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Definition H1. The spark of the matrix D € CM*N, denoted by spark(D), is defined as the
cardinality of the smallest set of linearly dependent columns of D.

Definition H2. The 1-operator norm of the matrix D € CM*N is defined as
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Lemma H3. For D € CM*N gnd v € CV, we have
[ Dvlly < [|D[1allv]1-

Lemma H4. For the matrix D € CM*N  we have
D11 = max Z [ Dje| = ax ||d4||1,

with d, denoting the (-th column of D.

Lemma H5. Let G € CM*M pe such that |G|y 1 < 1. Then, we have
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where 1 denotes the identity matrix of size M x M.

Definition Hé6. The recovery problem (P1) for the matrix D € CM*¥ and the vector x € CV
is defined by
argmin ||Z||y  subject to D¥ = Dz. (P1)

We say that (P1) uniquely recovers x iff the minimizer of (P1) is unique and equal to x.

Theorem H7 (Homework sheet 5, Problem 3b). Consider (P1) for the matrix D € CM*N
and the vector x € C~ and let S C {1, ..., N} be the support set of x. (P1) uniquely recovers
x if the following sufficient condition holds:

N(Dg)={0}  and [(Ds)" di,sgn(zs))| < 1, Vk € S°,



where d; denotes the j-th column of D and (Dg)' := (D))" Dg)~H(Dg)" is the pseudo-
inverse of the matrix Dg, which is obtained from D by keeping only the columns indexed by S.
Furthermore, sgn(xs) is the vector obtained from x by collecting sgn(x;) := jeSsS, ina
|S|-dimensional vector.
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Lemma HS8. Let d € Nand K € {R, C}. It holds that
[z, )| < zllillylloo, 2,y € KT

Definition H9 (Covering number). Let (X, p) be a metric space and let C C X be compact.
The set {z1,22,...,xx} C C is an e-covering for (C, p) if, for each x € C, there exists an
i€{l,2,...,N} sothat p(z,z;) < e. The e-covering number N (¢;C, p) is the cardinality of a
smallest e-covering for (C, p).

Definition H10 (Packing number). Let (X, p) be a metric space and let C C X be compact.
The set {x1,x2,...,xm} C C is an e-packing for (C, p) if, for every pair i,5 € {1,2,..., M}
with i # j, we have p(x;,x;) > €. The e-packing number M (¢;C, p) is the cardinality of a
largest e-packing for (C, p).

Definition H11 (Isometric isomorphism). Let (X, ||-||y) and (Y, ||-|ly-) be normed vector
spaces and let T : X — Y be a linear mapping. We say that T' is an isometric isomorphism if
and only if T' is bijective and an isometry, i.e., for every v € X, we have ||z| = || T(z)|ly-

Lemma H12. Let (X, px) and (Y, py) be metric spaces and consider the compact sets Cx C X
and Cy C Y. Assume that there exists an isometric isomorphism f : Cx — Cy, ie., [ is
bijective and for every pair a,b € Cx, one has py (f(a), f(b)) = px(a,b). Then,

N(e;Cx,px) = N(&;Cy,py) and M(e;Cx,px) = M(€;Cy, py). (1)

Lemma H13. Let (X, p1) be a metric space and consider a compact set Cx C X. Assume that
for another metric ps on X, there exist constants Cy; > Cy > 0 such that for all a,b € Cx,

02/71((1, b) < P2(a> b) < Clpl(a’a b)? (2)
then Cx is also compact under ps. Moreover, we have
N(€/Ca;Cx,p1) < N(€Cx,p2) < N(e/C1;Cx, p1). 3)

Definition H14. Let N be the set of positive integers and fix n € N. The empirical Rademacher
complexity of the class F of functions f: X — R is defined as

R(F ({z:}™,) /n) = —E. Zgl flx:)

sup




where {z;}?_, C X is fixed and {e;}}", is a sequence of Rademacher random variables, i.e., ¢,
takes the values +1 and —1, each with probability 1/2, for i € {1, ... ,n}. Given a collection of
random variables {X;}?_,, the Rademacher complexity of F is given by

Ru(F) = E[R(F({X:}iLy) /n)].

Lemma H15 (Jensen’s inequality). Let X be an integrable real-valued random variable, and
suppose that ¢: R — R is convex. Then,

p(E[X]) < Elp(X)].

Lemma H16. Let ¢: R — R be an L-Lipschitz function and F a class of functions. Let
poF ={¢o f|feF}. Then, we have

R((¢oF)({wi}iiy) /n) < LR(F ({zi}ily) /n) -

Theorem H17. Let G be a class of real-valued functions on the non-empty set Z taking values
n [0,1], and let {Z;} | be i.i.d. random variables taking values in Z. For §' > 0, with
probability > 1 — ¢,
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Here, log(-) denotes the logarithm to base e.

Lemma H18 (One-sided bounded difference inequality). Let Z be a non-empty set, and
suppose that f: Z" — R is such that

‘f(Zl, ce ey i1y Ry Rigly e e - ,Zn> — f(Zl, ce ey Ri—1,Ys Zi1y - - - ,Zn)| S L, (4:)
forevery i € {1,...,n}, every (z,...,z,) € 2", and every y € Z. Also suppose that the
random vector Z = (Zy, ..., Z,) has i.i.d. components. Then, we have
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PE[f(2)] - [(Z) > €] < e niF, Ve>0.



