

Examination on Mathematics of Information

August 4, 2025

- Do not turn this page before the official start of the exam.
- The problem statements consist of 8 pages including this page. Please verify that you have received all 8 pages.
- Throughout the problem statements there are references to definitions and theorems in the Handout, indicated by e.g. Definition H1 and Theorem H2.

Problem 1 (25 points)

Let $n \in \mathbb{N}$ and consider the set of functions $F_n := \{f : \{0,1\}^n \to \mathbb{C}\}$. For $x \in \{0,1\}^n$, we let $\delta_x \in F_n$ be such that

$$\delta_x(y) := \begin{cases} 1, & \text{if } y = x, \\ 0, & \text{if } y \neq x, \end{cases} \quad \forall y \in \{0, 1\}^n. \tag{1}$$

(a) (4 points) Show that $\{\delta_x : x \in \{0,1\}^n\}$ is a basis for F_n .

We define the inner product of two functions $f, g \in F_n$ as

$$\langle f, g \rangle := \frac{1}{2^n} \sum_{x \in \{0,1\}^n} f(x) \overline{g(x)}.$$
 (2)

We also define $\mathcal{P}(n)$ to be the set of all subsets of $\{1, \ldots, n\}$, including the empty set \varnothing and the set $\{1, \ldots, n\}$ itself, and we consider the family of functions

$$\mathcal{G} := \{ \chi_S : x \mapsto \prod_{i \in S} (-1)^{x_i} : S \in \mathcal{P}(n) \},$$

where $\chi_{\varnothing}: x \mapsto 1$ by convention. We will show that \mathcal{G} is an orthonormal basis for F_n .

(b) (3 points) Show that for all $S, T \in \mathcal{P}(n)$, it holds that

$$\chi_S(x)\chi_T(x) = \chi_{(S\backslash T)\cup(T\backslash S)}(x), \quad \forall x \in \{0,1\}^n.$$

- (c) (4 points) Show that for every $S \neq \emptyset$, χ_S is orthogonal to χ_{\emptyset} .
- (d) (5 points) Show that \mathcal{G} is an orthonormal basis for F_n .

We now study frames for F_n . Namely, for $k \in \mathbb{N}$, define $\omega_k := \exp\left(\frac{2\pi i}{k+1}\right)$ and let

$$\mathcal{H}_k := \left\{ \widetilde{\chi}_{\mathbf{S}}(x) = \prod_{j=1}^k \prod_{\ell \in S_j} \omega_k^{x_\ell}, \ \mathbf{S} \in \mathcal{P}(n)^k \right\},\tag{3}$$

where S_j is the *j*-th component of **S**.

(e) (3 points) Show that $\mathcal{H}_1 = \mathcal{G}$. Is \mathcal{H}_1 a frame for F_n ? If so, specify the frame bounds and determine whether the frame is tight.

It can be shown that for $k \geq 2$, the set of eigenvectors of the operator \mathbb{T} defined by

$$\mathbb{T}f = \sum_{\mathbf{S} \in \mathcal{P}(n)^k} \langle f, \widetilde{\chi}_{\mathbf{S}} \rangle \widetilde{\chi}_{\mathbf{S}}, \quad f \in F_n,$$

is exactly \mathcal{G} . Therefore, every eigenvalue (with multiplicities) of \mathbb{T} is associated with some $\chi_S \in \mathcal{G}$, where $S \in \mathcal{P}(n)$. We denote by λ_S the eigenvalue associated with χ_S . It can be shown that

$$\lambda_S = 2^{n(k-1)} (1 + C_k)^{|S|} (1 - C_k)^{n-|S|}, \ \forall S \in \mathcal{P}(n),$$

where $|\varnothing| = 0$ and

$$C_k := \left(\cos\left(\frac{\pi}{k+1}\right)\right)^{k+1}.$$

(f) (6 points) Prove that for $k \geq 2$, \mathcal{H}_k is a frame for F_n , specify the frame bounds, and determine whether the frame is tight.

Hint: You might show that λ_{\varnothing} and $\lambda_{\{1,\dots,n\}}$ are positive and are the minimum and maximum eigenvalues of \mathbb{T} , respectively.

Problem 2 (25 points)

Notation: For a matrix $D \in \mathbb{C}^{M \times N}$, and a set $S \subseteq \{1, \dots, N\}$, we define $D_S \in \mathbb{C}^{M \times |S|}$ to be the matrix obtained from D by keeping only the columns indexed by S. Further, $S^c := \{1, \dots, N\} \setminus S$ denotes the complement of the set S in $\{1, \dots, N\}$. D^H stands for the conjugate transpose of the matrix D. For vectors $x, y \in \mathbb{C}^N$, the inner product is given by $\langle x, y \rangle = \sum_{i=1}^N x_j \overline{y}_i = y^H x$ and $\|x\|_0$ denotes the number of non-zero entries of x.

We fix a matrix $D \in \mathbb{C}^{M \times N}$ such that

$$||d_{\ell}||_2 = 1,$$
 for $\ell = 1, \dots, N$,

where d_{ℓ} denotes the ℓ -th column of D. Furthermore, we define the *cumulative coherence* of D as

$$\mu_n(D) = \max_{|S| \le n} \max_{\ell \in S^c} \sum_{j \in S} |\langle d_\ell, d_j \rangle|, \quad \text{for } n = 1, \dots, N,$$

where the first maximum is taken over all subsets $S \subseteq \{1, ..., N\}$ with cardinality less than or equal to n. Next, we fix $m \in \{2, ..., N\}$ and assume that

$$\mu_{m-1}(D) + \mu_m(D) < 1. (4)$$

(a) (4 points) Show that for every $S \subseteq \{1, ..., N\}$ with $|S| \le m$, it holds that

$$\max_{\ell \in S} \sum_{j \in S \setminus \{\ell\}} |\langle d_{\ell}, d_{j} \rangle| \le \mu_{m-1}(D).$$
 (5)

- (b) (7 points) Show that $\operatorname{spark}(D) > m$.
- (c) (5 points) Show that

$$\frac{\max_{\ell \in S^c} \sum_{j \in S} |\langle d_{\ell}, d_j \rangle|}{1 - \max_{\ell \in S} \sum_{j \in S \setminus \{\ell\}} |\langle d_{\ell}, d_j \rangle|} < 1, \quad \text{for all } S \subseteq \{1, \dots, N\} \text{ with } |S| \le m.$$
 (6)

(d) (6 points) Show that

$$\max_{\ell \in S^c} \|(D_S)^{\dagger} d_{\ell}\|_1 < 1, \quad \text{for all } S \subseteq \{1, \dots, N\} \text{ with } |S| \le m,$$
 (7)

where $(D_S)^{\dagger} = ((D_S^H)D_S)^{-1}(D_S)^H$ denotes the Moore-Penrose pseudo-inverse of the matrix D_S .

Hint: Subproblem (c), Definition H2 and Lemmata H3, H4, and H5 might be useful.

(e) (3 points) Let $x \in \mathbb{C}^N$ be such that $||x||_0 \le m$ and consider the recovery problem (P1) for D and x (Definition H6). Show that (P1) uniquely recovers x.

Hint: Use Theorem H7 and the result in subproblem (b).

Problem 3 (25 points)

In the lecture, we learned that the metric entropy of the ball

$$B_C^d := \{ x \in \mathbb{R}^d \mid ||x||_2 \le C \}$$

satisfies¹

$$\log N(\epsilon; B_C^d, \|\cdot\|_2) \approx d \log \left(\epsilon^{-1}\right). \tag{8}$$

In this problem, we consider a set of matrices in $\mathbb{R}^{n\times n}$ and the 2-norm

$$||A||_2 := \sup_{x \in \mathbb{R}^n, ||x||_2 = 1} ||Ax||_2.$$

The goal is to analyze the metric entropy of a ball in $\mathbb{R}^{n\times n}$ defined as

$$\mathbb{M}_{K}^{n \times n} := \{ A \in \mathbb{R}^{n \times n} \mid ||A||_{2} \le K \}.$$

- (a) (2 points) State the double-inequality linking the quantities $M(2\epsilon; \mathbb{M}_K^{n \times n}, \|\cdot\|_2)$, $N(\epsilon; \mathbb{M}_K^{n \times n}, \|\cdot\|_2)$, and $M(\epsilon; \mathbb{M}_K^{n \times n}, \|\cdot\|_2)$.
- (b) (3 points) Consider the mapping $V: \mathbb{M}_K^{n \times n} \to \mathbb{R}^{n^2}$ such that for $A \in \mathbb{M}_K^{n \times n}$, $V(A) \in \mathbb{R}^{n^2}$ is the vector with²

$$(V(A))_{(i-1)n+j} = A_{i,j}, \quad \text{for } i, j \in \{1, 2, \dots, n\}.$$

Prove that V is an isometric isomorphism between $(\mathbb{M}_K^{n \times n}, \|\cdot\|_F)$ and $(V(\mathbb{M}_K^{n \times n}), \|\cdot\|_2)$.

(c) (4 points) For $A \in \mathbb{R}^{n \times n}$, prove the following relations between 2-norm and Frobenius norm³,

$$||A||_2 \le ||A||_F \le \sqrt{n} \, ||A||_2$$
.

Hint: You may use, without proof, that $\operatorname{tr}(A^TA) = \sum_{i=1}^n \lambda_i(A^TA)$, where $\lambda_1(A^TA) \ge \lambda_2(A^TA) \ge \cdots \ge \lambda_n(A^TA) \ge 0$ are the eigenvalues of A^TA .

(d) (4 points) Prove that

$$B_K^{n^2} \subseteq V(\mathbb{M}_K^{n \times n}) \subseteq B_{\sqrt{n}K}^{n^2}.$$

(e) (4 points) Let (X, ρ_X) be a metric space and consider the compact sets C_1, C_2 with

¹The notation $f(\epsilon) \approx g(\epsilon)$ expresses that there exist c_1, c_2 , with $0 < c_1 \le c_2$, and $\epsilon_0 > 0$ such that $c_1 g(\epsilon) \le f(\epsilon) \le c_2 g(\epsilon)$, for all $\epsilon \in (0, \epsilon_0)$.

²For the vector $x \in \mathbb{R}^d$, we denote its j-th entry by x_j or $(x)_j$. For the matrix $A \in \mathbb{R}^{n \times n}$, we denote its entry in row i and column j by $A_{i,j}$.

³For the matrix $A \in \mathbb{R}^{n \times n}$, we denote its Frobenius norm by $||A||_F = \sqrt{\sum_{i=1}^n \sum_{j=1}^n (A_{i,j})^2}$, and its trace by $\operatorname{tr}(A) = \sum_{i=1}^n A_{i,i}$

 $C_1 \subseteq C_2 \subseteq X$. Prove that

$$M(\epsilon; \mathcal{C}_1, \rho_X) \leq M(\epsilon; \mathcal{C}_2, \rho_X).$$

(f) (8 points) Derive the scaling behavior of $\log N(\epsilon; \mathbb{M}_K^{n \times n}, \|\cdot\|_2)$. *Hint: Use results from subproblems (a)-(e), and Lemmata H12 and H13 from the Handout.*

Problem 4 (25 points)

Let $(\mathcal{F}, \langle \cdot, \cdot \rangle)$ be a Hilbert space of functions mapping from the non-empty set $\mathcal{X} \subseteq \mathbb{R}^d$ into \mathbb{R} . Suppose that there exists a function $k \colon \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ such that $\phi_x(\cdot) \coloneqq k(x, \cdot) \in \mathcal{F}$ for all $x \in \mathcal{X}$, and the so-called *reproducing property*

$$f(x) = \langle f, \phi_x \rangle$$

holds for all $f \in \mathcal{F}$ and all $x \in \mathcal{X}$. Consider the function class $\mathcal{F}_b := \{f \in \mathcal{F} : ||f|| \le b\}$ for some b > 0, where $||f|| := \sqrt{\langle f, f \rangle}$, $f \in \mathcal{F}$. In this problem, we study the misclassification probability of classifiers of the form $x \mapsto \text{sign}(f(x))$, $x \in \mathcal{X}$, with $f \in \mathcal{F}_b$. Here, for $a \in \mathbb{R}$, sign(a) = -1 if a < 0, and sign(a) = 1 if $a \ge 0$.

(a) (8 points) With the empirical Rademacher complexity according to Definition H14, show that for $\{x_i\}_{i=1}^n \subseteq \mathcal{X}$,

$$\mathcal{R}\left(\mathcal{F}_b\left(\left\{x_i\right\}_{i=1}^n\right)/n\right) \le \frac{b}{n}\sqrt{\operatorname{tr}(K)},$$

where $K := (k(x_i, x_j))_{i,j=1}^n \in \mathbb{R}^{n \times n}$.

(b) (5 points) For $\gamma > 0$, let

$$\rho_{\gamma}(u) \coloneqq \begin{cases} 0, & \text{if } u \leq -\gamma, \\ 1 + u/\gamma, & \text{if } -\gamma < u \leq 0, \quad u \in \mathbb{R}. \\ 1, & \text{if } u > 0, \end{cases}$$

Consider the function class $\mathcal{H} := \{h \colon \mathcal{X} \times \{-1,1\} \to \mathbb{R} \colon h(x,y) = \rho_{\gamma}(-yf(x)), \forall (x,y) \in \mathcal{X} \times \{-1,1\}, f \in \mathcal{F}_b\}$. Show that for $\{(x_i,y_i)\}_{i=1}^n \subseteq \mathcal{X} \times \{-1,1\}$,

$$\mathcal{R}\left(\mathcal{H}\left(\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{n}\right) / n\right) \leq \frac{1}{\gamma} \mathcal{R}\left(\mathcal{F}_{b}\left(\left\{x_{i}\right\}_{i=1}^{n}\right) / n\right).$$

Hint: Apply Lemma H16.

(c) (7 points) Let \mathcal{G} be a class of real-valued functions on the non-empty set \mathcal{Z} taking values in [0,1], and let $\{Z_i\}_{i=1}^n$ be i.i.d. random variables taking values in \mathcal{Z} . Deduce from Theorem H17 that for $\delta > 0$, with probability $\geq 1 - \delta$,

$$\sup_{g \in \mathcal{G}} \left(\mathbb{E}[g(Z)] - \frac{1}{n} \sum_{i=1}^{n} g(Z_i) \right) \le 2\mathcal{R} \left(\mathcal{G} \left(\{Z_i\}_{i=1}^n \right) / n \right) + 3\sqrt{\frac{2 \log(2/\delta)}{n}}.$$

Here, and throughout this problem, $\log(\cdot)$ denotes the logarithm to base e. *Hint: Apply Lemma H18 and recall from the lecture that* $\mathcal{Z}^n \to \mathbb{R}, (z_1, \dots, z_n) \mapsto$ $\mathcal{R}\left(\mathcal{G}\left(\{z_i\}_{i=1}^n\right)/n\right)$ satisfies (4) in Lemma H18 with L=2/n. You may use this result without proof.

(d) (5 points) Given a collection of n i.i.d. samples $\{(X_i, Y_i)\}_{i=1}^n \subseteq \mathcal{X} \times \{-1, 1\}$, show that for $\delta > 0$, with probability $\geq 1 - \delta$, for all $f \in \mathcal{F}_b$,

$$\mathbb{P}(\operatorname{sign}(f(X)) \neq Y) \leq \frac{1}{n} \sum_{i=1}^{n} \rho_{\gamma}(-Y_{i}f(X_{i})) + \frac{2b}{n\gamma} \sqrt{\operatorname{tr}(\mathsf{K})} + 3\sqrt{\frac{2\log(2/\delta)}{n}},$$

where $\mathsf{K}\coloneqq (k(X_i,X_j))_{i,j=1}^n\in\mathbb{R}^{n\times n}$.

Hint: Use the results of subproblems (a)-(c).