

Handout Examination on Mathematics of Information August 4, 2025

Definition H1. The spark of the matrix $D \in \mathbb{C}^{M \times N}$, denoted by $\operatorname{spark}(D)$, is defined as the cardinality of the smallest set of linearly dependent columns of D.

Definition H2. The 1-operator norm of the matrix $D \in \mathbb{C}^{M \times N}$ is defined as

$$||D||_{1,1} = \max_{v \in \mathbb{C}^N} \frac{||Dv||_1}{||v||_1}.$$

Lemma H3. For $D \in \mathbb{C}^{M \times N}$ and $v \in \mathbb{C}^N$, we have

$$||Dv||_1 \le ||D||_{1,1} ||v||_1.$$

Lemma H4. For the matrix $D \in \mathbb{C}^{M \times N}$, we have

$$||D||_{1,1} = \max_{\ell \in \{1,\dots,N\}} \sum_{j=1}^{M} |D_{j,\ell}| = \max_{\ell \in \{1,\dots,N\}} ||d_{\ell}||_{1},$$

with d_{ℓ} denoting the ℓ -th column of D.

Lemma H5. Let $G \in \mathbb{C}^{M \times M}$ be such that $||G||_{1,1} < 1$. Then, we have

$$\|(\mathbb{I}+G)^{-1}\|_{1,1} \le \frac{1}{1-\|G\|_{1,1}},$$

where \mathbb{I} denotes the identity matrix of size $M \times M$.

Definition H6. The recovery problem (P1) for the matrix $D \in \mathbb{C}^{M \times N}$ and the vector $x \in \mathbb{C}^N$ is defined by

$$\underset{\widehat{x}}{\arg\min} \|\widehat{x}\|_{1} \quad \text{subject to } D\widehat{x} = Dx. \tag{P1}$$

We say that (P1) uniquely recovers x iff the minimizer of (P1) is unique and equal to x.

Theorem H7 (Homework sheet 5, Problem 3b). Consider (P1) for the matrix $D \in \mathbb{C}^{M \times N}$ and the vector $x \in \mathbb{C}^N$ and let $S \subset \{1, ..., N\}$ be the support set of x. (P1) uniquely recovers x if the following sufficient condition holds:

$$\mathcal{N}(D_S) = \{0\}$$
 and $\left| \langle (D_S)^{\dagger} d_k, \operatorname{sgn}(x_S) \rangle \right| < 1, \ \forall k \in S^c,$

where d_j denotes the j-th column of D and $(D_S)^{\dagger} := ((D_S)^H D_S)^{-1} (D_S)^H$ is the pseudo-inverse of the matrix D_S , which is obtained from D by keeping only the columns indexed by S. Furthermore, $\operatorname{sgn}(x_S)$ is the vector obtained from x by collecting $\operatorname{sgn}(x_j) := \frac{x_j}{|x_j|}$, $j \in S$, in a |S|-dimensional vector.

Lemma H8. Let $d \in \mathbb{N}$ and $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$. It holds that

$$|\langle x, y \rangle| \le ||x||_1 ||y||_{\infty}, \quad x, y \in \mathbb{K}^d.$$

Definition H9 (Covering number). Let (X, ρ) be a metric space and let $C \subseteq X$ be compact. The set $\{x_1, x_2, \ldots, x_N\} \subseteq C$ is an ϵ -covering for (C, ρ) if, for each $x \in C$, there exists an $i \in \{1, 2, \ldots, N\}$ so that $\rho(x, x_i) \leq \epsilon$. The ϵ -covering number $N(\epsilon; C, \rho)$ is the cardinality of a smallest ϵ -covering for (C, ρ) .

Definition H10 (Packing number). Let (X, ρ) be a metric space and let $C \subseteq X$ be compact. The set $\{x_1, x_2, \ldots, x_M\} \subseteq C$ is an ϵ -packing for (C, ρ) if, for every pair $i, j \in \{1, 2, \ldots, M\}$ with $i \neq j$, we have $\rho(x_i, x_j) > \epsilon$. The ϵ -packing number $M(\epsilon; C, \rho)$ is the cardinality of a largest ϵ -packing for (C, ρ) .

Definition H11 (Isometric isomorphism). Let $(X, \|\cdot\|_X)$ and $(Y, \|\cdot\|_Y)$ be normed vector spaces and let $T: X \to Y$ be a linear mapping. We say that T is an isometric isomorphism if and only if T is bijective and an isometry, i.e., for every $x \in X$, we have $\|x\|_X = \|T(x)\|_Y$.

Lemma H12. Let (X, ρ_X) and (Y, ρ_Y) be metric spaces and consider the compact sets $\mathcal{C}_X \subseteq X$ and $\mathcal{C}_Y \subseteq Y$. Assume that there exists an isometric isomorphism $f: \mathcal{C}_X \to \mathcal{C}_Y$, i.e., f is bijective and for every pair $a, b \in \mathcal{C}_X$, one has $\rho_Y(f(a), f(b)) = \rho_X(a, b)$. Then,

$$N(\epsilon; \mathcal{C}_X, \rho_X) = N(\epsilon; \mathcal{C}_Y, \rho_Y)$$
 and $M(\epsilon; \mathcal{C}_X, \rho_X) = M(\epsilon; \mathcal{C}_Y, \rho_Y).$ (1)

Lemma H13. Let (X, ρ_1) be a metric space and consider a compact set $C_X \subseteq X$. Assume that for another metric ρ_2 on X, there exist constants $C_1 \ge C_2 > 0$ such that for all $a, b \in C_X$,

$$C_2\rho_1(a,b) \le \rho_2(a,b) \le C_1\rho_1(a,b),$$
 (2)

then C_X is also compact under ρ_2 . Moreover, we have

$$N(\epsilon/C_2; \mathcal{C}_X, \rho_1) \le N(\epsilon; \mathcal{C}_X, \rho_2) \le N(\epsilon/C_1; \mathcal{C}_X, \rho_1). \tag{3}$$

Definition H14. *Let* \mathbb{N} *be the set of positive integers and fix* $n \in \mathbb{N}$. *The* empirical Rademacher complexity *of the class* \mathcal{F} *of functions* $f: \mathcal{X} \to \mathbb{R}$ *is defined as*

$$\mathcal{R}\left(\mathcal{F}\left(\left\{x_{i}\right\}_{i=1}^{n}\right)/n\right) \coloneqq \frac{1}{n}\mathbb{E}_{\varepsilon}\left[\sup_{f\in\mathcal{F}}\left|\sum_{i=1}^{n}\varepsilon_{i}f(x_{i})\right|\right],$$

where $\{x_i\}_{i=1}^n \subseteq \mathcal{X}$ is fixed and $\{\varepsilon_i\}_{i=1}^n$ is a sequence of Rademacher random variables, i.e., ε_i takes the values +1 and -1, each with probability 1/2, for $i \in \{1, \ldots, n\}$. Given a collection of random variables $\{X_i\}_{i=1}^n$, the Rademacher complexity of \mathcal{F} is given by

$$\mathcal{R}_n(\mathcal{F}) = \mathbb{E}\left[\mathcal{R}\left(\mathcal{F}\left(\{X_i\}_{i=1}^n\right)/n\right)\right].$$

Lemma H15 (Jensen's inequality). Let X be an integrable real-valued random variable, and suppose that $\varphi \colon \mathbb{R} \to \mathbb{R}$ is convex. Then,

$$\varphi(\mathbb{E}[X]) \le \mathbb{E}[\varphi(X)].$$

Lemma H16. Let $\phi \colon \mathbb{R} \to \mathbb{R}$ be an L-Lipschitz function and \mathcal{F} a class of functions. Let $\phi \circ \mathcal{F} \coloneqq \{\phi \circ f \mid f \in \mathcal{F}\}$. Then, we have

$$\mathcal{R}\left(\left(\phi \circ \mathcal{F}\right)\left(\left\{x_{i}\right\}_{i=1}^{n}\right)/n\right) \leq L\mathcal{R}\left(\mathcal{F}\left(\left\{x_{i}\right\}_{i=1}^{n}\right)/n\right).$$

Theorem H17. Let \mathcal{G} be a class of real-valued functions on the non-empty set \mathcal{Z} taking values in [0,1], and let $\{Z_i\}_{i=1}^n$ be i.i.d. random variables taking values in \mathcal{Z} . For $\delta'>0$, with probability $\geq 1-\delta'$,

$$\sup_{g \in \mathcal{G}} \left(\mathbb{E}[g(Z)] - \frac{1}{n} \sum_{i=1}^{n} g(Z_i) \right) \le 2\mathcal{R}_n(\mathcal{G}) + \sqrt{\frac{2 \log(1/\delta')}{n}}.$$

Here, $\log(\cdot)$ *denotes the logarithm to base* e.

Lemma H18 (One-sided bounded difference inequality). *Let* \mathcal{Z} *be a non-empty set, and suppose that* $f: \mathcal{Z}^n \to \mathbb{R}$ *is such that*

$$|f(z_1, \dots, z_{i-1}, z_i, z_{i+1}, \dots, z_n) - f(z_1, \dots, z_{i-1}, y, z_{i+1}, \dots, z_n)| \le L,$$
(4)

for every $i \in \{1, ..., n\}$, every $(z_1, ..., z_n) \in \mathbb{Z}^n$, and every $y \in \mathbb{Z}$. Also suppose that the random vector $Z = (Z_1, ..., Z_n)$ has i.i.d. components. Then, we have

$$\mathbb{P}\left[\mathbb{E}[f(Z)] - f(Z) > \epsilon\right] \le e^{-\frac{2\epsilon^2}{nL^2}}, \quad \forall \epsilon \ge 0.$$