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Problem 1

(a) We first show that {δx : x ∈ {0, 1}n} is a linearly independent set. Let {λx ∈ C :

x ∈ {0, 1}n} be such that ∑
x∈{0,1}n

λxδx(y) = 0, ∀y ∈ {0, 1}n.

Then, for all y ∈ {0, 1}n, we have

0 =
∑

x∈{0,1}n
λxδx(y) = λy. (1)

Therefore, λy = 0 for all y ∈ {0, 1}n, which implies that {δx : x ∈ {0, 1}n} is
a linearly independent set. Now, we show that {δx : x ∈ {0, 1}n} spans Fn by
noting that every f ∈ Fn satisfies

f(y) =
∑

x∈{0,1}n
f(x)δx(y), ∀y ∈ {0, 1}n. (2)

Since {δx : x ∈ {0, 1}n} is a linearly independent set and spans Fn, it is a basis for
Fn.
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(b) Let S, T ∈ P(n) and let x ∈ {0, 1}n. Then,

χS(x)χT (x) =
∏
i∈S

(−1)xi

∏
j∈T

(−1)xj

=
∏

i∈(S\T )∪(S∩T )

(−1)xi

∏
j∈(T\S)∪(S∩T )

(−1)xj

=
∏

i∈S\T

(−1)xi

∏
i∈S∩T

(−1)xi

∏
i∈T\S

(−1)xi

∏
i∈S∩T

(−1)xi

=
∏

i∈(S\T )∪(T\S)

(−1)xi

( ∏
i∈S∩T

(−1)xi

)2

(a)
=

∏
i∈(S\T )∪(T\S)

(−1)xi

= χ(S\T )∪(T\S)(x), (3)

where (a) is by
∏

i∈S∩T (−1)xi ∈ {−1, 1}.

(c) For fixed S ̸= ∅, fix an i ∈ {1, . . . , n} such that i ∈ S. Note that χS(x) =

(−1)xi
∏

j∈S\{i}(−1)xj , for all x ∈ {0, 1}n. Then,

∑
x∈{0,1}n

χS(x)χ∅(x)
(a)
=

∑
x∈{0,1}n

χS(x) =
∑

x∈{0,1}n

(−1)xi

∏
j∈S\{i}

(−1)xj

 (4)

(b)
=

∑
xi∈{0,1}

∑
(x1,...,xi−1,xi+1,...,xn)∈{0,1}n−1

(−1)xi

∏
j∈S\{i}

(−1)xj

 (5)

=
∑

xi∈{0,1}

(−1)xi · I = (1− 1) · I = 0, (6)

with
I =

∑
(x1,...,xi−1,xi+1,...,xn)∈{0,1}n−1

∏
j∈S\{i}

(−1)xj ,

where (a) follows from χ∅(x) = 1, for all x ∈ {0, 1}n, and (b) is obtained by
reordering the sum

∑
x∈{0,1}n . In summary, we can conclude that

⟨χS, χ∅⟩ =
1

2n

∑
x∈{0,1}n

χS(x)χ∅(x) =
1

2n
· 0 = 0. (7)
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(d) Consider S, T ∈ P(n), with S ̸= T . From subproblem (b), we have

⟨χS, χT ⟩ =
1

2n

∑
x∈{0,1}n

χS(x)χT (x) =
1

2n

∑
x∈{0,1}n

χS(x)χT (x)

=
1

2n

∑
x∈{0,1}n

χ(S\T )∪(T\S)(x) =
1

2n

∑
x∈{0,1}n

χ(S\T )∪(T\S)(x) · 1

= ⟨χ(S\T )∪(T\S), χ∅⟩. (8)

We now observe that (S\T )∪(T\S) ̸= ∅ as otherwise S\T = T\S = ∅, i.e., S = T ,
which stands in contradiction to the assumption S ̸= T . From subproblem (c),
we hence get

⟨χS, χT ⟩ = ⟨χ(S\T )∪(T\S), χ∅⟩ = 0. (9)

Moreover,

⟨χS, χS⟩ =
1

2n

∑
x∈{0,1}n

χS(x)χS(x) =
1

2n

∑
x∈{0,1}n

(χS(x))
2 =

1

2n

∑
x∈{0,1}n

1 = 1, (10)

which establishes that G is an orthonormal set of functions. As #G = 2n = #{δx :

x ∈ {0, 1}n} and all orthonormal bases of a finite-dimensional vector space have
the same cardinality, it follows that G is an orthonormal basis for Fn.

(e) Let S ∈ P(n) and let x ∈ {0, 1}n. Then, we have

χ̃S(x) =
∏
i∈S

(ω1)
xi =

∏
i∈S

(exp(iπ))xi =
∏
i∈S

(−1)xi = χS(x), (11)

which shows that H1 = G. Therefore, H1 is an orthonormal basis by subproblem
(d) and hence H1 is a tight frame with frame bounds A = B = 1.

(f) Let k ≥ 2. The set of eigenvalues of T is given by

{λS := h(|S|) : S ∈ P(n)} , (12)

where
h(ℓ) = 2n(k−1)(1 + Ck)

ℓ(1− Ck)
n−ℓ, ℓ ∈ {0, . . . , n}, (13)

with Ck =
(
cos
(

π
k+1

))k+1. Following the hint in the problem statement, we will
show that λ∅ and λ{1,...,n} are positive and are respectively the minimum and
maximum eigenvalues. Noting that thanks to k ≥ 2, Ck ∈ (0, 1), it follows that
1− Ck, 1 + Ck > 0, so that λS > 0, for all S ∈ P(n). In particular, the positivity of
λ∅ and λ{1,...,n} is established. Now, Ck ∈ (0, 1) also implies that 1 + Ck > 1− Ck,
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and hence h(ℓ) is a strictly increasing function as

h(ℓ)

h(ℓ− 1)
=

1 + Ck

1− Ck

> 1, ℓ ∈ {1, . . . , n}. (14)

Therefore, the minimum and maximum of h(ℓ) are attained at ℓ = 0 and ℓ = n,
respectively. In summary, λ∅ = h(0) and λ{1,...,n} = h(n) are the minimum and
maximum eigenvalues of T, respectively, and they are both positive. We hence
get

inf
f∈Fn\{0}

⟨Tf, f⟩
∥f∥2

= λ∅ > 0, (15)

sup
f∈Fn\{0}

⟨Tf, f⟩
∥f∥2

= λ{1,...,n} > 0. (16)

In summary, we can conclude that

λ∅∥f∥2 ≤ ⟨Tf, f⟩ =
∑

S∈P(n)k

|⟨f, χ̃S⟩|2 ≤ λ{1,...,n}∥f∥2, ∀f ∈ Fn, (17)

so Hk is a frame for Fn with frame bounds λ∅ and λ{1,...,n}. As h(ℓ) is strictly
increasing, the frame bounds are not equal, so that Hk is not a tight frame.
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Problem 2

(a) Arbitrarily fix S ⊂ {1, . . . , N} with |S| ≤ m. Let ℓ∗ = argmaxℓ∈S
∑

j∈S\{ℓ} |⟨dℓ, dj⟩|
and define Ŝ = S\{ℓ∗}. Then, we have

max
ℓ∈S

∑
j∈S\{ℓ}

|⟨dℓ, dj⟩| =
∑
j∈Ŝ

|⟨dℓ∗ , dj⟩|

≤ max
ℓ′∈Ŝc

∑
j∈Ŝ

|⟨dℓ′ , dj⟩| (since ℓ∗ ∈ Ŝc)

≤ max
|S′|≤m−1

max
ℓ′∈S′c

∑
j∈S′

|⟨dℓ′ , dj⟩| (since |Ŝ| = |S| − 1 ≤ m− 1)

= µm−1(D),

where the maximum in the last inequality is over all subsets S ′ ⊆ {1, . . . , N} with
cardinality less than or equal to m − 1. As S was arbitrary, this completes the
proof.

(b) Towards a contradiction assume that spark(D) ≤ m. Then, there exists a set
J ⊆ {1, . . . , N} with |J | ≤ m such that the corresponding columns of D are
linearly dependent. Hence, there are αj ∈ C, j ∈ J , not all equal to zero such that∑

j∈J

αjdj = 0.

Let j∗ ∈ J be the index of the coefficient with maximal absolute value. We can
rewrite the above equation as

dj∗ = −
∑

j∈J\{j∗}

αj

αj∗
dj,

which, upon taking the inner product with dj∗ on both sides and using ∥dj∗∥2 = 1,
yields

1 = −
∑

j∈J\{j∗}

αj

αj∗
⟨dj∗ , dj⟩.
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We thus obtain the contradiction as follows

1 =

∣∣∣∣∣∣−
∑

j∈J\{j∗}

αj

αj∗
⟨dj∗ , dj⟩

∣∣∣∣∣∣
≤

∑
j∈J\{j∗}

∣∣∣∣ αj

αj∗

∣∣∣∣ |⟨dj∗ , dj⟩| (triangle inequality)

≤
∑

j∈J\{j∗}

|⟨dj∗ , dj⟩| (since |αj| ≤ |αj∗|)

≤ max
j′∈J

∑
j∈J\{j′}

|⟨dj′ , dj⟩| (since j∗ ∈ J)

≤ µm−1(D) (previous subproblem)

≤ µm−1(D) + µm(D) (since µm(D) ≥ 0)

< 1. (by (4) in the problem statement)

As S was arbitrary, this completes the proof.

(c) We rewrite

µm−1(D) + µm(D) < 1

⇔ µm(D) < 1− µm−1(D)

⇔ µm(D)

1− µm−1(D)
< 1,

where we used 0 ≤ µm(D) < 1 − µm−1(D). Next, arbitrarily fix S ⊂ {1, . . . , N}
with |S| ≤ m. We have

max
ℓ∈Sc

∑
j∈S

|⟨dℓ, dj⟩|
(∗)
≤ max

|S′|≤m
max
ℓ∈S′c

∑
j∈S′

|⟨dℓ, dj⟩| = µm(D),

where in (∗) we take the maximum over all subsets S ′ ⊆ {1, . . . , N} with cardi-
nality less than or equal to m. Furthermore, by subproblem (a),

1−max
ℓ∈S

∑
j∈S\{ℓ}

|⟨dℓ, dj⟩| ≥ 1− µm−1(D).

Putting everything together, we obtain

maxℓ∈Sc

∑
j∈S |⟨dℓ, dj⟩|

1−maxℓ∈S
∑

j∈S\{ℓ} |⟨dℓ, dj⟩|
≤ µm(D)

1− µm−1(D)
< 1.

As S was arbitrary, this completes the proof.

(d) Arbitrarily fix S ⊂ {1, . . . , N} with |S| ≤ m, and define the matrix G ∈ C|S|×|S|
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according to

Gj,ℓ =

⟨dℓ, dj⟩, if j ̸= ℓ,

0, if j = ℓ
.

Next, note that, by Lemma H4, ∥G∥1,1 = maxℓ∈S
∑

j∈S\{ℓ} |⟨dℓ, dj⟩| and thus, by
subproblem (a) and (4) in the problem statement, we have

∥G∥1,1 ≤ µm−1(D) < 1.

Furthermore, we write
((DS)

HDS) = I+G.

and apply Lemma H5 to get

∥((DS)
HDS)

−1∥1,1 = ∥(I+G)−1∥1,1

≤ 1

1− ∥G∥1,1

=
1

1−maxℓ∈S
∑

j∈S\{ℓ} |⟨dℓ, dj⟩|
.

(18)

Now we compute

max
ℓ∈Sc

∥(DS)
†dℓ∥1 = max

ℓ∈Sc
∥((DS)

HDS)
−1(DS)

Hdℓ∥1

≤ max
ℓ∈Sc

∥((DS)
HDS)

−1∥1,1 ∥(DS)
Hdℓ∥1 by Lemma H3

= ∥((DS)
HDS)

−1∥1,1 max
ℓ∈Sc

∥(DS)
Hdℓ∥1

= ∥((DS)
HDS)

−1∥1,1 max
ℓ∈Sc

∑
j∈S

|⟨dℓ, dj⟩|

≤
maxℓ∈Sc

∑
j∈S |⟨dℓ, dj⟩|

1−maxℓ∈S
∑

j∈S\{ℓ} |⟨dℓ, dj⟩|
by (18)

< 1. by subproblem (c)

As S was arbitrary, this completes the proof.

(e) Let S with |S| ≤ m be the support set of x. We have, for all ℓ ∈ Sc, that

|⟨(DS)
†dℓ, sgn(xS)⟩| ≤ ∥(DS)

†dℓ∥1∥ sgn(xS)∥∞ by Lemma H8

= ∥(DS)
†dℓ∥1

< 1. by subproblem (d)

Furthermore, N (DS) = {0}, as by subproblem (b) every set of m columns of D
must be linearly independent. We can thus apply Theorem H7 to conclude that
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(P1) uniquely recovers x.
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Problem 3

(a) We have

M(2ϵ;Mn×n
K , ∥·∥2) ≤ N(ϵ;Mn×n

K , ∥·∥2) ≤M(ϵ;Mn×n
K , ∥·∥2).

(b) Surjectivity of V follows from the definition of V (Mn×n
K ). To verify that V is also

an injection, arbitrarily pick two elements A,B ∈ Mn×n
K . When V (A) = V (B), we

have

Ai,j = (V (A))(i−1)n+j = (V (B))(i−1)n+j = Bi,j, for i, j ∈ {1, 2, . . . , n},

which implies A = B. Finally, we note that, for every A ∈ Mn×n
K , it holds that

∥V (A)∥2 =

√√√√ n∑
i=1

n∑
j=1

(
(V (A))(i−1)n+j

)2
=

√√√√ n∑
i=1

n∑
j=1

(Ai,j)
2 = ∥A∥F ,

which establishes that V is norm-preserving and hence an isometric isomorphism.

(c) First, we prove the left-hand side of the inequality by noting that

∥A∥2 = sup
x∈Rn,∥x∥2=1

∥Ax∥2

= sup
x∈Rn,∥x∥2=1

√√√√ n∑
i=1

(
n∑

j=1

Ai,jxj

)2

Cauchy inequality
≤ sup

x∈Rn,∥x∥2=1

√√√√ n∑
i=1

(
n∑

j=1

(Ai,j)
2

)(
n∑

j=1

(xj)
2

)

=

√√√√ n∑
i=1

n∑
j=1

(Ai,j)
2

= ∥A∥F .

To establish the inequality ∥A∥F ≤
√
n ∥A∥2, we pick x∗ with ∥x∗∥2 = 1, as the

eigenvector of ATA corresponding to the largest eigenvalue λ1(ATA). Then, we
have

∥A∥2 = sup
x∈Rn,∥x∥2=1

∥Ax∥2 = sup
x∈Rn,∥x∥2=1

√
xTATAx

≥
√
(x∗)TATAx∗ =

√
λ1(ATA) ∥x∗∥2

≥
√∑n

i=1 λi(A
TA)

n
=

√
tr(ATA)

n
=

1√
n
∥A∥F .
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(d) On the one hand, given x ∈ V (Mn×n
K ), there exists A ∈ Mn×n

K , such that x = V (A).
We have

∥x∥2 = ∥V (A)∥2
(b)
= ∥A∥F

(c)
≤

√
n ∥A∥2 ≤

√
nK,

which implies V (Mn×n
K ) ⊆ Bn2√

nK
. On the other hand, given x ∈ Bn2

K , define the
matrix A ∈ Rn×n according to

Ai,j = x(i−1)n+j, for i, j ∈ {1, 2, . . . , n}.

Then, x = V (A) and

∥A∥2
(c)
≤ ∥A∥F

(b)
= ∥V (A)∥2 = ∥x∥2 ≤ K,

which shows that A ∈ Mn×n
K and hence Bn2

K ⊆ V (Mn×n
K ).

(e) Assume that {x1, x2, . . . , xM} is an ϵ-packing of C1 with M =M(ϵ; C1, ρX), i.e.,

{x1, x2, . . . , xM} ⊆ C1

and, for every i ̸= j, we have ρX(xi, xj) > ϵ. Then, {x1, x2, . . . , xM} ⊆ C2 and
{x1, x2, . . . , xM} is trivially also an ϵ-packing of C2, which yields

M(ϵ; C1, ρX) ≤M(ϵ; C2, ρX).

(f) We note that

n2 log
(
ϵ−1
) (8) in the problem statement

≍ logM(2ϵ;Bn2

K , ∥·∥2)
(d),(e)
≤ logM(2ϵ;V (Mn×n

K ), ∥·∥2)
(a)
≤ logN(ϵ;V (Mn×n

K ), ∥·∥2)
(b), Lemma H12

= logN(ϵ;Mn×n
K , ∥·∥F )

= logN(ϵ;V (Mn×n
K ), ∥·∥2)

(a)
≤ logM(ϵ;V (Mn×n

K ), ∥·∥2)
(d),(e)
≤ logM(ϵ;Bn2√

nK , ∥·∥2)
(8)
≍ n2 log

(
ϵ−1
)
,

i.e., logN(ϵ;Mn×n
K , ∥·∥F ) ≍ n2 log (ϵ−1). Finally, from subproblem (c), we know

that ∥A∥2 ≤ ∥A∥F ≤
√
n ∥A∥2, for all A ∈ Rn×n, which, by Lemma H13, yields

logN(ϵ;Mn×n
K , ∥·∥2) ≍ logN(ϵ;Mn×n

K , ∥·∥F ) ≍ n2 log
(
ϵ−1
)
.
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Problem 4

(a) By Definition H14, we have

R (Fb ({xi}ni=1) /n) =
1

n
Eε

[
sup
f∈Fb

∣∣∣∣∣
n∑

i=1

εif(xi)

∣∣∣∣∣
]

(a)
=

1

n
Eε

[
sup
f∈Fb

∣∣∣∣∣
n∑

i=1

εi ⟨f, ϕxi
⟩

∣∣∣∣∣
]

=
1

n
Eε

[
sup
f∈Fb

∣∣∣∣∣
〈
f,

n∑
i=1

εiϕxi

〉∣∣∣∣∣
]

(b)

≤ 1

n
Eε

[
sup
f∈Fb

∥f∥

∥∥∥∥∥
n∑

i=1

εiϕxi

∥∥∥∥∥
]

=
b

n
Eε

[∥∥∥∥∥
n∑

i=1

εiϕxi

∥∥∥∥∥
]

=
b

n
Eε

√√√√〈 n∑
i=1

εiϕxi
,

n∑
j=1

εjϕxj

〉
(c)

≤ b

n

√√√√Eε

[〈
n∑

i=1

εiϕxi
,

n∑
j=1

εjϕxj

〉]

=
b

n

√√√√ n∑
i=1

n∑
j=1

Eε[εiεj]
〈
ϕxi

, ϕxj

〉
(d)
=

b

n

√√√√ n∑
i=1

⟨ϕxi
, ϕxi

⟩

(e)
=

b

n

√√√√ n∑
i=1

ϕxi
(xi)

=
b

n

√√√√ n∑
i=1

k(xi, xi)

=
b

n

√
tr(K),

where (a) is by the reproducing property, (b) follows from the Cauchy–Schwarz
inequality, and (c) is by Jensen’s inequality (Lemma H15). In (d), we used the fact
that {εi}ni=1 are i.i.d. Rademacher random variables so that E[εiεj] = 0, for i ̸= j,
and E[ε2i ] = 1, for i, j ∈ {1, . . . , n}. Finally, (e) is again due to the reproducing
property.
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(b) Let H′ := {u : X × {−1, 1} → R : u(x, y) = −yf(x),∀(x, y) ∈ X × {−1, 1}, f ∈ Fb}.
As the random variables {εiyi}ni=1 are i.i.d. Rademacher whenever {εi}ni=1 are
i.i.d. Rademacher, we have

R (H′ ({(xi, yi)}ni=1) /n) =
1

n
Eε

[
sup
u∈H′

∣∣∣∣∣
n∑

i=1

εiu(xi, yi)

∣∣∣∣∣
]

=
1

n
Eε

[
sup
u∈H′

∣∣∣∣∣
n∑

i=1

−εiyif(xi)

∣∣∣∣∣
]

=
1

n
Eε

[
sup
f∈Fb

∣∣∣∣∣
n∑

i=1

εif(xi)

∣∣∣∣∣
]

= R (Fb ({xi}ni=1) /n) . (19)

Upon noting that ργ is (1/γ)-Lipschitz, application of Lemma H16 yields

R (H ({(xi, yi)}ni=1) /n)
Lemma H16

≤ 1

γ
R (H′ ({xi}ni=1) /n)

(19)
=

1

γ
R (Fb ({xi}ni=1) /n) .

(c) We follow the hint and note that (4) in Lemma H18 holds with L = 2/n. Let δ′ > 0

and consider the event

E1 :=

{
Rn(G)−R (G ({Zi}ni=1) /n) >

√
2 log(1/δ′)

n

}
.

Setting ϵ :=
√

2 log(1/δ′)
n

, application of Lemma H18 yields

P [E1] ≤ e−
2n
4

2 log(1/δ′)
n = δ′, (20)

where we used that Rn(G) = E[R (G ({Zi}ni=1) /n)]. Furthermore, for the event

E2 :=

{
ψ(Zn

1 ) > 2Rn(G) +
√

2 log(1/δ′)

n

}

with ψ(Zn
1 ) := supg∈G

(
E[g(Z)]− 1

n

∑n
i=1 g(Zi)

)
, we have, by Theorem H17,

P [E2] ≤ δ′. (21)

We then obtain

P

[
ψ(Zn

1 ) ≤ 2R (G ({Zi}ni=1) /n) + 3

√
2 log(1/δ′)

n

]
≥ P[Ec

1 ∩ Ec
2 ]

= P[(E1 ∪ E2)c]
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= 1− P[E1 ∪ E2]
(a)

≥ 1− (P[E1] + P[E2])
(b)

≥ 1− 2δ′,

where (a) is by a union bound and (b) follows from (20) and (21). Here, the
superscript c denotes the complement of an event. Setting δ′ = δ/2 yields the
desired result.

(d) Note that ργ(u) ≥ 1{u≥0}, u ∈ R, where 1{·} denotes the indicator function. We
thus have

P(sign(f(X)) ̸= Y ) = E[1{sign(f(X)) ̸=Y }] ≤ E[1{−Y f(X)≥0}] ≤ E[ργ(−Y f(X))]. (22)

Further, with probability ≥ 1− δ, it holds that

E[ργ(−Y f(X))] =
1

n

n∑
i=1

ργ(−Yif(Xi)) + E[ργ(−Y f(X))]− 1

n

n∑
i=1

ργ(−Yif(Xi))

≤ 1

n

n∑
i=1

ργ(−Yif(Xi)) + sup
h∈H

(
E[h(X, Y )]− 1

n

n∑
i=1

h(Xi, Yi)

)
(a)

≤ 1

n

n∑
i=1

ργ(−Yif(Xi)) + 2R (H ({(Xi, Yi)}ni=1) /n) + 3

√
2 log(2/δ)

n

(b)

≤ 1

n

n∑
i=1

ργ(−Yif(Xi)) +
2b

nγ

√
tr(K) + 3

√
2 log(2/δ)

n
, (23)

where (a) follows from the result of subproblem (c) and (b) is by the results of
subproblems (b) and (a). Substituting (23) into (22) yields the desired expression.
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