

Solutions to the

Examination on Mathematics of Information August 4, 2025

Problem 1

(a) We first show that $\{\delta_x : x \in \{0,1\}^n\}$ is a linearly independent set. Let $\{\lambda_x \in \mathbb{C} : x \in \{0,1\}^n\}$ be such that

$$\sum_{x \in \{0,1\}^n} \lambda_x \delta_x(y) = 0, \quad \forall y \in \{0,1\}^n.$$

Then, for all $y \in \{0,1\}^n$, we have

$$0 = \sum_{x \in \{0,1\}^n} \lambda_x \delta_x(y) = \lambda_y. \tag{1}$$

Therefore, $\lambda_y = 0$ for all $y \in \{0,1\}^n$, which implies that $\{\delta_x : x \in \{0,1\}^n\}$ is a linearly independent set. Now, we show that $\{\delta_x : x \in \{0,1\}^n\}$ spans F_n by noting that every $f \in F_n$ satisfies

$$f(y) = \sum_{x \in \{0,1\}^n} f(x)\delta_x(y), \quad \forall y \in \{0,1\}^n.$$
 (2)

Since $\{\delta_x : x \in \{0,1\}^n\}$ is a linearly independent set and spans F_n , it is a basis for F_n .

(b) Let $S, T \in \mathcal{P}(n)$ and let $x \in \{0, 1\}^n$. Then,

$$\chi_{S}(x)\chi_{T}(x) = \prod_{i \in S} (-1)^{x_{i}} \prod_{j \in T} (-1)^{x_{j}}$$

$$= \prod_{i \in (S \setminus T) \cup (S \cap T)} (-1)^{x_{i}} \prod_{j \in (T \setminus S) \cup (S \cap T)} (-1)^{x_{j}}$$

$$= \prod_{i \in S \setminus T} (-1)^{x_{i}} \prod_{i \in S \cap T} (-1)^{x_{i}} \prod_{i \in T \setminus S} (-1)^{x_{i}} \prod_{i \in S \cap T} (-1)^{x_{i}}$$

$$= \prod_{i \in (S \setminus T) \cup (T \setminus S)} (-1)^{x_{i}} \left(\prod_{i \in S \cap T} (-1)^{x_{i}} \right)^{2}$$

$$\stackrel{(a)}{=} \prod_{i \in (S \setminus T) \cup (T \setminus S)} (-1)^{x_{i}}$$

$$= \chi_{(S \setminus T) \cup (T \setminus S)}(x), \qquad (3)$$

where (a) is by $\prod_{i \in S \cap T} (-1)^{x_i} \in \{-1, 1\}$.

(c) For fixed $S \neq \emptyset$, fix an $i \in \{1, ..., n\}$ such that $i \in S$. Note that $\chi_S(x) = (-1)^{x_i} \prod_{j \in S \setminus \{i\}} (-1)^{x_j}$, for all $x \in \{0, 1\}^n$. Then,

$$\sum_{x \in \{0,1\}^n} \chi_S(x) \chi_\varnothing(x) \stackrel{(a)}{=} \sum_{x \in \{0,1\}^n} \chi_S(x) = \sum_{x \in \{0,1\}^n} \left((-1)^{x_i} \prod_{j \in S \setminus \{i\}} (-1)^{x_j} \right)$$

$$\stackrel{(b)}{=} \sum_{x_i \in \{0,1\}} \sum_{(x_1, \dots, x_{i-1}, x_{i+1}, \dots, x_n) \in \{0,1\}^{n-1}} \left((-1)^{x_i} \prod_{j \in S \setminus \{i\}} (-1)^{x_j} \right)$$

$$= \sum_{x_i \in \{0,1\}} (-1)^{x_i} \cdot I = (1-1) \cdot I = 0,$$

$$(6)$$

with

$$I = \sum_{(x_1, \dots, x_{i-1}, x_{i+1}, \dots, x_n) \in \{0, 1\}^{n-1}} \prod_{j \in S \setminus \{i\}} (-1)^{x_j},$$

where (a) follows from $\chi_{\varnothing}(x)=1$, for all $x\in\{0,1\}^n$, and (b) is obtained by reordering the sum $\sum_{x\in\{0,1\}^n}$. In summary, we can conclude that

$$\langle \chi_S, \chi_\varnothing \rangle = \frac{1}{2^n} \sum_{x \in \{0,1\}^n} \chi_S(x) \chi_\varnothing(x) = \frac{1}{2^n} \cdot 0 = 0.$$
 (7)

(d) Consider $S, T \in \mathcal{P}(n)$, with $S \neq T$. From subproblem (b), we have

$$\langle \chi_S, \chi_T \rangle = \frac{1}{2^n} \sum_{x \in \{0,1\}^n} \chi_S(x) \overline{\chi_T(x)} = \frac{1}{2^n} \sum_{x \in \{0,1\}^n} \chi_S(x) \chi_T(x)$$

$$= \frac{1}{2^n} \sum_{x \in \{0,1\}^n} \chi_{(S \setminus T) \cup (T \setminus S)}(x) = \frac{1}{2^n} \sum_{x \in \{0,1\}^n} \chi_{(S \setminus T) \cup (T \setminus S)}(x) \cdot 1$$

$$= \langle \chi_{(S \setminus T) \cup (T \setminus S)}, \chi_\varnothing \rangle. \tag{8}$$

We now observe that $(S \setminus T) \cup (T \setminus S) \neq \emptyset$ as otherwise $S \setminus T = T \setminus S = \emptyset$, i.e., S = T, which stands in contradiction to the assumption $S \neq T$. From subproblem (c), we hence get

$$\langle \chi_S, \chi_T \rangle = \langle \chi_{(S \setminus T) \cup (T \setminus S)}, \chi_\varnothing \rangle = 0. \tag{9}$$

Moreover,

$$\langle \chi_S, \chi_S \rangle = \frac{1}{2^n} \sum_{x \in \{0,1\}^n} \chi_S(x) \overline{\chi_S(x)} = \frac{1}{2^n} \sum_{x \in \{0,1\}^n} (\chi_S(x))^2 = \frac{1}{2^n} \sum_{x \in \{0,1\}^n} 1 = 1, \quad (10)$$

which establishes that \mathcal{G} is an orthonormal set of functions. As $\#\mathcal{G} = 2^n = \#\{\delta_x : x \in \{0,1\}^n\}$ and all orthonormal bases of a finite-dimensional vector space have the same cardinality, it follows that \mathcal{G} is an orthonormal basis for F_n .

(e) Let $S \in \mathcal{P}(n)$ and let $x \in \{0,1\}^n$. Then, we have

$$\widetilde{\chi}_S(x) = \prod_{i \in S} (\omega_1)^{x_i} = \prod_{i \in S} (\exp(i\pi))^{x_i} = \prod_{i \in S} (-1)^{x_i} = \chi_S(x), \tag{11}$$

which shows that $\mathcal{H}_1 = \mathcal{G}$. Therefore, \mathcal{H}_1 is an orthonormal basis by subproblem (d) and hence \mathcal{H}_1 is a tight frame with frame bounds A = B = 1.

(f) Let $k \geq 2$. The set of eigenvalues of \mathbb{T} is given by

$$\{\lambda_S := h(|S|) : S \in \mathcal{P}(n)\},\tag{12}$$

where

$$h(\ell) = 2^{n(k-1)} (1 + C_k)^{\ell} (1 - C_k)^{n-\ell}, \quad \ell \in \{0, \dots, n\},$$
(13)

with $C_k = \left(\cos\left(\frac{\pi}{k+1}\right)\right)^{k+1}$. Following the hint in the problem statement, we will show that λ_\varnothing and $\lambda_{\{1,\dots,n\}}$ are positive and are respectively the minimum and maximum eigenvalues. Noting that thanks to $k \geq 2$, $C_k \in (0,1)$, it follows that $1 - C_k, 1 + C_k > 0$, so that $\lambda_S > 0$, for all $S \in \mathcal{P}(n)$. In particular, the positivity of λ_\varnothing and $\lambda_{\{1,\dots,n\}}$ is established. Now, $C_k \in (0,1)$ also implies that $1 + C_k > 1 - C_k$,

and hence $h(\ell)$ is a strictly increasing function as

$$\frac{h(\ell)}{h(\ell-1)} = \frac{1+C_k}{1-C_k} > 1, \quad \ell \in \{1,\dots,n\}.$$
 (14)

Therefore, the minimum and maximum of $h(\ell)$ are attained at $\ell=0$ and $\ell=n$, respectively. In summary, $\lambda_\varnothing=h(0)$ and $\lambda_{\{1,\dots,n\}}=h(n)$ are the minimum and maximum eigenvalues of $\mathbb T$, respectively, and they are both positive. We hence get

$$\inf_{f \in F_n \setminus \{0\}} \frac{\langle \mathbb{T}f, f \rangle}{\|f\|^2} = \lambda_{\varnothing} > 0, \tag{15}$$

$$\sup_{f \in F_n \setminus \{0\}} \frac{\langle \mathbb{T}f, f \rangle}{\|f\|^2} = \lambda_{\{1, \dots, n\}} > 0.$$
 (16)

In summary, we can conclude that

$$\lambda_{\varnothing} \|f\|^2 \le \langle \mathbb{T}f, f \rangle = \sum_{\mathbf{S} \in \mathcal{P}(n)^k} |\langle f, \widetilde{\chi}_{\mathbf{S}} \rangle|^2 \le \lambda_{\{1, \dots, n\}} \|f\|^2, \quad \forall f \in F_n,$$
 (17)

so \mathcal{H}_k is a frame for F_n with frame bounds λ_{\varnothing} and $\lambda_{\{1,\dots,n\}}$. As $h(\ell)$ is strictly increasing, the frame bounds are not equal, so that \mathcal{H}_k is not a tight frame.

Problem 2

(a) Arbitrarily fix $S \subset \{1, ..., N\}$ with $|S| \leq m$. Let $\ell^* = \arg \max_{\ell \in S} \sum_{j \in S \setminus \{\ell\}} |\langle d_\ell, d_j \rangle|$ and define $\widehat{S} = S \setminus \{\ell^*\}$. Then, we have

$$\begin{split} \max_{\ell \in S} \sum_{j \in S \setminus \{\ell\}} |\langle d_{\ell}, d_{j} \rangle| &= \sum_{j \in \widehat{S}} |\langle d_{\ell^{*}}, d_{j} \rangle| \\ &\leq \max_{\ell' \in \widehat{S}^{c}} \sum_{j \in \widehat{S}} |\langle d_{\ell'}, d_{j} \rangle| \qquad \text{(since $\ell^{*} \in \widehat{S}^{c}$)} \\ &\leq \max_{|S'| \leq m-1} \max_{\ell' \in S'^{c}} \sum_{j \in S'} |\langle d_{\ell'}, d_{j} \rangle| \qquad \text{(since $|\widehat{S}| = |S| - 1 } \leq m-1) \\ &= \mu_{m-1}(D), \end{split}$$

where the maximum in the last inequality is over all subsets $S' \subseteq \{1, ..., N\}$ with cardinality less than or equal to m-1. As S was arbitrary, this completes the proof.

(b) Towards a contradiction assume that $\mathrm{spark}(D) \leq m$. Then, there exists a set $J \subseteq \{1,\ldots,N\}$ with $|J| \leq m$ such that the corresponding columns of D are linearly dependent. Hence, there are $\alpha_j \in \mathbb{C}, j \in J$, not all equal to zero such that

$$\sum_{j \in J} \alpha_j d_j = 0.$$

Let $j^* \in J$ be the index of the coefficient with maximal absolute value. We can rewrite the above equation as

$$d_{j^*} = -\sum_{j \in J \setminus \{j^*\}} \frac{\alpha_j}{\alpha_{j^*}} d_j,$$

which, upon taking the inner product with d_{j^*} on both sides and using $||d_{j^*}||_2 = 1$, yields

$$1 = -\sum_{j \in J \setminus \{j^*\}} \frac{\alpha_j}{\alpha_{j^*}} \langle d_{j^*}, d_j \rangle.$$

We thus obtain the contradiction as follows

$$1 = \left| -\sum_{j \in J \setminus \{j^*\}} \frac{\alpha_j}{\alpha_{j^*}} \langle d_{j^*}, d_j \rangle \right|$$

$$\leq \sum_{j \in J \setminus \{j^*\}} \left| \frac{\alpha_j}{\alpha_{j^*}} \right| |\langle d_{j^*}, d_j \rangle| \qquad \text{(triangle inequality)}$$

$$\leq \sum_{j \in J \setminus \{j^*\}} |\langle d_{j^*}, d_j \rangle| \qquad \text{(since } |\alpha_j| \leq |\alpha_{j^*}|)$$

$$\leq \max_{j' \in J} \sum_{j \in J \setminus \{j'\}} |\langle d_{j'}, d_j \rangle| \qquad \text{(since } j^* \in J)$$

$$\leq \mu_{m-1}(D) \qquad \text{(previous subproblem)}$$

$$\leq \mu_{m-1}(D) + \mu_m(D) \qquad \text{(since } \mu_m(D) \geq 0)$$

$$< 1. \qquad \text{(by (4) in the problem statement)}$$

As S was arbitrary, this completes the proof.

(c) We rewrite

$$\mu_{m-1}(D) + \mu_m(D) < 1$$

$$\Leftrightarrow \qquad \qquad \mu_m(D) < 1 - \mu_{m-1}(D)$$

$$\Leftrightarrow \qquad \qquad \frac{\mu_m(D)}{1 - \mu_{m-1}(D)} < 1,$$

where we used $0 \le \mu_m(D) < 1 - \mu_{m-1}(D)$. Next, arbitrarily fix $S \subset \{1, \dots, N\}$ with $|S| \le m$. We have

$$\max_{\ell \in S^c} \sum_{j \in S} |\langle d_{\ell}, d_j \rangle| \stackrel{(*)}{\leq} \max_{|S'| \leq m} \max_{\ell \in S'^c} \sum_{j \in S'} |\langle d_{\ell}, d_j \rangle| = \mu_m(D),$$

where in (*) we take the maximum over all subsets $S' \subseteq \{1, ..., N\}$ with cardinality less than or equal to m. Furthermore, by subproblem (a),

$$1 - \max_{\ell \in S} \sum_{j \in S \setminus \{\ell\}} |\langle d_{\ell}, d_j \rangle| \ge 1 - \mu_{m-1}(D).$$

Putting everything together, we obtain

$$\frac{\max_{\ell \in S^c} \sum_{j \in S} |\langle d_{\ell}, d_j \rangle|}{1 - \max_{\ell \in S} \sum_{j \in S \setminus \{\ell\}} |\langle d_{\ell}, d_j \rangle|} \le \frac{\mu_m(D)}{1 - \mu_{m-1}(D)} < 1.$$

As *S* was arbitrary, this completes the proof.

(d) Arbitrarily fix $S \subset \{1, ..., N\}$ with $|S| \leq m$, and define the matrix $G \in \mathbb{C}^{|S| \times |S|}$

according to

$$G_{j,\ell} = egin{cases} \langle d_\ell, d_j \rangle, & ext{if } j
eq \ell, \ 0, & ext{if } j = \ell \end{cases}.$$

Next, note that, by Lemma H4, $||G||_{1,1} = \max_{\ell \in S} \sum_{j \in S \setminus \{\ell\}} |\langle d_{\ell}, d_{j} \rangle|$ and thus, by subproblem (a) and (4) in the problem statement, we have

$$||G||_{1,1} \le \mu_{m-1}(D) < 1.$$

Furthermore, we write

$$((D_S)^H D_S) = \mathbb{I} + G.$$

and apply Lemma H5 to get

$$\|((D_S)^H D_S)^{-1}\|_{1,1} = \|(\mathbb{I} + G)^{-1}\|_{1,1}$$

$$\leq \frac{1}{1 - \|G\|_{1,1}}$$

$$= \frac{1}{1 - \max_{\ell \in S} \sum_{j \in S \setminus \{\ell\}} |\langle d_\ell, d_j \rangle|}.$$
(18)

Now we compute

$$\max_{\ell \in S^{c}} \| (D_{S})^{\dagger} d_{\ell} \|_{1} = \max_{\ell \in S^{c}} \| ((D_{S})^{H} D_{S})^{-1} (D_{S})^{H} d_{\ell} \|_{1}
\leq \max_{\ell \in S^{c}} \| ((D_{S})^{H} D_{S})^{-1} \|_{1,1} \| (D_{S})^{H} d_{\ell} \|_{1}$$

$$= \| ((D_{S})^{H} D_{S})^{-1} \|_{1,1} \max_{\ell \in S^{c}} \| (D_{S})^{H} d_{\ell} \|_{1}$$

$$= \| ((D_{S})^{H} D_{S})^{-1} \|_{1,1} \max_{\ell \in S^{c}} \sum_{j \in S} |\langle d_{\ell}, d_{j} \rangle|$$

$$\leq \frac{\max_{\ell \in S^{c}} \sum_{j \in S} |\langle d_{\ell}, d_{j} \rangle|}{1 - \max_{\ell \in S} \sum_{j \in S \setminus \{\ell\}} |\langle d_{\ell}, d_{j} \rangle|}$$
by (18)
$$< 1.$$
by subproblem (c)

As *S* was arbitrary, this completes the proof.

(e) Let S with $|S| \leq m$ be the support set of x. We have, for all $\ell \in S^c$, that

$$|\langle (D_S)^\dagger d_\ell, \operatorname{sgn}(x_S) \rangle| \le \|(D_S)^\dagger d_\ell\|_1 \|\operatorname{sgn}(x_S)\|_\infty$$
 by Lemma H8
$$= \|(D_S)^\dagger d_\ell\|_1$$

$$< 1.$$
 by subproblem (d)

Furthermore, $\mathcal{N}(D_S) = \{0\}$, as by subproblem (b) every set of m columns of D must be linearly independent. We can thus apply Theorem H7 to conclude that

(P1) uniquely recovers x.

Problem 3

(a) We have

$$M(2\epsilon; \mathbb{M}_K^{n \times n}, \|\cdot\|_2) \le N(\epsilon; \mathbb{M}_K^{n \times n}, \|\cdot\|_2) \le M(\epsilon; \mathbb{M}_K^{n \times n}, \|\cdot\|_2).$$

(b) Surjectivity of V follows from the definition of $V(\mathbb{M}_K^{n\times n})$. To verify that V is also an injection, arbitrarily pick two elements $A,B\in\mathbb{M}_K^{n\times n}$. When V(A)=V(B), we have

$$A_{i,j} = (V(A))_{(i-1)n+j} = (V(B))_{(i-1)n+j} = B_{i,j}, \text{ for } i, j \in \{1, 2, \dots, n\},$$

which implies A = B. Finally, we note that, for every $A \in \mathbb{M}_K^{n \times n}$, it holds that

$$\|V(A)\|_{2} = \sqrt{\sum_{i=1}^{n} \sum_{j=1}^{n} ((V(A))_{(i-1)n+j})^{2}} = \sqrt{\sum_{i=1}^{n} \sum_{j=1}^{n} (A_{i,j})^{2}} = \|A\|_{F},$$

which establishes that V is norm-preserving and hence an isometric isomorphism.

(c) First, we prove the left-hand side of the inequality by noting that

$$\begin{split} \|A\|_2 &= \sup_{x \in \mathbb{R}^n, \|x\|_2 = 1} \|Ax\|_2 \\ &= \sup_{x \in \mathbb{R}^n, \|x\|_2 = 1} \sqrt{\sum_{i=1}^n \left(\sum_{j=1}^n A_{i,j} x_j\right)^2} \\ \text{Cauchy inequality} &\leq \sup_{x \in \mathbb{R}^n, \|x\|_2 = 1} \sqrt{\sum_{i=1}^n \left(\sum_{j=1}^n (A_{i,j})^2\right) \left(\sum_{j=1}^n (x_j)^2\right)} \\ &= \sqrt{\sum_{i=1}^n \sum_{j=1}^n (A_{i,j})^2} \\ &= \|A\|_F \,. \end{split}$$

To establish the inequality $||A||_F \le \sqrt{n} ||A||_2$, we pick x^* with $||x^*||_2 = 1$, as the eigenvector of $A^T A$ corresponding to the largest eigenvalue $\lambda_1(A^T A)$. Then, we have

$$||A||_{2} = \sup_{x \in \mathbb{R}^{n}, ||x||_{2} = 1} ||Ax||_{2} = \sup_{x \in \mathbb{R}^{n}, ||x||_{2} = 1} \sqrt{x^{T}A^{T}Ax}$$

$$\geq \sqrt{(x^{*})^{T}A^{T}Ax^{*}} = \sqrt{\lambda_{1}(A^{T}A)} ||x^{*}||_{2}$$

$$\geq \sqrt{\frac{\sum_{i=1}^{n} \lambda_{i}(A^{T}A)}{n}} = \sqrt{\frac{\operatorname{tr}(A^{T}A)}{n}} = \frac{1}{\sqrt{n}} ||A||_{F}.$$

(d) On the one hand, given $x \in V(\mathbb{M}_K^{n \times n})$, there exists $A \in \mathbb{M}_K^{n \times n}$, such that x = V(A). We have

$$||x||_2 = ||V(A)||_2 \stackrel{\text{(b)}}{=} ||A||_F \stackrel{\text{(c)}}{\leq} \sqrt{n} ||A||_2 \leq \sqrt{n}K,$$

which implies $V(\mathbb{M}_K^{n\times n})\subseteq B^{n^2}_{\sqrt{n}K}$. On the other hand, given $x\in B^{n^2}_K$, define the matrix $A\in\mathbb{R}^{n\times n}$ according to

$$A_{i,j} = x_{(i-1)n+j}, \quad \text{for } i, j \in \{1, 2, \dots, n\}.$$

Then, x = V(A) and

$$||A||_2 \stackrel{\text{(c)}}{\leq} ||A||_F \stackrel{\text{(b)}}{=} ||V(A)||_2 = ||x||_2 \leq K,$$

which shows that $A \in \mathbb{M}_K^{n \times n}$ and hence $B_K^{n^2} \subseteq V(\mathbb{M}_K^{n \times n})$.

(e) Assume that $\{x_1, x_2, \dots, x_M\}$ is an ϵ -packing of C_1 with $M = M(\epsilon; C_1, \rho_X)$, i.e.,

$$\{x_1, x_2, \ldots, x_M\} \subseteq \mathcal{C}_1$$

and, for every $i \neq j$, we have $\rho_X(x_i, x_j) > \epsilon$. Then, $\{x_1, x_2, \dots, x_M\} \subseteq \mathcal{C}_2$ and $\{x_1, x_2, \dots, x_M\}$ is trivially also an ϵ -packing of \mathcal{C}_2 , which yields

$$M(\epsilon; \mathcal{C}_1, \rho_X) \leq M(\epsilon; \mathcal{C}_2, \rho_X).$$

(f) We note that

$$n^{2} \log \left(\epsilon^{-1} \right) \overset{\text{(8) in the problem statement}}{\asymp} \log M(2\epsilon; B_{K}^{n^{2}}, \| \cdot \|_{2})$$

$$\overset{\text{(d),(e)}}{\leq} \log M(2\epsilon; V(\mathbb{M}_{K}^{n \times n}), \| \cdot \|_{2})$$

$$\overset{\text{(a)}}{\leq} \log N(\epsilon; V(\mathbb{M}_{K}^{n \times n}), \| \cdot \|_{2})$$

$$\overset{\text{(b), Lemma H12}}{\equiv} \log N(\epsilon; \mathbb{M}_{K}^{n \times n}, \| \cdot \|_{F})$$

$$= \log N(\epsilon; V(\mathbb{M}_{K}^{n \times n}), \| \cdot \|_{2})$$

$$\overset{\text{(a)}}{\leq} \log M(\epsilon; V(\mathbb{M}_{K}^{n \times n}), \| \cdot \|_{2})$$

$$\overset{\text{(d),(e)}}{\leq} \log M(\epsilon; B_{\sqrt{n}K}^{n^{2}}, \| \cdot \|_{2})$$

$$\overset{\text{(8)}}{\approx} n^{2} \log \left(\epsilon^{-1} \right),$$

i.e., $\log N(\epsilon; \mathbb{M}_K^{n \times n}, \|\cdot\|_F) \approx n^2 \log{(\epsilon^{-1})}$. Finally, from subproblem (c), we know that $\|A\|_2 \leq \|A\|_F \leq \sqrt{n} \|A\|_2$, for all $A \in \mathbb{R}^{n \times n}$, which, by Lemma H13, yields

$$\log N(\epsilon; \mathbb{M}_K^{n \times n}, \|\cdot\|_2) \asymp \log N(\epsilon; \mathbb{M}_K^{n \times n}, \|\cdot\|_F) \asymp n^2 \log \left(\epsilon^{-1}\right).$$

Problem 4

(a) By Definition H14, we have

$$\mathcal{R}\left(\mathcal{F}_{b}\left(\left\{x_{i}\right\}_{i=1}^{n}\right)/n\right) = \frac{1}{n}\mathbb{E}_{\varepsilon}\left[\sup_{f\in\mathcal{F}_{b}}\left|\sum_{i=1}^{n}\varepsilon_{i}f(x_{i})\right|\right]$$

$$\stackrel{(a)}{=} \frac{1}{n}\mathbb{E}_{\varepsilon}\left[\sup_{f\in\mathcal{F}_{b}}\left|\sum_{i=1}^{n}\varepsilon_{i}\left\langle f,\phi_{x_{i}}\right\rangle\right|\right]$$

$$= \frac{1}{n}\mathbb{E}_{\varepsilon}\left[\sup_{f\in\mathcal{F}_{b}}\left|\left\langle f,\sum_{i=1}^{n}\varepsilon_{i}\phi_{x_{i}}\right\rangle\right|\right]$$

$$\stackrel{(b)}{\leq} \frac{1}{n}\mathbb{E}_{\varepsilon}\left[\sup_{f\in\mathcal{F}_{b}}\left\|f\right\|\left\|\sum_{i=1}^{n}\varepsilon_{i}\phi_{x_{i}}\right\|\right]$$

$$= \frac{b}{n}\mathbb{E}_{\varepsilon}\left[\left\|\sum_{i=1}^{n}\varepsilon_{i}\phi_{x_{i}},\sum_{j=1}^{n}\varepsilon_{j}\phi_{x_{j}}\right\rangle\right]$$

$$\stackrel{(c)}{\leq} \frac{b}{n}\sqrt{\mathbb{E}_{\varepsilon}\left[\left\langle\sum_{i=1}^{n}\varepsilon_{i}\phi_{x_{i}},\sum_{j=1}^{n}\varepsilon_{j}\phi_{x_{j}}\right\rangle\right]}$$

$$= \frac{b}{n}\sqrt{\sum_{i=1}^{n}\sum_{j=1}^{n}\mathbb{E}_{\varepsilon}\left[\varepsilon_{i}\varepsilon_{j}\right]\left\langle\phi_{x_{i}},\phi_{x_{j}}\right\rangle}$$

$$\stackrel{(d)}{=} \frac{b}{n}\sqrt{\sum_{i=1}^{n}\left\langle\phi_{x_{i}},\phi_{x_{i}}\right\rangle}$$

$$\stackrel{(e)}{=} \frac{b}{n}\sqrt{\sum_{i=1}^{n}\phi_{x_{i}}(x_{i})}$$

$$= \frac{b}{n}\sqrt{\sum_{i=1}^{n}k(x_{i},x_{i})}$$

$$= \frac{b}{n}\sqrt{\operatorname{tr}(K)},$$

where (a) is by the reproducing property, (b) follows from the Cauchy–Schwarz inequality, and (c) is by Jensen's inequality (Lemma H15). In (d), we used the fact that $\{\varepsilon_i\}_{i=1}^n$ are i.i.d. Rademacher random variables so that $\mathbb{E}[\varepsilon_i\varepsilon_j]=0$, for $i\neq j$, and $\mathbb{E}[\varepsilon_i^2]=1$, for $i,j\in\{1,\ldots,n\}$. Finally, (e) is again due to the reproducing property.

(b) Let $\mathcal{H}' := \{u : \mathcal{X} \times \{-1,1\} \to \mathbb{R} : u(x,y) = -yf(x), \forall (x,y) \in \mathcal{X} \times \{-1,1\}, f \in \mathcal{F}_b\}$. As the random variables $\{\varepsilon_i y_i\}_{i=1}^n$ are i.i.d. Rademacher whenever $\{\varepsilon_i\}_{i=1}^n$ are i.i.d. Rademacher, we have

$$\mathcal{R}\left(\mathcal{H}'\left(\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{n}\right) / n\right) = \frac{1}{n} \mathbb{E}_{\varepsilon} \left[\sup_{u \in \mathcal{H}'} \left| \sum_{i=1}^{n} \varepsilon_{i} u(x_{i}, y_{i}) \right| \right] \\
= \frac{1}{n} \mathbb{E}_{\varepsilon} \left[\sup_{u \in \mathcal{H}'} \left| \sum_{i=1}^{n} -\varepsilon_{i} y_{i} f(x_{i}) \right| \right] \\
= \frac{1}{n} \mathbb{E}_{\varepsilon} \left[\sup_{f \in \mathcal{F}_{b}} \left| \sum_{i=1}^{n} \varepsilon_{i} f(x_{i}) \right| \right] \\
= \mathcal{R}\left(\mathcal{F}_{b}\left(\left\{x_{i}\right\}_{i=1}^{n}\right) / n\right). \tag{19}$$

Upon noting that ρ_{γ} is $(1/\gamma)$ -Lipschitz, application of Lemma H16 yields

$$\mathcal{R}\left(\mathcal{H}\left(\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{n}\right) / n\right) \stackrel{\text{Lemma H16}}{\leq} \frac{1}{\gamma} \mathcal{R}\left(\mathcal{H}'\left(\left\{x_{i}\right\}_{i=1}^{n}\right) / n\right) \stackrel{\text{(19)}}{=} \frac{1}{\gamma} \mathcal{R}\left(\mathcal{F}_{b}\left(\left\{x_{i}\right\}_{i=1}^{n}\right) / n\right).$$

(c) We follow the hint and note that (4) in Lemma H18 holds with L=2/n. Let $\delta'>0$ and consider the event

$$\mathcal{E}_{1} := \left\{ \mathcal{R}_{n}(\mathcal{G}) - \mathcal{R}\left(\mathcal{G}\left(\left\{Z_{i}\right\}_{i=1}^{n}\right)/n\right) > \sqrt{\frac{2\log(1/\delta')}{n}} \right\}.$$

Setting $\epsilon \coloneqq \sqrt{\frac{2\log(1/\delta')}{n}}$, application of Lemma H18 yields

$$\mathbb{P}\left[\mathcal{E}_{1}\right] \leq e^{-\frac{2n}{4}\frac{2\log(1/\delta')}{n}} = \delta',\tag{20}$$

where we used that $\mathcal{R}_n(\mathcal{G}) = \mathbb{E}[\mathcal{R}\left(\mathcal{G}\left(\{Z_i\}_{i=1}^n\right)/n\right)]$. Furthermore, for the event

$$\mathcal{E}_2 := \left\{ \psi(Z_1^n) > 2\mathcal{R}_n(\mathcal{G}) + \sqrt{\frac{2\log(1/\delta')}{n}} \right\}$$

with $\psi(Z_1^n) \coloneqq \sup_{g \in \mathcal{G}} \left(\mathbb{E}[g(Z)] - \frac{1}{n} \sum_{i=1}^n g(Z_i) \right)$, we have, by Theorem H17,

$$\mathbb{P}\left[\mathcal{E}_{2}\right] \leq \delta'. \tag{21}$$

We then obtain

$$\mathbb{P}\left[\psi(Z_1^n) \le 2\mathcal{R}\left(\mathcal{G}\left(\{Z_i\}_{i=1}^n\right)/n\right) + 3\sqrt{\frac{2\log(1/\delta')}{n}}\right] \ge \mathbb{P}[\mathcal{E}_1^c \cap \mathcal{E}_2^c]$$
$$= \mathbb{P}[\left(\mathcal{E}_1 \cup \mathcal{E}_2\right)^c]$$

$$= 1 - \mathbb{P}[\mathcal{E}_1 \cup \mathcal{E}_2]$$

$$\stackrel{\text{(a)}}{\geq} 1 - (\mathbb{P}[\mathcal{E}_1] + \mathbb{P}[\mathcal{E}_2])$$

$$\stackrel{\text{(b)}}{>} 1 - 2\delta',$$

where (a) is by a union bound and (b) follows from (20) and (21). Here, the superscript c denotes the complement of an event. Setting $\delta' = \delta/2$ yields the desired result.

(d) Note that $\rho_{\gamma}(u) \geq \mathbb{1}_{\{u \geq 0\}}$, $u \in \mathbb{R}$, where $\mathbb{1}_{\{\cdot\}}$ denotes the indicator function. We thus have

$$\mathbb{P}(\operatorname{sign}(f(X)) \neq Y) = \mathbb{E}[\mathbb{1}_{\{\operatorname{sign}(f(X)) \neq Y\}}] \leq \mathbb{E}[\mathbb{1}_{\{-Yf(X) \geq 0\}}] \leq \mathbb{E}[\rho_{\gamma}(-Yf(X))]. \quad (22)$$

Further, with probability $\geq 1 - \delta$, it holds that

$$\mathbb{E}[\rho_{\gamma}(-Yf(X))] = \frac{1}{n} \sum_{i=1}^{n} \rho_{\gamma}(-Y_{i}f(X_{i})) + \mathbb{E}[\rho_{\gamma}(-Yf(X))] - \frac{1}{n} \sum_{i=1}^{n} \rho_{\gamma}(-Y_{i}f(X_{i}))$$

$$\leq \frac{1}{n} \sum_{i=1}^{n} \rho_{\gamma}(-Y_{i}f(X_{i})) + \sup_{h \in \mathcal{H}} \left(\mathbb{E}[h(X,Y)] - \frac{1}{n} \sum_{i=1}^{n} h(X_{i},Y_{i}) \right)$$

$$\stackrel{\text{(a)}}{\leq} \frac{1}{n} \sum_{i=1}^{n} \rho_{\gamma}(-Y_{i}f(X_{i})) + 2\mathcal{R} \left(\mathcal{H} \left(\{(X_{i},Y_{i})\}_{i=1}^{n} \right) / n \right) + 3\sqrt{\frac{2\log(2/\delta)}{n}}$$

$$\stackrel{\text{(b)}}{\leq} \frac{1}{n} \sum_{i=1}^{n} \rho_{\gamma}(-Y_{i}f(X_{i})) + \frac{2b}{n\gamma} \sqrt{\operatorname{tr}(\mathsf{K})} + 3\sqrt{\frac{2\log(2/\delta)}{n}}, \tag{23}$$

where (a) follows from the result of subproblem (c) and (b) is by the results of subproblems (b) and (a). Substituting (23) into (22) yields the desired expression.