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Scalar Field. For all linear (vector) spaces
in the following, the scalar field will be ei-
ther the field of real numbers, F = R, or the
complex field, F = C.

Normed Space [1, 2, §2]. A norm ‖·‖ on
a linear space (U ,F) is a mapping ‖·‖ : U →
[0,∞) that satisfies, for all u,v ∈ U , α ∈ F ,

1. ‖u‖ = 0 ⇐⇒ u = 0.
2. ‖αu‖ = |α| ‖u‖.
3. Triangle inequality: ‖u + v‖ ≤ ‖u‖+
‖v‖.

A norm defines a metric d(u,v) := ‖u− v‖
on U . A normed (linear) space (U , ‖·‖) is a
linear space U with a norm ‖·‖ defined on
it.
• The norm is a continuous mapping of U

into R+.
• A norm ‖·‖ on a linear space U is said

to be equivalent to a norm ‖·‖0 on U if
there are positive numbers a and b such
that a‖u‖0 ≤ ‖u‖ ≤ b‖u‖0 for all u ∈ U .
Equivalent norms define the same topol-
ogy on U .

• The metric d induced by a norm is trans-
lation invariant, i.e., it satisfies
◦ d(u + x,v + x) = d(u,v),
◦ d(αu + αv) = |α| d(u,v)

for all u,v,x ∈ U and α ∈ F .
• Riesz’s Lemma: Let Y and Z be linear

subspaces of a normed space U and let Y
be a closed proper subset of U . Then, for
every θ ∈ (0, 1), there is a z ∈ Z such
that ‖z − y‖ ≥ θ for ‖z‖ = 1 and for
all y ∈ Y.

• A subset T of a normed space U is said
to be total in U if span T is dense in U .

• Let S be a linear subspace of a normed
space U . If S is open as a subset in U ,
then S = U .

Basis and Dimension [2, 1].
• Let V be a linear space. A linearly in-

dependent subset S ⊂ V that spans V is
called a Hamel basis for V.
◦ Every linear space has a Hamel basis,

so that every nonzero v ∈ V has a
unique representation as a linear com-
bination of finitely many elements of S
with nonzero scalar coefficients.

◦ If B1 and B2 are Hamel basis for a lin-
ear space V, then they have the same
cardinality.

• The dimension dimV of a linear space V
is defined as the cardinality of any Hamel
basis of V.
◦ If dimV is finite, V is called a finite-

dimensional linear space.
◦ A linear space V is finite dimensional

iff there is a positive integer N such
that V contains a linearly indepen-
dent set of N vectors whereas any set
of N +1 vectors of V is linearly depen-
dent.

◦ If V1 and V2 are linear spaces over the
same scalar field, then they are isomor-
phic iff dimV1 = dimV2.

• If a normed space U contains a se-
quence {en} with the property that for
every u ∈ U there is a unique sequence of
scalars {αn} such that ‖u−(α1e1+α2e2+
· · ·+αNeN‖ → 0 as N →∞, then {en} is
called a Schauder basis for U . A Schauder
basis is different from a Hamel basis in
that a countably infinite number of ba-
sis vectors and scalar coefficients may be
needed to uniquely represent a given vec-
tor.

Convergence [1, §4.8]. Let {un} be a
sequence of vectors in a normed space U .
• The sequence {un} is said to be strongly

convergent, or convergent in norm, if
there is a u ∈ U , called the strong limit
of {un}, such that limn→∞‖un − u‖ = 0.
Strong convergence is written un → u
and often referred to simply as conver-
gence.

• The sequence {un} is said to be weakly
convergent if there is a u ∈ U ,
called the weak limit of {un}, such
that limn→∞ f(un) = f(u) for every
bounded linear functional f on U , i.e.,
for every f in the dual space U ′

. Weak
convergence is written un

w−→ u.
◦ The weak limit u is unique.
◦ Every subsequence of {un} converges

weakly to u.
◦ The sequence {‖un‖} is bounded.

• Strong convergence implies weak conver-
gence to the same limit.

• If dimU < ∞, then weak convergence
implies strong convergence.

• The (infinite) series u1 + u2 + . . . is said
to converge (strongly) if the sequence of
partial sums sn := u1 + u2 + · · · + un

converges, i.e., if sn → s for some s ∈ U .
• The above series is said to be absolutely

convergent if the infinite series ‖u1‖ +
‖u2‖+ . . . converges.

• A series is said to be unconditionally con-
vergent if (i) it is convergent for each pos-
sible rearrangement of terms, and (ii) if
each rearrangement converges to the same
limit.

Banach Space [1, §2]. A Banach
space (B, ‖·‖) is a complete normed space,
complete in the metric induced by its
norm ‖·‖.
• A linear subspace S of a Banach space B

is a Banach space, i.e., it is complete, iff S
is closed in B.

• For a series on a Banach space, absolute
convergence implies strong convergence
and unconditional convergence.

• Let (U , ‖·‖) be a normed space. Then
there is a Banach space B and an isome-
try f from B onto a linear subspace S ⊂ B
that is dense in B. The space B is
unique except for isometries. Thus, every
normed space can be completed.

Finite-Dimensional Normed Spaces.
• Every finite-dimensional linear sub-

space S of a normed space U is complete;
in particular, every finite-dimensional
normed space is complete.

• Every finite-dimensional linear subspace
of a normed space U is closed in U and
separable.

• On a finite-dimensional linear space, all
norms are equivalent.

• In a finite-dimensional normed space U ,
any subset S ⊂ U is compact iff S is
closed and bounded.

Inner Product Space [1, §3]. Let (G,F)
be a linear space. An inner product is a
mapping 〈·, ·〉 : G ×G → F that satisfies the
following properties for all x,y, z ∈ V and
scalars α ∈ F :

1. 〈x + y, z〉 = 〈x, z〉+ 〈y, z〉.
2. 〈αx,y〉 = α〈x,y〉.
3. 〈x,y〉 = 〈y,x〉∗.
4. 〈x,x〉 ≥ 0 with equality iff x = 0.

A linear space G on which an inner prod-
uct 〈·, ·〉 is defined is called an inner product
space (G, 〈·, ·〉).
• An inner product defines a norm ‖x‖ :=√

〈x,x〉 and a metric d(x,y) := ‖y −
x‖ =

√
〈y − x,y − x〉 on G. Hence, in-

ner product spaces are normed spaces.
• The inner product is called sesquilin-

ear, because it is linear in the first
term and conjugate linear in the second
term: 〈x, αy〉 = α∗〈x,y〉.

• The inner product satisfies the Schwarz
inequality: |〈x,y〉| ≤ ‖x‖‖y‖.

• The induced norm satisfies the triangle in-
equality: ‖x+y‖ ≤ ‖x‖+‖y‖ with equal-
ity iff y = cx for some positive scalar c.

• The induced norm satisfies the parallel-
ogram equality: ‖x + y‖2 + ‖x − y‖2 =
2(‖x‖2 + ‖y‖2).

• Continuity: if in an inner product space G
xn → x and yn → y, then 〈xn,yn〉 →
〈x,y〉, where {xn},x, {yn},y ∈ G.

• If 〈x1,y〉 = 〈x2,y〉 for all y in an inner
product space, then x1 = x2.

Two inner product spaces G and V are called
unitarily equivalent if there is an isomor-
phism U : G → V of G onto V that preserves
inner products, i.e., 〈Uu1, Uu2〉 = 〈u1,u2〉
for all u1,u2 ∈ G. The mapping U is called
a unitary operator.

Orthogonality [2, 1]. An element x of an
inner product space G is said to be orthog-
onal to an element y ∈ G, denoted x ⊥ y,
if 〈x,y〉 = 0. Similarly, for A,B ⊂ G,
x ⊥ A means that x ⊥ a for all a ∈ A,
and A ⊥ B means that a ⊥ b for all a ∈ A
and all b ∈ B.
• An orthogonal set O in an inner product

space G is a subset O ⊂ G whose elements
are pairwise orthogonal. An orthonormal
set is an orthogonal set whose elements
have unit norm. A countable orthogonal
(orthonormal) set is called an orthogonal
(orthonormal) sequence.

• An orthogonal set is linearly independent.
• Let {eα} be an orthonormal set in an

inner product space G, and let g be any
point in G. Then 〈g, eα〉 is nonzero for at
most a countable number of vectors eα.

• Let G be an inner product space and C a
nonempty convex subset of G that is com-
plete in the metric induced by the inner
product. Then, for every g ∈ G there ex-
ists a unique c0 ∈ C such that infc∈C‖g−
c‖ = ‖g − c0‖. If C is a complete linear
subspace of G, then (g − c0) ⊥ C.

• Bessel inequality: Let {en} be an or-
thonormal sequence in an inner product
space G. Then, for every g ∈ G,

∞∑
n=1

|〈g, en〉|2 ≤ ‖g‖2.

Orthogonal Complement [2, 1, 3].
Let A and B be nonempty subsets in an
inner product space G. The set A⊥ :=
{g ∈ G : g ⊥ A} is called the orthogonal
complement of A in G.
• The orthogonal complementA⊥ ofA in G

is a closed linear subspace of G. If G is

complete, then A⊥ is complete.
• If A ⊂ B, then B⊥ ⊂ A⊥.
• A ⊂ (A⊥)⊥.
• If g ∈ A ∩A⊥, then g = 0.
• If A ⊂ G, then A⊥ = ((A⊥)⊥)⊥.
• {0}⊥ = G and G⊥ = {0}.
• If A is a dense subset of G, then A⊥ =
{0}.

• If {An} is a sequence of sub-
spaces, then

(
span{An}

)⊥ = ∩nA⊥n ,
and (∩nAn)⊥ = span{A⊥n }.

An orthonormal set O in an inner product
space G that is total in G is called a total
orthonormal set, or sometimes a maximal or
complete orthonormal set.
• LetO ⊂ G be a subset of an inner product

space G. Then, if O is total in G, there
does not exist a nonzero vector g ∈ G
that is orthogonal to every element of O.

• If G is complete, i.e., a Hilbert space, the
above condition is sufficient for O to be
total in G.

Hilbert Space [1, §3]. A complete inner
product space (H, 〈·, ·〉) is called a Hilbert
space. Thus, a Hilbert space is a Banach
space on which an inner product is defined.
• For any inner product space G there ex-

ists a Hilbert space H and an isomor-
phism from G onto a dense linear sub-
space D ⊂ H. The space H is unique
except for isomorphisms. Thus, every
inner product space can be completed.

• Let {hn} be a sequence in a Hilbert
space H. Then, hn

w−→ h iff 〈hn, z〉 →
〈h, z〉 for all z ∈ H.

• In every Hilbert space H 6= {0}, there
exists a total orthonormal set.

• An orthonormal set O in a Hilbert
space H is total in H iff for all h ∈ H the
Parseval relation holds:∑

e∈O
|〈h, e〉|2 = ‖h‖2.

• A total orthonormal sequence, i.e., a
countable total orthonormal set, in a
Hilbert space H is called an orthonormal
basis for H.

• If a Hilbert space H is separable, every
total orthonormal set is countable, i.e., ev-
ery total orthonormal set is an orthonor-
mal basis. Conversely, if H contains an
orthonormal sequence that is total in H,
then H is separable. Thus, there exists
an orthonormal basis for H iff H is sepa-
rable.

• All total orthonormal sets in a given
Hilbert space have the same cardinality,
called the Hilbert dimension of H.

• Two Hilbert spaces H and H̃, both over
the same scalar field, are isomorphic iff
they have the same Hilbert dimension.

• Let Y be any closed linear subspace of
a Hilbert space H. Then, H = Y ⊕ Z,
where Z = Y⊥ is the orthogonal comple-
ment of Y. Each h ∈ H can be uniquely
represented as h = y + z, where y ∈ Y
and z ∈ Z = Y⊥, and ‖h‖ = ‖y‖+ ‖z‖.

• Let S ⊂ H be a linear subspace of H;
then, (S⊥)⊥ = S. If S is closed,
then (S⊥)⊥ = S.

• For any nonempty susbspace S of a
Hilbert space H, spanS is dense in H
iff S⊥ = {0}. If S is closed and S⊥ =
{0}, then S = H.

Let Y and Z be two subspaces of H. The
canonical correlation ρ(Y,Z) between these
two subspaces is defined as

ρ(Y,Z) := sup
{
|〈y, z〉| : y ∈ Y,

z ∈ Z, ‖y‖ = ‖z‖ = 1
}

and the angle θ(Y,Z) between these sub-
spaces as θ(Y,Z) = cos ρ(Y,Z).
• Let y ∈ Y, z ∈ Z. Then, the following

conditions are equivalent:
◦ ρ(Y,Z) < 1, i.e., θ(Y,Z) > 0.
◦ inf {‖y − z‖ : ‖y‖ = ‖z‖ = 1} > 0.
◦ There is a constant c such that ‖y‖ ≤

c‖y + z‖ for all y, z.
◦ The direct sum Y ⊕ Z is a closed sub-

space of H.



Fourier Series [2]. Riesz-Fischer Theo-
rem: Let {en} be an orthonormal sequence
in a Hilbert space H, and let {αn} be a
sequence of scalars. Then, the series

h =
∞∑

n=1

αnen

converges in norm iff
∑∞

n=1 |αn|2 < ∞. In
this case, the coefficients αn are called the
Fourier coefficients of h, and they are given
as αn = 〈h, en〉. Conversely, the above se-
ries always converges to h if the αn are the
Fourier coefficients of any h ∈ H.
• The above series is convergent iff it con-

verges unconditionally.
Let {en} be an orthonormal set in a Hilbert
space H, then the following statements are
equivalent:
• The set {en} is an orthonormal basis

for H.
• For any h ∈ H, the Fourier series ex-

pansion of h is given as h =
∑

n αnen,
where αn = 〈h, en〉.

• Parseval equality: For any x,y ∈ H,

〈x,y〉 =
∑

n

〈x, en〉〈y, en〉∗.

• For any h ∈ H,

‖h‖2 =
∑

n

|〈h, en〉|2 .

• Let M be any linear subspace of H that
contains {en}; then M is dense in H.

Banach Algebra [4, 5]. Strictly speak-
ing, a Banach Algebra is an algebra B over
a scalar field F , where B is also a Banach
space under a norm ‖·‖ that satisfies the
multiplicative inequality ‖xy‖ ≤ ‖x‖‖y‖
for all x,y ∈ B.
In the following, though, an associative unit
complex Banach algebra, i.e., a Banach al-
gebra over the complex field C that is asso-
ciative and contains an identity element 1
with respect to vector multiplication such
that ‖1‖ = 1 is simply referred to as a com-
plex Banach algebra.

• An element b ∈ B is called invertible if b
has an inverse in B. The invertible ele-
ments of B form a group with respect to
vector multiplication.

• Let S ⊂ B denote the set of all invertible
elements of B. If b ∈ B and ‖b‖ < 1,
then,
◦ 1 + b ∈ S,
◦ (1 + b)−1 =

∑∞
n=0(−1)nbn,

◦ ‖(1+b)−1−1+b‖ ≤ ‖b‖2/(1−‖b‖).
◦ The set S is open, and the map-

ping b → b−1 is a homeomorphism
of S onto S.

• The spectrum S(b) of an element b ∈ B
is defined as the set of all complex num-
bers λ such that b− λ1 is not invertible.

• Let f be a bounded linear functional on B.
Then, for any fixed b ∈ B, the func-
tion g(λ) := f((b− λ1)−1), λ /∈ S(b), is
holomorphic in the complement of S(b),
and g(λ) → 0 as λ →∞.

• For every b ∈ B, the spectrum S(b) is
compact and not empty.

• If each nonzero element of B is invert-
ible, then the complex Banach algebra B
is isometrically isomorphic to the com-
plex field C. This also implies that B is
commutative.

• For any b ∈ B, the spectral ra-
dius rb of b is defined as rb :=
sup {|λ| : λ ∈ S(b)}; it can be computed
as r= limn→∞‖bn‖1/n.

A complex-valued homomorphism f on a
Banach algebra B is a linear functional that
preserve vector multiplication, i.e., a func-
tional f for which f(αx + βy) = αf(x) +
βf(y) and f(xy) = f(x)f(y) for all x,y ∈
B and α, β ∈ F . Furthermore, f is not
identical to 0. Let M denote the set of
all complex-valued homomorphisms f of B.
Then,
• λ ∈ S(b) iff f(b) = λ for some f ∈M.
• The vector b is invertible in B iff f(b) 6= 0

for every f ∈M.
• f(b) ∈ S(b) for every b ∈ B and f ∈M.
• |f(b)| ≤ rb ≤ ‖b‖ for every b ∈ B

and f ∈M.

Some Important Linear Spaces
Euclidean Space [6]. The N -dimensional
complex Euclidean space

CN :=
{
x : x =

[
x0 x1 · · · xN−1

]T, xn ∈ C
}

with inner product

〈x,y〉 :=
N−1∑
n=0

xny∗n

and corresponding induced norm is a finite-
dimensional Hilbert space.

Sequence Space [3]. The sequence space

lp :=
{
x : x = {xn}∞n=0,

xn ∈ C,
∞∑

n=0

|xn|p < ∞
}

with norm

‖x‖p :=

( ∞∑
n=0

|xn|p
)1/p

is a Banach space for 1 ≤ p ≤ ∞.
• For p = ∞, the norm is the supremum

norm: ‖x‖∞ := supn |xn|.
• An important subspace of l∞ is the space

whose elements are sequences that decay
to zero, i.e., xn → 0 as n →∞.

• For p = 2, the space l2 with inner product

〈x,y〉 :=
∞∑

n=0

xny∗n

and norm ‖x‖2 := 〈x,x〉1/2 is an infinite-
dimensional Hilbert space, called the
Hilbert sequence space.

Space of Continuous Functions.
Let C[a, b] denote the space of all complex-
valued continuous functions f : [a, b] → C
with pointwise addition and scalar multipli-
cation.
• C∞[a, b], endowed with the supremum

norm ‖f‖∞ := supa≤t≤b |f(t)|, is a Ba-
nach space.

• Endowed with the inner product 〈f, g〉 :=∫ b

a
f(t)g∗(t)dt and the induced norm, this

space is an inner product space but not
a Hilbert space.

Lebesgue Space [3, 7]. Let X be an arbi-
trary set, F the σ-algebra of subsets of X ,
and µ a nonnegative measure on F . The
Lebesgue space

Lp(X ,F , µ) :=
{

f : X → C

measurable,
∫
|f |p dµ < ∞

}
with norm

‖f‖p :=
(∫

|f |p dµ

)1/p

is a Banach space for 1 ≤ p < ∞.
• For p = ∞, the space L∞(X ,F , µ) with

µ-essential supremum norm ‖f‖∞ :=
essµ supt |f(t)| is also a Banach space.

• If µ is finite and X = (a, b], the spaces
Lp(µ) := Lp((a, b],F , µ) are nested:
Lp(µ) ⊆ Lq(µ) for p ≥ q.

• The space L2(X ,Fµ) with inner product
〈f, g〉 :=

∫
X fg∗dµ and induced norm is a

Hilbert space, called the Hilbert function
space. The elements of L2(X ,F , µ) are
equivalence classes of functions that differ
on null sets.

• The space L1(R) ∩ L2(R) is a Hilbert
space. It is a dense subspace of L2(R).

• For X = {0, 1, . . . , N − 1} or X = Z+

and µ the counting measure on the col-
lection F of all subsets of X , the space
L2(X ,Fµ) reduces to CN or l2, respec-
tively.

•When µ is a probability measure, i.e.,
µ(X ) = 1 for arbitrary X , then
L2(X ,F , µ) is the space of all random
variables with finite second moment.

Schwarz Space [7]. The Schwarz space S
is the space of all infinitely differentiable,
rapidly decaying functions of a real parame-
ter t:

S :=
{

f : R → C : lim
t→∞

tm
dnf(t)

dtn
= 0

∀m,n ∈ N
}

Paley-Wiener Space. to write

Sobolev Space. to write

Hardy Space [3]. Let D :=
{z ∈ C : |z| < 1} be the open disk in the
complex plane. For 0 < p < ∞, the space

Hp :=
{

f : f analytic in D,

sup
0≤r<1

∫ ∣∣f(reiλ)
∣∣p dλ < ∞

}

with norm

‖f‖p := sup
0≤r<1

(∫ ∣∣f(reiλ)
∣∣p dλ

)1/p

is a Banach space, called the Hardy space.

Reproducing Kernel Hilbert Spaces.
to write

Linear Operators and Linear Functionals
Linear Operator [1, 2]. A linear opera-
tor T is a mapping of a linear space V into
a linear space Z such that

1. The domain D(T) is a linear space V,
and the range R(T) lies in a linear
space Z over the same scalar field F .

2. For all v,u ∈ V and scalars α,
T(v + u) = Tv + Tu,

T(αv) = αTv.

The null space N (T) of T is the set of
all v ∈ D(T) such that Tv = 0. The null
space is a linear space.
• The range spaceR(T) of a linear operator

is a linear space.
• Two linear operators T and S are said to

be equal if they have the same domain
and if Tv = Sv for all v ∈ D(T) = D(S).

• dimD(T) = N < ∞ =⇒ dimR(T) ≤
N .

• The dimensions of the null space N (T),,
the range space R(T) and the space X it-
self are related as dimN (T)+dimR(T) =
dimX .

• Let X1,X2,Y1,Y2 be linear spaces over
the same scalar field so that X1 and X2

are isomorphic and Y1 and Y2 are isomor-
phic. The linear operators T1 : X1 → Y1

and T2 : X2 → Y2 are said to be isomor-
phically equivalent if there exists isomor-
phisms U : X1 → X2 and W : Y1 → Y2

such that T1 = W−1T2U and T2 =
WT1U−1.

• Let X1 and X2 be isomorphic linear
spaces. The linear operators T1 : X1 →
X1 and T2 : X2 → X2 are said to be sim-
ilar if there exists an isomorphism U :
X1 → X2 such that T1 = U−1T2U
and T2 = UT1U−1.

• Let T : V → V be a linear operator
and M⊂ V a linear subspace of V such
that T(M) ⊂M; thenM is called invari-
ant under T . In this case, the restriction
of T to M is a mapping of M into itself.

• Let T : H → H be a linear operator on
a Hilbert space H. If some closed lin-
ear subspace M⊂ H and its orthogonal
complement M⊥ are invariant under T,
then M is said to reduce T.

• Any operator that maps a Banach space
onto another Banach space is an open
mapping.

Inverse Operator. Let T : V → Z be
a linear operator. Then, the inverse oper-
ator T−1 : R(T) → D(T) exists iff Tv = 0
implies that v = 0.
• If T−1 exists, it is a linear operator.
• If dimD(T) = N < ∞ and T−1 exists,

then dimR(T) = dimD(T).
• An invertible linear operator is a homeo-

morphism.
• Let T : X → Y and S : Y → Z be

bijective linear operators, where X , Y,
and Z are linear spaces. Then, the in-
verse (ST)−1 : Z → X of the composition
(also called product) ST := S ◦ T exists
and (ST)−1 = T−1S−1.

• A bounded bijective operator T : X → Y
between two Banach spaces X and Y has
a bounded inverse.

• Von Neumann Theorem: Let T : B → B
be a bounded operator on a Banach
space B that satisfies ‖I− T‖ < 1. Then,
T is invertible, and T−1 =

∑∞
n=0(I−T)n.

Furthermore, ‖T−1‖ ≤ 1/(1− ‖I− T‖).
Projections [2]. A linear operator P :
X → X that satisfies P2 = P is called a
projection.
• Range R(P) and null space N (P) are

disjoint subspaces of X such that X =
R(P) +N (P) = R(P)⊕N (P), i.e., R(P)
and N (P) are algebraic complements of
one another.

• If P is a projection, so is I−P, andR(P) =
N (I− P) and N (P) = R(I− P).

• Let S ⊂ X be a subspace of X . Then
there exists a projection P : X → X such
that R(P) = S.

• Given two disjoint subspaces V and U
with X = U ⊕V , there is a unique projec-
tion P such that R(P) = U and N (P) =
V.

Finite-Dimensional Spaces [1, §2.9,
§7.1]. Let X and Y be finite-
dimensional linear spaces over the same
field F , with dimX = N,dimY = K.
Let E := {e1, . . . , eN} be a basis for X , and
let B := {b1, . . . ,bK} be a basis for Y.
• Any linear operator T : X → Y is

uniquely determined by the K images
of the N basis vectors yk = Ten.

• Any linear operator T on a finite-
dimensional linear space can be repre-
sented by a matrix T with [T]k,n = tk,n,
where T depends on the bases E and B.
Hence, the image of any vector x ∈ X
can be obtained as

y = Tx =
K∑

k=1

N∑
n=1

(tk,nξn)bk

where x =
∑N

n=1 ξnen.
• For given bases E and B, the matrix T is

uniquely determined by T.
• Conversely, any K ×N matrix T defines

a linear operator with respect to given
bases forX and Y.

• Two matrices that represent a linear oper-
ator on a finite-dimensional normed space
relative to two different bases are similar.

Linear Functionals [1, 2]. A linear func-
tional is a linear operator f : V → F , defined
on some linear space V, whose range is in
the scalar field F of the linear space.
• Hahn-Banach Theorem: Let V be a real

or complex linear space, and let g be a
real-valued functional on V that is sub-
additive, i.e., g(u + v) ≤ g(u) + g(v) for
all u,v ∈ V, and that satisfies g(αu) =
|α| g(v) for every scalar α. Let f be
a linear functional, defined on a sub-
space Z of V, that satisfies |f(z)| ≤ g(z)
for all z ∈ Z. Then, f has a linear exten-
sion f̃ from Z to V that satisfies | ˜f(v)| ≤
g(v) for all v ∈ V.

• The codimension of N (f) is 1.
• If A is any subspace of V with N (f) ⊂ A

and N (f) 6= 0, then A = V.
• For some linear functional f and some

scalar α, the set {v ∈ V : f(v) = α} is
called the hyperplane in V determined
by f and α.

Algebraic Dual [1]. The set V? of all lin-
ear functionals defined on a linear space V
is itself a linear space, called the algebraic
dual space of V. Its vector sum is defined
as s(v) = (f1 + f2)(v) := f1(v) + f2(v) for
all v ∈ V , and the product of a scalar α and
a vector, i.e., a functional f ∈ V?, is defined
for all v ∈ V? as p(v) = (αf)(v) := αf(v).
• Let V be an N -dimensional linear space,

and let E = {e1, . . . , eN} be a basis
for V. Define the set of linear function-
als B := {f1, . . . , fN} with fk(en) = δkn.
Then B is a basis for the algebraic dual
space V? of V, and dim E = dimB; B is
called the dual basis of E .

Linear Functionals on Normed Spaces
Linear Functionals [1, 2]. Let f :
U → F be a linear functional on a normed
space U .
• The norm ‖f‖ of a linear functional f

is the usual operator norm: ‖f‖ =
supu∈U,u 6=0 |f(u)|.

• A bounded linear functional is a linear
function f that satisfies ‖f‖ ≤ a for
some a ∈ R.

• On a normed space U , the Hahn-Banach

Theorem implies that every bounded lin-
ear functional f on a subspace S ⊂ U has
a linear extension f̃ on U that has the
same norm,

sup
u∈U,‖u‖=1

∣∣∣f̃(u)
∣∣∣ = sup

s∈S,‖s‖=1

|f(s)| .

• Let U be a normed space and let u ∈
U . Then, there exists a bounded lin-
ear functional f on U such that ‖f‖ = 1
and f(u) = ‖u‖.



Sesquilinear Form [1, §3.8]. Let V
and Z be liner spaces over the same scalar
field F . A sesquilinear form, or sesquilin-
ear function f on V × Z is a mapping f :
V × Z → F such that for all v,v1,v2 ∈ V
and z, z1, z2 ∈ Z and all scalars α and β
◦ f(v1 + v2, z) = f(v1, z) + f(v2, z),
◦ f(v, z1 + z2) = f(v, z1) + f(v, z2),
◦ f(αv, z) = αf(v, z),
◦ f(v, βz) = β∗f(v, z).

Dual Space [1]. Let U be a normed
space. Then the set of all bounded lin-
ear functionals on U constitutes a normed
space under the usual operator norm ‖f‖ =
supu∈U,‖u‖=1 |f(u)|. This space is called the
dual space U ′

of U .
• The dual space U ′

of a normed space U
is a Banach space, whether or not U is
complete.

• For every u in a normed space U ,

‖u‖ = sup
f∈U

′

f 6=0

|f(u)|
‖f‖

.

• Given a linearly independent set
{f1, . . . , fN} ∈ U ′

, there are elements
u1, . . . ,uN in U such that fj(uk) = δjk.

Convergence [1, §4.9]. For linear func-
tionals, strong and weak convergence are
equivalent, so that a sequence {fn} of
bounded linear functionals on a normed
space U is said to be
• strongly convergent if there is an f ∈
U ′

, called the strong limit of {fn}, such
that ‖fn−f‖ → 0; this is written as fn →
f ;

• weak∗ convergent if there is an f ∈ U ′
,

called the weak∗ limit of {fn}, such
that fn(u) → f(u) for all u ∈ U ; this

is written as fn
w∗

−−→ f .

Linear Operators on Normed and Banach Spaces
Continuity [2, 1]. Let X and Y be normed
spaces, and let T : X → Y be a linear oper-
ator.
• The operator T is continuous iff

T
( ∞∑

n=1

αnxn

)
=

∞∑
n=1

αnT(xn)

for every convergent series
∑∞

n=1 αnxn

in X .
• If T is continuous at a single point, it is

continuous.
• The linear operator T is continuous iff it

is bounded.
• If a linear operator T is continuous, it is

uniformly continuous.
• If X is finite dimensional, then T is con-

tinuous.

Operator Norm [1, §2.7]. Let T : U → Z
be a linear operator that maps a normed
space U into a normed space Z. The opera-
tor norm is defined as

‖T‖ := sup
u∈U
u 6=0

‖Tu‖
‖u‖

where the norms on the RHS are vec-
tor norms in Z and U . If D(T) = {0},
then ‖T‖ := 0.
• The operator norm ‖T‖ of T is equivalent

to
‖T‖ = sup

u∈U
‖u‖=1

‖Tu‖.

Bounded Linear Operators [1, §2.7].
The linear operator T : U → Z that maps a
normed space U into a normed space Z is
said to be bounded if there is a real number a
such that ‖T‖ ≤ a.
• A linear operator T is bounded iff it is

continuous.
• If a normed space U is finite dimen-

sional, then every linear operator on U is
bounded.

• T = 0 iff 〈Tu, z〉 = 0 for all u ∈ U
and z ∈ Z.

• The null space N (T) of T is closed.
• If {un} a sequence in D(T), then un → u

implies Tun → Tu.
• For bounded linear operators T1 : X →
Y and T2 : Y → Z on normed
spaces X , Y, and Z, it follows that
‖T1T2‖ ≤ ‖T1‖‖T2‖, and for T : X → X
that ‖Tn‖ ≤ ‖T‖n.

• Uniform Boundedness Theorem:
Let {Tn} be a sequence of linear op-
erators Tn : B → U from a Banach
space B into a normed space U such
that ‖Tnb‖ ≤ cb < ∞ for every b ∈ B
and every n = 1, 2, . . . . Then, the se-
quence of norms {‖Tn‖} is bounded, i.e.,
there exists a c such that ‖Tn‖ ≤ c for
all n = 1, 2, . . . .

• A bounded linear operator T from a Ba-
nach space B onto a Banach space Z has
the property that the image T(B1(0)) of
the open unit ball around the origin con-
tains an open ball around 0 ∈ Z.

• Open mapping theorem: A bounded linear
operator T from a Banach space onto an-
other Banach space is an open mapping.
Hence, if T is bijective, T−1 is continuous
and thus bounded.

Operator Topologies [1, 2]. Let G(U ,Z)
denote the set of all bounded linear opera-
tors from a normed space U into a normed
space Z over the same scalar field. The
set G(U ,Z) is a linear space under operator

addition (T1+T2)u := T1u+T2u, for all u ∈
U , and scalar multiplication (αT)u := αTu
with α ∈ F .
• The linear space G(U ,Z) is a normed

space, whose norm is the usual operator
norm ‖T‖ for all T ∈ G(U ,Z).

• Let B ba a Banach space; then, G(U ,B)
is a Banach space.

• Let H is a Hilbert space, then G(H,H) is
a Banach algebra.

Convergence [1, §4.9]. Let U and Z be
normed spaces. A sequence {Tn} of opera-
tors Tn ∈ G(U ,Z) is said to be
• uniformly operator convergent if {Tn}

converges in the operator norm
on G(U ,Z), i.e., ‖Tn − T‖ → 0;

• strongly operator convergent if {Tnu} con-
verges strongly in Z for every u ∈ U ,
i.e., ‖Tnu− Tu‖ → 0 for all u ∈ U ;

• weakly operator convergent if {Tnu} con-
verges weakly in Z for every u ∈ U ,
i.e., |f(Tnu)− f(Tu)| → 0 for all u ∈ U
and all bounded linear functionals f on U ,
that is, for all f in the dual space U ′

of U .
Uniform convergence implies strong conver-
gence, which in turn implies weak conver-
gence, all with the same limit.
• Let Tn ∈ G(B,U), where B is a Banach

space and U a normed space. If {Tn} is
strongly operator convergent with limit T,
then T ∈ G(B,U).

• A sequence {Tn} of operators in G(B,Z),
where B and Z are Banach spaces, is
strongly operator convergent iff (i) the
sequence {‖Tn‖} is bounded, and (ii) the
sequence {Tnb} is Cauchy in Z for ev-
ery b in a total subset of B.

Adjoint Operator [1, §4.5]. Let X and Y
be normed spaces and let T : X → Y be
a bounded linear operator. Then, for any
bounded linear functionals f ∈ X ′

and g ∈
Y ′

, the adjoint operator T× : Y ′ → X ′
of T

is defined by f(x) = (T×g)(x) = g(Tx) for
all x ∈ X .
• The adjoint operator T× is linear and

bounded, and ‖T×‖ = ‖T‖.
• If T is represented by a matrix T, then

the adjoint operator T× is represented
by TT .

• Let S : X → Y be another bounded linear
operator. Then
◦ (S + T)× = S× + T×.
◦ (αT)× = αT×, α ∈ F .
◦ (ST)× = T×S×.

• If T−1 exists and T−1 ∈ B(X ,Y),
then (T×)−1 also exists, (T×)−1 ∈
B(X ′

,Y ′
), and (T×)−1 = (T−1)×.

Closed Linear Operators [1, §4.13].
Let U and Z be normed spaces and let T :
D(T) → Z be a linear operator with do-
main D(T) ⊂ U . Then, T is called a
closed linear operator if its graph G(T) :=
{(u, z) : u ∈ D(T), z = Tu} is closed in the
normed space U × Z.
• Closed graph theorem: Let T be a closed

operator. If D(T) is closed in V, the op-
erator T is bounded.

• Let T : D(T) → Z be a linear operator,
where D(T) ⊂ U and U ,Z are normed
spaces. Then, T is closed iff it has the fol-
lowing property: If un → u for un ∈
D(T), and Tun → z, then u ∈ D(T)
and Tu = z.

Compact Linear Operators [1, 2].
Let U and Z be normed spaces. A linear
operator T : U → Z is called compact or
completely continuous if for every bounded
subset S ⊂ U , the image T(S) is relatively
compact, i.e., the closure T(S) is (sequen-
tially) compact.
• Every compact linear operator T is

bounded and, therefore, continuous.
• If dimU = ∞, the identity operator I,

which is continuous, is not compact.
• A linear operator T : U → Z is compact

iff it maps every bounded sequence {un}
in U onto a sequence {Tun} in Z that
has a convergent subsequence.

• If T is bounded and dimR(T) < ∞,
then T is compact.

• If U is a finite-dimensional normed linear
space, every linear operator defined on U
is compact.

• Given ε > 0, there exists a finite-
dimensional subspace M ⊂ R(T) such
that

inf
m∈M

‖Tu−m‖ < ε‖u‖

for any u ∈ U .
• Let {un} be a weakly convergent se-

quence in U with un
w−→ u. Then {Tun}

is strongly convergent in Z and has the
strong limit z = Tu.

• If T is compact, so is its adjoint opera-
tor T× : Z ′ → U ′

.
• Let {Tn} be a sequence of compact linear

operators from a normed space U into
a Banach space B. If {Tn} is uniformly
operator convergent, i.e., ‖Tn − T‖ → 0,
then the limit operator T is compact.

• A compact linear operator T : U → B
from a normed space U into a Banach
space B has a compact linear extension T̃ :
Ũ → B, where Ũ is the completion of U .

• Let T : B → A and S : B → A be com-
pact linear operators, where B and A are
Banach spaces. Then, T + S is compact.

• Let T : U → U be a compact linear op-
erator and S : U → U a bounded linear
operator on a normed space U . Then TS
and ST are compact.

Spectral Theory of Linear Operators
Resolvent, Spectrum [2, 1]. Let B
be a complex Banach space, and let T :
D(T) → R(T) be a linear operator
with D(T),R(T) ⊂ B.
• Associated with T is the the opera-

tor Tλ := T − λI, where λ ∈ C and I
denotes the identity operator.

• If Tλ has an inverse defined on its range,
it is called the resolvent of T and denoted
as Rλ(T) := T−1

λ = (T−λI)−1 on R(Tλ).
The resolvent set Q(T) of T is defined as the
set of all complex numbers λ such that the
range of Tλ is dense in B and that Tλ has
a continuous inverse defined on its range.
The numbers λ ∈ Q(T) are called regular
values. The set S(T) := Q(T)c is called the
spectrum of T; a λ ∈ S(T) is called a spec-
tral value of T. The spectrum S(T) can be
partitioned into three disjoint sets:
◦ The point spectrum Sp(T) is the set such

that Tλ is not one-to-one. A λ ∈ Sp(T)
is called an eigenvalue of T.

◦ The continuous spectrum Sc(T) is the
set such that Tλ is one-to-one, has its
range dense set in B, but Rλ(T), defined
on R(Tλ), is not continuous and, there-
fore, unbounded.

◦ The residual spectrum Sr(T) is the set
such that T is one-to-one, but R(Tλ) is
not dense in B.

In summary:

Tλ one-to-one?

yes

��

no

((RRRRRRRRRRRRR

R(Tλ) dense in X ?

yes

��

no

((QQQQQQQQQQQQQ
λ ∈ Sp(T)

Rλ(T) continuous?

yes

��

no

((QQQQQQQQQQQQQ
λ ∈ Sr(T)

λ ∈ Q(T) λ ∈ Sc(T)

• The four sets are pairwise disjoint
and C = Q(T) ∪ Sp(T) ∪ Sc(T) ∪ Sr(T);
some of the sets may be empty.

• If Rλ(T) exists, it is a linear operator.
• Let B be a complex Banach space, T :
B → B a linear operator, and λ ∈ Q(T).
If T is closed or bounded, then, Rλ(T)
is defined on the whole space B and is
bounded.

Eigenvalues [1, §7]. Let U be a normed
space over the complex field and T : D(T) →
U a linear operator with domain D(T) ⊂ U .
• The resolvent Rλ(T) exists iff Tu = 0

implies u = 0, i.e., the null space N (T)
is {0}.

• If Tλu = 0 for some u 6= 0, then λ ∈
Sp(T). The vector u is then called an
eigenvector of T with eigenvalue λ.

• The subspace of D(T) that consists of 0
and all eigenvectors of T with eigen-
value λ is called the eigenspace of T cor-
responding to that eigenvalue.

• Eigenvectors with different eigenvalues
constitute a linearly independent set.

Spectral Properties of Operators on Normed Spaces
Bounded Linear Operators on a Com-
plex Banach Space [1, §7.3]. Let B be a
complex Banach space, and let T ∈ G(B,B)
be a bounded linear operator.
• The resolvent set Q(T) is not empty.
• The spectrum S(T) is not empty.
• The resolvent set Q(T) is open; hence,

the spectrum S(T) is closed.
• If ‖T‖ < 1, then (I − T)−1 exists,

is a bounded linear operator on the
whole space B, and has the following se-
ries expansion, convergent in the norm
on G(B,B):

(I− T)−1 =
∞∑

n=0

Tn = I + T + T2 + . . .

and ‖(I− T)−1‖ ≤ (1− ‖T‖)−1.
• For every λ0 ∈ Q(T), the resolvent Rλ(T)

has the representation

Rλ(T) =
∞∑

n=0

(λ− λ0)nRn+1
λ0

.

• The resolvent Rλ(T) is holomorphic at

every point λ0 of the resolvent set Q(T).
Hence, it is locally holomorphic on Q(T).

• The spectral radius of T is defined as rT :=
supλ∈S(T) |λ|.

• The spectral radius is given as rT =
limn→∞‖Tn‖1/n.

• The spectrum S(T) is compact and lies
in a disk with spectral radius rT ≤ ‖T‖.

• Let λ, µ ∈ Rλ(T). Then,
◦ The resolvent Rλ(T) satisfies the
Hilbert relation, also called resolvent
identity:

Rµ − Rλ = (µ− λ)RµRλ;
◦ Rλ(T) commutes with any S ∈ G(B,B)

that commutes with T;
◦ RλRµ = RµRλ.

• Spectral mapping: Let p(λ) := αnλn +
αn−1λ

n−1 + · · · + α0λ
0 with αn 6= 0.

Then, S(p(T)) = p(S(T)). That is, the
spectrum of the operator p(T) = αnTn +
αn−1Tn−1 + · · ·+α0I consists of all those
values that the polynomial p assumes on
the spectrum S(T) of T.



Compact Linear Operators [1, §8].
Let T : U → U be a compact operator on a
normed space U , and let Tλ := T− λI.
• Every spectral value λ ∈ S(T), λ 6= 0, if

it exists, is an eigenvalue of T.
• The set of eigenvalues Sp(T) is at most

countable, and its only possible limit
point is λ = 0.

• If λ = 0 ∈ Q(T), then T is finite dimen-
sional.

• For every λ 6= 0 and every n = 1, 2, . . . ,
the null space N (Tn

λ) is finite dimensional
and the range R(Tn

λ) is closed.

• There exists a smallest integer n = r,
depending on λ, such that
N (Tr

λ) = N (Tr+1
λ ) = N (Tr+2

λ ) . . .
and

Tr
λ(U) = Tr+1

λ (U) = Tr+2
λ (U) . . .

If r > 0, the inclusions
N (T0

λ) ⊂ N (T1
λ) ⊂ · · · ⊂ N (Tr

λ)
and

T0
λ(U) ⊃ T1

λ(U) ⊃ · · · ⊃ Tr
λ(U)

are proper. Furthermore, the space U can
be represented as U = N (Tr

λ)⊕ Tr
λ(U).

Linear Operators and Functionals on Hilbert Space

continuous
linear

operators

normal operators

self-adjoint operators

T : H→ H

TT! = T!T

T = T!

U : U! = U−1

unitary
operators

O

I

trace-class operators

Hilbert-Schmidt operators

compact operators

orthogonal
projections

P

Representation of Functionals [1,
§3.8].
• Riesz Theorem: Every bounded linear

functional f on a Hilbert space H can be
represented by an inner product f(h) =
〈h, z〉, where h ∈ H, and where z ∈ H
is uniquely determined by f and has
norm ‖z‖ = ‖f‖.

• Riesz representation: Let H1 and H2 be
Hilbert spaces, let h1 ∈ H1,h2 ∈ H2,
and g : H1 × H2 → F a bounded
sesquilinear form. Then g has a represen-
tation g(h1,h2) = 〈Sh1,h2〉, where S :
H1 → H2 is a bounded linear operator
that is uniquely determined by g and has
norm ‖S‖ = ‖g‖.

Hilbert Adjoint Operator [1, 2]. Let T :
H → Z be a bounded linear operator
that maps the Hilbert space H into the
Hilbert space Z. The Hilbert adjoint op-
erator T? of T is the operator T? : Z → H
such that 〈Th, z〉 = 〈h, T?z〉 for all h ∈
H and z ∈ Z. This operator exists, is
unique, and is a bounded linear operator
with norm ‖T?‖ = ‖T‖.
Let S : H → Z be another bounded lin-
ear operator, and let α be any scalar. The
Hilbert adjoint operator has the following
properties:
• I? = I.
• 〈T?h, z〉 = 〈z, Th〉.
• (S + T)? = S? + T?.
• (αT)? = α∗T?.
• (T?)? = T.
• ‖T?T‖ = ‖TT?‖ = ‖T‖2.
• T?T = 0 ⇐⇒ T = 0.
• (ST)? = T?S?.
• If T can be represented by a matrix T,

then T? can be represented by TH .
Let T : H → H a bounded linear operator
that maps a Hilbert space H into itself.
• The ranges and null spaces of T and T?

are related as follows:
◦ R(T) = N⊥(T?).
◦ N⊥(T) = R(T?).

• Let T be continuous, and let M be a
closed linear subspace of H. Then, M
is invariant under T iff M⊥ is invariant
under T?.

• A closed linear subspace M ⊂ H re-
duces T iff M is invariant under both T
and T?.

• The Hilbert adjoint operator T? : Z → H
and the adjoint operator T× : Z ′ → H′

are related as T? = A1T×A−1
2 , where A1 :

H′ → H and A2 : Z ′ → Z are bijective,
isometric, conjugate linear operators that
are uniquely defined by Riesz’s theorem.

A bounded linear operator T : H → H on a
Hilbert space H is said to be
◦ normal, if TT? = T?T,
◦ unitary, if T is bijective and if T? = T−1,
◦ self adjoint or Hermitian, if T? = T.

If T is self adjoint or unitary, it is normal.

Unitary Operators. Let the opera-
tors U, V : H → H be unitary, H a Hilbert
space. Then,
• U is isometric, i.e., ‖Uh‖ = ‖h‖ for

all h ∈ H,
• ‖U‖ = 1,
• U−1 is unitary,
• UV is unitary.
• A bounded linear operator on a Hilbert

space over the complex field is unitary iff
it is isometric and onto.

Polar Decomposition [8, §30]. Let T :
H → H be a compact linear operator on a
separable complex Hilbert space H; let T?

denote the Hilbert adjoint of T.
• The operator T can be factored as T =

UA, where A is a positive Hermitian op-
erator and U?U = I on the range of A.
The above factorization is called the po-
lar decomposition of T; the operator A is
called the absolute value of T. The polar
decomposition exists even if T is bounded
instead of compact.

• The absolute value A can be taken
as A := (T?T)1/2, the unique positive
square root of T?T; the operator U satis-
fies U : Ah → Th for all h ∈ H.

• If T is compact, then its absolute value A
is compact.

Singular Values [8, §30]. Let T : H → H
be a compact linear operator on a separable
complex Hilbert space H, and let T? be its
Hilbert adjoint. Furthermore, let T = UA be
the polar decomposition of T, and let {σn}
denote the set of nonzero eigenvalues of A;
they are all positive, as A is Hermitian. Let
the σn be indexed in decreasing order. The
numbers σn are called the singular values
of T, denoted also as σn(T).
• The singular values of T form an at most

countable sequence whose only possible
limit point is 0.

• Let the nonzero eigenvalues of T
be λ1(T), λ2(T), . . . , arranged in decreas-
ing order of their absolute value, includ-
ing multiplicities. Then, for any N ∈ Z+

N∏
n=1

|λn(T)| ≤
N∏

n=1

σn(T).

Normal Operators [2]. Let T : H → H
be a normal operator of a Hilbert space H
into itself.
• Let en be an eigenvector associated with

the eigenvalue λn. Then, the vector en is
also an eigenvector of the Hilbert adjoint
operator T? of T and associated with the
eigenvalue λ∗n.

• The null space satisfies N (T − λI) =
N (T? − λ∗I).

• For any µ 6= λ, the null spaces N (T−λI)
and N (T− µI) are orthogonal to one an-
other.

• For each complex number λ, the closed
linear subspace N (Tλ − λI) reduces T.

• ‖T2‖ = ‖T‖2.
• A bounded linear operator T on a Hilbert

space H is normal iff ‖T?h‖ = ‖Th‖ for
every h ∈ H.

• The residual spectrum Sr(T) of a normal
operator is empty.

• A complex number λ is in S(T) iff
there exists a sequence {hn} with hn ∈
H, ‖hn‖ = 1 for all n, such that ‖(T −
λI)hn‖ → 0 as n → ∞; in other words,
the operator T−λI is not bounded below.

• Let a bounded linear operator H on
a Hilbert space H have the Cartesian
decomposition H = T + iS, where T
and S are self-adjoint. Then, H is nor-
mal iff T and S commute. In that
case, max

{
‖T‖2, ‖S‖2

}
≤ ‖H‖2 ≤ ‖T‖2 +

‖S‖2.
• Let T and S be normal operators on

a Hilbert space H such that one com-
mutes with the adjoint of the other, i.e.,
TS? = S?T and T?S = ST?, or such
that the two operators commute, i.e.,
TS = ST; then, T + S, TS, and ST are
normal.

Bounded Self-Adjoint Linear Opera-
tors [1, 2]. Let T : H → H be a bounded
self-adjoint linear operator on a complex
Hilbert space H, let Tλ := T − λI, and
let h ∈ H.
• The set of all self-adjoint linear operators

on H is a closed set in G(H,H).
• The set of all self-adjoint linear operators

on H forms a real normed linear space
under the operator norm.

• A bounded linear operator T on a com-
plex Hilbert space H is self adjoint
iff 〈Th,h〉 = 〈h, Th〉 is real for all h ∈ H.
If H is a real Hilbert space, the direct
part holds but the converse is no longer
true.

• The spectrum S(T) of T lies in the closed
intervall [mT,MT] ∈ R, where
mT = inf

‖h‖
〈Th,h〉, MT = sup

‖h‖
〈Th,h〉.

Both mT and MT are spectral values of T.
• The operator norm of T is given by
‖T‖ = max(|mT| , |MT|) = sup

‖h‖
|〈Th,h〉| .

• Eigenvectors that correspond to numeri-
cally different eigenvalues of T are orthog-
onal

• A number λ belongs to the resolvent
set Rλ(T) iff there exists a c > 0 such
that ‖Tλh‖ ≥ c‖h‖ for every h ∈ H.

• The product of two self adjoint linear op-
erators on a Hilbert space is self adjoint
only if the operators commute.

• Every bounded linear operator T : H →
H has a so-called Cartesian decomposi-
tion: T = A + iB, where A and B are
self-adjoint.
◦ The Cartesian decomposition is

unique.
◦ A = 1/2(T + T?).
◦ B = 1/(2i)(T− T?).
◦ If λ is an eigenvalue of T, then λ =

α + iβ, where α is an eigenvalue of A
and β is an eigenvalue of B.

Nonnegative Self-Adjoint Linear Op-
erators [1, §9]. Consider the set of
all bounded, self-adjoint, linear operators
on a complex Hilbert space H. A reflex-
ive partial ordering � on this set is de-
fined by T1 � T2 iff 〈T1h,h〉 ≤ 〈T2h,h〉
for h ∈ H. A bounded, self-adjoint, lin-
ear operator T is said to be nonnegative
(although not strictly correct, sometimes
also called positive) and denoted T � O,
if 〈Th,h〉 ≥ 0 for all h ∈ H.
• T1 � T2 ⇐⇒ O � T2 − T1.
• If two bounded, self-adjoint, linear oper-

ators T and S are nonnegative and com-
mute, i.e., TS = ST, then their prod-

uct ST is nonnegative.
• If T is bounded and self adjoint, then T2

is nonnegative.
A monotone sequence {Tn} of bounded,
self-adjoint, linear operators is a sequence
that is either monotonically increasing, i.e.,
T1 � T2 � T3 � . . . , or monotonically de-
creasing, T1 � T2 � T3 � . . . .
• Let {Tn} be a monotonically increasing

sequence of bounded, self-adjoint, linear
operators such that T1 � T2 � . . . �
Tn � . . . � S, where S is also bounded
and self adjoint. Suppose that all ele-
ments of the sequence commute pairwise
and also commute with S. Then, {Tn} is
strongly operator convergent, Tnh → Th
for all h ∈ H, and the limit operator T
is linear, bounded, self adjoint, and satis-
fies T � S.

A bounded, self-adjoint linear operator S
is called a square root of another bounded,
self-adjoint, linear operator T if S2 = T.
If, in addition, S � O, then S is called a
nonnegative square root of T and is denoted
by S = T1/2.
• Every nonnegative, bounded, self-adjoint,

linear operator T : H → H on a complex
Hilbert space H has a nonnegative square
root S that is unique.

• The square-root operator S of T com-
mutes with every bounded linear operator
on H that commutes with T.

Compact Normal Operators [2].
Let T : H → H be a normal operator on a
nontrivial Hilbert space H, and let T have
the Cartesian decomposition T = A + iB.
• The operator T is compact iff both A

and B are compact.
• The operator T is compact iff T? is com-

pact.
• If T is compact, it has an eigenvalue λ

with max{‖A‖, ‖B‖} ≤ |λ|. If T is
self-adjoint, then it has an eigenvalue λ
with λ = ‖T‖.

• If T is compact and has no eigenvalues,
then H = {0}.

• If H is not separable, then λ = 0 is neces-
sarily an eigenvalue of any compact nor-
mal operator on H.

Hilbert-Schmidt Operators [9, 2, 8].
Let {xn} be an orthonormal basis for a
Hilbert space H. A bounded linear op-
erator T : H → H is called a Hilbert-
Schmidt(HS) operator if

∑∞
n=1‖Txn‖2 < ∞.

The number

‖T‖HS :=
( ∞∑

n=1

‖Txn‖2
)1/2

is called the Hilbert-Schmidt norm of T.
• The HS norm does not depend on the

choice of orthonormal basis for H.
• The HS norm of a matrix is also called

the Frobenius norm.
• If T is HS, then T? is HS, and ‖T‖ ≤
‖T‖HS, as well as ‖T‖HS = ‖T?‖HS.

• Every HS operator is compact; hence it
is bounded and continuous.

• Every HS operator is the limit in HS-
norm of a sequence of operators with
finite-dimensional range.

• A compact linear operator is HS
iff
∑

n σ2
n(T) < ∞.

• For a representation of a given Hilbert
space as L2(H,M , µ) with positive mea-
sure µ and the corresponding collec-
tion M of measurable subsets, HS op-
erators are those operators T that have a
representation in the form

(Tf)(t) =
∫
H

k(t, s)f(s)dµ(s),

where f = f(t) ∈ L2(H,M , µ), and the
integral kernel k(t, s) satisfies∫∫

H
|k(t, s)|2 dµ(s)dµ(t) < ∞.

• If T ∈ S(H), and f is a single-valued an-
alytic function on S(T) that vanishes at
zero, then f(T) is a HS operator, and the
mapping T → f(T) of S(H) into itsef is
continuous.

The set S(H) of all HS operators on a
Hilbert space H, together with the HS norm,
is a Banach algebra with ‖TS‖HS ≤ ‖T‖HS ·
‖S‖HS for every T, S ∈ S(H). It contains
operators of finite range as a dense subset.
The set of HS operators is a self-adjoint
ideal in G(H,H), the Banach algebra of all
bounded linear operators in Hilbert space.



Trace Class Operators [8, §30]. A com-
pact linear operator T : H → H on a Hilbert
space H is said to be in trace class if

∞∑
n=1

σn(T) < ∞.

The above sum defines the trace norm ‖T‖tr:

‖T‖tr :=
∞∑

n=1

σn(T).

For T in trace class and any bounded oper-
ator B : H → H
• ‖T‖ ≤ ‖T‖tr,
• ‖T‖tr = ‖T?‖tr,
• ‖BT‖tr ≤ ‖B‖tr · ‖T‖tr,
• ‖TB‖tr ≤ ‖B‖tr · ‖T‖tr.
• For any pair of trace class operators T

and S, T+S is trace class, and ‖T+S‖tr ≤
‖T‖tr + ‖S‖tr.

• The trace class is a two-sided ideal in the
algebra of all bounded linear operators
on a complex Hilbert space.

• Trace class operators form a Banach
space with respect to the trace norm.

• Every trace class operator is HS.
• The product of two HS operators T and S

is in trace class, and ‖ST‖tr ≤ ‖S‖HS ·
‖T‖HS.

• Every trace class operator can be written

as the product of two HS operators.
Let {xn} be any orthonormal basis of H.
For a trace class operator T, the trace is
defined as the limit of the series

tr T :=
∑

n

〈Txn,xn〉.

This series converges absolutely. For trace
class operators T
• tr T =

∑
n λn(T), where λn(T) are the

eigenvalues of T.
• If T is a trace class operator that has no

eigenvalues except λ = 0. Then, tr T = 0.
• |tr T| ≤ ‖T‖tr.
• tr T is a linear mapping of T.
• tr T? = (tr T)∗.
• For any bounded operator B, tr(TB) =

tr(BT).
Let T be a trace class operators, and
let {Tn} be a sequence of degenerate op-
erators, i.e., operators with finite range that
converge to T in trace norm. Then, the
determinant det(I + Tn) of the matrix rep-
resentation of I + Tn, I + Tn, tends to a
limit that is independent of the choice of
the sequence {Tn}. This limit is called the
determinant of I + T:

det(I + T) := lim
n→∞

det(I + Tn).

The Spectral Theorem
Orthogonal Projection [2, 1]. A pro-
jection P : H → H on a Hilbert space H is
called an orthogonal projection if its range
and null space are orthogonal: R(P) ⊥
N (P).
• A bounded linear operator P : H → H on

a Hilbert space H is an orthogonal pro-
jection if P is self adjoint and idempotent,
i.e., P2 = P.

• An orthogonal projection is continuous
(even if H is not complete).

• A continuous projection on a Hilbert
space is orthogonal iff it is self-adjoint.

• P � O;
• ‖P‖ ≤ 1 with equality if P(H) 6= {0}.
• N (P) = R(P)⊥ and R(P) = N (P)⊥.
• For any orthogonal projection P on a

Hilbert space H and for any h ∈ H,
〈Ph,h〉 = ‖Ph‖2.

• Each h ∈ H can be written uniquely
as r + n, where r ∈ R(P) and n ∈ N (P);
furthermore, ‖x‖2 = ‖r‖2 + ‖n‖2.

• LetM be any closed subspace of a Hilbert
space H. Then there is exactly one or-
thogonal projection P with R(P) = M.
Let {en} be a countable orthonormal set
in H such that M = span{en}; then, the
mapping P : H → H defined by

Ph :=
∑

n

〈h, en〉en

for any h ∈ H is the orthogonal projec-
tion of H onto M.

• Let M be a closed subspace of H, let h ∈
H, and let P be the orthogonal projection
on H with R(P) = M. Then, ‖h−Ph‖ =
infm∈M‖h−m‖.

Let P1 and P2 be orthogonal projections
on a Hilbert space H, and let Y1 := P1(H)
and Y2 := P2(H).
• The composite operator P := P1P2 is a

projection on H iff P1 and P2 commute.
In this case, P projects H onto Y =
Y1 ∩ Y2. Conversely, the projection
onto span{Y1,Y2} is P1 + P2 − P1P2.

• The sum P := P1 + P2 is a projection
operator iff Y1 ⊥ Y2. In this case, P
projects H onto Y1 ⊕ Y2.

• The difference P := P2 − P1 is a projec-
tion on H iff Y1 ⊂ Y2. In this case, P
projects H onto the orthogonal comple-
ment of Y1 in Y2.

• The following conditions are equivalent
◦ P2P1 = P1P2 = P1,
◦ Y1 ⊂ Y2,
◦ N (P1) ⊃ N (Y2),
◦ ‖P1h‖ ≤ ‖P2h‖ for all h ∈ H,
◦ P1 � P2.

Let {Pn} be a monotonically increasing
sequence of projection operators Pn on a
Hilbert space H. Then,

◦ The sequence {Pn} is strongly operator
convergent, say Pnh → Ph for all h ∈ H,
and the limit operator P is a projection
on H.

◦ The limit operator P projects H onto

P(H) =
∞⋃

n=1

Pn(H).

◦ The limit operator P has the null space

N (P) =
∞⋂

n=1

N (Pn).

Spectral Family [1, 2]. A real spectral
family, is a collection E := {Eλ : λ ∈ R}
of projection operators Eλ on a Hilbert
space H of any dimension that satisfy the
following properties for any h ∈ H:
◦ Eλ ≤ Eµ for (λ ≤ µ); hence, EλEµ =

EµEλ = Eλ.
◦ limλ→−∞ Eλh = 0.
◦ limλ→∞ Eλh = h.
◦ Eλ+h := limµ↓λ Eµh = Eλh.

Special cases:
• A countable resolution of the identity is

a sequence {Pn} of orthogonal projection
operators with PnPm = O for n 6= m
so that I =

∑
n Pn, where the sum is

strongly operator convergent. The se-
quence {Pn} defines a spectral family E
with

Eλ :=
∑
n≤λ

Pn.

• A spectral family on an interval [a, b] ∈ R
is a spectral family E that satisfies Eλ =
O for λ < a and Eλ = I for λ ≥ b.

Compact Normal Operators [2].
Let T : H → H be a compact normal
operator on a Hilbert space H.
• There is a countable resolution of the

identity {Pn} and a sequence of complex
numbers {µn} such that

T =
∑

n

µnPn,

where convergence is uniform in the op-
erator norm.

• There exists an orthonormal basis {en}
of eigenvectors and a corresponding se-
quence of eigenvalues {λn} such that,
if h =

∑
n〈h, en〉en is the Fourier ex-

pansion for h ∈ H, then

Th =
∑

n

λn〈h, en〉en.

• A weighted sum of projections
∑

n λnPn,
where {Pn} is a resolution of the iden-
tity, and {λn} is a sequence of com-
plex numbers, is compact if (i) for every
nonzero λn, the range of Pn is finite di-
mensional, and (ii) for every real α > 0,
the number of λn with |λn| ≥ α is finite.

Bounded Self-Adjoint Operators [1,
§9]. Let T : H → H be a bounded, self-
adjoint, linear operator on a Hilbert spaceH,
let Tλ := T−λI, and define the positive part
of Tλ as T+

λ := ((T2
λ)1/2 + Tλ)/2. Further-

more, let Yλ := N (T+
λ ) denote the null space

of T+
λ .

• Let Eλ with λ ∈ R be the projection of H
onto the null space Yλ of T+

λ . Then, the
collection E (T) := {Eλ : λ ∈ R} is the
unique spectral family associated with T
on the interval [mT,MT] ∈ R.

• For λ < µ, the projection operator Eµ −
Eλ satisfies λ(Eµ − Eλ) � T(Eµ − Eλ) �
µ(Eµ − Eλ).

• The mapping λ → Eλ has a discontinuity
at λ0, i.e., Eλ0 6= Eλ+

0
, iff λ0 is an eigen-

value of T. In this case, the eigenspace
that corresponds to the eigenvalue λ0

is N (T− λ0I) = (Eλ0 − Eλ+
0
)(H).

• A real λ0 belongs to the resolvent
set Rλ(T) iff there is an ε > 0 such
that E (T) is constant on the interval [λ0−
ε, λ0 + ε].

• A real λ0 belongs to the continuous spec-
trum Sc(T) iff the mapping λ → Eλ is
continuous at λ0 (thus Eλ0 = Eλ+

0
) and is

not constant in any neighborhood of λ0.
A bounded, self-adjoint, linear operator T on
a complex Hilbert space H has the spectral
representation

T =
∫ MT

mT−0

λdEλ = mTEmT +
∫ MT

mT

λdEλ,

where E = {Eλ} is the spectral family as-
sociated with T, and the integral is to be
understood in the sense of uniform operator
convergence in the norm on B(H,H).
• For x,y ∈ H,

〈Tx,y〉 =
∫ MT

mT−0

λdw(λ),

where w(λ) := 〈Eλx,y〉, and the integral
is of Riemann-Stieltjes type.

• Let f(λ) : [mT,MT] → R be a continuous,
real-valued function on [mT,MT]. De-

fine f(T) as the limit p(T) of the polyno-
mial Tn := pn(T) := αnTn +αn−1Tn−1 +
· · · + α0I for n → ∞, where pn(λ) is
such that it converges uniformly to f(λ)
on [mT,MT]. Then, the operator f(T)
has the spectral representation

f(T) =
∫ MT

mT−0

f(λ)dEλ,

and for all x,y ∈ H,

〈f(T)x,y〉 =
∫ MT

mT−0

f(λ)dw(λ).

◦ The operator f(T) is self adjoint.
◦ If f(λ) = f1(λ)f2(λ), then f(T) =

f1(T)f2(T).
◦ If f(λ) ≥ 0 for all λ ∈ [mT,MT], then

f(T) � O.
◦ If f1(λ) ≤ f2(λ) for all λ ∈ [mT,MT],

then f1(T) � f2(T).
◦ ‖f(T)‖ ≤ maxλ∈[mT,MT] |f(λ)|.
◦ If a bounded linear operator commutes

with T, it also commutes with f(T).

Unitary Operators [1, §10.5]. Let U :
H → H be a unitary operator on a complex
Hilbert space H.
• The spectrum S(U) is a closed subset of

the unit circle. Consequently, |λ| = 1 for
every λ ∈ S(U).

• There exists a spectral family E = {Eλ}
on [−π, π] such that

U =
∫ π

−π

eiλdEλ.

• for every continuous function f on the
unit circle,

f(U) =
∫ π

−π

f
(
eiλ
)
dEλ,

where the integral is to be understood
in the sense of uniform operator conver-
gence.

• For all x,y ∈ H,

〈f(U)x,y〉 =
∫ π

−π

f
(
eiλ
)
dw(λ),

where w(λ) := 〈Eλx,y〉, and the integral
is an ordinary Riemann-Stieltjes integral.

Linear Operator Equations
Fredholm Alternative [1, §8.7]. A
bounded linear operator S : U → U on a
normed space is said to satisfy the Fredholm
alternative if either one of the following con-
ditions holds
• The nonhomogeneous equations

Sx = y, S×f = g
have unique solutions x and f , respec-
tively, for every given y ∈ U and g ∈
U ′

, and the corresponding homogeneous
equations

Sx = 0, S×f = o
have only the trivial solutions x = 0
and f = 0, respectively.

• The homogeneous equations
Sx = 0, S×T = 0

have the same number of linearly
independent solutions x1,x2, . . . ,xN

and f1, f2, . . . , fN , respectively, and the
corresponding nonhomogeneous equa-
tions

Sx = y, S×f = g
are not solvable for all y and f , respec-
tively. They have a solution iff y and g
are such that fn(y) = 0 and g(xn) = 0
for all n = 1, 2, . . . , N .

For a compact linear operator T on a normed
space U , the operator Tλ := T− λI, for λ 6=
0, satisfies the Fredholm alternative.

Linear Operator Equations [1, §8.5].

Let T : U → U be a compact linear operator
on a normed space U and T× : U ′ → U ′

its
adjoint operator. For x,y ∈ U , f, g ∈ U ′

,
and λ 6= 0, consider the set of linear operator
equations

Tx− λx = y (y ∈ X given) (OE1)
Tx− λx = 0 (OE2)

T×f − λf = g (g ∈ X
′
given) (OE3)

T×f − λf = 0. (OE4)
Then,
• Equation (OE1) has a solution x

iff f(y) = 0 for all solutions f of (OE4).
Hence, if f = 0 is the only solution
of (OE4), then (OE1) is solvable for ev-
ery y.

• Equation (OE3) has a solution f
iff g(x) = 0 for all solutions x of (OE2).
Hence, if x = 0 is the only solution
of (OE2), then (OE3) is solvable for ev-
ery g.

• Equation (OE1) has a solution x for ev-
ery y ∈ U iff x = 0 is the only solution
of (OE2).

• Equation (OE3) has a solution f for ev-
ery g ∈ U ′

iff f = 0 is the only solution
of (OE4).

• Equations (OE2) and (OE4) have the
same number of linearly independent so-
lutions.
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