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Problem 1

(a) We first show that {J, : = € {0,1}"} is a linearly independent set. Let {\, € C :
x € {0,1}"} be such that

> Abu(y) =0, Vye{0,1}"

ze€{0,1}"

Then, for all y € {0,1}", we have

z€{0,1}"
Therefore, A\, = 0 for all y € {0,1}", which implies that {6, : « € {0,1}"} is
a linearly independent set. Now, we show that {0, : x € {0,1}"} spans F, by
noting that every f € F,, satisfies

fy)= > f@)b.(y), Vye{01}" 2)

ze{0,1}7

Since {, : = € {0,1}"} is a linearly independent set and spans F,,, it is a basis for
E,.



(b) Let S,T € P(n) and let z € {0, 1}". Then,

xs(@)xr(@) = [J=0)" [ (=1

ieS JjeET
= H (=1)" H (—=1)%
1€(S\T)U(SNT) Je(T\S)u(SNT)
= H (=1)" H (=1)* H (=1)* H (=1)"
€S\ i€SnT i€T\S ieSnT
2
e ( 0 (_m.)
1€(S\T)U(T\S) esSNT
< I oo
i€(S\TYU(T\S)
= x(s\1)ur\s)(T), 3)

where (a) is by [[,cr(—1)" € {—1,1}.

(c) For fixed S # @, fixani € {1,...,n} such that i € S. Note that xyg(z) =
(=1)" [Tje9 0y (—1)%, forall € {0,1}". Then,

N

> Xs(@)xa(x) 2 > xsla)= ) ((—1)””’ 11 (—1)”7) (4)

ze€{0,1}" ze{0,1}™ z€{0,1}"

) 2 2 )e{0,13n1 ((1)“ L1 (1)m1> ?

=~

xiE{O,l} (xl,...,zi_l,zi+1 ..... jeS\{l}
= > ()" I=(1-1)-1=0, (6)
z;€{0,1}

with
- Y Tew
(x1,...,mi,1,mi+1 ..... xn)e{o,l}”—l ]GS\{Z}

where (a) follows from xz(z) = 1, for all z € {0,1}", and (b) is obtained by
reordering the sum } _(; ,;.. In summary, we can conclude that

(X5 x0) = 57 O xs(@na(e) = 5 -0=0) )

ze{0,1}m



(d) Consider S,T € P(n), with S # T. From subproblem (b), we have

1 1
(xsoxr) = o > xs(@)xr(x) = on > xs(@)xr(x)
xe{o 1} xE{O 1}
Z Xemums) (@) == Y xsmums) (@) - 1
336{0 1} mE{O 1}n
= (X(5\T)u(T\5) X2)- (8)

We now observe that (S\T)U(T\S) # @ as otherwise S\T' =T\S = g,i.e.,S =T,
which stands in contradiction to the assumption S # 7. From subproblem (c),
we hence get

(X5, XT) = (X(s\1)U(T\$)> X&) = 0. 9)

Moreover,

(sxs) = gn O xs@w@ =5 3 (@)’ =5 3 1=1, (10)

z€{0,1}" ze{0,1}m ze{0,1}m

which establishes that G is an orthonormal set of functions. As #G = 2" = #{0,. :
z € {0,1}"} and all orthonormal bases of a finite-dimensional vector space have
the same cardinality, it follows that G is an orthonormal basis for F,.

(e) Let S € P(n)and let z € {0,1}". Then, we have
Xs(z) = [ [w)™ = [[(explim))™ = [](~1)" = xs(2), (11)
ies i€s i€s
which shows that #,; = G. Therefore, H, is an orthonormal basis by subproblem

(d) and hence #, is a tight frame with frame bounds A = B = 1.

(f) Let k > 2. The set of eigenvalues of T is given by
{As = h(|S]) : S € P(n)}, (12)

where
h(e) = 20D+ 01— )™t Ledo,...,n}, (13)

with Cj, = (cos (1 +1)>k+1. Following the hint in the problem statement, we will
show that Ay and A\
maximum eigenvalues. Noting that thanks to & > 2, Cj, € (0, 1), it follows that
1 —Cy, 1+ Cy > 0,s0 that \g > 0, for all S € P(n). In particular, the positivity of
Az and Aqy, .y is established. Now, Cj, € (0, 1) also implies that 1 + Cj, > 1 — C,

n} are positive and are respectively the minimum and

77777
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and hence h({) is a strictly increasing function as

) 1+ Cy
h(6—1) 1-Cy

>1, (e{l,...,n}. (14)

Therefore, the minimum and maximum of h(¢) are attained at / = 0 and ¢ = n,

.....

maximum eigenvalues of T, respectively, and they are both positive. We hence
get

. (Tf, f)
P O T 15)
sup T/, f) =A,..np > 0. (16)

reragoy IIfI12

In summary, we can conclude that

.....

increasing, the frame bounds are not equal, so that H;, is not a tight frame.



Problem 2

(a) Arbitrarily fix S C {1,..., N} with [S| < m. Let {* = argmaxcg > jcq\ 1y [(de, d;)]
and define S = S\{¢*}. Then, we have

max 37 J{de ;)| = 3 lder, )
JjeS\{¢} jes

< max Y [{de,d;)| (since ¢* € 5°)

reSe

j€s
< ,d; ince |S| =S| —1<m—
< |S'I|r2§—1 max ; {de, d;)| (since |S| =|S|—-1<m—1)
J

= Mmfl(D%

where the maximum in the last inequality is over all subsets S’ C {1,..., N} with
cardinality less than or equal to m — 1. As S was arbitrary, this completes the
proof.

(b) Towards a contradiction assume that spark(D) < m. Then, there exists a set
J C {1,...,N} with |J| < m such that the corresponding columns of D are
linearly dependent. Hence, there are o; € C, j € J, not all equal to zero such that

Z Oéjdj = 0.

jed

Let j* € J be the index of the coefficient with maximal absolute value. We can
rewrite the above equation as

d=— 3 O‘—idj,

JENG*Y Y

which, upon taking the inner product with d;- on both sides and using ||d;«||» = 1,

yields N
1=— > —(dp.dy).

jeng=y 4



We thus obtain the contradiction as follows

1= Y dpdy)

jengy 4"
< o : : .
< Z -~ [(dj=, d;)| (triangle inequality)
AN
< > [dg-.dy)l (since [a;| < [aj+|)
jeN{s*}
< max [(djr, d;)] (since j* € J)
'e
T ety
< tm-1(D) (previous subproblem)
< i 1(D) + (D) (since (D) > 0)
< 1. (by (4) in the problem statement)

As S was arbitrary, this completes the proof.

(c) We rewrite

mt (D) + (D) < 1

& fim (D) < 1= pimp—1(D)
Nm(D)
- [ETS

where we used 0 < p,,(D) < 1 — pty,—1(D). Next, arbitrarily fix S € {1,..., N}
with |S| < m. We have

<
max > [{de, ;)| < max ggg;gZ! di, d;)| = pim(D),
JES
where in (x) we take the maximum over all subsets S’ C {1,..., N} with cardi-

nality less than or equal to m. Furthermore, by subproblem (a),

1— max Z (do,d;)| > 1 — pip_1(D).
JGS\{K}

Putting everything together, we obtain

maxyege des [(de, dj)| < fm (D)

< < 1.
1 — maxyes Zjes\{é} [(de, d;)] 1 = pyn—1(D)

As S was arbitrary, this completes the proof.

(d) Arbitrarily fix S C {1,..., N} with |S| < m, and define the matrix G € CI5/*I°|
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(e)

according to

<d€adj>7 lfj 7é E,
G]”g - X . .
0, ifj=1/¢

Next, note that, by Lemma H4, ||G||11 = maxees D cq (o [(de; d;)| and thus, by
subproblem (a) and (4) in the problem statement, we have

1Glli1 < (D) < 1.

Furthermore, we write
((Dg)"Dg) =1+ G.

and apply Lemma H5 to get

1((Ds)" Ds) 11 = [T+ G) s
1
D —
— 1 |G1a (18)
1

1 — maxycg ZjGS\{e} [{de. ;)|

Now we compute

Dg)d
%%§!\( s)'delly = maocH

(Ds)"Ds) ™ (Ds)" dqlx
(Ds)"Ds) ™ 11 (Ds)"delly by Lemma H3

< max ||
lese

(
(
= (D) Ds) |11 max | (Ds)" de]|x
= (D) D) |11 max > _ [(dy, d;)
jes
maxeese ) _jeg |(de, dj)]
1 —maxyes ZjeS\{Z} [(de, ;)|
<L by subproblem (c)

by (18)

As S was arbitrary, this completes the proof.
Let S with |S| < m be the support set of . We have, for all ¢/ € S¢, that

((Ds)'de,sen(as))| < [[(Ds) ||| sen(es) | by Lemma H8

= [|(Ds)"de]|s
<1 by subproblem (d)

Furthermore, N'(Ds) = {0}, as by subproblem (b) every set of m columns of D
must be linearly independent. We can thus apply Theorem H7 to conclude that



(P1) uniquely recovers z.



Problem 3
(a) We have

M (26 M, [|-]]5) < N (& M [[-ll) < M (e ME™, [1-[l,)-

(b) Surjectivity of V' follows from the definition of V' (M}"). To verify that V' is also
an injection, arbitrarily pick two elements A, B € M}". When V' (A) = V(B), we
have

Aij = (V(A) i—vynts = (V(B))(i—1nsj = Bij, fori,j e {1,2,...,n},

which implies A = B. Finally, we note that, for every A € M7*", it holds that

VA, = JZZ )i~1yn+s) JZZ i) = [1Allg

=1 j=1 =1 j=1
which establishes that V' is norm-preserving and hence an isometric isomorphism.

(c) First, we prove the left-hand side of the inequality by noting that

[Ally = sup  [[Az]]

zER™ ||z ;=1

n n 2
= sup J Z ZAi’jxj>
j=1

z€R™,||z||y=1 i—1

Cauchyignequality sup Z (Z (Ai’j)2> (Z (l’j)2>

z€R",||z|[,=1 i—1 \j=1

= J D) (A

i=1 j=1

= [|All-

To establish the inequality ||A]|, < /n|A4],, we pick z* with ||z*|, = 1, as the
eigenvector of AT A corresponding to the largest eigenvalue \; (AT A). Then, we
have

|All, = sup ||Az|,= sup VaTATAzx

R, [z],=1 2R all,=1
> /(29)TAT Az* = \/\ (AT A) |27,

> \/ L MAA) \/ mEA = 4l




(d) On the one hand, given =z € V(M}"), there exists A € M*", such that z = V' (A).
We have

®)
lell, = IV (A, 2 141 £ VallAll, < Vak,

which implies V(M}") C B” . On the other hand, given z € B}, define the
matrix A € R"*" according to

Aij = X(i—1)nyy, fori,je {1,2,...,n}.

Then, z = V(A) and

41, £ 1Al 2 VA, = o, < K.

which shows that A € M"*™ and hence B C V (M7X™).

(e) Assume that {x,xs,...,2)} is an e-packing of C; with M = M (¢;Cy, px), i€
{ZEl,ZEQ,...,l'M} QCl

and, for every ¢ # j, we have px(z;,z;) > €. Then, {z1,22,..., 2} C C; and
{z1,%2,. ..,z } is trivially also an e-packing of C,, which yields

M(E;ClapX) S M(€7627PX)

(f) We note that

(8) in the problem statement

— n2
n*log (e7') = log M (2¢; By, [|-[l,)

(d),(e) nxn
< log M (2¢; V/(ME"™), [|Il5)

(@)
<log N (& V(ME™"), [|]l,)

(b), Lemma H12 nxn

= log N (&; MEZ", ||| )
=log N (e; V(ME™), |||l
(@)
< log M (e; V(ME™), [|-]l)

(d)(e) 2
< log M(e; Bl |I[l2)

(/S\)n log( 1),

ie., log N(e; Mp™, ||| ) =< n®log(e!). Finally, from subproblem (c), we know
that ||Al|, < ||A|lp < V/n||A]l,, for all A € R"*", which, by Lemma H13, yields

log N (& MR, [|-1,) = log N (e ME<™, [ ) = n®log () .
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Problem 4

(a) By Definition H14, we have

n

1
R(-Fb({xi}?:l)/n>:ﬁEs ?22 Zzleif(xi)]
@ lEE sup € <fa qu) ]
n fej:b i=1
1
= E 1 €T
Iz <f25¢ )
(b)
< - € i T4
< fSélJ%Hfll ;Mb ]
-5z
n 5- - 1Pz,

b [ n n
:_Ea i¢mi7 j¢ac]-

JEa <25i¢xi725j¢x]~>
L \i=1 Jj=1 J

3
3

]EE 5 6]-] <¢xz7 ¢CCJ>

=1 j=1

@ b

=1
@b |\
- n ¢xz(xl)
=1
b n
= E Z k(xw .’ﬂz)
=1
b A /
n

where (a) is by the reproducing property, (b) follows from the Cauchy-Schwarz
inequality, and (c) is by Jensen’s inequality (Lemma H15). In (d), we used the fact
that {¢;}7, are i.i.d. Rademacher random variables so that E[e¢;c;] = 0, for ¢ # j,
and E[7] = 1, for 4,5 € {1,...,n}. Finally, (e) is again due to the reproducing

property.
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(b) Let H' ={u: X x {-1,1} = R: u(z,y) = —yf(x),¥Y(zr,y) € X x {-1,1}, f € F}.
As the random variables {¢;y;}" , are i.i.d. Rademacher whenever {¢;}!" | are
i.i.d. Rademacher, we have

R (M (i) }imr) ) = B | sup | v )

sup
uEH’

= g up [S e

n feFy |4

=R (F ({zi}iny) /n) . (19)

I
S|
=

L)
\'M [

|

o

<

=

8
| —

Upon noting that p, is (1/v)-Lipschitz, application of Lemma H16 yields

Lemma H16 ] (19)

R(H{(zi,9:)}im) /n) - < ;R(’H’({% iz1) /1) = %R (Fp ({zi}isy) /n) -

(c) We follow the hint and note that (4) in Lemma H18 holds with L = 2/n. Let §’ > 0
and consider the event

£ = {wg) SRGUZYL) ) > W} .

Setting € == 4/ M, application of Lemma H18 yields

_ 2n 2log(1/8")

Pl&] < e 5 v =0, (20)

where we used that R,,(G) = E[R (G ({Z;}!,) /n)]. Furthermore, for the event

6 {W@ S 9RLG) + w}

n
with ¥(Z7) = sup,cg (Elg(Z2)] — 2 37| 9(Z;)), we have, by Theorem H17,
P& < 4. (21)
We then obtain

2log(1/4")

n

P(27) < 2R (G ({Zi}isy) /n) + 3

]2M$ﬂ$}

= P[(& U &)

12



— P[&, U &)

§1_@Mﬂ+méb

D) ,
> 1-—20,

where (a) is by a union bound and (b) follows from (20) and (21). Here, the
superscript ¢ denotes the complement of an event. Setting ¢’ = /2 yields the
desired result.

(d) Note that p,(u) > Ig>0, v € R, where 1y denotes the indicator function. We

thus have

P(sign(f(X

) #Y) = E[Lsign(rx)2vy] < E[l—ypx)>03] < E[p, (=Y f(X))]. (22)

Further, with probability > 1 — ¢, it holds that

Elp

H(=Y

E:m ~Vif (X
pr (-Yif(X
2l pr ~Yif(X
21 Zpy ~Yif(X

)+ Elpy (-Y FX)) = 3 (-Yif (X

)+ sup ( [A(X,Y)] - %Zh(xi,m)

heH Py
D)+ 2R (H (X YR f) + 3y 2B
+————\/tr 2l9§£21§2, (23)

where (a) follows from the result of subproblem (c) and (b) is by the results of
subproblems (b) and (a). Substituting (23) into (22) yields the desired expression.
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