Vector Space Concepts

Scalar Field. For all linear (vector) spaces in the following, the scalar field will be either the field of real numbers, $\mathcal{F} = \mathbb{R}$, or the complex field, $\mathcal{F} = \mathbb{C}$.

Normed Space [1, 2, §2]. A norm $\|\cdot\|$ on a linear space $(\mathcal{U}, \mathcal{F})$ is a mapping $\|\cdot\| : \mathcal{U} \to \mathcal{U}$ $[0,\infty)$ that satisfies, for all $\mathbf{u}, \mathbf{v} \in \mathcal{U}, \alpha \in \mathcal{F}$,

- 1. $\|\mathbf{u}\| = 0 \iff \mathbf{u} = \mathbf{0}$.
- $\|\boldsymbol{\alpha}\mathbf{\ddot{u}}\| = |\boldsymbol{\alpha}| \|\mathbf{u}\|.$ 2.
- Triangle inequality: $\|\mathbf{u} + \mathbf{v}\| \le \|\mathbf{u}\| + \|\mathbf{v}\|$ 3. $\|\mathbf{v}\|$

A norm defines a metric $d(\mathbf{u}, \mathbf{v}) := \|\mathbf{u} - \mathbf{v}\|$ on \mathcal{U} . A normed (linear) space $(\mathcal{U}, \|\cdot\|)$ is a linear space \mathcal{U} with a norm $\|\cdot\|$ defined on

- The norm is a continuous mapping of \mathcal{U} into \mathbb{R}_{\perp}
- A norm $\|\cdot\|$ on a linear space \mathcal{U} is said to be *equivalent* to a norm $\|\cdot\|_0$ on \mathcal{U} if there are positive numbers a and b such that $a \|\mathbf{u}\|_0 \leq \|\mathbf{u}\| \leq b \|\mathbf{u}\|_0$ for all $\mathbf{u} \in \mathcal{U}$. Equivalent norms define the same topology on \mathcal{U} .
- The metric d induced by a norm is *trans*lation invariant, i.e., it satisfies $\circ d(\mathbf{u} + \mathbf{x}, \mathbf{v} + \mathbf{x}) = d(\mathbf{u}, \mathbf{v}),$

 $\circ d(\alpha \mathbf{u} + \alpha \mathbf{v}) = |\alpha| d(\mathbf{u}, \mathbf{v})$

- for all $\mathbf{u}, \mathbf{v}, \mathbf{x} \in \mathcal{U}$ and $\alpha \in \mathcal{F}$
- Riesz's Lemma: Let \mathcal{Y} and \mathcal{Z} be linear subspaces of a normed space \mathcal{U} and let \mathcal{Y} be a closed proper subset of \mathcal{U} . Then, for every $\theta \in (0,1)$, there is a $\mathbf{z} \in \mathcal{Z}$ such that $\|\mathbf{z} - \mathbf{y}\| \ge \theta$ for $\|\mathbf{z}\| = 1$ and for all $\mathbf{y} \in \mathcal{Y}$.
- A subset \mathcal{T} of a normed space \mathcal{U} is said to be *total* in \mathcal{U} if span \mathcal{T} is dense in \mathcal{U} .
- Let \mathcal{S} be a linear subspace of a normed space \mathcal{U} . If \mathcal{S} is open as a subset in \mathcal{U} , then $\mathcal{S} = \mathcal{U}$.

Basis and Dimension [2, 1].

- Let \mathcal{V} be a linear space. A linearly independent subset $\mathcal{S} \subset \mathcal{V}$ that spans \mathcal{V} is called a *Hamel basis* for \mathcal{V} .
 - Every linear space has a Hamel basis, so that every nonzero $\mathbf{v} \in \mathcal{V}$ has a unique representation as a linear combination of finitely many elements of \mathcal{S}

• If a normed space \mathcal{U} contains a sequence $\{\mathbf{e}_n\}$ with the property that for every $\mathbf{u} \in \mathcal{U}$ there is a unique sequence of scalars $\{\alpha_n\}$ such that $\|\mathbf{u} - (\alpha_1 \mathbf{e}_1 + \alpha_2 \mathbf{e}_2 + \alpha_2 \mathbf{e}_3)\|$ $\cdots + \alpha_N \mathbf{e}_N \parallel \rightarrow 0 \text{ as } N \rightarrow \infty, \text{ then } \{\mathbf{e}_n\} \text{ is }$ called a *Schauder basis* for \mathcal{U} . A Schauder basis is different from a Hamel basis in that a countably infinite number of basis vectors and scalar coefficients may be needed to uniquely represent a given vector.

Convergence [1, $\S4.8$]. Let $\{\mathbf{u}_n\}$ be a sequence of vectors in a normed space \mathcal{U} .

- The sequence $\{\mathbf{u}_n\}$ is said to be *strongly* convergent, or convergent in norm, if there is a $\mathbf{u} \in \mathcal{U}$, called the *strong limit* of $\{\mathbf{u}_n\}$, such that $\lim_{n\to\infty} \|\mathbf{u}_n - \mathbf{u}\| = 0$. Strong convergence is written $\mathbf{u}_n \to \mathbf{u}$ and often referred to simply as *conver*gence.
- The sequence $\{\mathbf{u}_n\}$ is said to be *weakly convergent* if there is a $\mathbf{u} \in \mathcal{U}$, called the *weak limit* of $\{\mathbf{u}_n\}$, such that $\lim_{n\to\infty} f(\mathbf{u}_n) = f(\mathbf{u})$ for every bounded linear functional f on \mathcal{U} , i.e., for every f in the dual space \mathcal{U}' . Weak convergence is written $\mathbf{u}_n \xrightarrow{w} \mathbf{u}$.
 - \circ The weak limit ${\bf u}$ is unique.
- \circ Every subsequence of $\{\mathbf{u}_n\}$ converges weakly to **u**.
- The sequence $\{ \|\mathbf{u}_n\| \}$ is bounded.
- Strong convergence implies weak convergence to the same limit.
- If dim $\mathcal{U} < \infty$, then weak convergence implies strong convergence.
- The *(infinite) series* $\mathbf{u}_1 + \mathbf{u}_2 + \ldots$ is said to converge (strongly) if the sequence of partial sums $\mathbf{s}_n := \mathbf{u}_1 + \mathbf{u}_2 + \cdots + \mathbf{u}_n$ converges, i.e., if $\mathbf{s}_n \to \mathbf{s}$ for some $\mathbf{s} \in \mathcal{U}$.
- The above series is said to be *absolutely convergent* if the infinite series $\|\mathbf{u}_1\| +$ $\|\mathbf{u}_2\| + \dots$ converges.
- A series is said to be unconditionally con*vergent* if (i) it is convergent for each possible rearrangement of terms, and (ii) if each rearrangement converges to the same limit.

Finite-Dimensional Normed Spaces.

- Every finite-dimensional linear subspace \mathcal{S} of a normed space \mathcal{U} is complete; in particular, every finite-dimensional normed space is complete.
- Every finite-dimensional linear subspace of a normed space \mathcal{U} is closed in \mathcal{U} and separable.
- On a finite-dimensional linear space, all norms are equivalent.
- In a finite-dimensional normed space \mathcal{U} , any subset $\mathcal{S} \subset \mathcal{U}$ is compact iff \mathcal{S} is closed and bounded.

Inner Product Space [1, §3]. Let $(\mathcal{G}, \mathcal{F})$ be a linear space. An *inner product* is a mapping $\langle \cdot, \cdot \rangle : \mathcal{G} \times \mathcal{G} \to \mathcal{F}$ that satisfies the following properties for all $\mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathcal{V}$ and scalars $\alpha \in \mathcal{F}$:

- 1. $\langle \mathbf{x} + \mathbf{y}, \mathbf{z} \rangle = \langle \mathbf{x}, \mathbf{z} \rangle + \langle \mathbf{y}, \mathbf{z} \rangle.$
- 2. $\langle \alpha \mathbf{x}, \mathbf{y} \rangle = \alpha \langle \mathbf{x}, \mathbf{y} \rangle$.

3. $\langle \mathbf{x}, \mathbf{y} \rangle = \langle \mathbf{y}, \mathbf{x} \rangle^*$. 4. $\langle \mathbf{x}, \mathbf{x} \rangle \ge 0$ with equality iff $\mathbf{x} = \mathbf{0}$. A linear space \mathcal{G} on which an inner product $\langle \cdot, \cdot \rangle$ is defined is called an *inner product* space $(\mathcal{G}, \langle \cdot, \cdot \rangle)$.

- An inner product defines a norm $\|\mathbf{x}\| :=$ $\sqrt{\langle \mathbf{x}, \mathbf{x} \rangle}$ and a metric $d(\mathbf{x}, \mathbf{y}) := \| \mathbf{y} - \mathbf{x} \|$ $\mathbf{x} \parallel = \sqrt{\langle \mathbf{y} - \mathbf{x}, \mathbf{y} - \mathbf{x} \rangle}$ on \mathcal{G} . Hence, inner product spaces are normed spaces.
- The inner product is called *sesquilin*ear, because it is linear in the first term and conjugate linear in the second term: $\langle \mathbf{x}, \alpha \mathbf{y} \rangle = \alpha^* \langle \mathbf{x}, \mathbf{y} \rangle.$
- The inner product satisfies the *Schwarz* inequality: $|\langle \mathbf{x}, \mathbf{y} \rangle| \le ||\mathbf{x}|| ||\mathbf{y}||$.
- The induced norm satisfies the *triangle in*equality: $\|\mathbf{x} + \mathbf{y}\| \le \|\mathbf{x}\| + \|\mathbf{y}\|$ with equality iff $\mathbf{y} = c\mathbf{x}$ for some positive scalar c.
- The induced norm satisfies the *parallel*ogram equality: $\|\mathbf{x} + \mathbf{y}\|^2 + \|\mathbf{x} - \mathbf{y}\|^2 =$ $2(\|\mathbf{x}\|^2 + \|\mathbf{y}\|^2).$
- Continuity: if in an inner product space \mathcal{G} $\begin{array}{l} \mathbf{x}_n \to \mathbf{x} \text{ and } \mathbf{y}_n \to \mathbf{y}, \text{ then } \langle \mathbf{x}_n, \mathbf{y}_n \rangle \to \\ \langle \mathbf{x}, \mathbf{y} \rangle, \text{ where } \langle \{\mathbf{x}_n\}, \mathbf{x}, \{\mathbf{y}_n\}, \mathbf{y} \in \mathcal{G}. \end{array}$
- If $\langle \mathbf{x}_1, \mathbf{y} \rangle = \langle \mathbf{x}_2, \mathbf{y} \rangle$ for all \mathbf{y} in an inner product space, then $\mathbf{x}_1 = \mathbf{x}_2$.

Two inner product spaces \mathcal{G} and \mathcal{V} are called unitarily equivalent if there is an isomorphism $\tilde{\mathbb{U}}: \tilde{\mathcal{G}} \to \mathcal{V}$ of \mathcal{G} onto \mathcal{V} that preserves inner products, i.e., $\langle \mathbb{U}\mathbf{u}_1, \mathbb{U}\mathbf{u}_2 \rangle = \langle \mathbf{u}_1, \mathbf{u}_2 \rangle$ for all $\mathbf{u}_1, \mathbf{u}_2 \in \mathcal{G}$. The mapping \mathbb{U} is called a unitary operator.

Orthogonality [2, 1]. An element \mathbf{x} of an inner product space \mathcal{G} is said to be *orthogonal* to an element $\mathbf{y} \in \mathcal{G}$, denoted $\mathbf{x} \perp \mathbf{y}$, if $\langle \mathbf{x}, \mathbf{y} \rangle = 0$. Similarly, for $\mathcal{A}, \mathcal{B} \subset \mathcal{G}$, $\mathbf{x} \perp \tilde{\mathcal{A}}$ means that $\mathbf{x} \perp \mathbf{a}$ for all $\mathbf{a} \in \mathcal{A}$, and $\mathcal{A} \perp \mathcal{B}$ means that $\mathbf{a} \perp \mathbf{b}$ for all $\mathbf{a} \in \mathcal{A}$ and all $\mathbf{b} \in \mathcal{B}$.

- An *orthogonal set* \mathcal{O} in an inner product space \mathcal{G} is a subset $\mathcal{O} \subset \mathcal{G}$ whose elements are pairwise orthogonal. An orthonormal set is an orthogonal set whose elements have unit norm. A countable orthogonal (orthonormal) set is called an *orthogonal* (orthonormal) sequence.
- An orthogonal set is linearly independent. • Let $\{\mathbf{e}_{\alpha}\}$ be an orthonormal set in an inner product space \mathcal{G} , and let \mathbf{g} be any point in \mathcal{G} . Then $\langle \mathbf{g}, \mathbf{e}_{\alpha} \rangle$ is nonzero for at
- most a countable number of vectors \mathbf{e}_{α} . • Let \mathcal{G} be an inner product space and \mathcal{C} a nonempty convex subset of \mathcal{G} that is complete in the metric induced by the inner product. Then, for every $\mathbf{g} \in \mathcal{G}$ there exists a unique $\mathbf{c}_0 \in \mathcal{C}$ such that $\inf_{\mathbf{c} \in \mathcal{C}} \| \mathbf{g} - \mathbf{c} \|$ $\mathbf{c} \| = \| \mathbf{g} - \mathbf{c}_0 \|$. If \mathcal{C} is a complete linear subspace of \mathcal{G} , then $(\mathbf{g} - \mathbf{c}_0) \perp \mathcal{C}$.
- Bessel inequality: Let $\{\mathbf{e}_n\}$ be an or-

_SVN Revision: 2109, December 11, 2007

complete, then \mathcal{A}^{\perp} is complete.

- If $\mathcal{A} \subset \mathcal{B}$, then $\mathcal{B}^{\perp} \subset \mathcal{A}^{\perp}$. $\mathcal{A} \subset (\mathcal{A}^{\perp})^{\perp}$.
- If $\mathbf{g} \in \mathcal{A} \cap \mathcal{A}^{\perp}$, then $\mathbf{g} = \mathbf{0}$. • If $\mathcal{A} \subset \mathcal{G}$, then $\mathcal{A}^{\perp} = ((\mathcal{A}^{\perp})^{\perp})^{\perp}$.
- $\{\mathbf{0}\}^{\perp} = \mathcal{G} \text{ and } \mathcal{G}^{\perp} = \{\mathbf{0}\}.$
- If \mathcal{A} is a dense subset of \mathcal{G} , then $\mathcal{A}^{\perp} =$ **{0**}.
- If $\{\mathcal{A}_n\}$ is a sequence of subspaces, then $(\operatorname{span}\{\mathcal{A}_n\})^{\perp} = \cap_n \mathcal{A}_n^{\perp}$, and $(\cap_n \mathcal{A}_n)^{\perp} = \overline{\operatorname{span}\{\mathcal{A}_n^{\perp}\}}.$

An orthonormal set \mathcal{O} in an inner product space \mathcal{G} that is total in \mathcal{G} is called a *total* orthonormal set, or sometimes a maximal or *complete* orthonormal set.

- \bullet Let $\mathcal{O} \subset \mathcal{G}$ be a subset of an inner product space \mathcal{G} . Then, if \mathcal{O} is total in \mathcal{G} , there does not exist a nonzero vector $\mathbf{g} \in \mathcal{G}$ that is orthogonal to every element of \mathcal{O} .
- If \mathcal{G} is complete, i.e., a Hilbert space, the above condition is sufficient for \mathcal{O} to be total in \mathcal{G} .

Hilbert Space [1, §3]. A complete inner product space $(\mathcal{H}, \langle \cdot, \cdot \rangle)$ is called a *Hilbert space.* Thus, a Hilbert space is a Banach space on which an inner product is defined.

- For any inner product space \mathcal{G} there exists a Hilbert space \mathcal{H} and an isomorphism from \mathcal{G} onto a dense linear subspace $\mathcal{D} \subset \mathcal{H}$. The space \mathcal{H} is unique except for isomorphisms. Thus, every inner product space can be *completed*.
- Let $\{\mathbf{h}_n\}$ be a sequence in a Hilbert space \mathcal{H} . Then, $\mathbf{h}_n \xrightarrow{w} \mathbf{h}$ iff $\langle \mathbf{h}_n, \mathbf{z} \rangle \rightarrow$ $\langle \mathbf{h}, \mathbf{z} \rangle$ for all $\mathbf{z} \in \mathcal{H}$.
- In every Hilbert space $\mathcal{H} \neq \{\mathbf{0}\}$, there exists a total orthonormal set.
- An orthonormal set \mathcal{O} in a Hilbert space \mathcal{H} is total in \mathcal{H} iff for all $\mathbf{h} \in \mathcal{H}$ the Parseval relation holds:

$$\sum_{\mathbf{e}\in\mathcal{O}}|\langle\mathbf{h},\mathbf{e}
angle|^2=\|\mathbf{h}\|^2.$$

- A total orthonormal sequence, i.e., a countable total orthonormal set, in a Hilbert space \mathcal{H} is called an *orthonormal basis* for \mathcal{H} .
- If a Hilbert space \mathcal{H} is separable, every total orthonormal set is countable, i.e., every total orthonormal set is an orthonormal basis. Conversely, if \mathcal{H} contains an orthonormal sequence that is total in \mathcal{H} , then \mathcal{H} is separable. Thus, there exists an orthonormal basis for \mathcal{H} iff \mathcal{H} is separable.
- All total orthonormal sets in a given Hilbert space have the same cardinality, called the *Hilbert dimension* of \mathcal{H} .
- Two Hilbert spaces \mathcal{H} and \mathcal{H} , both over the same scalar field, are isomorphic iff they have the same Hilbert dimension.
- Let \mathcal{Y} be any closed linear subspace of a Hilbert space \mathcal{H} . Then, $\mathcal{H} = \mathcal{Y} \oplus \mathcal{Z}$, where $\mathcal{Z} = \mathcal{Y}^{\perp}$ is the orthogonal complement of \mathcal{Y} . Each $\mathbf{h} \in \mathcal{H}$ can be uniquely represented as $\mathbf{h} = \mathbf{y} + \mathbf{z}$, where $\mathbf{y} \in \mathcal{Y}$ and $\mathbf{z} \in \mathcal{Z} = \mathcal{Y}^{\perp}$, and $\|\mathbf{h}\| = \|\mathbf{y}\| + \|\mathbf{z}\|$.
- Let $\mathcal{S} \subset \mathcal{H}$ be a linear subspace of \mathcal{H} ; then, $(\mathcal{S}^{\perp})^{\perp} = \overline{\mathcal{S}}$. If \mathcal{S} is closed, then $(\mathcal{S}^{\perp})^{\perp} = \mathcal{S}$.
- For any nonempty subspace S of a Hilbert space \mathcal{H} , span \mathcal{S} is dense in \mathcal{H} iff $S^{\perp} = \{0\}$. If S is closed and $S^{\perp} =$ $\{\mathbf{0}\}, \text{ then } \mathcal{S} = \mathcal{H}.$

Let \mathcal{Y} and \mathcal{Z} be two subspaces of \mathcal{H} . The canonical correlation $\rho(\mathcal{Y}, \mathcal{Z})$ between these two subspaces is defined as

$$\rho(\mathcal{Y}, \mathcal{Z}) := \sup\{|\langle \mathbf{y}, \mathbf{z} \rangle| : \mathbf{y} \in \mathcal{Y},$$

with nonzero scalar coefficients.

- \circ If \mathcal{B}_1 and \mathcal{B}_2 are Hamel basis for a linear space \mathcal{V} , then they have the same cardinality.
- The *dimension* dim \mathcal{V} of a linear space \mathcal{V} is defined as the cardinality of any Hamel basis of \mathcal{V} .
 - \circ If dim \mathcal{V} is finite, \mathcal{V} is called a *finite*dimensional linear space.
 - \circ A linear space \mathcal{V} is *finite dimensional* iff there is a positive integer N such that \mathcal{V} contains a linearly independent set of N vectors whereas any set of N+1 vectors of \mathcal{V} is linearly dependent.
 - \circ If \mathcal{V}_1 and \mathcal{V}_2 are linear spaces over the same scalar field, then they are isomorphic iff dim $\mathcal{V}_1 = \dim \mathcal{V}_2$.

Banach Space $[1, \S 2]$. A Banach space $(\mathcal{B}, \|\cdot\|)$ is a complete normed space, complete in the metric induced by its norm $\|\cdot\|$.

- A linear subspace \mathcal{S} of a Banach space \mathcal{B} is a Banach space, i.e., it is complete, iff \mathcal{S} is closed in $\hat{\mathcal{B}}$.
- For a series on a Banach space, absolute convergence implies strong convergence and unconditional convergence.
- Let $(\mathcal{U}, \|\cdot\|)$ be a normed space. Then there is a Banach space \mathcal{B} and an isometry f from \mathcal{B} onto a linear subspace $\mathcal{S} \subset \mathcal{B}$ that is dense in \mathcal{B} . The space \mathcal{B} is unique except for isometries. Thus, every normed space can be *completed*.

thonormal sequence in an inner product space \mathcal{G} . Then, for every $\mathbf{g} \in \mathcal{G}$,

$$\sum_{n=1}^{\infty} |\langle \mathbf{g}, \mathbf{e}_n \rangle|^2 \le \|\mathbf{g}\|^2.$$

Orthogonal Complement [2, 1, 3] Let \mathcal{A} and \mathcal{B} be nonempty subsets in an inner product space \mathcal{G} . The set $\mathcal{A}^{\perp} :=$ $\{\mathbf{g} \in \mathcal{G} : \mathbf{g} \perp \mathcal{A}\}$ is called the *orthogonal* complement of \mathcal{A} in \mathcal{G} .

• The orthogonal complement \mathcal{A}^{\perp} of \mathcal{A} in \mathcal{G} is a closed linear subspace of \mathcal{G} . If \mathcal{G} is $\mathbf{z} \in \mathcal{Z}, \|\mathbf{y}\| = \|\mathbf{z}\| = 1 \big\}$

and the *angle* $\theta(\mathcal{Y}, \mathcal{Z})$ between these subspaces as $\theta(\mathcal{Y}, \mathcal{Z}) = \cos \rho(\mathcal{Y}, \mathcal{Z}).$

• Let $\mathbf{y} \in \mathcal{Y}, \mathbf{z} \in \mathcal{Z}$. Then, the following conditions are equivalent:

 $\circ \rho(\mathcal{Y}, \mathcal{Z}) < 1$, i.e., $\theta(\mathcal{Y}, \mathcal{Z}) > 0$. $\circ \inf \{ \|\mathbf{y} - \mathbf{z}\| : \|\mathbf{y}\| = \|\mathbf{z}\| = 1 \} > 0.$ \circ There is a constant c such that $\|\mathbf{y}\| \leq$ $c \|\mathbf{y} + \mathbf{z}\|$ for all \mathbf{y}, \mathbf{z} . \circ The direct sum $\mathcal{Y} \oplus \mathcal{Z}$ is a closed subspace of \mathcal{H} .

Fourier Series [2]. Riesz-Fischer Theo*rem:* Let $\{\mathbf{e}_n\}$ be an orthonormal sequence in a Hilbert space \mathcal{H} , and let $\{\alpha_n\}$ be a sequence of scalars. Then, the series

$$\mathbf{h} = \sum_{n=1}^{\infty} \alpha_n \mathbf{e}_n$$

converges in norm iff $\sum_{n=1}^{\infty} |\alpha_n|^2 < \infty$. In this case, the coefficients α_n are called the Fourier coefficients of \mathbf{h} , and they are given as $\alpha_n = \langle \mathbf{h}, \mathbf{e}_n \rangle$. Conversely, the above series always converges to **h** if the α_n are the Fourier coefficients of any $\mathbf{h} \in \mathcal{H}$.

• The above series is convergent iff it converges unconditionally.

Let $\{\mathbf{e}_n\}$ be an orthonormal set in a Hilbert space \mathcal{H} , then the following statements are equivalent:

- The set $\{\mathbf{e}_n\}$ is an orthonormal basis for \mathcal{H} .
- For any $\mathbf{h} \in \mathcal{H}$, the Fourier series ex*pansion* of **h** is given as $\mathbf{h} = \sum_{n} \alpha_n \mathbf{e}_n$, where $\alpha_n = \langle \mathbf{h}, \mathbf{e}_n \rangle$.
- Parseval equality: For any $\mathbf{x}, \mathbf{y} \in \mathcal{H}$,

$$\langle {f x},{f y}
angle = \sum_n \langle {f x},{f e}_n
angle \langle {f y},{f e}_n
angle^st.$$

• For any
$$\mathbf{h} \in \mathcal{H}$$
,

$$\|\mathbf{h}\|^2 = \sum_n \left| \langle \mathbf{h}, \mathbf{e}_n
angle
ight|^2.$$

• Let \mathcal{M} be any linear subspace of \mathcal{H} that contains $\{\mathbf{e}_n\}$; then \mathcal{M} is dense in \mathcal{H} .

Banach Algebra [4, 5]. Strictly speaking, a *Banach Algebra* is an algebra \mathcal{B} over a scalar field \mathcal{F} , where \mathcal{B} is also a Banach space under a norm $\|\cdot\|$ that satisfies the multiplicative inequality $\|\mathbf{x}\mathbf{y}\| \leq \|\mathbf{x}\|\|\mathbf{y}\|$ for all $\mathbf{x}, \mathbf{y} \in \mathcal{B}$.

In the following, though, an associative unit complex Banach algebra, i.e., a Banach algebra over the complex field $\mathbb C$ that is associative and contains an identity element **1** with respect to vector multiplication such that $\|\mathbf{1}\| = 1$ is simply referred to as a complex Banach algebra.

• An element $\mathbf{b} \in \mathcal{B}$ is called *invertible* if **b** Hardy Space [3]. ments of \mathcal{B} form a group with respect to complex plane. For 0 , the spacevector multiplication.

 \bullet Let $\mathcal{S} \subset \mathcal{B}$ denote the set of all invertible elements of \mathcal{B} . If $\mathbf{b} \in \mathcal{B}$ and $\|\mathbf{b}\| < 1$, then, $\circ 1 + \mathbf{b} \in \mathfrak{S}$

$$\circ \mathbf{I} + \mathbf{b} \in \mathcal{S},$$

 $\circ (\mathbf{I} + \mathbf{b})^{-1} - \nabla^{\infty} (-1)^n \mathbf{b}$

 $\circ (\mathbf{1} + \mathbf{b})^{-1} = \sum_{n=0}^{\infty} (-1)^n \mathbf{b}^n, \\ \circ \|(\mathbf{1} + \mathbf{b})^{-1} - \mathbf{1} + \mathbf{b}\| \le \|\mathbf{b}\|^2 / (1 - \|\mathbf{b}\|). \\ \circ \text{ The set } \mathcal{S} \text{ is open, and the mapping } \mathbf{b} \to \mathbf{b}^{-1} \text{ is a homeomorphism}$ of \mathcal{S} onto \mathcal{S} .

- The *spectrum* $\mathcal{S}(\mathbf{b})$ of an element $\mathbf{b} \in \mathcal{B}$ is defined as the set of all complex numbers λ such that $\mathbf{b} - \lambda \mathbf{1}$ is not invertible.
- Let f be a bounded linear functional on \mathcal{B} . Then, for any fixed $\mathbf{b} \in \mathcal{B}$, the func-tion $g(\lambda) := f((\mathbf{b} - \lambda \mathbf{1})^{-1}), \lambda \notin \mathcal{S}(\mathbf{b})$, is holomorphic in the complement of $\mathcal{S}(\mathbf{b})$, and $g(\lambda) \to 0$ as $\lambda \to \infty$.
- For every $\mathbf{b} \in \mathcal{B}$, the spectrum $\mathcal{S}(\mathbf{b})$ is compact and not empty.
- If each nonzero element of \mathcal{B} is invertible, then the complex Banach algebra \mathcal{B} is isometrically isomorphic to the complex field \mathbb{C} . This also implies that \mathcal{B} is commutative.
- For any $\mathbf{b} \in \mathcal{B}$, the *spectral radius* $r_{\mathbf{b}}$ of **b** is defined as $r_{\mathbf{b}} := \sup\{|\lambda| : \lambda \in \mathcal{S}(\mathbf{b})\};$ it can be computed as $r_{=} \lim_{n \to \infty} \|\mathbf{b}^n\|^{1/n}$.

A complex-valued *homomorphism* f on a Banach algebra \mathcal{B} is a linear functional that preserve vector multiplication, i.e., a functional f for which $f(\alpha \mathbf{x} + \beta \mathbf{y}) = \alpha f(\mathbf{x}) + \beta \mathbf{y}$ $\beta f(\mathbf{y}) \text{ and } f(\mathbf{xy}) = f(\mathbf{x})f(\mathbf{y}) \text{ for all } \mathbf{x}, \mathbf{y} \in \mathcal{B} \text{ and } \alpha, \beta \in \mathcal{F}.$ Furthermore, f is not identical to 0. Let \mathcal{M} denote the set of all complex-valued homomorphisms f of \mathcal{B} .

- $\lambda \in \mathcal{S}(\mathbf{b})$ iff $f(\mathbf{b}) = \lambda$ for some $f \in \mathcal{M}$.
- The vector **b** is invertible in \mathcal{B} iff $f(\mathbf{b}) \neq 0$ for every $f \in \mathcal{M}$.
- $f(\mathbf{b}) \in \mathcal{S}(\mathbf{b})$ for every $\mathbf{b} \in \mathcal{B}$ and $f \in \mathcal{M}$. • $|\hat{f}(\mathbf{b})| \leq r_{\mathbf{b}} \leq ||\mathbf{b}||$ for every $\mathbf{b} \in \mathcal{B}$ and $f \in \mathcal{M}$.

Some Important Linear Spaces

Euclidean Space [6]. The N-dimensional Lebesgue Space [3, 7]. Let \mathcal{X} be an arbicomplex Euclidean space

 $\mathbb{C}^{N} := \left\{ \mathbf{x} : \mathbf{x} = \begin{bmatrix} x_{0} \, x_{1} \cdots x_{N-1} \end{bmatrix}^{T}, x_{n} \in \mathbb{C} \right\} \text{ and } \mu \text{ a nonnegative measure on } \mathscr{F}. \text{ The Lebesgue space}$

with inner product

$$\langle \mathbf{x}, \mathbf{y} \rangle := \sum_{n=0}^{N-1} x_n y_n^*$$

and corresponding induced norm is a finite- with norm dimensional Hilbert space.

Sequence Space [3]. The sequence space

 $l^p := \left\{ \mathbf{x} : \, \mathbf{x} = \{x_n\}_{n=0}^{\infty}, \right.$ $x_n \in \mathbb{C}, \sum_{n=0}^{\infty} |x_n|^p < \infty \Big\}$

with norm

$$\|\mathbf{x}\|_p := \left(\sum_{n=0}^\infty |x_n|^p\right)^{1/p}$$

is a Banach space for $1 \leq p \leq \infty$.

- For $p = \infty$, the norm is the supremum norm: $\|\mathbf{x}\|_{\infty} := \sup_{n} |x_{n}|$
- An important subspace of l^{∞} is the space whose elements are sequences that decay to zero, i.e., $x_n \to 0$ as $n \to \infty$.
- For p = 2, the space l^2 with inner product

$$\langle {f x}, {f y}
angle := \sum^\infty x_n y_n^*$$

- Then.

Let \mathcal{D} := with norm has an inverse in \mathcal{B} . The invertible ele- $\{z \in \mathbb{C} : |z| < 1\}$ be the open disk in the

$$:= \left\{ f : f \text{ analytic in } \mathcal{D}, \\ \sup_{0 \le r \le 1} \int \left| f(re^{i\lambda}) \right|^p d\lambda < \infty \right\}$$

 \mathcal{H}^p

Linear Operators and Linear Functionals

Linear Operator [1, 2]. A linear operator \mathbb{T} is a mapping of a linear space \mathcal{V} into a linear space \mathcal{Z} such that

1. The domain $\mathcal{D}(\mathbb{T})$ is a linear space \mathcal{V} , and the range $\mathcal{R}(\mathbb{T})$ lies in a linear space \mathcal{Z} over the same scalar field \mathcal{F} . 2. For all $\mathbf{v}, \mathbf{u} \in \mathcal{V}$ and scalars

$$\mathbb{T}(\mathbf{v} + \mathbf{u}) = \mathbb{T}\mathbf{v} + \mathbb{T}\mathbf{u},$$

$$\mathbb{T}(\alpha \mathbf{v}) = \alpha \mathbb{T} \mathbf{v}.$$

The *null space* $\mathcal{N}(\mathbb{T})$ of \mathbb{T} is the set of all $\mathbf{v} \in \mathcal{D}(\mathbb{T})$ such that $\mathbb{T}\mathbf{v} = \mathbf{0}$. The null space is a linear space.

- The range space $\mathcal{R}(\mathbb{T})$ of a linear operator is a linear space.
- \bullet Two linear operators $\mathbb T$ and $\mathbb S$ are said to be *equal* if they have the same domain and if $\mathbb{T}\mathbf{v} = \mathbb{S}\mathbf{v}$ for all $\mathbf{v} \in \mathcal{D}(\mathbb{T}) = \mathcal{D}(\mathbb{S})$.
- dim $\mathcal{D}(\mathbb{T}) = N < \infty \implies \dim \mathcal{R}(\mathbb{T}) \leq$ N.
- The dimensions of the null space $\mathcal{N}(\mathbb{T})$, the range space $\mathcal{R}(\mathbb{T})$ and the space \mathcal{X} itself are related as $\dim \mathcal{N}(\mathbb{T}) + \dim \mathcal{R}(\mathbb{T}) =$ $\dim \mathcal{X}$.
- Let $\mathcal{X}_1, \mathcal{X}_2, \mathcal{Y}_1, \mathcal{Y}_2$ be linear spaces over the same scalar field so that \mathcal{X}_1 and \mathcal{X}_2 are isomorphic and \mathcal{Y}_1 and \mathcal{Y}_2 are isomorphic. The linear operators $\mathbb{T}_1 : \mathcal{X}_1 \to \mathcal{Y}_1$ and $\mathbb{T}_2: \mathcal{X}_2 \to \mathcal{Y}_2$ are said to be *isomor*phically equivalent if there exists isomorphisms $\mathbb{U} : \mathcal{X}_1 \to \mathcal{X}_2$ and $\mathbb{W} : \mathcal{Y}_1 \to \mathcal{Y}_2$ such that $\mathbb{T}_1 = \mathbb{W}^{-1}\mathbb{T}_2\mathbb{U}$ and $\mathbb{T}_2 = \mathbb{W}\mathbb{T}_1\mathbb{U}^{-1}$.
- Let \mathcal{X}_1 and \mathcal{X}_2 be isomorphic linear spaces. The linear operators $\mathbb{T}_1 : \mathcal{X}_1 \to$ \mathcal{X}_1 and $\mathbb{T}_2: \mathcal{X}_2 \to \mathcal{X}_2$ are said to be *similar* if there exists an isomorphism \mathbb{U} : $\mathcal{X}_1 \to \mathcal{X}_2$ such that $\mathbb{T}_1 = \mathbb{U}^{-1}\mathbb{T}_2\mathbb{U}$ and $\mathbb{T}_2 = \overline{\mathbb{U}}\mathbb{T}_1\mathbb{U}^{-1}$.
- Let \mathbb{T} : $\mathcal{V} \to \mathcal{V}$ be a linear operator and $\mathcal{M} \subset \mathcal{V}$ a linear subspace of \mathcal{V} such that $\mathbb{T}(\mathcal{M}) \subset \mathcal{M}$; then \mathcal{M} is called *invari*ant under $\mathbb T$. In this case, the restriction of \mathbb{T} to \mathcal{M} is a mapping of \mathcal{M} into itself.
- Let $\mathbb{T}: \mathcal{H} \to \mathcal{H}$ be a linear operator on a Hilbert space \mathcal{H} . If some closed linear subspace $\mathcal{M} \subset \mathcal{H}$ and its orthogonal complement \mathcal{M}^{\perp} are invariant under \mathbb{T} , then \mathcal{M} is said to *reduce* \mathbb{T} .
- Any operator that maps a Banach space onto another Banach space is an open mapping.

Inverse Operator. Let $\mathbb{T} : \mathcal{V} \to \mathcal{Z}$ be a linear operator. Then, the *inverse oper-ator* \mathbb{T}^{-1} : $\mathcal{R}(\mathbb{T}) \to \mathcal{D}(\mathbb{T})$ exists iff $\mathbb{T}\mathbf{v} = \mathbf{0}$ implies that $\mathbf{v} = \mathbf{0}$.

- If \mathbb{T}^{-1} exists, it is a linear operator.
- If dim $\mathcal{D}(\mathbb{T}) = N < \infty$ and \mathbb{T}^{-1} exists, then dim $\mathcal{R}(\mathbb{T}) = \dim \mathcal{D}(\mathbb{T})$.
- An invertible linear operator is a homeomorphism.
- Let \mathbb{T} : $\mathcal{X} \to \mathcal{Y}$ and \mathbb{S} : $\mathcal{Y} \to \mathcal{Z}$ be bijective linear operators, where $\mathcal{X}, \mathcal{Y},$ and \mathcal{Z} are linear spaces. Then, the inverse $(\mathbb{ST})^{-1} : \mathcal{Z} \to \mathcal{X}$ of the composition (also called *product*) $\mathbb{ST} := \mathbb{S} \circ \mathbb{T}$ exists and $(\mathbb{ST})^{-1} = \mathbb{T}^{-1} \mathbb{S}^{-1}$.
- A bounded bijective operator $\mathbb{T}: \mathcal{X} \to \mathcal{Y}$ between two Banach spaces \mathcal{X} and \mathcal{Y} has a bounded inverse.
- Von Neumann Theorem: Let $\mathbb{T} : \mathcal{B} \to \mathcal{B}$

$$||f||_p := \sup_{0 \le r < 1} \left(\int \left| f(re^{i\lambda}) \right|^p d\lambda \right)^{1/p}$$

is a Banach space, called the *Hardy space*.

Reproducing Kernel Hilbert Spaces. to write

disjoint subspaces of
$$\mathcal{X}$$
 such that $\mathcal{X} = \mathcal{R}(\mathbb{P}) + \mathcal{N}(\mathbb{P}) = \mathcal{R}(\mathbb{P}) \oplus \mathcal{N}(\mathbb{P})$, i.e., $\mathcal{R}(\mathbb{P})$
and $\mathcal{N}(\mathbb{P})$ are algebraic complements of
one another.

- If \mathbb{P} is a projection, so is $\mathbb{I}-\mathbb{P}$, and $\mathcal{R}(\mathbb{P}) =$ $\mathcal{N}(\mathbb{I} - \mathbb{P})$ and $\mathcal{N}(\mathbb{P}) = \mathcal{R}(\mathbb{I} - \mathbb{P})$.
- Let $\mathcal{S} \subset \mathcal{X}$ be a subspace of \mathcal{X} . Then there exists a projection $\mathbb{P}: \mathcal{X} \to \mathcal{X}$ such that $\mathcal{R}(\mathbb{P}) = \mathcal{S}$.
- Given two disjoint subspaces \mathcal{V} and \mathcal{U} with $\mathcal{X} = \mathcal{U} \oplus \mathcal{V}$, there is a unique projection \mathbb{P} such that $\mathcal{R}(\mathbb{P}) = \mathcal{U}$ and $\mathcal{N}(\mathbb{P}) =$

Finite-Dimensional Spaces $[1, \S 2.9,$ Let \mathcal{X} and \mathcal{Y} be finite-§7.1]. dimensional linear spaces over the same field \mathcal{F} , with dim $\mathcal{X} = N$, dim $\mathcal{Y} = K$. Let $\mathcal{E} := \{\mathbf{e}_1, \dots, \mathbf{e}_N\}$ be a basis for \mathcal{X} , and let $\mathcal{B} := \{\mathbf{b}_1, \dots, \mathbf{b}_K\}$ be a basis for \mathcal{Y} .

- Any linear operator \mathbb{T} : $\mathcal{X} \to \mathcal{Y}$ is uniquely determined by the K images of the N basis vectors $\mathbf{y}_k = \mathbb{T}\mathbf{e}_n$. • Any linear operator \mathbb{T} on a finite-
- dimensional linear space can be represented by a matrix \mathbf{T} with $[\mathbf{T}]_{k,n} = t_{k,n}$, where \mathbf{T} depends on the bases \mathcal{E} and \mathcal{B} . Hence, the image of any vector $\mathbf{x} \in \mathcal{X}$ can be obtained as

$$\mathbf{y} = \mathbb{T}\mathbf{x} = \sum_{k=1}^{K} \sum_{n=1}^{N} (t_{k,n}\xi_n) \mathbf{b}_k$$

- where $\mathbf{x} = \sum_{n=1}^{N} \xi_n \mathbf{e}_n$. For given bases \mathcal{E} and \mathcal{B} , the matrix \mathbf{T} is uniquely determined by \mathbb{T} .
- Conversely, any $K \times N$ matrix **T** defines a linear operator with respect to given bases for \mathcal{X} and \mathcal{Y} .
- Two matrices that represent a linear operator on a finite-dimensional normed space relative to two different bases are similar.

Linear Functionals [1, 2]. A linear func-tional is a linear operator $f : \mathcal{V} \to \mathcal{F}$, defined on some linear space \mathcal{V} , whose range is in the scalar field \mathcal{F} of the linear space.

- Hahn-Banach Theorem: Let \mathcal{V} be a real or complex linear space, and let g be a real-valued functional on \mathcal{V} that is subadditive, i.e., $g(\mathbf{u} + \mathbf{v}) \leq g(\mathbf{u}) + g(\mathbf{v})$ for all $\mathbf{u}, \mathbf{v} \in \mathcal{V}$, and that satisfies $g(\alpha \mathbf{u}) =$ $|\alpha| g(\mathbf{v})$ for every scalar α . Let f be a linear functional, defined on a subspace \mathcal{Z} of \mathcal{V} , that satisfies $|f(\mathbf{z})| \leq g(\mathbf{z})$ for all $\mathbf{z} \in \mathcal{Z}$. Then, f has a linear extension \tilde{f} from \mathcal{Z} to \mathcal{V} that satisfies $|f(\mathbf{v})| \leq$ $g(\mathbf{v})$ for all $\mathbf{v} \in \mathcal{V}$.
- The codimension of $\mathcal{N}(f)$ is 1.
- If \mathcal{A} is any subspace of \mathcal{V} with $\mathcal{N}(f) \subset \mathcal{A}$ and $\mathcal{N}(f) \neq 0$, then $\mathcal{A} = \mathcal{V}$.
- For some linear functional f and some scalar α , the set $\{\mathbf{v} \in \mathcal{V} : f(\mathbf{v}) = \alpha\}$ is called the *hyperplane* in \mathcal{V} determined by f and α .

Algebraic Dual [1]. The set \mathcal{V}^{\star} of all linear functionals defined on a linear space \mathcal{V} is itself a linear space, called the *algebraic* dual space of \mathcal{V} . Its vector sum is defined as $s(\mathbf{v}) = (f_1 + f_2)(\mathbf{v}) := f_1(\mathbf{v}) + f_2(\mathbf{v})$ for all $\mathbf{v} \in \mathcal{V}$, and the product of a scalar α and a vector, i.e., a functional $f \in \mathcal{V}^*$, is defined

trary set, \mathscr{F} the σ -algebra of subsets of \mathcal{X} ,

$$\mathcal{L}^p(\mathcal{X},\mathscr{F},\mu) := \left\{ f \, : \, \mathcal{X} o \mathbb{C}
ight.$$
measurable, $\int |f|^p \, d\mu < \infty
ight\}$

is a Banach space for $1 \leq p < \infty$.

 $\mathcal{L}^p(\mu) \subseteq \mathcal{L}^q(\mu) \text{ for } p \ge q.$

on null sets.

 $||f||_p := \left(\int |f|^p \, d\mu\right)^{1/p}$

• For $p = \infty$, the space $\mathcal{L}^{\infty}(\mathcal{X}, \mathscr{F}, \mu)$ with

 $\operatorname{ess}_{\mu} \sup_{t} |f(t)|$ is also a Banach space.

• If μ is finite and $\mathcal{X} = (a, b]$, the spaces

• The space $\mathcal{L}^2(\mathcal{X}, \mathscr{F}\mu)$ with inner product

 $\mathcal{L}^{p}(\mu) := \mathcal{L}^{p}((a, b], \mathscr{F}, \mu)$ are nested:

 $\langle f,g \rangle := \int_{\mathcal{X}} fg^* d\mu$ and induced norm is a

Hilbert space, called the Hilbert function

space. The elements of $\mathcal{L}^2(\mathcal{X}, \mathring{\mathscr{F}}, \mu)$ are

equivalence classes of functions that differ

• The space $\mathcal{L}^1(\mathbb{R}) \cap \mathcal{L}^2(\mathbb{R})$ is a Hilbert

space. It is a dense subspace of $\mathcal{L}^2(\mathbb{R})$. • For $\mathcal{X} = \{0, 1, \dots, N-1\}$ or $\mathcal{X} = \mathbb{Z}_+$

 μ -essential supremum norm $||f||_{\infty}$:=

n=0and norm $\|\mathbf{x}\|_2 := \langle \mathbf{x}, \mathbf{x} \rangle^{1/2}$ is an infinitedimensional Hilbert space, called the Hilbert sequence space.

Space of Continuous Functions. Let $\mathcal{C}[a, b]$ denote the space of all complexvalued continuous functions $f : [a, b] \to \mathbb{C}$ with pointwise addition and scalar multiplication.

- $\mathcal{C}^{\infty}[a, b]$, endowed with the supremum norm $||f||_{\infty} := \sup_{a \le t \le b} |f(t)|$, is a Banach space.
- Endowed with the inner product $\langle f, g \rangle :=$

 $\int_{a}^{o} f(t)g^{*}(t)dt$ and the induced norm, this space is an inner product space but not a Hilbert space.

lection \mathscr{F} of all subsets of \mathcal{X} , the space $\mathcal{L}^2(\mathcal{X}, \mathscr{F}\mu)$ reduces to \mathbb{C}^N or l^2 , respectively.

and μ the counting measure on the col-

• When μ is a probability measure, i.e., $\mu(\mathcal{X}) = 1$ for arbitrary \mathcal{X} , then $\mathcal{L}^2(\mathcal{X}, \mathscr{F}, \mu)$ is the space of all random variables with finite second moment.

Schwarz Space [7]. The Schwarz space Sis the space of all infinitely differentiable, rapidly decaying functions of a real parameter t:

 $\mathcal{S} := \left\{ f : \mathbb{R} \to \mathbb{C} : \lim_{t \to \infty} t^m \frac{d^n f(t)}{dt^n} = 0 \\ \forall m, n \in \mathbb{N} \right\}$

Paley-Wiener Space. to write

Sobolev Space. to write

be a bounded operator on a Banach space \mathcal{B} that satisfies $\|\mathbb{I} - \mathbb{T}\| < 1$. Then, $\mathbb{T} \text{ is invertible, and } \mathbb{T}^{-1} = \sum_{n=0}^{\infty} (\mathbb{I} - \mathbb{T})^n.$ Furthermore, $\|\mathbb{T}^{-1}\| \leq 1/(1 - \|\mathbb{I} - \mathbb{T}\|).$

Projections [2]. A linear operator \mathbb{P} : $\mathcal{X} \to \mathcal{X}$ that satisfies $\mathbb{P}^2 = \mathbb{P}$ is called a projection.

• Range $\mathcal{R}(\mathbb{P})$ and null space $\mathcal{N}(\mathbb{P})$ are

for all $\mathbf{v} \in \mathcal{V}^{\star}$ as $p(\mathbf{v}) = (\alpha f)(\mathbf{v}) := \alpha f(\mathbf{v})$. • Let \mathcal{V} be an N-dimensional linear space, and let $\mathcal{E} = \{\mathbf{e}_1, \ldots, \mathbf{e}_N\}$ be a basis for \mathcal{V} . Define the set of linear functionals $\mathcal{B} := \{f_1, \ldots, f_N\}$ with $f_k(\mathbf{e}_n) = \delta_{kn}$. Then \mathcal{B} is a basis for the algebraic dual space \mathcal{V}^{\star} of \mathcal{V} , and dim $\mathcal{E} = \dim \mathcal{B}$; \mathcal{B} is called the *dual basis* of \mathcal{E} .

Linear Functionals on Normed Spaces

Linear Functionals [1, 2]. Let f: $\mathcal{U} \to \mathcal{F}$ be a linear functional on a normed space \mathcal{U} .

- The *norm* ||f|| of a linear functional fis the usual operator norm: ||f|| = $\sup_{\mathbf{u}\in\mathcal{U},\mathbf{u}\neq\mathbf{0}}|f(\mathbf{u})|.$
- A bounded linear functional is a linear function f that satisfies $||f|| \leq a$ for some $a \in \mathbb{R}$.
- \bullet On a normed space $\mathcal U,$ the Hahn-Banach

Theorem implies that every bounded linear functional f on a subspace $\mathcal{S} \subset \mathcal{U}$ has a linear extension \tilde{f} on \mathcal{U} that has the same norm,

$$\sup_{\mathbf{u}\in\mathcal{U},\|\mathbf{u}\|=1}\left|\tilde{f}(\mathbf{u})\right|=\sup_{\mathbf{s}\in\mathcal{S},\|\mathbf{s}\|=1}\left|f(\mathbf{s})\right|.$$

• Let \mathcal{U} be a normed space and let $\mathbf{u} \in$ \mathcal{U} . Then, there exists a bounded linear functional f on \mathcal{U} such that ||f|| = 1and $f(\mathbf{u}) = \|\mathbf{u}\|$.

Sesquilinear Form $[1, \S 3.8]$. Let \mathcal{V} and \mathcal{Z} be liner spaces over the same scalar field \mathcal{F} . A sesquilinear form, or sesquilinear function f on $\mathcal{V} \times \mathcal{Z}$ is a mapping f: $\mathcal{V} \times \mathcal{Z} \to \mathcal{F}$ such that for all $\mathbf{v}, \mathbf{v}_1, \mathbf{v}_2 \in \mathcal{V}$ and $\mathbf{z}, \mathbf{z}_1, \mathbf{z}_2 \in \mathcal{Z}$ and all scalars α and β $\circ f(\mathbf{v}_1 + \mathbf{v}_2, \mathbf{z}) = f(\mathbf{v}_1, \mathbf{z}) + f(\mathbf{v}_2, \mathbf{z}),$ $\circ f(\mathbf{v}_1 + \mathbf{v}_2, \mathbf{z}) = f(\mathbf{v}_1, \mathbf{z}) + f(\mathbf{v}_2, \mathbf{z}),$ $\circ f(\mathbf{v}, \mathbf{z}_1 + \mathbf{z}_2) = f(\mathbf{v}, \mathbf{z}_1) + f(\mathbf{v}, \mathbf{z}_2),$ $\circ f(\alpha \mathbf{v}, \mathbf{z}) = \alpha f(\mathbf{v}, \mathbf{z})$

$$\circ f(\mathbf{v}, \beta \mathbf{z}) = \beta^* f(\mathbf{v}, \mathbf{z}),$$

$$\circ f(\mathbf{v}, \beta \mathbf{z}) = \beta^* f(\mathbf{v}, \mathbf{z}).$$

Dual Space [1]. Let \mathcal{U} be a normed space. Then the set of all bounded linear functionals on \mathcal{U} constitutes a normed space under the usual operator norm ||f|| = $\sup_{\mathbf{u}\in\mathcal{U},\|\mathbf{u}\|=1}|f(\mathbf{u})|$. This space is called the dual space $\mathcal{U}^{'}$ of \mathcal{U} .

• The dual space $\mathcal{U}^{'}$ of a normed space \mathcal{U} is a Banach space, whether or not \mathcal{U} is complete.

• For every **u** in a normed space
$$\mathcal{U}$$

$$\|\mathbf{u}\| = \sup_{\substack{f \in \mathcal{U}' \\ f \neq 0}} \frac{|f(\mathbf{u})|}{\|f\|}.$$

• Given a linearly independent set $\{f_1,\ldots,f_N\} \in \mathcal{U}'$, there are elements $\mathbf{u}_1, \ldots, \mathbf{u}_N$ in \mathcal{U} such that $f_i(\mathbf{u}_k) = \delta_{ik}$.

Convergence $[1, \S 4.9]$. For linear functionals, strong and weak convergence are equivalent, so that a sequence $\{f_n\}$ of bounded linear functionals on a normed space \mathcal{U} is said to be

- strongly convergent if there is an $f \in$ \mathcal{U}' , called the *strong limit* of $\{f_n\}$, such that $||f_n - f|| \to 0$; this is written as $f_n \to 0$ f;
- weak^{*} convergent if there is an $f \in \mathcal{U}$, called the weak^{*} limit of $\{f_n\}$, such that $f_n(\mathbf{u}) \to f(\mathbf{u})$ for all $\mathbf{u} \in \mathcal{U}$; this is written as $f_n \xrightarrow{w^*} f$.

Linear Operators on Normed and Banach Spaces

Continuity [2, 1]. Let \mathcal{X} and \mathcal{Y} be normed addition $(\mathbb{T}_1 + \mathbb{T}_2)\mathbf{u} := \mathbb{T}_1\mathbf{u} + \mathbb{T}_2\mathbf{u}$, for all $\mathbf{u} \in$ spaces, and let $\mathbb{T}: \mathcal{X} \to \mathcal{Y}$ be a linear oper- \mathcal{U} , and scalar multiplication $(\alpha \mathbb{T})\mathbf{u} := \alpha \mathbb{T}\mathbf{u}$ ator.

• The operator \mathbb{T} is continuous iff

$$\mathbb{T}\Big(\sum_{n=1}^{\infty}\alpha_n\mathbf{x}_n\Big) = \sum_{n=1}^{\infty}\alpha_n\mathbb{T}(\mathbf{x}_n)$$

for every convergent series $\sum_{n=1}^{\infty} \alpha_n \mathbf{x}_n$ in \mathcal{X} .

- If \mathbb{T} is continuous at a single point, it is continuous.
- The linear operator \mathbb{T} is continuous iff it is bounded.
- If a linear operator \mathbb{T} is continuous, it is uniformly continuous.
- If \mathcal{X} is finite dimensional, then \mathbb{T} is continuous.

Operator Norm $(1, \S 2.7)$. Let $\mathbb{T} : \mathcal{U} \to \mathcal{Z}$ be a linear operator that maps a normed space \mathcal{U} into a normed space \mathcal{Z} . The *opera*tor norm is defined as 11/m--11

$$\|\mathbb{T}\| := \sup_{\substack{\mathbf{u} \in \mathcal{U} \\ \mathbf{u} \neq \mathbf{0}}} \frac{\|\mathbb{T}\mathbf{u}\|}{\|\mathbf{u}\|}$$

tor norms in \mathcal{Z} and \mathcal{U} . If $\mathcal{D}(\mathbb{T}) = \{\mathbf{0}\},\$ then $||\mathbb{T}|| := 0.$

• The operator norm $||\mathbb{T}||$ of \mathbb{T} is equivalent $_{\mathrm{to}}$

$$\|\mathbb{T}\| = \sup_{\substack{\mathbf{u} \in \mathcal{U} \\ \|\mathbf{u}\| = 1}} \|\mathbb{T}\mathbf{u}\|.$$

Bounded Linear Operators $[1, \S 2.7]$. The linear operator $\mathbb{T}: \mathcal{U} \to \mathcal{Z}$ that maps a normed space \mathcal{U} into a normed space \mathcal{Z} is said to be *bounded* if there is a real number asuch that $\|\mathbb{T}\| \leq a$.

- A linear operator \mathbb{T} is bounded iff it is continuous.
- If a normed space \mathcal{U} is finite dimensional, then every linear operator on \mathcal{U} is bounded.
- $\mathbb{T} = 0$ iff $\langle \mathbb{T}\mathbf{u}, \mathbf{z} \rangle = 0$ for all $\mathbf{u} \in \mathcal{U}$ and $\mathbf{z} \in \mathcal{Z}$.

• The null space $\mathcal{N}(\mathbb{T})$ of \mathbb{T} is closed.

- If $\{\mathbf{u}_n\}$ a sequence in $\mathcal{D}(\mathbb{T})$, then $\mathbf{u}_n \to \mathbf{u}$ implies $\mathbb{T}\mathbf{u}_n \to \mathbb{T}\mathbf{u}$.
- For bounded linear operators $\mathbb{T}_1 : \mathcal{X} \to$ \mathcal{Y} and \mathbb{T}_2 : $\mathcal{Y} \to \mathcal{Z}$ on normed spaces \mathcal{X}, \mathcal{Y} , and \mathcal{Z} , it follows that $\|\mathbb{T}_1\mathbb{T}_2\| \leq \|\mathbb{T}_1\| \|\mathbb{T}_2\|$, and for $\mathbb{T}: \mathcal{X} \to \mathcal{X}$ that $\|\mathbb{T}^n\| \leq \|\mathbb{T}\|^n$.
- Uniform BoundednessTheorem: Let $\{\mathbb{T}_n\}$ be a sequence of linear operators \mathbb{T}_n : $\mathcal{B} \to \mathcal{U}$ from a Banach space \mathcal{B} into a normed space \mathcal{U} such that $\|\mathbb{T}_n \mathbf{b}\| \leq c_{\mathbf{b}} < \infty$ for every $\mathbf{b} \in \mathcal{B}$ and every $n = 1, 2, \dots$ Then, the se-quence of norms $\{\|\mathbb{T}_n\|\}$ is bounded, i.e., there exists a c such that $\|\mathbb{T}_n\| \leq c$ for all n = 1, 2, ... \bullet A bounded linear operator $\mathbb T$ from a Banach space \mathcal{B} onto a Banach space \mathcal{Z} has the property that the image $\mathbb{T}(\mathcal{B}_1(\mathbf{0}))$ of the open unit ball around the origin contains an open ball around $\mathbf{0} \in \mathcal{Z}$. • Open mapping theorem: A bounded linear operator \mathbb{T} from a Banach space onto another Banach space is an open mapping. Hence, if \mathbb{T} is bijective, \mathbb{T}^{-1} is continuous and thus bounded.

with $\alpha \in \mathcal{F}$.

- The linear space $\mathcal{G}(\mathcal{U}, \mathcal{Z})$ is a normed space, whose norm is the usual operator norm $\|\mathbb{T}\|$ for all $\mathbb{T} \in \mathcal{G}(\mathcal{U}, \mathcal{Z})$.
- Let \mathcal{B} ba a Banach space; then, $\mathcal{G}(\mathcal{U}, \mathcal{B})$ is a Banach space.
- Let \mathcal{H} is a Hilbert space, then $\mathcal{G}(\mathcal{H}, \mathcal{H})$ is a Banach algebra.

Convergence $[1, \S 4.9]$. Let \mathcal{U} and \mathcal{Z} be normed spaces. A sequence $\{\mathbb{T}_n\}$ of operators $\mathbb{T}_n \in \mathcal{G}(\mathcal{U}, \mathcal{Z})$ is said to be

- uniformly operator convergent if $\{\mathbb{T}_n\}$ converges in the operator norm on $\mathcal{G}(\mathcal{U}, \mathcal{Z})$, i.e., $\|\mathbb{T}_n - \mathbb{T}\| \to 0$;
- strongly operator convergent if $\{\mathbb{T}_n \mathbf{u}\}$ converges strongly in \mathcal{Z} for every $\mathbf{u} \in \mathcal{U}$, i.e., $\|\mathbb{T}_n \mathbf{u} - \mathbb{T}\mathbf{u}\| \to 0$ for all $\mathbf{u} \in \mathcal{U}$;
- weakly operator convergent if $\{\mathbb{T}_n \mathbf{u}\}$ converges weakly in \mathcal{Z} for every $\mathbf{u} \in \mathcal{U}$, i.e., $|f(\mathbb{T}_n \mathbf{u}) - f(\mathbb{T}\mathbf{u})| \to 0$ for all $\mathbf{u} \in \mathcal{U}$ and all bounded linear functionals f on \mathcal{U} , that is, for all f in the dual space \mathcal{U}' of \mathcal{U} . where the norms on the RHS are vec- Uniform convergence implies strong convergence, which in turn implies weak convergence, all with the same limit.
 - Let $\mathbb{T}_n \in \mathcal{G}(\mathcal{B}, \mathcal{U})$, where \mathcal{B} is a Banach space and \mathcal{U} a normed space. If $\{\mathbb{T}_n\}$ is strongly operator convergent with limit \mathbb{T} , then $\mathbb{T} \in \mathcal{G}(\mathcal{B}, \mathcal{U}).$
 - A sequence $\{\mathbb{T}_n\}$ of operators in $\mathcal{G}(\mathcal{B}, \mathcal{Z})$, where \mathcal{B} and \mathcal{Z} are Banach spaces, is strongly operator convergent iff (i) the sequence $\{ \|\mathbb{T}_n\| \}$ is bounded, and (ii) the sequence $\{\mathbb{T}_n\mathbf{b}\}$ is Cauchy in \mathcal{Z} for every **b** in a total subset of \mathcal{B} .

Adjoint Operator [1, §4.5]. Let \mathcal{X} and \mathcal{Y} be normed spaces and let $\mathbb{T} : \mathcal{X} \to \mathcal{Y}$ be a bounded linear operator. Then, for any bounded linear functionals $f \in \mathcal{X}^{'}$ and $g \in$ \mathcal{Y}' , the *adjoint operator* $\mathbb{T}^{\times} : \mathcal{Y}' \to \mathcal{X}'$ of \mathbb{T} is defined by $f(\mathbf{x}) = (\mathbb{T}^{\times}g)(\mathbf{x}) = g(\mathbb{T}\mathbf{x})$ for all $\mathbf{x} \in \mathcal{X}$.

- \bullet The adjoint operator \mathbb{T}^{\times} is linear and bounded, and $\|\mathbb{T}^{\times}\| = \|\mathbb{T}\|$.
- If \mathbb{T} is represented by a matrix \mathbf{T} , then the adjoint operator \mathbb{T}^{\times} is represented by \mathbf{T}^T
- Let $\mathbb{S} : \mathcal{X} \to \mathcal{Y}$ be another bounded linear operator. Then
- $\circ (\mathbb{S} + \mathbb{T})^{\times} = \mathbb{S}^{\times} + \mathbb{T}^{\times}.$ $\circ (\alpha \mathbb{T})^{\times} = \alpha \mathbb{T}^{\times}, \quad \alpha \in \mathcal{F}.$
- $\circ (\mathbb{ST})^{\times} = \mathbb{T}^{\times} \mathbb{S}^{\times}.$

Compact Linear Operators [1, 2]. Let \mathcal{U} and \mathcal{Z} be normed spaces. A linear operator $\mathbb{T} : \mathcal{U} \to \mathcal{Z}$ is called *compact* or *completely continuous* if for every bounded subset $\mathcal{S} \subset \mathcal{U}$, the image $\mathbb{T}(\mathcal{S})$ is *relatively compact*, i.e., the closure $\mathbb{T}(\mathcal{S})$ is (sequentially) compact.

- Every compact linear operator \mathbb{T} is bounded and, therefore, continuous.
- If $\dim \mathcal{U} = \infty$, the identity operator \mathbb{I} , which is continuous, is not compact.
- A linear operator $\mathbb{T}: \mathcal{U} \to \mathcal{Z}$ is compact iff it maps every bounded sequence $\{\mathbf{u}_n\}$ in \mathcal{U} onto a sequence $\{\mathbb{T}\mathbf{u}_n\}$ in \mathcal{Z} that has a convergent subsequence.
- If \mathbb{T} is bounded and $\dim \mathcal{R}(\mathbb{T}) < \infty$, then \mathbb{T} is compact.
- If \mathcal{U} is a finite-dimensional normed linear space, every linear operator defined on \mathcal{U} is compact.
- Given $\epsilon > 0$, there exists a finitedimensional subspace $\mathcal{M} \subset \mathcal{R}(\mathbb{T})$ such that

 $\inf_{\mathbf{m}\in\mathcal{M}} \|\mathbb{T}\mathbf{u} - \mathbf{m}\| < \epsilon \|\mathbf{u}\|$

Spectral Theory of Linear Operators

Let \mathcal{B} Resolvent, Spectrum [2, 1]. be a complex Banach space, and let \mathbb{T} : $\mathcal{D}(\mathbb{T}) \to \mathcal{R}(\mathbb{T})$ be a linear operator with $\mathcal{D}(\mathbb{T}), \mathcal{R}(\mathbb{T}) \subset \mathcal{B}.$

- Associated with \mathbb{T} is the the operator $\mathbb{T}_{\lambda} := \mathbb{T} - \lambda \mathbb{I}$, where $\lambda \in \mathbb{C}$ and \mathbb{I} denotes the identity operator.
- If \mathbb{T}_{λ} has an inverse defined on its range. it is called the *resolvent* of \mathbb{T} and denoted as $\mathbb{R}_{\lambda}(\mathbb{T}) := \mathbb{T}_{\lambda}^{-1} = (\mathbb{T} - \lambda \mathbb{I})^{-1}$ on $\mathcal{R}(\mathbb{T}_{\lambda})$.

The *resolvent set* $\mathcal{Q}(\mathbb{T})$ of \mathbb{T} is defined as the set of all complex numbers λ such that the range of \mathbb{T}_{λ} is dense in \mathcal{B} and that \mathbb{T}_{λ} has a continuous inverse defined on its range. The numbers $\lambda \in \mathcal{Q}(\mathbb{T})$ are called *regular* values. The set $\mathcal{S}(\mathbb{T}) := \mathcal{Q}(\mathbb{T})^c$ is called the spectrum of \mathbb{T} ; a $\lambda \in \mathcal{S}(\mathbb{T})$ is called a spec*tral value* of \mathbb{T} . The spectrum $\mathcal{S}(\mathbb{T})$ can be partitioned into three disjoint sets:

- The *point spectrum* $\mathcal{S}_p(\mathbb{T})$ is the set such that \mathbb{T}_{λ} is not one-to-one. A $\lambda \in \mathcal{S}_p(\mathbb{T})$ is called an *eigenvalue* of \mathbb{T} .
- The continuous spectrum $\mathcal{S}_c(\mathbb{T})$ is the set such that \mathbb{T}_{λ} is one-to-one, has its range dense set in \mathcal{B} , but $\mathbb{R}_{\lambda}(\mathbb{T})$, defined on $\mathcal{R}(\mathbb{T}_{\lambda})$, is not continuous and, therefore, unbounded.
- The residual spectrum $\mathcal{S}_r(\mathbb{T})$ is the set such that \mathbb{T} is one-to-one, but $\mathcal{R}(\mathbb{T}_{\lambda})$ is not dense in \mathcal{B} .

Spectral Properties of Operators on Normed Spaces

plex Banach Space $[1, \S7.3]$. Let \mathcal{B} be a complex Banach space, and let $\mathbb{T} \in \mathcal{G}(\mathcal{B}, \mathcal{B})$ be a bounded linear operator.

Bounded Linear Operators on a Com-

- The resolvent set $\mathcal{Q}(\mathbb{T})$ is not empty.
- The spectrum $\mathcal{S}(\mathbb{T})$ is not empty.
- The resolvent set $\mathcal{Q}(\mathbb{T})$ is open; hence, the spectrum $\mathcal{S}(\mathbb{T})$ is closed.
- If $\|\mathbb{T}\| < 1$, then $(\mathbb{I} \mathbb{T})^{-1}$ exists, is a bounded linear operator on the whole space \mathcal{B} , and has the following series expansion, convergent in the norm

every point λ_0 of the resolvent set $\mathcal{Q}(\mathbb{T})$ Hence, it is locally holomorphic on $\mathcal{Q}(\mathbb{T})$

- The spectral radius of \mathbb{T} is defined as $r_{\mathbb{T}} :=$ $\sup_{\lambda \in \mathcal{S}(\mathbb{T})} |\lambda|.$
- The spectral radius is given as $r_{\mathbb{T}}$ = $\lim_{n\to\infty} \|\mathbb{T}^n\|^{1/n}.$
- The spectrum $\mathcal{S}(\mathbb{T})$ is compact and lies in a disk with spectral radius $r_{\mathbb{T}} \leq ||\mathbb{T}||$. • Let $\lambda, \mu \in \mathbb{R}_{\lambda}(\mathbb{T})$. Then,
 - The resolvent $\mathbb{R}_{\lambda}(\mathbb{T})$ satisfies the Hilbert relation, also called resolvent *identity:*

for any $\mathbf{u} \in \mathcal{U}$.

- Let $\{\mathbf{u}_n\}$ be a weakly convergent sequence in \mathcal{U} with $\mathbf{u}_n \xrightarrow{w} \mathbf{u}$. Then $\{\mathbb{T}\mathbf{u}_n\}$ is strongly convergent in \mathcal{Z} and has the strong limit $\mathbf{z} = \mathbb{T}\mathbf{u}$.
- If \mathbb{T} is compact, so is its adjoint operator $\mathbb{T}^{\times}: \mathcal{Z}^{'} \to \mathcal{U}^{'}.$
- Let $\{\mathbb{T}_n\}$ be a sequence of compact linear operators from a normed space \mathcal{U} into a Banach space \mathcal{B} . If $\{\mathbb{T}_n\}$ is uniformly operator convergent, i.e., $\|\mathbb{T}_n - \mathbb{T}\| \to 0$, then the limit operator \mathbb{T} is compact.
- A compact linear operator $\mathbb{T} : \mathcal{U} \to \mathcal{B}$ from a normed space \mathcal{U} into a Banach space \mathcal{B} has a compact linear extension \mathbb{T} : $\tilde{\mathcal{U}} \to \mathcal{B}$, where $\tilde{\mathcal{U}}$ is the completion of \mathcal{U} .
- Let $\mathbb{T} : \mathcal{B} \to \mathcal{A}$ and $\mathbb{S} : \mathcal{B} \to \mathcal{A}$ be compact linear operators, where \mathcal{B} and \mathcal{A} are Banach spaces. Then, $\mathbb{T} + \mathbb{S}$ is compact.
- Let $\mathbb{T}: \mathcal{U} \to \mathcal{U}$ be a compact linear operator and $\mathbb{S}: \mathcal{U} \to \mathcal{U}$ a bounded linear operator on a normed space \mathcal{U} . Then \mathbb{TS} and \mathbb{ST} are compact.

- The four sets are pairwise disjoint and $\mathbb{C} = \mathcal{Q}(\mathbb{T}) \cup \mathcal{S}_p(\mathbb{T}) \cup \mathcal{S}_c(\mathbb{T}) \cup \mathcal{S}_r(\mathbb{T});$ some of the sets may be empty.
- If $\mathbb{R}_{\lambda}(\mathbb{T})$ exists, it is a linear operator. • Let \mathcal{B} be a complex Banach space, \mathbb{T} $\mathcal{B} \to \mathcal{B}$ a linear operator, and $\lambda \in \mathcal{Q}(\mathbb{T})$. If \mathbb{T} is closed or bounded, then, $\mathbb{R}_{\lambda}(\mathbb{T})$ is defined on the whole space \mathcal{B} and is bounded.

Eigenvalues $[1, \S 7]$. Let \mathcal{U} be a normed space over the complex field and $\mathbb{T}: \mathcal{D}(\mathbb{T}) \rightarrow \mathbb{T}$ \mathcal{U} a linear operator with domain $\mathcal{D}(\mathbb{T}) \subset \mathcal{U}$.

- The resolvent $\mathbb{R}_{\lambda}(\mathbb{T})$ exists iff $\mathbb{T}\mathbf{u} = \mathbf{0}$ implies $\mathbf{u} = \mathbf{0}$, i.e., the null space $\mathcal{N}(\mathbb{T})$ is $\{\mathbf{0}\}$. • If $\mathbb{T}_{\lambda}\mathbf{u} = \mathbf{0}$ for some $\mathbf{u} \neq \mathbf{0}$, then $\lambda \in$
- $\mathcal{S}_p(\mathbb{T})$. The vector **u** is then called an

• The subspace of $\mathcal{D}(\mathbb{T})$ that consists of **0** and all eigenvectors of \mathbb{T} with eigenvalue λ is called the *eigenspace* of \mathbb{T} cor-

Operator Topologies [1, 2]. Let $\mathcal{G}(\mathcal{U}, \mathcal{Z})$ denote the set of all bounded linear operators from a normed space \mathcal{U} into a normed space \mathcal{Z} over the same scalar field. The set $\mathcal{G}(\mathcal{U}, \mathcal{Z})$ is a linear space under *operator*

• If \mathbb{T}^{-1} exists and $\mathbb{T}^{-1} \in \mathcal{B}(\mathcal{X}, \mathcal{Y}),$ then $(\mathbb{T}^{\times})^{-1}$ also exists, $(\mathbb{T}^{\times})^{-1} \in$ $\mathcal{B}(\mathcal{X}',\mathcal{Y}')$, and $(\mathbb{T}^{\times})^{-1} = (\mathbb{T}^{-1})^{\times}$.

Closed Linear Operators $[1, \S4.13]$. Let \mathcal{U} and \mathcal{Z} be normed spaces and let \mathbb{T} : $\mathcal{D}(\mathbb{T}) \to \mathcal{Z}$ be a linear operator with domain $\mathcal{D}(\mathbb{T}) \subset \mathcal{U}$. Then, \mathbb{T} is called a closed linear operator if its graph $\mathcal{G}(\mathbb{T}) :=$ $\{(\mathbf{u}, \mathbf{z}) : \mathbf{u} \in \hat{\mathcal{D}}(\mathbb{T}), \mathbf{z} = \mathbb{T}\mathbf{u}\}$ is closed in the normed space $\mathcal{U} \times \mathcal{Z}$.

- Closed graph theorem: Let \mathbb{T} be a closed operator. If $\mathcal{D}(\mathbb{T})$ is closed in \mathcal{V} , the operator \mathbb{T} is bounded.
- Let $\mathbb{T} : \mathcal{D}(\mathbb{T}) \to \mathcal{Z}$ be a linear operator, where $\mathcal{D}(\mathbb{T}) \subset \mathcal{U}$ and \mathcal{U}, \mathcal{Z} are normed spaces. Then, \mathbb{T} is closed iff it has the following property: If $\mathbf{u}_n \to \mathbf{u}$ for $\mathbf{u}_n \in$ $\mathcal{D}(\mathbb{T})$, and $\mathbb{T}\mathbf{u}_n \to \mathbf{z}$, then $\mathbf{u} \in \mathcal{D}(\mathbb{T})$ and $\mathbb{T}\mathbf{u} = \mathbf{z}$.

on
$$\mathcal{G}(\mathcal{B},\mathcal{B})$$
:

$$(\mathbb{I} - \mathbb{T})^{-1} = \sum_{n=0}^{\infty} \mathbb{T}^n = \mathbb{I} + \mathbb{T} + \mathbb{T}^2 + \dots$$

and $\|(\mathbb{I} - \mathbb{T})^{-1}\| \leq (1 - \|\mathbb{T}\|)^{-1}$. • For every $\lambda_0 \in \mathcal{Q}(\mathbb{T})$, the resolvent $\mathbb{R}_{\lambda}(\mathbb{T})$ has the representation

$$\mathbb{R}_{\lambda}(\mathbb{T}) = \sum_{n=0}^{\infty} (\lambda - \lambda_0)^n \mathbb{R}_{\lambda_0}^{n+1}.$$

- The resolvent $\mathbb{R}_{\lambda}(\mathbb{T})$ is holomorphic at
- $\mathbb{R}_{\mu} \mathbb{R}_{\lambda} = (\mu \lambda) \mathbb{R}_{\mu} \mathbb{R}_{\lambda};$ $\circ \mathbb{R}_{\lambda}(\mathbb{T})$ commutes with any $\mathbb{S} \in \mathcal{G}(\mathcal{B}, \mathcal{B})$ that commutes with \mathbb{T} ; $\circ \mathbb{R}_{\lambda} \mathbb{R}_{\mu} = \mathbb{R}_{\mu} \mathbb{R}_{\lambda}.$ • Spectral mapping: Let $p(\lambda) := \alpha_n \lambda^n +$ $\alpha_{n-1}\lambda^{n-1} + \cdots + \alpha_0\lambda^0$ with $\alpha_n \neq 0$. Then, $\mathcal{S}(p(\mathbb{T})) = p(\mathcal{S}(\mathbb{T}))$. That is, the spectrum of the operator $p(\mathbb{T}) = \alpha_n \mathbb{T}^n +$ $\alpha_{n-1}\mathbb{T}^{n-1} + \cdots + \alpha_0\mathbb{I}$ consists of all those values that the polynomial p assumes on the spectrum $\mathcal{S}(\mathbb{T})$ of \mathbb{T} .

Compact Linear Operators $[1, \S 8]$. Let $\mathbb{T}: \mathcal{U} \to \mathcal{U}$ be a compact operator on a normed space \mathcal{U} , and let $\mathbb{T}_{\lambda} := \mathbb{T} - \lambda \mathbb{I}$.

- Every spectral value $\lambda \in \mathcal{S}(\mathbb{T}), \lambda \neq 0$, if it exists, is an eigenvalue of \mathbb{T} .
- The set of eigenvalues $\mathcal{S}_p(\mathbb{T})$ is at most countable, and its only possible limit point is $\lambda = 0$.
- If $\lambda = 0 \in \mathcal{Q}(\mathbb{T})$, then \mathbb{T} is finite dimensional.
- For every $\lambda \neq 0$ and every $n = 1, 2, \dots$ the null space $\mathcal{N}(\mathbb{T}^n_{\lambda})$ is finite dimensional and the range $\mathcal{R}(\mathbb{T}^n_{\lambda})$ is closed.
- depending on λ , such that $\mathcal{N}(\mathbb{T}^r_{\lambda}) = \mathcal{N}(\mathbb{T}^{r+1}_{\lambda}) = \mathcal{N}(\mathbb{T}^{r+2}_{\lambda}) \dots$
- and $\mathbb{T}^r_{\lambda}(\mathcal{U}) = \mathbb{T}^{r+1}_{\lambda}(\mathcal{U}) = \mathbb{T}^{r+2}_{\lambda}(\mathcal{U}) \dots$
- If r > 0, the inclusions $\mathcal{N}(\mathbb{T}^0_{\lambda}) \subset \mathcal{N}(\mathbb{T}^1_{\lambda}) \subset \cdots \subset \mathcal{N}(\mathbb{T}^r_{\lambda})$ and
 - $\mathbb{T}^0_{\lambda}(\mathcal{U}) \supset \mathbb{T}^1_{\lambda}(\mathcal{U}) \supset \cdots \supset \mathbb{T}^r_{\lambda}(\mathcal{U})$

are proper. Furthermore, the space \mathcal{U} can be represented as $\mathcal{U} = \mathcal{N}(\mathbb{T}^r_{\lambda}) \oplus \mathbb{T}^r_{\lambda}(\mathcal{U}).$

Linear Operators and Functionals on Hilbert Space

§*3.8*/.

- *Riesz Theorem:* Every bounded linear functional f on a Hilbert space \mathcal{H} can be represented by an inner product $f(\mathbf{h}) =$ $\langle \mathbf{h}, \mathbf{z} \rangle$, where $\mathbf{h} \in \mathcal{H}$, and where $\mathbf{z} \in \mathcal{H}$ is uniquely determined by f and has norm $\|\mathbf{z}\| = \|f\|.$
- Riesz representation: Let \mathcal{H}_1 and \mathcal{H}_2 be Hilbert spaces, let $\mathbf{h}_1 \in \mathcal{H}_1, \mathbf{h}_2 \in \mathcal{H}_2$, and $g : \mathcal{H}_1 \times \mathcal{H}_2 \to \mathcal{F}$ a bounded sesquilinear form. Then g has a representation $g(\mathbf{h}_1, \mathbf{h}_2) = \langle \mathbb{S}\mathbf{h}_1, \mathbf{h}_2 \rangle$, where \mathbb{S} : $\mathcal{H}_1 \to \mathcal{H}_2$ is a bounded linear operator that is uniquely determined by g and has norm $\|\mathbb{S}\| = \|g\|.$

Hilbert Adjoint Operator [1, 2]. Let \mathbb{T} : $\mathcal{H} \rightarrow \mathcal{Z}$ be a bounded linear operator that maps the Hilbert space \mathcal{H} into the Hilbert space \mathcal{Z} . The Hilbert adjoint op*erator* \mathbb{T}^* of \mathbb{T} is the operator $\mathbb{T}^* : \mathcal{Z} \to \mathcal{H}$ such that $\langle \mathbb{T}\mathbf{h}, \mathbf{z} \rangle = \langle \mathbf{\hat{h}}, \mathbb{T}^* \mathbf{z} \rangle$ for all $\mathbf{h} \in \mathcal{H}$ and $\mathbf{z} \in \mathcal{Z}$. This operator exists, is unique, and is a bounded linear operator with norm $\|\mathbb{T}^{\star}\| = \|\mathbb{T}\|.$

Let \mathbb{S} : $\mathcal{H} \to \mathcal{Z}$ be another bounded linear operator, and let α be any scalar. The Hilbert adjoint operator has the following properties:

- $\mathbb{I}^{\star} = \mathbb{I}$.
- $\langle \mathbb{T}^* \mathbf{h}, \mathbf{z} \rangle = \langle \mathbf{z}, \mathbb{T} \mathbf{h} \rangle.$ $(\mathbb{S} + \mathbb{T})^* = \mathbb{S}^* + \mathbb{T}^*.$
- $(\alpha \mathbb{T})^{\star} = \alpha^* \mathbb{T}^{\star}.$
- $(\mathbb{T}^{\star})^{\star} = \mathbb{T}.$
- $\|\mathbb{T}^{\star}\mathbb{T}\| = \|\mathbb{T}\mathbb{T}^{\star}\| = \|\mathbb{T}\|^2.$ • $\mathbb{T}^*\mathbb{T} = 0 \iff \mathbb{T} = 0.$
- $(\mathbb{ST})^{\star} = \mathbb{T}^{\star}\mathbb{S}^{\star}.$

- **Representation of Functionals** /1, A bounded linear operator $\mathbb{T} : \mathcal{H} \to \mathcal{H}$ on a Hilbert space \mathcal{H} is said to be
 - \circ normal, if $\mathbb{T}\mathbb{T}^{\star} = \mathbb{T}^{\star}\mathbb{T}$,
 - \circ unitary, if \mathbb{T} is bijective and if $\mathbb{T}^{\star} = \mathbb{T}^{-1}$
 - \circ self adjoint or Hermitian, if $\mathbb{T}^{\star} = \mathbb{T}$.
 - If \mathbb{T} is self adjoint or unitary, it is normal.

Unitary Operators. Let the operators $\mathbb{U}, \mathbb{V} : \mathcal{H} \to \mathcal{H}$ be unitary, \mathcal{H} a Hilbert space. Then,

- \mathbb{U} is isometric, i.e., $\|\mathbb{U}\mathbf{h}\| = \|\mathbf{h}\|$ for all $\mathbf{h} \in \mathcal{H}$,
- $\bullet \|\mathbb{U}\| = 1,$
- \mathbb{U}^{-1} is unitary,
- $\bullet \mathbb{UV}$ is unitary.
- A bounded linear operator on a Hilbert space over the complex field is unitary iff it is isometric and onto.

Polar Decomposition [8, §30]. Let \mathbb{T} : $\mathcal{H} \to \mathcal{H}$ be a compact linear operator on a separable complex Hilbert space \mathcal{H} ; let \mathbb{T}^* denote the Hilbert adjoint of \mathbb{T} .

- The operator \mathbb{T} can be factored as $\mathbb{T} =$ $\mathbb{U}\mathbb{A},$ where \mathbb{A} is a positive Hermitian operator and $\mathbb{U}^*\mathbb{U} = \mathbb{I}$ on the range of \mathbb{A} . The above factorization is called the po*lar decomposition* of \mathbb{T} ; the operator \mathbb{A} is called the *absolute value* of \mathbb{T} . The polar decomposition exists even if \mathbb{T} is bounded instead of compact.
- The absolute value \mathbb{A} can be taken as $\mathbb{A} := (\mathbb{T}^*\mathbb{T})^{1/2}$, the unique positive square root of $\mathbb{T}^*\mathbb{T}$; the operator \mathbb{U} satisfies $\mathbb{U} : \mathbb{A}\mathbf{h} \to \mathbb{T}\mathbf{h}$ for all $\mathbf{h} \in \mathcal{H}$.
- If \mathbb{T} is compact, then its absolute value \mathbb{A} is compact.

• If \mathbb{T} can be represented by a matrix **T**, Singular Values [8, §30]. Let $\mathbb{T} : \mathcal{H} \to \mathcal{H}$

• There exists a smallest integer n = r, Normal Operators [2]. Let $\mathbb{T} : \mathcal{H} \to \mathcal{H}$ be a normal operator of a Hilbert space \mathcal{H} into itself.

- the eigenvalue λ_n . Then, the vector \mathbf{e}_n is also an eigenvector of the Hilbert adjoint operator \mathbb{T}^* of \mathbb{T} and associated with the eigenvalue λ_n^* .
- The null space satisfies $\mathcal{N}(\mathbb{T} \lambda \mathbb{I}) =$ $\mathcal{N}(\mathbb{T}^{\star} - \lambda^* \mathbb{I})$
- For any $\mu \neq \lambda$, the null spaces $\mathcal{N}(\mathbb{T} \lambda \mathbb{I})$ and $\mathcal{N}(\mathbb{T} - \mu \mathbb{I})$ are orthogonal to one another.
- For each complex number λ , the closed linear subspace $\mathcal{N}(\mathbb{T}_{\lambda} - \lambda \mathbb{I})$ reduces \mathbb{T} .
- $\|\mathbb{T}^2\| = \|\mathbb{T}\|^2$.
- A bounded linear operator T on a Hilbert space \mathcal{H} is normal iff $\|\mathbb{T}^*\mathbf{h}\| = \|\mathbb{T}\mathbf{h}\|$ for every $\mathbf{h} \in \mathcal{H}$.
- The residual spectrum $\mathcal{S}_r(\mathbb{T})$ of a normal operator is empty.
- A complex number λ is in $\mathcal{S}(\mathbb{T})$ iff there exists a sequence $\{\mathbf{h}_n\}$ with $\mathbf{h}_n \in$ $\mathcal{H}, \|\mathbf{h}_n\| = 1$ for all n, such that $\|(\mathbb{T}$ $\lambda \mathbb{I})\mathbf{h}_n \parallel \to 0 \text{ as } n \to \infty; \text{ in other words,}$ the operator $\mathbb{T} - \lambda \mathbb{I}$ is *not* bounded below.
- \bullet Let a bounded linear operator $\mathbb H$ on a Hilbert space ${\mathcal H}$ have the Cartesian decomposition $\mathbb{H} = \mathbb{T} + i\mathbb{S}$, where \mathbb{T} and \mathbb{S} are self-adjoint. Then, \mathbb{H} is normal iff \mathbb{T} and \mathbb{S} commute. In that case, $\max\{\|\mathbb{T}\|^2, \|\mathbb{S}\|^2\} \le \|\mathbb{H}\|^2 \le \|\mathbb{T}\|^2 +$ $\|S\|^{2}$
- Let \mathbb{T} and \mathbb{S} be normal operators on a Hilbert space \mathcal{H} such that one commutes with the adjoint of the other, i.e., $\mathbb{TS}^{\star} = \mathbb{S}^{\star}\mathbb{T}$ and $\mathbb{T}^{\star}\mathbb{S} = \mathbb{ST}^{\star}$, or such that the two operators commute, i.e., $\mathbb{TS} = \mathbb{ST}$; then, $\mathbb{T} + \mathbb{S}$, \mathbb{TS} , and \mathbb{ST} are normal.

Bounded Self-Adjoint Linear Operators [1, 2]. Let $\mathbb{T} : \mathcal{H} \to \mathcal{H}$ be a bounded self-adjoint linear operator on a complex Hilbert space \mathcal{H} , let $\mathbb{T}_{\lambda} := \mathbb{T} - \lambda \mathbb{I}$, and let $\mathbf{h} \in \mathcal{H}$.

- The set of all self-adjoint linear operators on \mathcal{H} is a closed set in $\mathcal{G}(\mathcal{H}, \mathcal{H})$.
- The set of all self-adjoint linear operators on \mathcal{H} forms a *real* normed linear space under the operator norm.
- A bounded linear operator \mathbb{T} on a complex Hilbert space \mathcal{H} is self adjoint iff $\langle \mathbb{T}\mathbf{h}, \mathbf{h} \rangle = \langle \mathbf{h}, \mathbb{T}\mathbf{h} \rangle$ is real for all $\mathbf{h} \in \mathcal{H}$. If \mathcal{H} is a real Hilbert space, the direct part holds but the converse is no longer true.
- The spectrum $\mathcal{S}(\mathbb{T})$ of \mathbb{T} lies in the closed intervall $[m_{\mathbb{T}}, M_{\mathbb{T}}] \in \mathbb{R}$, where

 $m_{\mathbb{T}} = \inf_{\mathbb{T}} \langle \mathbb{T}\mathbf{h}, \mathbf{h} \rangle, \qquad M_{\mathbb{T}} = \sup \langle \mathbb{T}\mathbf{h}, \mathbf{h} \rangle.$

Both $m_{\mathbb{T}}$ and $M_{\mathbb{T}}$ are spectral values of \mathbb{T} . • The operator norm of \mathbb{T} is given by

 $\|\mathbb{T}\| = \max(|m_{\mathbb{T}}|, |M_{\mathbb{T}}|) = \sup |\langle \mathbb{T}\mathbf{h}, \mathbf{h}\rangle|.$

- Eigenvectors that correspond to numerically different eigenvalues of \mathbb{T} are orthogonal
- A number λ belongs to the resolvent set $\mathbb{R}_{\lambda}(\mathbb{T})$ iff there exists a c > 0 such that $\|\mathbb{T}_{\lambda}\mathbf{h}\| \geq c \|\mathbf{h}\|$ for every $\mathbf{h} \in \mathcal{H}$.
- The product of two self adjoint linear operators on a Hilbert space is self adjoint only if the operators commute.
- Every bounded linear operator $\mathbb{T}: \mathcal{H} \to$ \mathcal{H} has a so-called *Cartesian decomposition*: $\mathbb{T} = \mathbb{A} + i\mathbb{B}$, where \mathbb{A} and \mathbb{B} are self-adjoint.
 - \circ The Cartesian decomposition is unique.
 - $\circ \mathbb{A} = 1/2(\mathbb{T} + \mathbb{T}^*).$
 - $\circ \mathbb{B} = 1/(2i)(\mathbb{T} \mathbb{T}^{\star})$

uct \mathbb{ST} is nonnegative.

• If \mathbb{T} is bounded and self adjoint, then \mathbb{T}^2 is nonnegative.

• Let \mathbf{e}_n be an eigenvector associated with A monotone sequence $\{\mathbb{T}_n\}$ of bounded, self-adjoint, linear operators is a sequence that is either *monotonically increasing*, i.e., $\mathbb{T}_1 \preceq \mathbb{T}_2 \preceq \mathbb{T}_3 \preceq \ldots$, or monotonically decreasing, $\mathbb{T}_1 \succeq \mathbb{T}_2 \succeq \mathbb{T}_3 \succeq \ldots$.

> • Let $\{\mathbb{T}_n\}$ be a monotonically increasing sequence of bounded, self-adjoint, linear operators such that $\mathbb{T}_1 \preceq \mathbb{T}_2 \preceq \ldots \preceq$ $\mathbb{T}_n \preceq \ldots \preceq \mathbb{S}$, where \mathbb{S} is also bounded and self adjoint. Suppose that all elements of the sequence commute pairwise and also commute with S. Then, $\{\mathbb{T}_n\}$ is strongly operator convergent, $\mathbb{T}_n \mathbf{h} \to \mathbb{T} \mathbf{h}$ for all $\mathbf{h} \in \mathcal{H}$, and the limit operator \mathbb{T} is linear, bounded, self adjoint, and satisfies $\mathbb{T} \preceq \mathbb{S}$.

A bounded, self-adjoint linear operator $\mathbb S$ is called a *square root* of another bounded, self-adjoint, linear operator \mathbb{T} if $\mathbb{S}^2 = \mathbb{T}$. If, in addition, $\mathbb{S} \succeq \mathbb{O}$, then \mathbb{S} is called a nonnegative square root of \mathbb{T} and is denoted by $\mathbb{S} = \mathbb{T}^{1/2}$.

- Every nonnegative, bounded, self-adjoint, linear operator $\mathbb{T}: \mathcal{H} \to \mathcal{H}$ on a complex Hilbert space \mathcal{H} has a nonnegative square root S that is unique.
- The square-root operator \mathbb{S} of \mathbb{T} commutes with every bounded linear operator on \mathcal{H} that commutes with \mathbb{T} .

Compact Normal Operators [2]. Let $\mathbb{T}: \mathcal{H} \to \mathcal{H}$ be a normal operator on a nontrivial Hilbert space \mathcal{H} , and let \mathbb{T} have the Cartesian decomposition $\mathbb{T} = \mathbb{A} + i\mathbb{B}$.

- The operator \mathbb{T} is compact iff both \mathbb{A} and \mathbb{B} are compact.
- The operator \mathbb{T} is compact iff \mathbb{T}^* is compact.
- If \mathbb{T} is compact, it has an eigenvalue λ with $\max\{\|\mathbb{A}\|, \|\mathbb{B}\|\} \leq |\lambda|$. If \mathbb{T} is self-adjoint, then it has an eigenvalue λ with $\lambda = \|\mathbb{T}\|$.
- If \mathbb{T} is compact and has no eigenvalues, then $\mathcal{H} = \{\mathbf{0}\}.$
- If \mathcal{H} is not separable, then $\lambda = 0$ is necessarily an eigenvalue of any compact normal operator on \mathcal{H} .

Hilbert-Schmidt Operators [9, 2, 8]. Let $\{\mathbf{x}_n\}$ be an orthonormal basis for a Hilbert space \mathcal{H} . A bounded linear operator $\mathbb{T} : \mathcal{H} \to \mathcal{H}$ is called a *Hilbert*-Schmidt(HS) operator if $\sum_{n=1}^{\infty} \|\mathbb{T}\mathbf{x}_n\|^2 < \infty$. The number

$$\mathbb{T}\|_{\mathrm{HS}} := \left(\sum_{n=1}^{\infty} \|\mathbb{T}\mathbf{x}_n\|^2\right)^{1/2}$$

- is called the *Hilbert-Schmidt norm* of \mathbb{T} .
- The HS norm does not depend on the choice of orthonormal basis for \mathcal{H} .
- The HS norm of a matrix is also called the Frobenius norm.
- If \mathbb{T} is HS, then \mathbb{T}^* is HS, and $\|\mathbb{T}\| \leq \|\mathbb{T}\|_{\mathrm{HS}}$, as well as $\|\mathbb{T}\|_{\mathrm{HS}} = \|\mathbb{T}^*\|_{\mathrm{HS}}$.
- Every HS operator is compact; hence it is bounded and continuous.
- Every HS operator is the limit in HSnorm of a sequence of operators with finite-dimensional range.
- A compact linear operator is HS iff $\sum_n \sigma_n^2(\mathbb{T}) < \infty$.
- For a representation of a given Hilbert space as $\mathcal{L}^2(\mathcal{H}, \mathcal{M}, \mu)$ with positive measure μ and the corresponding collection \mathcal{M} of measurable subsets, HS operators are those operators \mathbb{T} that have a representation in the form

$$(\mathbb{T}\mathbf{f})(t) = \int_{\mathcal{H}} k(t,s)f(s)d\mu(s),$$

then \mathbb{T}^{\star} can be represented by \mathbf{T}^{H} . Let $\mathbb{T}: \mathcal{H} \to \mathcal{H}$ a bounded linear operator that maps a Hilbert space \mathcal{H} into itself.

- The ranges and null spaces of \mathbb{T} and \mathbb{T}^{\star} are related as follows:
 - $\circ \overline{\mathcal{R}(\mathbb{T})} = \mathcal{N}^{\perp}(\mathbb{T}^{\star}).$ $\circ \mathcal{N}^{\perp}(\mathbb{T}) = \overline{\mathcal{R}(\mathbb{T}^{\star})}.$
- \bullet Let $\mathbb T$ be continuous, and let $\mathcal M$ be a closed linear subspace of \mathcal{H} . Then, \mathcal{M} is invariant under \mathbb{T} iff \mathcal{M}^{\perp} is invariant under \mathbb{T}'
- A closed linear subspace $\mathcal{M} \subset \mathcal{H}$ reduces \mathbb{T} iff \mathcal{M} is invariant under both \mathbb{T} and \mathbb{T}^*
- The Hilbert adjoint operator $\mathbb{T}^{\star}: \mathcal{Z} \to \mathcal{H}$ and the adjoint operator $\mathbb{T}^{\times} : \mathcal{Z}' \to \mathcal{H}'$ are related as $\mathbb{T}^* = \mathbb{A}_1 \mathbb{T}^{\times} \mathbb{A}_2^{-1}$, where \mathbb{A}_1 : $\mathcal{H}' \to \mathcal{H}$ and $\mathbb{A}_2 : \mathcal{Z}' \to \mathcal{Z}$ are bijective, isometric, conjugate linear operators that are uniquely defined by Riesz's theorem.

be a compact linear operator on a separable complex Hilbert space \mathcal{H} , and let \mathbb{T}^{\star} be its Hilbert adjoint. Furthermore, let $\mathbb{T} = \mathbb{U}\mathbb{A}$ be the polar decomposition of \mathbb{T} , and let $\{\sigma_n\}$ denote the set of nonzero eigenvalues of \mathbb{A} ; they are all positive, as \mathbb{A} is Hermitian. Let the σ_n be indexed in decreasing order. The numbers σ_n are called the *singular values* of \mathbb{T} , denoted also as $\sigma_n(\mathbb{T})$.

- \bullet The singular values of $\mathbb T$ form an at most countable sequence whose only possible limit point is 0.
- Let the nonzero eigenvalues of \mathbb{T} be $\lambda_1(\mathbb{T}), \lambda_2(\mathbb{T}), \ldots$, arranged in decreasing order of their absolute value, including multiplicities. Then, for any $N \in \mathbb{Z}_+$

 $\prod_{n=1}^{N} |\lambda_n(\mathbb{T})| \le \prod_{n=1}^{N} \sigma_n(\mathbb{T}).$

 \circ If λ is an eigenvalue of \mathbb{T} , then $\lambda =$ $\alpha + i\beta$, where α is an eigenvalue of A and β is an eigenvalue of \mathbb{B} .

Nonnegative Self-Adjoint Linear Op-

erators /1, §9]. Consider the set of all bounded, self-adjoint, linear operators on a complex Hilbert space \mathcal{H} . A reflexive partial ordering \preceq on this set is defined by $\mathbb{T}_1 \preceq \mathbb{T}_2$ iff $\langle \mathbb{T}_1 \mathbf{h}, \mathbf{h} \rangle \leq \langle \mathbb{T}_2 \mathbf{h}, \mathbf{h} \rangle$ for $\mathbf{h} \in \mathcal{H}$. A bounded, self-adjoint, linear operator \mathbb{T} is said to be *nonnegative* (although not strictly correct, sometimes also called *positive*) and denoted $\mathbb{T} \succeq \mathbb{O}$, if $\langle \mathbb{T}\mathbf{h}, \mathbf{h} \rangle \geq 0$ for all $\mathbf{h} \in \mathcal{H}$.

• $\mathbb{T}_1 \preceq \mathbb{T}_2 \iff \mathbb{O} \preceq \mathbb{T}_2 - \mathbb{T}_1.$

• If two bounded, self-adjoint, linear operators $\mathbb T$ and $\mathbb S$ are nonnegative and commute, i.e., $\mathbb{TS} = \mathbb{ST}$, then their prod-

where $\mathbf{f} = f(t) \in \mathcal{L}^2(\mathcal{H}, \mathcal{M}, \mu)$, and the integral kernel k(t, s) satisfies

$$\iint_{\mathcal{H}} |k(t,s)|^2 \, d\mu(s) d\mu(t) < \infty.$$

• If $\mathbb{T} \in \mathcal{S}(\mathcal{H})$, and f is a single-valued analytic function on $\mathcal{S}(\mathbb{T})$ that vanishes at zero, then $f(\mathbb{T})$ is a HS operator, and the mapping $\mathbb{T} \to f(\mathbb{T})$ of $\mathcal{S}(\mathcal{H})$ into itsef is continuous.

The set $\mathcal{S}(\mathcal{H})$ of all HS operators on a Hilbert space \mathcal{H} , together with the HS norm, is a Banach algebra with $\|\mathbb{TS}\|_{\mathrm{HS}} \leq \|\mathbb{T}\|_{\mathrm{HS}}$. $\|S\|_{HS}$ for every $\mathbb{T}, S \in \mathcal{S}(\mathcal{H})$. It contains operators of finite range as a dense subset. The set of HS operators is a self-adjoint ideal in $\mathcal{G}(\mathcal{H}, \mathcal{H})$, the Banach algebra of all bounded linear operators in Hilbert space.

Trace Class Operators $[8, \S 30]$. A compact linear operator $\mathbb{T}: \mathcal{H} \to \mathcal{H}$ on a Hilbert Let $\{\mathbf{x}_n\}$ be any orthonormal basis of \mathcal{H} . space \mathcal{H} is said to be in *trace class* if

$$\sum_{n=1}^{\infty} \sigma_n(\mathbb{T}) < \infty$$

$$\mathbb{T}\|_{\mathrm{tr}} := \sum_{n=1}^{\infty} \sigma_n(\mathbb{T}).$$

For \mathbb{T} in trace class and any bounded operator $\mathbb{B}:\mathcal{H}\to\mathcal{H}$

- $\begin{aligned} \bullet & \|\mathbb{T}\| \leq \|\mathbb{T}\|_{\mathrm{tr}}, \\ \bullet & \|\mathbb{T}\|_{\mathrm{tr}} = \|\mathbb{T}^{\star}\|_{\mathrm{tr}}, \\ \bullet & \|\mathbb{B}\mathbb{T}\|_{\mathrm{tr}} \leq \|\mathbb{B}\|_{\mathrm{tr}} \cdot \|\mathbb{T}\|_{\mathrm{tr}}, \\ \bullet & \|\mathbb{T}\mathbb{B}\|_{\mathrm{tr}} \leq \|\mathbb{B}\|_{\mathrm{tr}} \cdot \|\mathbb{T}\|_{\mathrm{tr}}. \end{aligned}$

||'

- \bullet For any pair of trace class operators $\mathbb T$ and S, $\mathbb{T}+S$ is trace class, and $\|\mathbb{T}+S\|_{tr} \leq$ $\|\mathbb{T}\|_{\mathrm{tr}} + \|\mathbb{S}\|_{\mathrm{tr}}.$
- The trace class is a two-sided ideal in the algebra of all bounded linear operators on a complex Hilbert space.
- Trace class operators form a Banach space with respect to the trace norm.
- Every trace class operator is HS.
- \bullet The product of two HS operators $\mathbb T$ and $\mathbb S$ is in trace class, and $\|\mathbb{ST}\|_{tr} \leq \|\mathbb{S}\|_{HS}$. $\|\mathbb{T}\|_{HS}$
- Every trace class operator can be written

The Spectral Theorem

Orthogonal Projection [2, 1]. A projection $\mathbb{P}: \mathcal{H} \to \mathcal{H}$ on a Hilbert space \mathcal{H} is called an orthogonal projection if its range and null space are orthogonal: $\mathcal{R}(\mathbb{P}) \perp$ $\mathcal{N}(\mathbb{P}).$

- A bounded linear operator $\mathbb{P}: \mathcal{H} \to \mathcal{H}$ on a Hilbert space \mathcal{H} is an orthogonal projection if \mathbb{P} is self adjoint and *idempotent*, i.e., $\mathbb{P}^2 = \mathbb{P}$.
- An orthogonal projection is continuous (even if \mathcal{H} is not complete).
- À continuous projection on a Hilbert space is orthogonal iff it is self-adjoint.
- $\mathbb{P} \succeq \mathbb{O};$
- $\|\mathbb{P}\| \leq 1$ with equality if $\mathbb{P}(\mathcal{H}) \neq \{\mathbf{0}\}.$
- $\mathcal{N}(\mathbb{P}) = \mathcal{R}(\mathbb{P})^{\perp}$ and $\mathcal{R}(\mathbb{P}) = \mathcal{N}(\mathbb{P})^{\perp}$.
- For any orthogonal projection \mathbb{P} on a Hilbert space \mathcal{H} and for any $\mathbf{h} \in \mathcal{H}$, $\langle \mathbb{P}\mathbf{h}, \mathbf{h} \rangle = \|\mathbb{P}\mathbf{h}\|^2.$
- Each $\mathbf{h} \in \mathcal{H}$ can be written uniquely as $\mathbf{r} + \mathbf{n}$, where $\mathbf{r} \in \mathcal{R}(\mathbb{P})$ and $\mathbf{n} \in \mathcal{N}(\mathbb{P})$; furthermore, $\|\mathbf{x}\|^2 = \|\mathbf{\hat{r}}\|^2 + \|\mathbf{n}\|^2$
- Let \mathcal{M} be any closed subspace of a Hilbert space \mathcal{H} . Then there is exactly one orthogonal projection \mathbb{P} with $\mathcal{R}(\mathbb{P}) = \mathcal{M}$. Let $\{\mathbf{e}_n\}$ be a countable orthonormal set in \mathcal{H} such that $\mathcal{M} = \operatorname{span}\{\mathbf{e}_n\}$; then, the mapping $\mathbb{P}: \mathcal{H} \to \mathcal{H}$ defined by

$$\mathbb{P}\mathbf{h}:=\sum_n \langle \mathbf{h},\mathbf{e}_n
angle \mathbf{e}_n$$

for any $\mathbf{h} \in \mathcal{H}$ is the orthogonal projection of \mathcal{H} onto \mathcal{M} .

• Let \mathcal{M} be a closed subspace of \mathcal{H} , let $\mathbf{h} \in$ \mathcal{H} , and let \mathbb{P} be the orthogonal projection on \mathcal{H} with $\mathcal{R}(\mathbb{P}) = \mathcal{M}$. Then, $\|\mathbf{h} - \mathbb{P}\mathbf{h}\| =$ $\inf_{\mathbf{m}\in\mathcal{M}}\|\mathbf{h}-\mathbf{m}\|.$

Let \mathbb{P}_1 and \mathbb{P}_2 be orthogonal projections on a Hilbert space \mathcal{H} , and let $\mathcal{Y}_1 := \mathbb{P}_1(\mathcal{H})$ and $\mathcal{Y}_2 := \mathbb{P}_2(\mathcal{H}).$

- The composite operator $\mathbb{P} := \mathbb{P}_1 \mathbb{P}_2$ is a projection on \mathcal{H} iff \mathbb{P}_1 and \mathbb{P}_2 commute. In this case, \mathbb{P} projects \mathcal{H} onto \mathcal{Y} = $\mathcal{Y}_1 \cap \mathcal{Y}_2$. Conversely, the projection onto $\overline{\operatorname{span}\{\mathcal{Y}_1,\mathcal{Y}_2\}}$ is $\mathbb{P}_1 + \mathbb{P}_2 - \mathbb{P}_1\mathbb{P}_2$.
- The sum $\mathbb{P} := \mathbb{P}_1 + \mathbb{P}_2$ is a projection operator iff $\mathcal{Y}_1 \perp \mathcal{Y}_2$. In this case, \mathbb{P} projects \mathcal{H} onto $\mathcal{Y}_1 \oplus \mathcal{Y}_2$.
- The difference $\mathbb{P} := \mathbb{P}_2 \mathbb{P}_1$ is a projec-

as the product of two HS operators. For a trace class operator \mathbb{T} , the *trace* is defined as the limit of the series

tr
$$\mathbb{T} := \sum_{n} \langle \mathbb{T} \mathbf{x}_n, \mathbf{x}_n \rangle$$

The above sum defines the *trace norm* $\|\mathbb{T}\|_{tr}$: This series converges absolutely. For trace class operators $\mathbb T$

- tr $\mathbb{T} = \sum_{n} \lambda_n(\mathbb{T})$, where $\lambda_n(\mathbb{T})$ are the eigenvalues of \mathbb{T} .
- If \mathbb{T} is a trace class operator that has no eigenvalues except $\lambda = 0$. Then, tr $\mathbb{T} = 0$.
- $|\operatorname{tr} \mathbb{T}| \leq ||\mathbb{T}||_{\operatorname{tr}}.$ • tr \mathbb{T} is a linear mapping of \mathbb{T} .
- tr $\mathbb{T}^{\star} = (\operatorname{tr} \mathbb{T})^{*}$.
- For any bounded operator \mathbb{B} , $tr(\mathbb{TB}) =$ $\operatorname{tr}(\mathbb{BT}).$

Let \mathbb{T} be a trace class operators, and let $\{\mathbb{T}_n\}$ be a sequence of *degenerate* operators, i.e., operators with finite range that converge to \mathbb{T} in trace norm. Then, the determinant $det(\mathbf{I} + \mathbf{T}_n)$ of the matrix representation of $\mathbb{I} + \mathbb{T}_n$, $\dot{\mathbf{I}} + \mathbf{T}_n$, tends to a limit that is independent of the choice of the sequence $\{\mathbb{T}_n\}$. This limit is called the determinant of $\mathbb{I} + \mathbb{T}$:

$$\det(\mathbb{I} + \mathbb{T}) := \lim_{n \to \infty} \det(\mathbf{I} + \mathbf{T}_n)$$

- The sequence $\{\mathbb{P}_n\}$ is strongly operator convergent, say $\mathbb{P}_n \mathbf{h} \to \mathbb{P} \mathbf{h}$ for all $\mathbf{h} \in \mathcal{H}$, and the limit operator \mathbb{P} is a projection on \mathcal{H} .
- \circ The limit operator $\mathbb P$ projects $\mathcal H$ onto ∞

$$\mathbb{P}(\mathcal{H}) = \bigcup_{n=1} \mathbb{P}_n(\mathcal{H}).$$

 \circ The limit operator $\mathbb P$ has the null space

$$\mathcal{N}(\mathbb{P}) = \bigcap_{n=1}^{\infty} \mathcal{N}(\mathbb{P}_n).$$

Spectral Family [1, 2]. A real spectral family, is a collection $\mathscr{E} := \{\mathbb{E}_{\lambda} : \lambda \in \mathbb{R}\}$ of projection operators \mathbb{E}_{λ} on a Hilbert space \mathcal{H} of any dimension that satisfy the following properties for any $\mathbf{h} \in \mathcal{H}$:

- $\circ \mathbb{E}_{\lambda} \leq \mathbb{E}_{\mu} \text{ for } (\lambda \leq \mu); \text{ hence, } \mathbb{E}_{\lambda} \mathbb{E}_{\mu} = \mathbb{E}_{\lambda} \mathbb{E}_{\lambda} = \mathbb{E}_{\lambda}.$ $\circ \lim_{\lambda \to -\infty} \mathbb{E}_{\lambda} \mathbf{h} = \mathbf{0}.$ $\circ \lim_{\lambda \to \infty} \mathbb{E}_{\lambda} \mathbf{h} = \mathbf{h}.$ $\circ \mathbb{E}_{\lambda} \mathbf{h} := \lim_{\lambda \to \infty} \mathbb{E}_{\lambda} \mathbf{h} = \mathbb{E}_{\lambda} \mathbf{h}$

- $\circ \mathbb{E}_{\lambda^+} \mathbf{h} := \lim_{\mu \downarrow \lambda} \mathbb{E}_{\mu} \mathbf{h} = \mathbb{E}_{\lambda} \mathbf{h}.$
- Special cases:
- A countable resolution of the identity is a sequence $\{\mathbb{P}_n\}$ of orthogonal projection operators with $\mathbb{P}_n\mathbb{P}_m = \mathbb{O}$ for $n \neq m$ so that $\mathbb{I} = \sum_n \mathbb{P}_n$, where the sum is strongly operator convergent. The sequence $\{\mathbb{P}_n\}$ defines a spectral family \mathscr{E} with

$$\mathbb{E}_{\lambda} := \sum_{n \leq \lambda} \mathbb{P}_n$$

• A spectral family on an interval $[a, b] \in \mathbb{R}$ is a spectral family \mathscr{E} that satisfies $\mathbb{E}_{\lambda} =$ \mathbb{O} for $\lambda < a$ and $\mathbb{E}_{\lambda} = \mathbb{I}$ for $\lambda \geq b$.

operator on a Hilbert space \mathcal{H} .

• There is a countable resolution of the identity $\{\mathbb{P}_n\}$ and a sequence of complex numbers $\{\mu_n\}$ such that

$$\mathbb{T} = \sum_{n} \mu_n \mathbb{P}_n$$

where convergence is uniform in the operator norm.

• There exists an orthonormal basis $\{\mathbf{e}_n\}$ of eigenvectors and a corresponding se-

Bounded Self-Adjoint Operators [1, §9. Let $\mathbb{T}: \mathcal{H} \to \mathcal{H}$ be a bounded, selfadjoint, linear operator on a Hilbert space \mathcal{H} , let $\mathbb{T}_{\lambda} := \mathbb{T} - \lambda \mathbb{I}$, and define the *positive part* of \mathbb{T}_{λ} as $\mathbb{T}_{\lambda}^+ := ((\mathbb{T}_{\lambda}^2)^{1/2} + \mathbb{T}_{\lambda})/2$. Furthermore, let $\mathcal{Y}_{\lambda} := \mathcal{N}(\mathbb{T}_{\lambda}^+)$ denote the null space of \mathbb{T}^+_{λ} .

- Let \mathbb{E}_{λ} with $\lambda \in \mathbb{R}$ be the projection of \mathcal{H} onto the null space \mathcal{Y}_{λ} of \mathbb{T}_{λ}^+ . Then, the collection $\mathscr{E}(\mathbb{T}) := \{\mathbb{E}_{\lambda} : \lambda \in \mathbb{R}\}$ is the unique spectral family associated with \mathbb{T} on the interval $[m_{\mathbb{T}}, M_{\mathbb{T}}] \in \mathbb{R}$.
- For $\lambda < \mu$, the projection operator \mathbb{E}_{μ} \mathbb{E}_{λ} satisfies $\lambda(\mathbb{E}_{\mu} - \mathbb{E}_{\lambda}) \preceq \mathbb{T}(\mathbb{E}_{\mu} - \mathbb{E}_{\lambda}) \preceq$ $\mu(\mathbb{E}_{\mu} - \mathbb{E}_{\lambda}).$
- The mapping $\lambda \to \mathbb{E}_{\lambda}$ has a discontinuity at λ_0 , i.e., $\mathbb{E}_{\lambda_0} \neq \mathbb{E}_{\lambda_0^+}$, iff λ_0 is an eigenvalue of \mathbb{T} . In this case, the eigenspace that corresponds to the eigenvalue λ_0 is $\mathcal{N}(\mathbb{T} - \lambda_0 \mathbb{I}) = (\mathbb{E}_{\lambda_0} - \mathbb{E}_{\lambda_0^+})(\mathcal{H}).$
- A real λ_0 belongs to the resolvent set $\mathbb{R}_{\lambda}(\mathbb{T})$ iff there is an $\epsilon > 0$ such that $\mathscr{E}(\mathbb{T})$ is constant on the interval $[\lambda_0 \epsilon, \lambda_0 + \epsilon].$
- A real λ_0 belongs to the continuous spectrum $\mathcal{S}_c(\mathbb{T})$ iff the mapping $\lambda \to \mathbb{E}_\lambda$ is continuous at λ_0 (thus $\mathbb{E}_{\lambda_0} = \mathbb{E}_{\lambda_0^+}$) and is not constant in any neighborhood of λ_0 . A bounded, self-adjoint, linear operator \mathbb{T} on a complex Hilbert space \mathcal{H} has the spectral representation

$$\mathbb{T} = \int_{m_{\mathbb{T}}-0}^{M_{\mathbb{T}}} \lambda d\mathbb{E}_{\lambda} = m_{\mathbb{T}}\mathbb{E}_{m_{\mathbb{T}}} + \int_{m_{\mathbb{T}}}^{M_{\mathbb{T}}} \lambda d\mathbb{E}_{\lambda},$$

where $\mathscr{E} = \{\mathbb{E}_{\lambda}\}$ is the spectral family associated with \mathbb{T} , and the integral is to be understood in the sense of uniform operator convergence in the norm on $\mathcal{B}(\mathcal{H},\mathcal{H})$.

• For
$$\mathbf{x}, \mathbf{y} \in \mathcal{H}$$
,

$$\langle \mathbb{T}\mathbf{x}, \mathbf{y} \rangle = \int_{m_{\mathbb{T}}-0}^{M_{\mathbb{T}}} \lambda dw(\lambda),$$

where $w(\lambda) := \langle \mathbb{E}_{\lambda} \mathbf{x}, \mathbf{y} \rangle$, and the integral is of Riemann-Stieltjes type.

• Let $f(\lambda) : [m_{\mathbb{T}}, M_{\mathbb{T}}] \to \mathbb{R}$ be a continuous, real-valued function on $[m_{\mathbb{T}}, M_{\mathbb{T}}]$. De-

Linear Operator Equations

Fredholm Alternative [1, §8.7]. A bounded linear operator $\mathbb{S} : \mathcal{U} \to \mathcal{U}$ on a A Let $\mathbb{T}: \mathcal{U} \to \mathcal{U}$ be a compact linear operator normed space is said to satisfy the *Fredholm* alternative if either one of the following conditions holds

• The nonhomogeneous equations

$$\mathbb{S}\mathbf{x} = \mathbf{y}, \qquad \mathbb{S}^{\times}f =$$

have unique solutions \mathbf{x} and f, respectively, for every given $\mathbf{y} \in \mathcal{U}$ and $g \in$ $\mathcal{U}^{'}$, and the corresponding homogeneous equations

$$\mathbb{S}\mathbf{x} = \mathbf{0}, \qquad \mathbb{S}^{\times}f = o$$

have only the trivial solutions $\mathbf{x} = \mathbf{0}$ and f = 0, respectively. • The homogeneous equations

$$\mathbb{S}\mathbf{x} = \mathbf{0}, \qquad \mathbb{S}^{\times}\mathbb{T} = 0$$

have the same number of linearly independent solutions $\mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_N$ and f_1, f_2, \ldots, f_N , respectively, and the corresponding nonhomogeneous equations

 $\mathbb{S}^{\times}f = g$ $\mathbb{S}\mathbf{x} = \mathbf{y},$ are not solvable for all \mathbf{y} and f, respectively. They have a solution iff \mathbf{y} and gare such that $f_n(\mathbf{y}) = 0$ and $g(\mathbf{x}_n) = 0$ for all n = 1, 2, ..., N.

For a compact linear operator \mathbb{T} on a normed space \mathcal{U} , the operator $\mathbb{T}_{\lambda} := \mathbb{T} - \lambda \mathbb{I}$, for $\lambda \neq 0$ 0, satisfies the Fredholm alternative.

fine $f(\mathbb{T})$ as the limit $p(\mathbb{T})$ of the polynomial $\mathbb{T}_n := p_n(\mathbb{T}) := \alpha_n \mathbb{T}^n + \alpha_{n-1} \mathbb{T}^{n-1} +$ $\cdots + \alpha_0 \mathbb{I}$ for $n \to \infty$, where $p_n(\lambda)$ is such that it converges uniformly to $f(\lambda)$ on $[m_{\mathbb{T}}, M_{\mathbb{T}}]$. Then, the operator $f(\mathbb{T})$ has the spectral representation

$$f(\mathbb{T}) = \int_{m_{\mathbb{T}}-0}^{M_{\mathbb{T}}} f(\lambda) d\mathbb{E}_{\lambda},$$

and for all $\mathbf{x}, \mathbf{y} \in \mathcal{H}$,

$$\langle f(\mathbb{T})\mathbf{x},\mathbf{y}
angle = \int_{m_{\mathbb{T}}=0}^{M_{\mathbb{T}}} f(\lambda) dw(\lambda).$$

- The operator $f(\mathbb{T})$ is self adjoint.
- If $f(\hat{\lambda}) = f_1(\hat{\lambda})f_2(\lambda)$, then $f(\mathbb{T}) =$ $f_1(\mathbb{T})f_2(\mathbb{T}).$
- If $f(\lambda) \geq 0$ for all $\lambda \in [m_{\mathbb{T}}, M_{\mathbb{T}}]$, then $f(\mathbb{T}) \succeq \mathbb{O}.$
- $\circ \underset{\text{them}}{\text{f}_1(\overline{\lambda}) \leq f_2(\lambda) \text{ for all } \lambda \in [m_{\mathbb{T}}, M_{\mathbb{T}}],} \underset{\text{them}}{\text{them} f_1(\mathbb{T}) \leq f_2(\mathbb{T}).}$

$$\circ ||f(\mathbb{T})|| \le \max_{\lambda \in [m_{\mathbb{T}}, M_{\mathbb{T}}]} |f(\lambda)|.$$

• If a bounded linear operator commutes with \mathbb{T} , it also commutes with $f(\mathbb{T})$.

Unitary Operators [1, $\S10.5$]. Let \mathbb{U} : $\mathcal{H} \to \mathcal{H}$ be a unitary operator on a complex Hilbert space \mathcal{H} .

- The spectrum $\mathcal{S}(\mathbb{U})$ is a closed subset of the unit circle. Consequently, $|\lambda| = 1$ for every $\lambda \in \mathcal{S}(\mathbb{U})$.
- There exists a spectral family $\mathscr{E} = \{\mathbb{E}_{\lambda}\}$ on $[-\pi,\pi]$ such that

$$\mathbb{U} = \int_{-\pi}^{\pi} e^{i\lambda} d\mathbb{E}_{\lambda}.$$
• for every continuous function f on the

 $f(\mathbb{U}) = \int_{-\pi}^{\pi} f(e^{i\lambda}) d\mathbb{E}_{\lambda},$

where the integral is to be understood

in the sense of uniform operator conver-

 $\langle f(\mathbb{U})\mathbf{x},\mathbf{y}\rangle = \int_{-\pi}^{\pi} f(e^{i\lambda}) dw(\lambda),$

where $w(\lambda) := \langle \mathbb{E}_{\lambda} \mathbf{x}, \mathbf{y} \rangle$, and the integral

is an ordinary Riemann-Stieltjes integral.

on a normed space \mathcal{U} and $\mathbb{T}^{\times}: \mathcal{U}' \to \mathcal{U}'$ its

adjoint operator. For $\mathbf{x}, \mathbf{y} \in \mathcal{U}, f, g \in \mathcal{U}'$,

and $\lambda \neq 0$, consider the set of linear operator

• Equation (OE1) has a solution \mathbf{x}

iff $f(\mathbf{y}) = 0$ for all solutions f of (OE4).

Hence, if f = 0 is the only solution

of (OE4), then (OE1) is solvable for ev-

iff $g(\mathbf{x}) = 0$ for all solutions \mathbf{x} of (OE2).

Hence, if $\mathbf{x} = \mathbf{0}$ is the only solution

of (OE2), then (OE3) is solvable for ev-

• Equation (OE1) has a solution \mathbf{x} for ev-

ery $\mathbf{y} \in \mathcal{U}$ iff $\mathbf{x} = \mathbf{0}$ is the only solution

• Equation (OE3) has a solution f for ev-

ery $g \in \mathcal{U}'$ iff f = 0 is the only solution

• Equations (OE2) and (OE4) have the

same number of linearly independent so-

• Equation (OE3) has a solution

 $(\mathbf{y} \in \mathcal{X} \text{ given})$ (OE1)

 $(g \in \mathcal{X}' \text{ given})$ (OE3)

(OE2)

(OE4)

unit circle,

gence.

equations

Then,

ery y.

ery q

of (OE2).

of (OE4).

 $\mathbb{T}\mathbf{x} - \lambda\mathbf{x} = \mathbf{y}$

 $\mathbb{T}\mathbf{x} - \lambda\mathbf{x} = \mathbf{0}$

 $\mathbb{T}^{\times}f - \lambda f = g$

 $\mathbb{T}^{\times}f - \lambda f = 0.$

• For all $\mathbf{x}, \mathbf{y} \in \mathcal{H}$,

tion on \mathcal{H} iff $\mathcal{Y}_1 \subset \mathcal{Y}_2$. In this case, \mathbb{P} projects \mathcal{H} onto the orthogonal complement of \mathcal{Y}_1 in \mathcal{Y}_2 .

• The following conditions are equivalent

$$\begin{split} &\circ \mathbb{P}_{2}\mathbb{P}_{1} = \mathbb{P}_{1}\mathbb{P}_{2} = \mathbb{P}_{1}, \\ &\circ \mathcal{Y}_{1} \subset \mathcal{Y}_{2}, \\ &\circ \mathcal{N}(\mathbb{P}_{1}) \supset \mathcal{N}(\mathcal{Y}_{2}), \\ &\circ \|\mathbb{P}_{1}\mathbf{h}\| \leq \|\mathbb{P}_{2}\mathbf{h}\| \text{ for all } \mathbf{h} \in \mathcal{H}, \\ &\circ \mathbb{P}_{1} \preceq \mathbb{P}_{2}. \end{split}$$

Let $\{\mathbb{P}_n\}$ be a monotonically increasing sequence of projection operators \mathbb{P}_n on a Hilbert space \mathcal{H} . Then,

quence of eigenvalues $\{\lambda_n\}$ such that, Linear Operator Equations [1, §8.5]. if $\mathbf{h} = \sum_n \langle \mathbf{h}, \mathbf{e}_n \rangle \mathbf{e}_n$ is the Fourier expansion for $\mathbf{h} \in \mathcal{H}$, then

$$\mathbb{T}\mathbf{h} = \sum_n \lambda_n \langle \mathbf{h}, \mathbf{e}_n
angle \mathbf{e}_n.$$

• A weighted sum of projections $\sum_n \lambda_n \mathbb{P}_n$, where $\{\mathbb{P}_n\}$ is a resolution of the identity, and $\{\lambda_n\}$ is a sequence of complex numbers, is compact if (i) for every nonzero λ_n , the range of \mathbb{P}_n is finite dimensional, and (ii) for every real $\alpha > 0$, the number of λ_n with $|\lambda_n| \ge \alpha$ is finite.

lutions

References

- [5] —, Functional Analysis, 2nd ed. New York, NY, U.S.A.: McGraw-Hill, 1991.
- [1] E. Kreyszig, Introduction to Functional Analysis with Applications. New York, NY, [6] N. Dunford and J. T. Schwarz, Linear Operators, New York, NY, U.S.A., 1958, vol. 1. U.S.A.: Wiley, 1989.
- [2] A. W. Naylor and G. R. Sell, Linear Operator Theory in Engineering and Science. New York, NY, U.S.A.: Springer, 1982.
- [3] M. Pourahmadi, Foundations of Time Series Analysis and Prediction Theory. New York, NY, U.S.A.: Wiley, 2001.
- [4] W. Rudin, Real and Complex Analysis, 3rd ed. New York, NY, U.S.A: McGraw-Hill, 1987.
- [7] R. L. Allen and D. Mills, Signal Analysis: Time, Frequency, Scale, and Structure. Piscataway, NJ, U.S.A.: IEEE Press, 2004.
- [8] P. D. Lax, Functional Analysis. New York, NY, U.S.A.: Wiley, 2002.
- [9] N. Dunford and J. T. Schwarz, Linear Operators. New York, NY, U.S.A.: Wiley, 1963, vol. 2.