=1
∥Σy∥2 = σ1

and

Tr(CCH) = Tr(UCΣV
H
C VCΣ

HUH
C ) = Tr(ΣΣH) =

r∑
j=1

σ2
j .

Thus, |||C|||2 ≤
√

Tr(CCH). As A = (a1, . . . , aN) is a unitary matrix, we have

Tr(CCH) = Tr(AHCCHA)

=
N∑
i=1

〈
CCHai, ai

〉
=

N∑
i=1

∥CHai∥22

=
N∑
i=1

N∑
j=1

∣∣⟨CHai, aj⟩
∣∣2

=
N∑

i,j=1

|⟨ai, Caj⟩|2 ,

and the desired inequality |||C|||2 ≤
√∑N

i,j=1 |⟨ai, Caj⟩|2 follows.

(e) Application of the result in subproblem (d) results in

|||PT (A)UPS(A)|||2 ≤

√√√√ N∑
i,j=1

|⟨ai, PT (A)UPS(A)aj⟩|2
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(a)
=

√√√√ N∑
i,j=1

|⟨PT (A)ai, UPS(A)aj⟩|2

=

√√√√ N∑
i,j=1

|⟨ADT AHai, UADSAHaj⟩|2

=

√∑
i∈T

∑
j∈S

|⟨ai, Uaj⟩|2

=

√∑
i∈T

∑
j∈S

|⟨UHai, aj⟩|2

=

√∑
i∈T

∑
j∈S

|⟨BAHai, aj⟩|2

=

√∑
i∈T

∑
j∈S

|⟨bi, aj⟩|2

≤ µ([A B])
√

|S||T |,

where in (a) we used that PT (A)
H = PT (A), which follows from the fact that

orthogonal projections are self-adjoint.

(f) Thanks to the results in subproblems (c) and (e), we have

∥x∥2 ≤
∥PSc(A)x∥2 + ∥PT c(B)x∥2
1− |||PT (A)UPS(A)|||2

+ ∥PSc(A)x∥2

≤ ∥PSc(A)x∥2 + ∥PT c(B)x∥2
1− µ([A B])

√
|S||T |

+ ∥PSc(A)x∥2

≤

(
1 +

1

1− µ([A B])
√

|S||T |

)
(∥PSc(A)x∥2 + ∥PT c(B)x∥2).
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Problem 3

(a) Fix ϵ > 0 arbitrarily. Consider a minimal (2ϵ)-bracket-covering {[ℓj, uj]}mj=1 of F
with respect to ∥·∥P , where m := N[ ](2ϵ,F , ∥·∥P). Define gj(x) :=

uj(x)+ℓj(x)

2
, for

j ∈ {1, . . . ,m}. We claim that the set {gj}mj=1 is an ϵ-covering of F with respect
to ∥·∥P . As the brackets {[ℓj, uj]}mj=1 are a (2ϵ)-bracket-covering of F , for every
f ∈ F , there is a j ∈ {1, . . . ,m} such that ℓj(x) ≤ f(x) ≤ uj(x), for all x ∈ X .
Hence, for all x ∈ X we have

ℓj(x) ≤ f(x) ≤ uj(x)

⇒ −1

2
(uj(x)− ℓj(x)) ≤ f(x)− gj(x) ≤

1

2
(uj(x)− ℓj(x))

⇒ |f(x)− gj(x)| ≤
1

2
(uj(x)− ℓj(x)).

Taking expectations on both sides and using the hint yields ∥f − gj∥P ≤ 1
2
∥uj −

ℓj∥P ≤ ϵ. We have therefore found an ϵ-covering {gj}mj=1 with m elements which
implies that the cardinality of a minimal covering must satisfy N(ϵ,F , ∥·∥P) ≤
m = N[ ](2ϵ,F , ∥·∥P), as desired.

(b) i. Fix f ∈ F arbitrarily and let j ∈ {1, . . . ,m} be such that ℓj ≤ f ≤ uj . Now
we estimate(
1

n

n∑
i=1

f(Xi)

)
− E[f(X)] =

(
1

n

n∑
i=1

f(Xi)

)
− E[uj(X)] + E[uj(X)]− E[f(X)]

(a)

≤

(
1

n

n∑
i=1

uj(Xi)

)
− E[uj(X)] + E[uj(X)− ℓj(X)]

(b)

≤

(
1

n

n∑
i=1

uj(Xi)

)
− E[uj(X)] + ϵ,

where in (a) we used ℓj ≤ f ≤ uj in combination with the hint, and in (b) we
employed

E[uj(X)− ℓj(X)] = E[|uj(X)− ℓj(X)|] = ∥uj − ℓj∥P ≤ ϵ.

ii. From the result in subproblem (b).i. it follows that

sup
f∈F

((
1

n

n∑
i=1

f(Xi)

)
− E[f(X)]

)
≤ ϵ+ max

j∈{1,...,m}

((
1

n

n∑
i=1

uj(Xi)

)
− E[uj(X)]

)
.
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Hence, the event

sup
f∈F

((
1

n

n∑
i=1

f(Xi)

)
− E[f(X)]

)
> 2ϵ

implies the event

max
j∈{1,...,m}

((
1

n

n∑
i=1

uj(Xi)

)
− E[uj(X)]

)
> ϵ.

We can therefore upper-bound as follows

P

(
sup
f∈F

((
1

n

n∑
i=1

f(Xi)

)
− E[f(X)]

)
> 2ϵ

)

≤ P

(
max

j∈{1,...,m}

((
1

n

n∑
i=1

uj(Xi)

)
− E[uj(X)]

)
> ϵ

)

= P

(
∃j ∈ {1, . . . ,m} :

(
1

n

n∑
i=1

uj(Xi)

)
− E[uj(X)] > ϵ

)
(a)

≤
m∑
j=1

P

((
1

n

n∑
i=1

uj(Xi)

)
− E[uj(X)] > ϵ

)

≤
m∑
j=1

P

(∣∣∣∣∣
(
1

n

n∑
i=1

uj(Xi)

)
− E[uj(X)]

∣∣∣∣∣ > ϵ

)
(b)−−−→

n→∞
0,

where in (a) we used the union bound and in (b) the weak law of large
numbers.

iii. We have

sup
f∈F

∣∣∣∣∣E[f(X)]−

(
1

n

n∑
i=1

f(Xi)

)∣∣∣∣∣
= sup

f∈F
max

{
E[f(X)]−

(
1

n

n∑
i=1

f(Xi)

)
,

(
1

n

n∑
i=1

f(Xi)

)
− E[f(X)]

}

= max

{
sup
f∈F

(
E[f(X)]−

(
1

n

n∑
i=1

f(Xi)

))
, sup
f∈F

((
1

n

n∑
i=1

f(Xi)

)
− E[f(X)]

)}
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and hence

P

(
sup
f∈F

∣∣∣∣∣E[f(X)]−

(
1

n

n∑
i=1

f(Xi)

)∣∣∣∣∣ > 2ϵ

)

≤ P

(
sup
f∈F

((
1

n

n∑
i=1

f(Xi)

)
− E[f(X)]

)
> 2ϵ

)

+ P

(
sup
f∈F

(
E[f(X)]−

(
1

n

n∑
i=1

f(Xi)

))
> 2ϵ

)
(a)−−−→

n→∞
0,

where in (a) we used the result from subproblem (b).ii. as well as (9) from
the problem statement.

(c) Since, by the assumption in the problem statement, N[ ](ϵ,F , ∥·∥P) < ∞ holds
for all ϵ > 0, we have in particular N[ ](

δ
2
,F , ∥·∥P) < ∞. Thus the result from

subproblem (b).iii. with ϵ = δ
2

implies

lim
n→∞

P

(
sup
f∈F

∣∣∣∣∣ 1n
n∑

i=1

f(Xi)− E[f(X)]

∣∣∣∣∣ > δ

)
= 0

as desired.
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Problem 4
We start by proving the claim in the hint, namely that, for u ∈ Cs and v ∈ Cs,

if max
i=1,...,s

|ui| ≤ min
i=1,...,s

|vi| , then ∥u∥2 ≤
∥v∥1√

s
. (19)

This is accomplished by first observing that

∥u∥22 =
s∑

i=1

|ui|2 ≤
s∑

i=1

max
i=1,...,s

|ui|2 = s

(
max
i=1,...,s

|ui|
)2

≤ s

(
min

i=1,...,s
|vi|
)2

, (20)

where the last inequality is a consequence of the assumption on u and v in (19). One
further has

s

(
min

i=1,...,s
|vi|
)2

= s

(
1

s

s∑
i=1

min
i=1,...,s

|vi|

)2

≤ s

(
1

s

s∑
i=1

|vi|

)2

=
∥v∥21
s

, (21)

so that taking square roots in (20) and (21) yields the claim.
Let us now fix a vector x ∈ CN and decompose it into a sum of vectors each of

sparsity s. More concretely, we define the index set S1 ⊆ {1, . . . , N} to be given by the
locations of the s largest (in terms of absolute value) entries of x, S2 ⊆ {1, . . . , N}\S1 to
be the locations of the s largest entries of x that are not in S1, S3 ⊆ {1, . . . , N} \ S1 ∪ S2

to be the locations of the s largest entries of x that are not in S1 ∪ S2. We continue
this procedure to construct the index sets S1, . . . , Sk, for some integer k ≥ 1, such that
S1 ∪ S2 ∪ · · · ∪ Sk = {1, . . . , N}, where the last index set Sk might contain fewer than
s elements. Given an index set S, we use xS to denote the vector obtained from x

by setting to zero all the components that are not indexed by S. We then have the
decomposition into disjoint s-sparse vectors according to

x =
k∑

i=1

xSi
,

and, by the triangle inequality, we further get

∥Φx∥2 =

∥∥∥∥∥
k∑

i=1

ΦxSi

∥∥∥∥∥
2

≤
k∑

i=1

∥ΦxSi
∥2 . (22)

As the vectors xSi
, for i = 1, . . . , k, are s-sparse, by definition of the restricted isometry

constant (Definition H4 in the Handout), we have∣∣∥ΦxSi
∥22 − ∥xSi

∥22
∣∣ ≤ δs ∥xSi

∥22 ,
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which directly implies
∥ΦxSi

∥2 ≤
√

1 + δs ∥xSi
∥2 . (23)

By construction, for i = 2, . . . , k, all the non-zero components of xSi
are smaller than

or equal to (in absolute value) the non-zero components of xSi−1
. Therefore, upon app-

lication of (19) with u the vector containing the non-zero components of xSi
and v the

vector containing the non-zero components of xSi−1
, we obtain

∥xSi
∥2 ≤

∥∥xSi−1

∥∥
1√

s
, for all i = 2, . . . , k. (24)

Combining the previous results according to

∥Φx∥2
(22)

≤
k∑

i=1

∥ΦxSi
∥2

(23)

≤
√

1 + δs

k∑
i=1

∥xSi
∥2 =

√
1 + δs

(
∥xS1∥2 +

k∑
i=2

∥xSi
∥2

)
(24)

≤
√

1 + δs

(
∥xS1∥2 +

∑k
i=2

∥∥xSi−1

∥∥
1√

s

)

≤
√

1 + δs

(
∥x∥2 +

∥x∥1√
s

)
yields the desired result.
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