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Scalar Field. For all linear (vector) spaces
in the following, the scalar field will be ei-
ther the field of real numbers, 7 = R, or the
complex field, F = C.

Normed Space [1, 2, §2]. A norm ||-|| on
a linear space (U, F) is a mapping ||-|| : U —
[0,00) that satisfies, for all u,v € U, € F,

1. |jul| =0 <= u=0.

2. [lom|| = [ [[ul].

3. Triangle inequality: |[u+ v| < |lu| +

vl

A norm defines a metric d(u,v) := ||lu —v||
on U. A normed (linear) space (U, |-]|) is a
linear space U with a norm ||-|| defined on
it.

e The norm is a continuous mapping of U
into R;.

e A norm ||| on a linear space U is said
to be equivalent to a norm |-||o on U if
there are positive numbers a and b such
that al|lullo < ||ul| < bJjul|o for all u € Y.
Equivalent norms define the same topol-
ogy on U.

e The metric d induced by a norm is trans-
lation invariant, i.e., it satisfies

od(u+x,v+x)=d(u,v),
od(au+ av) = |a| d(u,v)
for all u,v,x €e Y and o € F.

e Riesz’s Lemma: Let )Y and Z be linear
subspaces of a normed space U and let )
be a closed proper subset of /. Then, for
every § € (0,1), there is a z € Z such
that ||z — y|| > 6 for |jz|| = 1 and for
ally € V.

e A subset 7 of a normed space U is said
to be total in Y if spanT is dense in U.

e Let S be a linear subspace of a normed
space U. If S is open as a subset in U,
then S =U.

Basis and Dimension /2, 1].

e Let V be a linear space. A linearly in-
dependent subset S C V that spans V is
called a Hamel basis for V.

o Every linear space has a Hamel basis,
so that every nonzero v € V has a
unique representation as a linear com-
bination of finitely many elements of S
with nonzero scalar coefficients.

o If By and By are Hamel basis for a lin-
ear space V, then they have the same
cardinality.

e The dimension dimV of a linear space V
is defined as the cardinality of any Hamel
basis of V.

oIf dimV is finite, V is called a finite-
dimensional linear space.

o A linear space V is finite dimensional
iff there is a positive integer N such
that V contains a linearly indepen-
dent set of N vectors whereas any set
of N + 1 vectors of V is linearly depen-
dent.

o If V; and Vs are linear spaces over the
same scalar field, then they are isomor-
phic iff dim V; = dim Vs.

paces

lspaces

uct spaces

metric spaces

complete

Banach space

Hilbert space

e If a normed space U contains a se-
quence {e,} with the property that for
every u € U there is a unique sequence of
scalars {«, } such that ||ju—(a1e1+azes+
- 4ayen| — 0as N — oo, then {e, } is
called a Schauder basis for U. A Schauder
basis is different from a Hamel basis in
that a countably infinite number of ba-
sis vectors and scalar coefficients may be
needed to uniquely represent a given vec-
tor.

Convergence [1, §4.8]. Let {u,} be a
sequence of vectors in a normed space U.

e The sequence {u,} is said to be strongly
convergent, or convergent in norm, if
there is a u € U, called the strong limit
of {u,}, such that lim, . |lu, —u| = 0.
Strong convergence is written u, — u
and often referred to simply as conver-
gence.

The sequence {u,} is said to be weakly
convergent if there is a u € U,
called the weak limit of {u,}, such
that lim, ., f(u,) = f(u) for every
bounded linear functional f on U, i.e.,
for every f in the dual space U'. Weak
convergence is written u,, — u.

o The weak limit u is unique.

o Every subsequence of {u, } converges
weakly to u.

o The sequence {||u,||} is bounded.

Strong convergence implies weak conver-
gence to the same limit.

o If dimU < oo, then weak convergence
implies strong convergence.

The (infinite) series u; +ug + ... is said
to converge (strongly) if the sequence of
partial sums s, := u; +us + --- + u,
converges, i.e., if s, — s for some s € U.
e The above series is said to be absolutely
convergent if the infinite series |uy| +
|luz]| + ... converges.

A series is said to be unconditionally con-
vergent if (i) it is convergent for each pos-
sible rearrangement of terms, and (ii) if
each rearrangement converges to the same
limit.

Banach Space [1, §2]. A Banach
space (B, ||||) is a complete normed space,
complete in the metric induced by its
norm |||

e A linear subspace S of a Banach space B
is a Banach space, i.e., it is complete, iff S
is closed in B.

e For a series on a Banach space, absolute
convergence implies strong convergence
and unconditional convergence.

o Let (U, ||-]|) be a normed space. Then
there is a Banach space B and an isome-
try f from B onto a linear subspace S C BB
that is dense in B. The space B is
unique except for isometries. Thus, every
normed space can be completed.

Finite-Dimensional Normed Spaces.

e Every finite-dimensional linear sub-
space S of a normed space U is complete;
in particular, every finite-dimensional
normed space is complete.

e Every finite-dimensional linear subspace
of a normed space U is closed in U and
separable.

e On a finite-dimensional linear space, all
norms are equivalent.

e In a finite-dimensional normed space U,
any subset S C U is compact iff S is
closed and bounded.

Inner Product Space [1, §3/. Let (G,F)
be a linear space. An inner product is a
mapping (-,-) : G x G — F that satisfies the
following properties for all x,y,z € V and
scalars a € F:

1. (x+y,z) = (x,2) + (y, z).

2. (ox,y) = a(x,y).

3. (x,y) = (y,x)*

4. (x,x) > 0 with equality iff x = 0.
A linear space G on which an inner prod-
uct (-,-) is defined is called an inner product
space (G, (-, "))

e An inner product defines a norm ||x|| :=

(x,x) and a metric d(x,y) = ||y —

x|| = /{y —x,y —x) on G. Hence, in-
ner product spaces are normed spaces.

e The inner product is called sesquilin-
ear, because it is linear in the first
term and conjugate linear in the second
term: (x,ay) = a*(x,y).

e The inner product satisfies the Schwarz
inequality: |(x,y)] < ||yl

e The induced norm satisfies the triangle in-
equality: ||x+y| < |Ix[|+[ly| with equal-
ity iff y = cx for some positive scalar c.

e The induced norm satisfies the parallel-
ogram equality: |x +y||*> +[|x —y|* =
2([[x[* + lly|1*)-

e Continuity: if in an inner product space G
x, — x and y, — y, then (x,,y,) —
(x,y), where {x,},x,{yn},y €G.

o If (x1,y) = (Xo,y) for all y in an inner
product space, then x; = xs.

Two inner product spaces G and V are called
unitarily equivalent if there is an isomor-
phism U : G — V of G onto V that preserves
inner products, i.e., (Uuy, Uug) = (uy, us)
for all u;,us € G. The mapping U is called
a unitary operator.

Orthogonality /2, 1]. An element x of an
inner product space G is said to be orthog-
onal to an element y € G, denoted x L y,
if (x,y) = 0. Similarly, for A,B C G,
x 1 A means that x L a for all a € A,
and A | B means that a | b forallae A
and all b € B.

e An orthogonal set O in an inner product
space G is a subset O C G whose elements
are pairwise orthogonal. An orthonormal
set is an orthogonal set whose elements
have unit norm. A countable orthogonal
(orthonormal) set is called an orthogonal
(orthonormal) sequence.

e An orthogonal set is linearly independent.
Let {e,} be an orthonormal set in an
inner product space G, and let g be any
point in G. Then (g, e,) is nonzero for at
most a countable number of vectors e,.
e Let G be an inner product space and C a

nonempty convex subset of G that is com-

plete in the metric induced by the inner
product. Then, for every g € G there ex-
ists a unique ¢g € C such that inf.cc||g —
c|l = |lg — co||. If C is a complete linear

subspace of G, then (g —cp) L C.

e Bessel inequality: Let {e,} be an or-
thonormal sequence in an inner product

space G. Then, for every g € G,

2
> g el < llgll*

n=1

Orthogonal Complement [2, 1, 3]

Let A and B be nonempty subsets in an

inner product space G. The set A+ :=

{geG:gl A} is called the orthogonal

complement of A in G.

o The orthogonal complement A" of Ain G
is a closed linear subspace of G. If G is

complete, then AL is complete.
o If A C B, then B+ C AL
e AC (AH)L
elfgc AN AL, then g = 0.
oIf AC G, then A+ = ((A4)4H)*L.
e {0}t =G and G+ = {0}.
o If A is a dense subset of G, then A+ =

{0}. .
oIf {A,} is a

spaces, then (span{An})L =
and (N,A,)L = span{AL}.
An orthonormal set O in an inner product
space G that is total in G is called a total

orthonormal set, or sometimes a maximal or
complete orthonormal set.

e Let O C G be a subset of an inner product
space G. Then, if O is total in G, there
does not exist a nonzero vector g € G
that is orthogonal to every element of O.

e If G is complete, i.e., a Hilbert space, the
above condition is sufficient for O to be
total in G.

Hilbert Space [1, §3]. A complete inner
product space (H, (-,-)) is called a Hilbert
space. Thus, a Hilbert space is a Banach
space on which an inner product is defined.

e For any inner product space G there ex-
ists a Hilbert space H and an isomor-
phism from G onto a dense linear sub-
space D C H. The space H is unique
except for isomorphisms. Thus, every
inner product space can be completed.

eLet {h,} be a sequence in a Hilbert
space H. Then, h, = h iff (h,, z) —
(h,z) for all z € H.

e In every Hilbert space H # {0}, there
exists a total orthonormal set.

e An orthonormal set O in a Hilbert
space H is total in H iff for all h € H the
Parseval relation holds:

> l{h,e)” = ||h)*.

ecO

e A total orthonormal sequence, i.e., a
countable total orthonormal set, in a
Hilbert space H is called an orthonormal
basis for H.

o If a Hilbert space H is separable, every
total orthonormal set is countable, i.e., ev-
ery total orthonormal set is an orthonor-
mal basis. Conversely, if H contains an
orthonormal sequence that is total in H,
then H is separable. Thus, there exists
an orthonormal basis for H iff H is sepa-
rable.

e All total orthonormal sets in a given
Hilbert space have the same cardinality,
called the Hilbert dimension_of H.

e T'wo Hilbert spaces H and H, both over
the same scalar field, are isomorphic iff
they have the same Hilbert dimension.

e Let YV be any closed linear subspace of
a Hilbert space H. Then, H = Y & Z,
where Z = Y1 is the orthogonal comple-
ment of ). Each h € H can be uniquely
represented as h = y + z, wherey € Y
and z € Z = Y1, and |h|| = ||ly|| + ||z|-

e Let S C H be a linear subspace of H;
then, (SH)t = S. If S is closed,
then (S+)+ =S.

e For any nonempty susbspace S of a
Hilbert space H, spanS is dense in H
iff St = {0}. If S is closed and S+ =
{0}, then S = H.

Let Y and Z be two subspaces of H. The
canonical correlation p(Y, Z) between these
two subspaces is defined as

p(V,Z) == sup{|(y,z)| : y €,
z€Z |yl = |zl =1}
and the angle 0(Y, Z) between these sub-
spaces as 0(Y, Z) = cosp(Y, Z).
elet y € YV, z € Z. Then, the following
conditions are equivalent:
op(V,2) <1,ie., 0(Y,2)>0.
oinf{lly —zl : Iyl = izl = 1} > 0.
o There is a constant ¢ such that ||y|| <
clly + z|| for all y, =z.
o The direct sum Y @ Z is a closed sub-
space of H.

sub-
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Fourier Series [2]. Riesz-Fischer Theo-
rem: Let {e,} be an orthonormal sequence
in a Hilbert space H, and let {a,} be a
sequence of scalars. Then, the series

o0
h= E anpen
n=1

. . [e%s} 2
converges in norm iff >~ |, |” < co. In
this case, the coefficients a,, are called the
Fourier coefficients of h, and they are given
as a, = (h,e,). Conversely, the above se-
ries always converges to h if the «,, are the
Fourier coefficients of any h € H.

e The above series is convergent iff it con-
verges unconditionally.

Let {e,} be an orthonormal set in a Hilbert
space H, then the following statements are
equivalent:

e The set {e,} is an orthonormal basis
for H.

e For any h € H, the Fourier series ex-
pansion of h is given as h = ) aye,,
where a;, = (h,e,).

e Parseval equality: For any x,y € H,

<Xa y> - Z<X7 en><y7 en>*'

n

e For any h € H,
Bl* =" I(h,en)[*

n

e Let M be any linear subspace of ‘H that
contains {e, }; then M is dense in H.

Banach Algebra [/, 5]. Strictly speak-
ing, a Banach Algebra is an algebra B over
a scalar field F, where B is also a Banach
space under a norm [|-|| that satisfies the
multiplicative inequality |xy| < ||x/|||ly]l
for all x,y € B.

In the following, though, an associative unit
complex Banach algebra, i.e., a Banach al-
gebra over the complex field C that is asso-
ciative and contains an identity element 1
with respect to vector multiplication such
that ||1|| =1 is simply referred to as a com-
plex Banach algebra.

e An element b € B is called invertible if b
has an inverse in B. The invertible ele-
ments of B form a group with respect to
vector multiplication.

e Let S C B denote the set of all invertible
elements of B. If b € B and ||b| < 1,
then,

ocl+bes,

o(1+b)"t =377, (-1)"b",

o (14+b)" ~ T b] < [bJ2/(1— b)),

o The set S is open, and the map-
ping b — b~! is a homeomorphism
of S onto S.

e The spectrum S(b) of an element b € B
is defined as the set of all complex num-
bers A such that b — A1 is not invertible.

e Let f be a bounded linear functional on B.
Then, for any fixed b € B, the func-
tion g(\) == f((b—A1)"1), A ¢ S(b), is
holomorphic in the complement of S(b),
and g(A) — 0 as A — oo.

o For every b € B, the spectrum S(b) is
compact and not empty.

o If each nonzero element of B is invert-
ible, then the complex Banach algebra B
is isometrically isomorphic to the com-
plex field C. This also implies that B is
commutative.

eFor any b € B, the spectral ra-
dius T, of b is defined as r, :=
sup{|A| : A € S(b)}; it can be computed
as 77— lim,, _ o ||b™||*/™.

A complex-valued homomorphism f on a
Banach algebra B is a linear functional that
preserve vector multiplication, i.e., a func-
tional f for which f(ax + fy) = af(x) +
B1(y) and f(xy) = f(x)f(y) for all x,y €
B and «,3 € F. Furthermore, f is not
identical to 0. Let M denote the set of
all complex-valued homomorphisms f of B.
Then,

e\ e S(b)iff f(b) =\ for some f € M.

e The vector b is invertible in B iff f(b) # 0
for every f € M.

o f(b) € S(b) for every b € B and f € M.

e |f(b)] < rp, < ||b|| for every b € B
and f € M.

Some Important Linear Spaces

Euclidean Space [6/. The N-dimensional
complex Fuclidean space

cN .= {x T x = [a:oxl xN,1]T,xn E(C}

with inner product

N-1
<X>y> = Z xny:
n=0

and corresponding induced norm is a finite-
dimensional Hilbert space.

Sequence Space [3]. The sequence space

.= {X X ={xn}oros

o0
zn € C, Z |z, | < oo}

n=0
with norm

0o 1/p
l[xllp == <Z wn”>
n=0

is a Banach space for 1 < p < co.

e For p = oo, the norm is the supremum
norm: ||X||eo := sup,, |x|.

e An important subspace of [* is the space
whose elements are sequences that decay
to zero, i.e., x, — 0 as n — oo.

e For p = 2, the space [? with inner product

o0
x,y) =Y zuy;
n=0

and norm ||x||z := (x,x)'/? is an infinite-

dimensional Hilbert space, called the
Hilbert sequence space.

Space of Continuous Functions.
Let Cla, b] denote the space of all complex-
valued continuous functions f : [a,b] — C
with pointwise addition and scalar multipli-
cation.

e C™[a,b], endowed with the supremum
norm || flloc := sup,<;<; | f(t)], is a Ba-
nach space.

e Endowed with the inner product (f, g) :=

f; f(t)g*(t)dt and the induced norm, this

space is an inner product space but not
a Hilbert space.

Lebesgue Space [3, 7]. Let X be an arbi-
trary set, % the o-algebra of subsets of X,
and p a nonnegative measure on %. The
Lebesgue space

LP(X, F,u) = {f X —>C

measurable, / [fIPdp < oo}

with norm

1/p
111 = ([ 1717 an)

is a Banach space for 1 < p < co.

e For p = oo, the space L=(X, %, u) with
p-essential supremum norm | flle =
ess,, sup, |f(t)| is also a Banach space.

o If 11 is finite and X = (a,b], the spaces
LP(p) = LP((a,b],-F,u) are nested:
LP(p) S L) for p > q.

e The space £2(X,.% ) with inner product
(f,9) = fX f9*dp and induced norm is a
Hilbert space, called the Hilbert function
space. The elements of £2(X,.%, ) are
equivalence classes of functions that differ
on null sets.

e The space L£1(R) N £2(R) is a Hilbert
space. It is a dense subspace of £?(R).
eFor X = {0,1,...,N—1} or X = Z;
and p the counting measure on the col-
lection % of all subsets of X, the space
L2(X,.Z 1) reduces to CV or [2, respec-

tively.

e When p is a probability measure, i.e.,
w(X) = 1 for arbitrary X, then
L2(X,.F, 1) is the space of all random
variables with finite second moment.

Schwarz Space [7]. The Schwarz space S
is the space of all infinitely differentiable,
rapidly decaying functions of a real parame-
ter ¢:

. d" f(t)
S := { :R—C: lim ¢t =0
frR= o I
Vm,n € N}
Paley-Wiener Space. to write

Sobolev Space. to write

Hardy Space /[3]. Let D :=
{z € C : |z] <1} be the open disk in the
complex plane. For 0 < p < oo, the space

HP = {f : f analytic in D,

/|f(rei)‘)’pd)\ < oo}

sup
0<r<1

with norm

1/p
— Xy P
£l = s ([ 176 )

is a Banach space, called the Hardy space.

Reproducing Kernel Hilbert Spaces.
to write

Linear Operators and Linear Functionals

Linear Operator /1, 2/. A linear opera-
tor T is a mapping of a linear space V into
a linear space Z such that
1. The domain D(T) is a linear space V,
and the range R(T) lies in a linear
space Z over the same scalar field F.
2. For all v,u € V and scalars «,
T(v+u) =Tv + Tu,
T(av) = aTv.
The null space N(T) of T is the set of
all v € D(T) such that Tv = 0. The null
space is a linear space.

e The range space R(T) of a linear operator
is a linear space.

e Two linear operators T and S are said to
be equal if they have the same domain
and if Tv = Sv for all v € D(T) = D(S).

e dimD(T) = N < oo = dimR(T) <
N.

e The dimensions of the null space N (T),,
the range space R(T) and the space X it-
self are related as dim NV (T)+dim R(T) =
dim X.

e Let Xy, Xy, V1,)s be linear spaces over
the same scalar field so that X; and X
are isomorphic and ); and )» are isomor-
phic. The linear operators Ty : X1 — )
and Ty : X5 — )Yy are said to be isomor-
phically equivalent if there exists isomor-
phisms U : X7 — X5 and W : Y1 — s
such that T; = W™ITyU and Ty =
WTﬂUil.

eLet X7 and A5 be isomorphic linear
spaces. The linear operators Ty : A7 —
X1 and Ty : X5 — X5 are said to be sim-
ilar if there exists an isomorphism U :
X, — X, such that T; = U~ IT,U
and Ty = UT, UL

elet T : V — V be a linear operator
and M C V a linear subspace of V such
that T(M) C M; then M is called invari-
ant under T . In this case, the restriction
of T to M is a mapping of M into itself.

e Let T : H — H be a linear operator on
a Hilbert space H. If some closed lin-
ear subspace M C ‘H and its orthogonal
complement M= are invariant under T,
then M is said to reduce T.

e Any operator that maps a Banach space
onto another Banach space is an open
mapping.

Inverse Operator. Let T :V — Z be
a linear operator. Then, the inverse oper-
ator T~1 : R(T) — D(T) exists iff Tv =0
implies that v = 0.

o If T~! exists, it is a linear operator.

o If dimD(T) = N < oo and T! exists,
then dim R(T) = dim D(T).

e An invertible linear operator is a homeo-
morphism.

olet T : X — Yand S: Y — Z be
bijective linear operators, where X', Y,
and Z are linear spaces. Then, the in-
verse (ST)~! : Z — X of the composition
(also called product) ST := So T exists
and (ST)~! =TS~ L

e A bounded bijective operator T : X — )
between two Banach spaces X and ) has
a bounded inverse.

e Von Neumann Theorem: Let T : B — B
be a bounded operator on a Banach
space B that satisfies ||I — T|| < 1. Then,
T is invertible, and T~ = Y77 (I—-T)".
Furthermore, |T~!|| < 1/(1 — ||T — TJ).

Projections [2]. A linear operator P :
X — X that satisfies P? = P is called a
projection.

e Range R(P) and null space N (P) are

disjoint subspaces of X such that X =
R(P) + N (P) = R(P) & N'(P), i.c., R(P)
and NV (P) are algebraic complements of
one another.

o If Pis a projection, so is I-P, and R(P) =
N(I—P) and N(P) = R(I-P).

e Let S C X be a subspace of X'. Then
there exists a projection P: X — X such
that R(P) = S.

e Given two disjoint subspaces V and U
with X = U @V, there is a unique projec-
tion P such that R(P) = U and N (P) =
V.

Finite-Dimensional Spaces [I, §2.9,
§7.1]. Let X and )Y be finite-
dimensional linear spaces over the same
field F, with dimX = N,dim) = K.
Let £ :={e1,...,en} be a basis for X, and
let B :={by,...,bx} be a basis for Y.

e Any linear operator T : X — ) is
uniquely determined by the K images
of the N basis vectors y, = Te,,.

e Any linear operator T on a finite-
dimensional linear space can be repre-
sented by a matrix T with [T, = tg n,
where T depends on the bases £ and B.
Hence, the image of any vector x € X
can be obtained as

K N
y= TX = Z Z(tk,nfn)bk

k=1n=1

N
where x =) " | &ne,.

e For given bases £ and B, the matrix T is
uniquely determined by T.

e Conversely, any K x N matrix T defines
a linear operator with respect to given
bases forX and ).

e T'wo matrices that represent a linear oper-
ator on a finite-dimensional normed space
relative to two different bases are similar.

Linear Functionals [1, 2]. A linear func-
tional is a linear operator f : V — F, defined
on some linear space )V, whose range is in
the scalar field F of the linear space.

e Hahn-Banach Theorem: Let V be a real
or complex linear space, and let g be a
real-valued functional on V that is sub-
additive, i.e., g(u+v) < g(u) + g(v) for
all u,v € V, and that satisfies g(au) =
|a] g(v) for every scalar . Let f be
a linear functional, defined on a sub-
space Z of V, that satisfies |f(z)| < g(z)
for all z € Z. Then, f has a linear exten-

sion f from Z to V that satisfies | f(v)| <
g(v) for all ve V.

e The codimension of N'(f) is 1.

o If A is any subspace of ¥V with N'(f) C A
and N(f) # 0, then A =V.

e For some linear functional f and some
scalar «, the set {veV: f(v)=a}is
called the hyperplane in V determined
by f and a.

Algebraic Dual [1]. The set V* of all lin-
ear functionals defined on a linear space V
is itself a linear space, called the algebraic
dual space of V. Its vector sum is defined
s 5(v) = (f1 + f2)(v) i= f1(v) + fo(v) for
all v € V, and the product of a scalar o and
a vector, i.e., a functional f € V*, is defined
for all v.e V* as p(v) = (af)(v) := af(v).
e Let V be an N-dimensional linear space,
and let &€ = {e,...,en} be a basis
for V. Define the set of linear function-
als B := {fl» ey fN} with fk(en) = 6kn~
Then B is a basis for the algebraic dual
space V* of V, and dim & = dim B; B is
called the dual basis of €.

Linear Functionals on Normed Spaces

Linear Functionals [1, 2]. Let f :
U — F be a linear functional on a normed
space U.

e The norm ||f| of a linear functional f
is the usual operator norm: | f| =
SUDPucts,u0 |f(u)|

e A bounded linear functional is a linear
function f that satisfies || f|] < a for
some a € R.

e On a normed space U, the Hahn-Banach

Theorem implies that every bounded lin-
ear functional f on a subspace & C U has

a linear extension f on U that has the
same norm,

sup (s
uel,||ul|=1
e Let U be a normed space and let u €
U. Then, there exists a bounded lin-
ear functional f on U such that ||f|| =1
and f(w) = |[ul].

sup

‘f(u)‘ - s€S,|Is||=1



Sesquilinear Form [1, §3.8]. Let V
and Z be liner spaces over the same scalar
field F. A sesquilinear form, or sesquilin-
ear function f on V X Z is a mapping f :
Y x Z — F such that for all v,vi,vy € V
and z,z1,22 € Z and all scalars a and (3

o f(vl —|—V27Z) = f(vlaz) + f(VQ,Z),

o f(v,z1+22) = f(v,21) + f(v,22),

o f(av,z) = af(v,z),

o f(v,Bz) =B f(v,z2).
Dual Space [I].  Let U be a normed
space. Then the set of all bounded lin-
ear functionals on U constitutes a normed
space under the usual operator norm || f|| =
SUPyers, ulj=1 |f(0)]- This space is called the

dual space U of U.

e The dual space U  of a normed space U
is a Banach space, whether or not U is
complete.

e For every u in a normed space U,

ufl = sup [f ()]
A
F#0
e Given a linearly independent set

{f1,....fn} € U, there are elements
uy,...,uy in U such that f;(ug) = dx.

Convergence [1, §4.9]. For linear func-
tionals, strong and weak convergence are
equivalent, so that a sequence {f,} of
bounded linear functionals on a normed
space U is said to be
e strongly convergent if there is an f €
U, called the strong limit of {f,}, such
that || fn,— f|| — 0; this is written as f, —
e weak® convergent if there is an f € u',
called the weak* limit of {f,}, such
that f,(u) — f(u) for all u € U; this

.
is written as f, — f.

Linear Operators on Normed and Banach Spaces

Continuity /2, 1]. Let X and Y be normed
spaces, and let T : X — ) be a linear oper-
ator.

e The operator T is continuous iff

T(i anxn) = i a,T(x,)

for every convergent series Y - a,Xp
in X.

o If T is continuous at a single point, it is
continuous.

e The linear operator T is continuous iff it
is bounded.

o If a linear operator T is continuous, it is
uniformly continuous.

e If X is finite dimensional, then T is con-
tinuous.

Operator Norm /1, §2.7]. LetT:U — Z
be a linear operator that maps a normed
space U into a normed space Z. The opera-
tor norm is defined as

Tu
| T|| := sup [Tul
ucld ||u||
u#0

where the norms on the RHS are vec-

tor norms in Z and Y. If D(T) = {0},

then ||T|| := 0.

e The operator norm ||T|| of T is equivalent
to

[T} = sup |[Tul.
ucld
lal|=1

Bounded Linear Operators [1, §2.7].
The linear operator T : I/ — Z that maps a
normed space U into a normed space Z is
said to be bounded if there is a real number a
such that ||T| < a.

e A linear operator T is bounded iff it is
continuous.

o If a normed space U is finite dimen-
sional, then every linear operator on I/ is
bounded.

oT = 0 iff (Tu,z) = 0 for all u € U

and z € Z.

The null space N(T) of T is closed.

If {u,} a sequence in D(T), then u,, — u

implies Tu,, — Tu.

For bounded linear operators Ty : X —

Y and Ty Y — Z on normed

spaces X, )V, and Z, it follows that

ITyTo | < Ty | T2ll, and for T: & — ¥

that [T < |T|".

Uniform Boundedness Theorem:

Let {T,} be a sequence of linear op-

erators T,, : B — U from a Banach

space B into a normed space U such

that | T,b|| < ¢p < oo for every b € B

and every n = 1,2,.... Then, the se-

quence of norms {||T,||} is bounded, i.e.,

there exists a ¢ such that ||T,| < ¢ for

alln=1,2,....

A bounded linear operator T from a Ba-

nach space B onto a Banach space Z has

the property that the image T(B1(0)) of
the open unit ball around the origin con-

tains an open ball around 0 € Z.

e Open mapping theorem: A bounded linear
operator T from a Banach space onto an-
other Banach space is an open mapping.
Hence, if T is bijective, T~ is continuous
and thus bounded.

Operator Topologies [1, 2]. Let G(U, Z)
denote the set of all bounded linear opera-
tors from a normed space I/ into a normed
space Z over the same scalar field. The
set G(U, Z) is a linear space under operator

addition (T14Te)u := Tyu+Tou, forallu €
U, and scalar multiplication (aT)u := oTu
with a € F.

e The linear space G(U, Z) is a normed
space, whose norm is the usual operator
norm ||T|| for all T € G(U, Z).

e Let B ba a Banach space; then, G(U, B)
is a Banach space.

o Let H is a Hilbert space, then G(H, H) is
a Banach algebra.

Convergence [1, §4.9]. Let U and Z be
normed spaces. A sequence {T,} of opera-
tors T,, € G(U, Z) is said to be

e uniformly operator convergent if {T,}
converges in the operator norm
on Q(Z/I,Z), i~e'7 ||Tn - T” - 07

e strongly operator convergentif {T,u} con-
verges strongly in Z for every u € U,
ie., | Tpu— Tul| — 0 for all u € U;

o weakly operator convergent if {T,u} con-
verges weakly in Z for every u € U,
ie, |f(Tpu) — f(Tu)] — 0 for allu e Y
and all bounded linear functionals f on U,
that is, for all f in the dual space U ofU.

Uniform convergence implies strong conver-
gence, which in turn implies weak conver-
gence, all with the same limit.

e Let T, € G(B,U), where B is a Banach
space and U a normed space. If {T,,} is
strongly operator convergent with limit T,
then T € G(B,U).

o A sequence {T,,} of operators in G(B, Z),
where B and Z are Banach spaces, is
strongly operator convergent iff (i) the
sequence {||T,||} is bounded, and (ii) the
sequence {T,b} is Cauchy in Z for ev-
ery b in a total subset of B.

Adjoint Operator [1, §/.5]. Let X and Y
be normed spaces and let T : X — ) be
a bounded linear operator. Then, for any
bounded linear functionals f € X " and g e
V', the adjoint operator T* : Y — X' of T
is defined by f(x) = (T*g)(x) = g(Tx) for
all x e X.

e The adjoint operator T* is linear and
bounded, and ||T*|| = ||T||.

o If T is represented by a matrix T, then
the adjoint operator T* is represented
by TT.

e Let S: X — Y be another bounded linear
operator. Then

o(S+T)* =S*+T*.

o(aT)* =aT*, a€F.
o (ST)* = T*SX.
oIf T~! exists and T™! € B(X,)),

then (T*)~! also exists, (T*)"! €
B(X',Y'), and (T*)~! = (T~1)*.

Closed Linear Operators [1, §4.13].
Let 4 and Z be normed spaces and let T :
D(T) — Z be a linear operator with do-
main D(T) C U. Then, T is called a
closed linear operator if its graph G(T) :=
{(u,2z) : u e D(T),z = Tu} is closed in the
normed space U X Z.

e (Closed graph theorem: Let T be a closed
operator. If D(T) is closed in V, the op-
erator T is bounded.

eLet T : D(T) — Z be a linear operator,
where D(T) C U and U, Z are normed
spaces. Then, T is closed iff it has the fol-
lowing property: If u, — u for u, €
D(T), and Tu,, — z, then u € D(T)
and Tu = z.

Compact Linear Operators [1, 2]
Let & and Z be normed spaces. A linear
operator T : U — Z is called compact or
completely continuous if for every bounded
subset S C U, the image T(S) is relatively

compact, i.e., the closure T(S) is (sequen-
tially) compact.

e Every compact linear operator T is
bounded and, therefore, continuous.

o If dimlU = oo, the identity operator I,
which is continuous, is not compact.

e A linear operator T : Y — Z is compact
iff it maps every bounded sequence {u,}
in U onto a sequence {Tu,} in Z that
has a convergent subsequence.

o If T is bounded and dimR(T) < oo,
then T is compact.

o If { is a finite-dimensional normed linear
space, every linear operator defined on U
is compact.

e Given ¢ > 0, there exists a finite-
dimensional subspace M C R(T) such
that

inf ||[Tu—m| < ¢|ul
meM

for any u € .
e Let {u,} be a weakly convergent se-

quence in U with u,, < u. Then {Tu,}
is strongly convergent in Z and has the
strong limit z = Tu.

o If T is compact, so is its adjoint opera-
tor T : 2" — U’

e Let {T,,} be a sequence of compact linear
operators from a normed space U into
a Banach space B. If {T,,} is uniformly
operator convergent, i.e., ||T,, — T| — 0,
then the limit operator T is compact.

e A compact linear operator T : U — B
from a normed space U into a Banach
space B has a compact linear extension T :
U — B, where U is the completion of U.

elet T: B — Aand S: B — A be com-
pact linear operators, where B and A are
Banach spaces. Then, T 4 S is compact.

o Let T: U — U be a compact linear op-
erator and S : Y — U a bounded linear
operator on a normed space . Then TS
and ST are compact.

Spectral Theory of Linear

Resolvent, Spectrum /2, 1]. Let B
be a complex Banach space, and let T :
D(T) — R(T) be a linear operator
with D(T), R(T) C B.

e Associated with T is the the opera-
tor Ty := T — Al, where A € C and I
denotes the identity operator.

o If Ty has an inverse defined on its range,
it is called the resolvent of T and denoted
as Ry(T) := Ty ' = (T — AI)~! on R(T)).

The resolvent set Q(T) of T is defined as the
set of all complex numbers A such that the
range of Ty is dense in B and that T, has
a continuous inverse defined on its range.
The numbers A € Q(T) are called regular
values. The set S(T) := Q(T)° is called the
spectrum of T; a A € S(T) is called a spec-
tral value of T. The spectrum S(T) can be
partitioned into three disjoint sets:

o The point spectrum S,(T) is the set such
that Ty is not one-to-one. A A € S,(T)
is called an eigenvalue of T.

o The continuous spectrum S.(T) is the
set such that T, is one-to-one, has its
range dense set in B, but Ry (T), defined
on R(T)), is not continuous and, there-
fore, unbounded.

o The residual spectrum S,(T) is the set
such that T is one-to-one, but R(T)) is
not dense in B.

In summary:

Operators

T\ one-to-one?

yes

/

R(T)) dense in X7 A e S,(T)

yes

/

R (T) continuous? Ae S (T)

yes

A e Q(T) A€ S.(T)

e The four sets are pairwise disjoint
and C = Q(T) US,(T) US.(T) US,(T);
some of the sets may be empty.

o If R)(T) exists, it is a linear operator.

e Let B be a complex Banach space, T :
B — B a linear operator, and A € Q(T).
If T is closed or bounded, then, Ry (T)
is defined on the whole space B and is
bounded.

Eigenvalues [1, §7/. Let U be a normed
space over the complex field and T : D(T) —
U alinear operator with domain D(T) C U.

e The resolvent Ry(T) exists iff Tu = 0
implies u = 0, i.e., the null space N (T)
is {0}.

o If Tyu = 0 for some u # 0, then \ €
Sp(T). The vector u is then called an
eigenvector of T with eigenvalue .

e The subspace of D(T) that consists of 0
and all eigenvectors of T with eigen-
value A is called the eigenspace of T cor-
responding to that eigenvalue.

e Eigenvectors with different eigenvalues
constitute a linearly independent set.

Spectral Properties of Operators on Normed Spaces

Bounded Linear Operators on a Com-
plex Banach Space [1, §7.3]. Let B be a
complex Banach space, and let T € G(B, B)
be a bounded linear operator.
e The resolvent set Q(T) is not empty.
e The spectrum S(T) is not empty.
e The resolvent set Q(T) is open; hence,
the spectrum S(T) is closed.
oIf |T| < 1, then (I — T)~! exists,
is a bounded linear operator on the
whole space B, and has the following se-
ries expansion, convergent in the norm

on G(B, B):

oo
I-T)'=> T =I+T+T°+...
n=0
and [|(T— )~ < (1 — [T[)~".
e For every \g € Q(T), the resolvent Ry (T)

has the representation
o0

RA(T) = ) (A —Xo) "Ry
n=0

e The resolvent R (T) is holomorphic at

every point Ao of the resolvent set Q(T).
Hence, it is locally holomorphic on Q(T).

e The spectral radius of T is defined as rp :=
SUP\es(T) [A]

e The spectral radius is given as rr
limy,, oo || T |2/ 7.

e The spectrum S(T) is compact and lies
in a disk with spectral radius rp < ||T||.

o Let A\, p € Ry(T). Then,

o The resolvent R, (T) satisfies the
Hilbert relation, also called resolvent
identity:

Ry =Ry = (1= MRLRy;

o R»(T) commutes with any S € G(, B)
that commutes with T;

oR\R, = R,R,.

e Spectral mapping: Let p(A\) := apA"™ +
Q1 A"+ o+ agAY with «,, # 0.
Then, S(p(T)) = p(S(T)). That is, the
spectrum of the operator p(T) = a,, T" +
1T 14 ..+ apl consists of all those

values that the polynomial p assumes on
the spectrum S(T) of T.



Compact Linear Operators [1, §8].
Let T : i/ — U be a compact operator on a
normed space U, and let T :=T — AL

e Every spectral value A € S(T), A # 0, if
it exists, is an eigenvalue of T.

e The set of eigenvalues S,(T) is at most
countable, and its only possible limit
point is A = 0.

o If A =0 € Q(T), then T is finite dimen-
sional.

e For every A\ £ 0 and every n = 1,2,...,
the null space N (T%) is finite dimensional
and the range R(T?%) is closed.

e There exists a smallest integer n = r,
depending on A, such that

N(TY) = N(Tgﬂ) = N(’]I";\H) e
and

T{U) = T @) = T52) ..

If » > 0, the inclusions

N(TS) € N(T}) C

and

- CN(TY)

T U) > TAU) > -+ > T (U)
are proper. Furthermore, the space U can
be represented as U = N (T4 ) & T (U).

Linear Operators and Functionals on Hilbert Space

continuous
linear
operators

T:H—H

Representation
§3.8].

e Riesz Theorem: Every bounded linear
functional f on a Hilbert space H can be
represented by an inner product f(h) =
(h,z), where h € H, and where z € H
is uniquely determined by f and has
norm [z]) = | £]I
Riesz representation: Let H; and Hs be
Hilbert spaces, let hy € Hqi,hy € Hs,
and g Hi x Hy — F a bounded
sesquilinear form. Then g has a represen-
tation g(hy,hs) = (Shy, hy), where S :
‘H1 — Ho is a bounded linear operator
that is uniquely determined by g and has
norm [1S]] = [lg].

Hilbert Adjoint Operator [1, 2/. Let T :
H — Z be a bounded linear operator
that maps the Hilbert space H into the
Hilbert space Z. The Hilbert adjoint op-
erator T* of T is the operator T* : Z — H
such that (Th,z) = (h,T*z) for all h €
‘H and z € Z. This operator exists, is
unique, and is a bounded linear operator
with norm ||T*|| = ||T||.

Let S : H — Z be another bounded lin-
ear operator, and let a be any scalar. The
Hilbert adjoint operator has the following
properties:

o =1

e (T*h,z) = (z, Th).

o (S+T)*=S*+T*.

o (aT)* = a*T™.

e (T =T.
. IIT*TII = HTT*H = ||T||2
—

of Functionals [1,

(ST) T*S*.

o If T can be represented by a matrix T,
then T* can be represented by TH.

Let T : H — 'H a bounded linear operator
that maps a Hilbert space H into itself.

e The ranges and null spaces of T and T*
are related as follows:

o R(T) = N-(T*).
o N+ (T) = R(T*).

e Let T be continuous, and let M be a
closed linear subspace of H. Then, M
is invariant under T iff M is invariant
under T*.

e A closed linear subspace M C H re-
duces T iff M is invariant under both T
and T*.

e The Hilbert adjoint operator T* : Z — H
and the adjoint operator T* : Z° — H’
are related as T* = AﬂI‘XAgl, where Aq :
H — Hand Ay : Z° — Z are bijective,
isometric, conjugate linear operators that
are uniquely defined by Riesz’s theorem.

self-adjoint operators

trace-class operators

Hilbert-Schmidt operators

compact operators

normal operators

TT* =T*T

T=T"

unitary
operators

orthogonal
projections

A bounded linear operator T : H — H on a
Hilbert space H is said to be
o normal, if TT* = T*T,
o unitary, if T is bijective and if T* = T!,
o self adjoint or Hermitian, if T* = T.
If T is self adjoint or unitary, it is normal.

Unitary Operators. Let the opera-
tors U,V : H — 'H be unitary, ‘H a Hilbert
space. Then,
e U is isometric, i.e.,
all h e H,
o |U|| =1,
o U~! is unitary,
e UV is unitary.
e A bounded linear operator on a Hilbert
space over the complex field is unitary iff
it is isometric and onto.

Polar Decomposition /8, §30/. Let T :
‘H — 'H be a compact linear operator on a
separable complex Hilbert space H; let T*
denote the Hilbert adjoint of T.

e The operator T can be factored as T =
UA, where A is a positive Hermitian op-
erator and U*U = I on the range of A.
The above factorization is called the po-
lar decomposition of T; the operator A is
called the absolute value of T. The polar
decomposition exists even if T is bounded
instead of compact.

e The absolute value A can be taken
as A := (T*T)'/2, the unique positive
square root of T*T; the operator U satis-
fies U : Ah — Th for all h € H.

o If T is compact, then its absolute value A
is compact.

Singular Values /8, §30]. LetT:H — H
be a compact linear operator on a separable
complex Hilbert space H, and let T* be its
Hilbert adjoint. Furthermore, let T = UA be
the polar decomposition of T, and let {0}, }
denote the set of nonzero eigenvalues of A;
they are all positive, as A is Hermitian. Let
the o, be indexed in decreasing order. The
numbers o,, are called the singular values
of T, denoted also as o, (T).

e The singular values of T form an at most
countable sequence whose only possible
limit point is 0.

e Let the nonzero eigenvalues of T
be A1(T), Ao(T), ..., arranged in decreas-
ing order of their absolute value, includ-
ing multiplicities. Then, for any N € Z

N N
H [An(T)] < H on(T)

[Uh[ = [[h]| for

Normal Operators [2]. Let T: H — H
be a normal operator of a Hilbert space H
into itself.

e Let e, be an eigenvector associated with
the eigenvalue \,,. Then, the vector e,, is
also an eigenvector of the Hilbert adjoint
operator T* of T and associated with the
eigenvalue A7 .

e The null space satisfies A/ (T
N(T* — X*T).

e For any p # A, the null spaces N (T — AI)
and N (T — ul) are orthogonal to one an-
other.

e For each complex number A, the closed
linear subspace N (T — Al) reduces T.

o |72 = |IT|2.

e A bounded linear operator T on a Hilbert
space ‘H is normal iff |T*h|| = ||Th|| for
every h € H.

e The residual spectrum S, (T) of a normal
operator is empty.

e A complex number A is in S(T) iff
there exists a sequence {h,,} with h,, €
H, ||h,|| = 1 for all n, such that ||(T —
ADh,| — 0 as n — oo; in other words,
the operator T — Al is not bounded below.

e Let a bounded linear operator H on
a Hilbert space H have the Cartesian
decomposition H = T + ¢S, where T
and S are self-adjoint. Then, H is nor-
mal iff T and S commute. In that
case, max{|[T|2, S|} < |H]? < [T +
S|,

elLet T and S be normal operators on
a Hilbert space H such that one com-
mutes with the adjoint of the other, i.e.,
TS* = S*T and T*S = ST*, or such
that the two operators commute, i.e.,
TS = ST; then, T + S, TS, and ST are
normal.

Bounded Self-Adjoint Linear Opera-
tors [1, 2]. Let T :H — H be a bounded
self-adjoint linear operator on a complex
Hilbert space H, let Ty := T — A, and
let h € H.

e The set of all self-adjoint linear operators
on H is a closed set in G(H, H).

e The set of all self-adjoint linear operators
on H forms a real normed linear space
under the operator norm.

e A bounded linear operator T on a com-
plex Hilbert space H is self adjoint
iff (Th,h) = (h, Th) is real for all h € H.
If H is a real Hilbert space, the direct
part holds but the converse is no longer
true.

e The spectrum S(T) of T lies in the closed
intervall [mp, Mr] € R, where
my = inf (Th, h), My = sup(Th, h).

[Ih]] |||
Both mt and My are spectral values of T.
e The operator norm of T is given by

IT|| = max(|mr], [Mr|) = Sup |(Th, h)|.

— Al =

e Figenvectors that correspond to numeri-
cally different eigenvalues of T are orthog-
onal

e A number A belongs to the resolvent
set Ry (T) iff there exists a ¢ > 0 such
that ||Tah|| > ¢||hl for every h € H.

e The product of two self adjoint linear op-
erators on a Hilbert space is self adjoint
only if the operators commute.

e Every bounded linear operator T : H —
‘H has a so-called Cartesian decomposi-
tion: T = A + iB, where A and B are
self-adjoint.

oThe Cartesian
unique.

oA =1/2(T+T*).

oB =1/(2:)(T — T*).

oIf X\ is an eigenvalue of T, then A =
a + i3, where « is an eigenvalue of A
and [ is an eigenvalue of B.

decomposition is

Nonnegative Self-Adjoint Linear Op-
erators [I1, §9]. Consider the set of
all bounded, self-adjoint, linear operators
on a complex Hilbert space H. A reflex-
ive partial ordering < on this set is de-
fined by Tl = ’]TQ if <T1h, h> S <T2h, h>
for h € H. A bounded, self-adjoint, lin-
ear operator T is said to be nonnegative
(although not strictly correct, sometimes
also called positive) and denoted T = O,
if (Th,h) >0 for all h € H.
oT X Ty <= @jTg—Tl
o If two bounded, self-adjoint, linear oper-
ators T and S are nonnegative and com-
mute, i.e., TS = ST, then their prod-

uct ST is nonnegative.
o If T is bounded and self adjoint, then T?
is nonnegative.

A monotone sequence {T,} of bounded,
self-adjoint, linear operators is a sequence
that is either monotonically increasing, i.e.,
Ty <XTy <T5 < , or monotonically de-
creasing, Ty = Ty = T3 =
e Let {T,,} be a monotonically increasing
sequence of bounded, self- adjoint linear
operators such that "JI‘I < Ty < ... =
T, = ... XS, where S is also bounded
and Self adJ01nt Suppose that all ele-
ments of the sequence commute pairwise
and also commute with S. Then, {T,} is
strongly operator convergent, T,h — Th
for all h € ‘H, and the limit operator T
is linear, bounded, self adjoint, and satis-
fies T < S.

A bounded, self-adjoint linear operator S
is called a square root of another bounded,
self-adjoint, linear operator T if S? = T.
If, in addition, S > O, then S is called a
nonnegative square root of T and is denoted
by S = T2
e Every nonnegative, bounded, self-adjoint,
linear operator T : H — H on a complex
Hilbert space H has a nonnegative square
root S that is unique.
e The square-root operator S of T com-
mutes with every bounded linear operator
on H that commutes with T.

Compact Normal Operators [2].
Let T : H — 'H be a normal operator on a
nontrivial Hilbert space H, and let T have
the Cartesian decomposition T = A + iB.

e The operator T is compact iff both A
and B are compact.

e The operator T is compact iff T* is com-
pact.

o If T is compact, it has an eigenvalue A
with max{||A|], B} (Al If T is
self-adjoint, then it has an eigenvalue A
with A = ||T|.

o If T is compact and has no eigenvalues,
then H = {0}

o If H is not separable, then A = 0 is neces-
sarily an eigenvalue of any compact nor-
mal operator on H.

Hilbert-Schmidt Operators [9, 2, §/.
Let {x,} be an orthonormal basis for a
Hilbert space H. A bounded linear op-
erator T : 'H — H is called a Hilbert-
Schmidt(HS) operator if 370 || Tx,||* < oo.
The number

> /
IThs 2= (3 ITeal?)
n=1

is called the Hilbert-Schmidt norm of T.

e The HS norm does not depend on the
choice of orthonormal basis for H.

e The HS norm of a matrix is also called
the Frobenius norm.

o If T is HS, then T* is HS, and ||T|| <

|T||lus, as well as | T|lus = ||T*||lus-

e Every HS operator is compact; hence it
is bounded and continuous.

e Every HS operator is the limit in HS-
norm of a sequence of operators with
finite-dimensional range.

e A compact linear operator is
iff Y-, 02(T) < oc.

e For a representation of a given Hilbert
space as L2(H,.# , i) with positive mea-
sure p and the corresponding collec-
tion .#Z of measurable subsets, HS op-
erators are those operators T that have a
representation in the form

(TF) (1) = /H K(t,5) F(s)du(s),

where f = f(t) € L2(H,.#,p), and the
integral kernel k(t, s) satisfies

J [ 1P dns)aute) < o

o If T € S(H), and f is a single-valued an-
alytic function on S(T) that vanishes at
zero, then f(T) is a HS operator, and the
mapping T — f(T) of S(H) into itsef is
continuous.

The set S(H) of all HS operators on a
Hilbert space H, together with the HS norm,
is a Banach algebra with ||TS||us < ||T||us -
IS||us for every T,S € S(H). It contains
operators of finite range as a dense subset.
The set of HS operators is a self-adjoint
ideal in G(H,H), the Banach algebra of all
bounded linear operators in Hilbert space.

nl‘

HS



Trace Class Operators [8, §30/. A com-
pact linear operator T : H — H on a Hilbert
space H is said to be in trace class if

Z on(T) < 0.
n=1

The above sum defines the trace norm || T||,:

[T {|¢x = Z on(T).
n=1

For T in trace class and any bounded oper-
ator B: H — H

o ||T|| < [ITex,

o |Ter = [IT*[]sx,

® |[BT||¢e < |[Bl|r - || T,

o |TBler < [IBflex - [[T]er-

e For any pair of trace class operators T
and S, T+S is trace class, and || T+S||¢, <
I Tllr + 1S

e The trace class is a two-sided ideal in the
algebra of all bounded linear operators
on a complex Hilbert space.

e Trace class operators form a Banach
space with respect to the trace norm.

e Every trace class operator is HS.

e The product of two HS operators T and S
is in trace class, and [|ST|¢ < ||S||us -
| Tls-

e Every trace class operator can be written

as the product of two HS operators.

Let {x,} be any orthonormal basis of H.
For a trace class operator T, the trace is
defined as the limit of the series

trT = Z(’]Txn,xn>.
n
This series converges absolutely. For trace
class operators T
otrT = > A, (T), where A\, (T) are the
eigenvalues of T.
o If T is a trace class operator that has no
eigenvalues except A = 0. Then, tr T = 0.
o [trT] < [T
o tr T is a linear mapping of T.
o tr T = (tr T)*.
e For any bounded operator B, tr(TB) =
tr(BT).
Let T be a trace class operators, and
let {T,} be a sequence of degenerate op-
erators, i.e., operators with finite range that
converge to T in trace norm. Then, the
determinant det(I 4+ T),) of the matrix rep-
resentation of I+ T,,, I + T, tends to a
limit that is independent of the choice of
the sequence {T,}. This limit is called the
determinant of 14 T:

det(T+T) := lim det(I+ T,).
n—oo

The Spectral Theorem

Orthogonal Projection /2, 1. A pro-
jection P : 'H — H on a Hilbert space H is
called an orthogonal projection if its range
and null space are orthogonal: R(P) L
N (P).

e A bounded linear operator P: H — H on
a Hilbert space H is an orthogonal pro-
jection if P is self adjoint and idempotent,
ie., P2 =P

e An orthogonal projection is continuous
(even if H is not complete).

e A continuous projection on a Hilbert
space is orthogonal iff it is self-adjoint.

o P > QO

o |P|| <1 with equality if P(H) # {0}.

e N(P) = R(P)* and R(P) = N (P)*.

e For any orthogonal projection P on a
Hilbert space H and for any h € H,
(Ph, h) — || Ph].

e Fach h € H can be written uniquely
as r +n, where r € R(P) and n € N(P);
furthermore, ||x||? = |Ir||? + ||n|?.

e Let M be any closed subspace of a Hilbert
space H. Then there is exactly one or-
thogonal projection P with R(P) = M.
Let {e,} be a countable orthonormal set
in H such that M = span{e, }; then, the
mapping P : H — H defined by

Ph:= (h,e,)e,

for any h € H is the orthogonal projec-
tion of H onto M.

e Let M be a closed subspace of H, let h €
‘H, and let P be the orthogonal projection
on H with R(P) = M. Then, ||h—Ph| =
infmem|h — ml.

Let P; and P, be orthogonal projections
on a Hilbert space H, and let Y, := P (H)
and yg = PQ(H)

e The composite operator P := P;P5 is a
projection on H iff P; and P, commute.
In this case, P projects H onto Y =
Y1 N YV,.  Conversely, the projection
onto span{Vy, Yo} is Py + Py — P1Ps.

e The sum P := P; + P5 is a projection
operator iff Yy L )s. In this case, P
projects H onto Vi & Vs.

e The difference P := P, — P is a projec-
tion on H iff Yy C )s. In this case, P
projects H onto the orthogonal comple-
ment of Vi in V5.

e The following conditions are equivalent

o PPy = P1IPy = Py,
o yl C y27
ON(P]-) > N(y2)7
o [|P1h]| < ||P2h| for all h € H,
oPy X Ps.
Let {P,} be a monotonically increasing

sequence of projection operators P, on a
Hilbert space H. Then,

o The sequence {P,} is strongly operator
convergent, say P,h — Ph for all h € H,
and the limit operator P is a projection
on H.

o The limit operator P projects H onto

P(H) = | Pu(H).
n=1
o The limit operator P has the null space

N(P®) = (N (B.).
n=1

Spectral Family [1, 2]. A real spectral
family, is a collection & := {Ey : A € R}
of projection operators Ey on a Hilbert
space ‘H of any dimension that satisfy the
following properties for any h € H:

oEy < E, for (A < p); hence, E\E, =
E,E) =E,.

9] lim)\_,_oo E)\h =0.

@) lim,\HOO E)\h = h.

9 E/\+h = limup\ ]E#h = E)\h

Special cases:

e A countable resolution of the identity is
a sequence {P,} of orthogonal projection
operators with P,P,, = O for n # m
so that I = > P,, where the sum is
strongly operator convergent. The se-
quence {P,} defines a spectral family &

with
E, := Z P,.

n<A
o A spectral family on an interval [a,b] € R
is a spectral family & that satisfies Ey =
O for A< aand Ey =1 for A > b.

Compact Normal Operators [2].
Let T : H — H be a compact normal
operator on a Hilbert space H.
e There is a countable resolution of the
identity {P,} and a sequence of complex
numbers {x,} such that

T = Z /”LTLI[DTL7

where convergence is uniform in the op-
erator norm.

e There exists an orthonormal basis {e, }
of eigenvectors and a corresponding se-
quence of eigenvalues {\,} such that,
if h =3 (he,)e, is the Fourier ex-
pansion for h € H, then

Th =Y An(h,e,)e,.

o A weighted sum of projections ) ApPp,
where {P,} is a resolution of the iden-
tity, and {\,} is a sequence of com-
plex numbers, is compact if (i) for every
nonzero A,, the range of P, is finite di-
mensional, and (ii) for every real o > 0,
the number of A, with |A,| > « is finite.

Bounded Self-Adjoint Operators /I,
§9/. Let T : H — H be a bounded, self-
adjoint, linear operator on a Hilbert space H,
let Ty := T — Al and define the positive part
of Ty as T} := ((T2)'/2 + T))/2. Further-
more, let Y := N(T}) denote the null space
of Tj\'.

e Let E) with A € R be the projection of ‘H
onto the null space Y of ’I[‘j\'. Then, the
collection &(T) := {E) : A € R} is the
unique spectral family associated with T
on the interval [my, My] € R.

e For A\ < p, the projection operator E,, —
E, satisfies A(E, —E») < T(E, —E)) <
/.L(EM — E)\).

e The mapping A — E, has a discontinuity
at Ao, ie., Ey, # IEA(J;, iff \g is an eigen-
value of T. In this case, the eigenspace
that corresponds to the eigenvalue \g
is N(T - )\(]]I) = (E)\U - E/\g—)(H)

e A real )\g belongs to the resolvent
set Ry (T) iff there is an ¢ > 0 such
that & (T) is constant on the interval [Ag—
€, )\() —+ 6].

e A real )y belongs to the continuous spec-
trum S.(T) iff the mapping A — E, is
continuous at Ag (thus Ey, = IEI)\J) and is
not constant in any neighborhood of Ag.

A bounded, self-adjoint, linear operator T on
a complex Hilbert space H has the spectral
representation

My

My
T:/ )\d]E,\:mTEmT—i—/
mr—0 mT

where & = {E,} is the spectral family as-
sociated with T, and the integral is to be
understood in the sense of uniform operator
convergence in the norm on B(H, H).

e For x,y € H,

(Tx,y) = / .

mr—0

AEy,

Adw(N),

where w(A) := (Exx,y), and the integral
is of Riemann-Stieltjes type.

e Let f(A) : [mr, Mt] — R be a continuous,
real-valued function on [my, Mt]. De-

fine f(T) as the limit p(T) of the polyno-
mial T, := p,(T) := a, T+, T" 1 +
-+ aoll for n — oo, where p,(\) is
such that it converges uniformly to f(X)
on [mg, Mt|. Then, the operator f(T)
has the spectral representation

My
= [ s

m

and for all x,y € H,

tmxy) = [

mr—0

My

FNdw().

o The operator f(T) is self adjoint.

o1t f(N) = A(NS(N), then f(T) =
£1(T) fo(T).

oIf f(A) >0 for all A € [mr, M7], then
/(T) = O.

oIf f1(A) < fo(X) for all A € [my, My],
then f1 (T) j fQ(T)

o | ATl < maxxepmr, asr [f(A)]-

o If a bounded linear operator commutes
with T, it also commutes with f(T).

Unitary Operators [1, §10.5]. Let U :
‘H — 'H be a unitary operator on a complex
Hilbert space H.

e The spectrum S(U) is a closed subset of
the unit circle. Consequently, |A| = 1 for
every A € S(U).

e There exists a spectral family & = {E,}
on [—m, 7] such that

™
U= [ e*dEx.
—T
e for every continuous function f on the
unit circle,

™

1) = [ 1(e) des,

—T
where the integral is to be understood
in the sense of uniform operator conver-
gence.

e For all x,y € H,

twxy) = |

—T

s

f(ei’\) dw(N),

where w()) := (Exx,y), and the integral
is an ordinary Riemann-Stieltjes integral.

Linear Operator Equations

Fredholm Alternative [I, §8.7] A
bounded linear operator S : Y — U on a
normed space is said to satisfy the Fredholm
alternative if either one of the following con-
ditions holds
e The nonhomogeneous equations
Sx=y, S%f=g
have unique solutions x and f, respec-
tively, for every given y € U and g €
U', and the corresponding homogeneous
equations
Sx =0, S*f=o
have only the trivial solutions x = 0
and f = 0, respectively.
e The homogeneous equations
Sx =0, S*T =0
have the same number of linearly
independent solutions xi,Xo,...,Xy
and f1, fa,..., fn, respectively, and the
corresponding nonhomogeneous equa-
tions
Sx=y, S*f=g
are not solvable for all y and f, respec-
tively. They have a solution iff y and g
are such that f,(y) = 0 and g(x,) =0
foralln=1,2,...,N.
For a compact linear operator T on a normed
space U, the operator Ty := T — AL for A #
0, satisfies the Fredholm alternative.

Linear Operator Equations [I, §8.5].

Let T : U4 — U be a compact linear operator
on a normed space Y and T* : U — U its

adjoint operator. For x,y € U, f,g € u',
and A # 0, consider the set of linear operator
equations

Tx—Ax=y (y € X given) (OE1)

Tx—Ax=0 (OE2)

T f—Af=g (g€ X given) (OE3)

T f — Af = 0. (OE4)
Then,

e Equation (OEl) has a solution x

iff f(y) = 0 for all solutions f of (OE4).
Hence, if f = 0 is the only solution
of (OE4), then (OE1) is solvable for ev-
ery y.

e Equation (OE3) has a solution f
iff g(x) = 0 for all solutions x of (OE2).
Hence, if x = 0 is the only solution
of (OE2), then (OE3) is solvable for ev-
ery g.

¢ Equation (OE1) has a solution x for ev-
ery y € U iff x = 0 is the only solution
of (OE2).

e Equation (OE3) has a solution f for ev-
ery g €U iff f =0 is the only solution
of (OE4).

e Equations (OE2) and (OE4) have the
same number of linearly independent so-
lutions.
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