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1. Problem 1

(a) A unitary operator on a general Hilbert space X is a bounded linear operator
U : X → X that is invertible and satisfies U−1 = U∗.

(b)(i) Let F be a function in the space L2(R2). Then we have

‖TaF‖2L2(R2) =

∫
R2

|F (y, y − x)|2 dx dy

=

∫
R

(∫
R
|F (y, y − x)|2 dx

)
dy

x 7→y−v
=

∫
R

(∫
R
|F (y, y − (y − v))|2 dv

)
dy

=

∫
R

(∫
R
|F (y, v)|2 dy

)
dv = ‖F‖2L2(R2).

Thus Ta is a well-defined map on L2(R2). Now let F and G be two L2(R2) functi-
ons. Then

〈TaF,G〉 =
∫
R2

F (y, y − x)G(x, y) dx dy

x 7→ y−v
=

∫
R2

F (y, v)G(y − v, y) dv dy

= 〈F, T ∗a G〉,
where T ∗a G(u, v) = G(u− v, u). Now for any F ∈ L2(R2) and (x, y) ∈ R2 we have

Ta∗TaF (x, y) = (TaF )(x− y, x) = F (x, x− (x− y)) = F (x, y),

TaTa∗F (x, y) = (T ∗a F )(y, y − x) = F (y − (y − x), y) = F (x, y).

Therefore Ta∗Ta = TaTa∗ = Id and hence Ta is invertible with inverse Ta∗.

(ii) Take any f, g ∈ L2(R). First note that f ⊗ g ∈ L2(R2), and thus also Ta(f ⊗ g) ∈
L2(R2). Therefore Ta(f ⊗ g) lies in the domain of F2 and so F2Ta(f ⊗ g) is well
defined. Now note that (Ta(f ⊗ g)) (x, t) = f(t)g(t− x). Applying the Cauchy-
Schwarz inequality for an arbitrary, but fixed x ∈ R, yields∫

R
|f(t)g(t− x)|dt = 〈|f |, |g(· − x)|〉

≤ ‖f‖L2(R)‖g(· − x)‖L2(R)

= ‖f‖L2(R)‖g‖L2(R) <∞,
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where in the last step we used f, g ∈ L2(R). Therefore (Ta(f ⊗ g)) (x, ·) ∈ L1(R),
for all x ∈ R, and thus the partial Fourier transform formula applies to Ta(f ⊗ g).
Finally, for any (x, ω) ∈ R2 we have

F2Ta(f ⊗ g)(x, ω) =
∫
R
(Ta(f ⊗ g)) (x, t)e−2πiωtdt

=

∫
R
f(t)g(t− x)e−2πiωtdt = (Vgf)(x, ω),

as desired.

(c) Now, Vgf ∈ L2(R2) for f, g ∈ L2(R) follows since f⊗g ∈ L2(R2) for such f and
g, and Ta and F2 are well-defined operators mapping L2(R2) functions to L2(R2)
functions. Since Ta and F2 are unitary, we have

〈Vg1f1, Vg2f2〉 = 〈F2Ta(f1 ⊗ g1),F2Ta(f2 ⊗ g2)〉
= 〈Ta(f1 ⊗ g1), Ta(f2 ⊗ g2)〉
= 〈f1 ⊗ g1, f2 ⊗ g2〉
= 〈f1, f2〉〈g1, g2〉,

for all f1, f2, g1, g2 ∈ L2(R).
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Problem 2

(a)(i)

−1 −2
3
−1

3
1
3

2
3

1

1

ξ

ϕ̂(ξ)

(ii) It is sufficient to verify that
∑

n∈Z |ϕ̂(ξ + n)|2 = 1, for all ξ ∈ R. Due to the
1-periodicity of

∑
n∈Z |ϕ̂(ξ + n)|2, it suffices to verify this on an interval of

length 1, for instance [−1
3
, 2
3
]. Equality clearly holds when ξ ∈ [−1

3
, 1
3
], as in

this case one summand evaluates to 1, and all the remaining ones evaluate
to 0. When ξ ∈ [1

3
, 2
3
], we have

∑
n∈Z

|ϕ̂(ξ + n)|2 = cos2
(π
2
(3ξ − 1)

)
+ cos2

(π
2
(3(1− ξ)− 1)

)2
= sin2

(
3π

2
ξ

)
+ cos2

(
3π

2
ξ

)
= 1, (1)

as desired.

(b)(i) First calculate

ϕ̂j,k(ξ) =

∫
R
2
j
2ϕ(2jx− k)e−2πiξx dx

x 7→ 2−j(y+k)
=

∫
R
2
j
2ϕ(y)e−2πiξ2

−jye−2πiξ2
−jk2−j dy

= 2−
j
2 e

−2πiξk

2j

∫
R
ϕ(y)e−2πi(

ξ

2j
)y dy

= 2−
j
2 ϕ̂

(
ξ

2j

)
e

−2πiξk

2j .
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Now we have

‖PVjf‖2L2(R) + ‖PVj(f(· − 2−(j+1)))‖2L2(R) =

=
∑
k∈Z

∣∣∣∣∫
R
f(x) · ϕj,k(x)dx

∣∣∣∣2 +∑
k∈Z

∣∣∣∣∫
R
f(x− 2−(j+1)) · ϕj,k(x)dx

∣∣∣∣2
=
∑
k∈Z

∣∣∣∣∫
R
f̂(ξ) · 2−

j
2 ϕ̂

(
ξ

2j

)
e

2πiξk

2j dξ

∣∣∣∣2 +∑
k∈Z

∣∣∣∣∫
R
f̂(ξ)e−

2πiξ

2j+1 · 2−
j
2 ϕ̂

(
ξ

2j

)
e

2πiξk

2j dξ

∣∣∣∣2
(2)

k=m/2
=

∑
m∈Z
m even

{∣∣∣∣∫
R
f̂(ξ) · 2−

j
2 ϕ̂

(
ξ

2j

)
e

2πiξm

2j+1 dξ

∣∣∣∣2 + ∣∣∣∣∫
R
f̂(ξ)2−

j
2 ϕ̂

(
ξ

2j

)
e

2πiξ(m−1)

2j+1 dξ

∣∣∣∣2
}

=
∑
m∈Z

∣∣∣∣∫
R
f̂(ξ)ϕ̂

(
ξ

2j

)
2−

j
2 e

2πiξm

2j+1 dξ

∣∣∣∣2 (3)

=
∑
m∈Z

∣∣∣∣∣
∫ 2j

−2j
f̂(ξ)ϕ̂

(
ξ

2j

)
2

1
22−

j+1
2 e

2πiξm

2j+1 dξ

∣∣∣∣∣
2

(4)

=2
∥∥∥ϕ̂(2−j · )f̂∥∥∥2

L2([−2j ,2j ])
(5)

=2
∥∥∥ϕ̂(2−j · )f̂∥∥∥2

L2(R)
, (6)

where we used the Plancherel identity in (2), (4) and (6) hold since
supp ϕ̂(2−j · ) ⊂ [−2j, 2j], and (5) follows since
{em(ξ) = 2−

j+1
2 e−

2πiξm

2j+1 : m ∈ Z} is an orthonormal basis for L2([−2j, 2j]).
(ii) Since ‖ϕ̂(2−j·)f̂ − f̂‖L2(R2) → 0 as j →∞, we have limj→∞ ‖ϕ̂(2−j · )f̂‖L2(R) =

‖f̂‖L2(R) = ‖f‖L2(R). Now we have

lim inf
j→∞

‖PVjf‖2L2(R) = lim inf
j→∞

[
2‖ϕ̂(2−j · )f̂‖2L2(R) − ‖PVj(f(· − 2−(j+1)))‖2L2(R)

]
= 2‖f‖2L2(R) − lim sup

j→∞
‖PVjf(· − 2−(j+1)))‖2L2(R)

≥ 2‖f‖2L2(R) − lim sup
j→∞

‖f(· − 2−(j+1)))‖2L2(R) (7)

= 2‖f‖2L2(R) − lim sup
j→∞

‖f‖2L2(R)

= ‖f‖2L2(R),

where in (7) we used the fact that projections are norm-bounded by 1. On the
other hand ‖PVjf‖L2(R) ≤ ‖f‖L2(R) for all j ∈ Z, so ‖PVjf‖L2(R) → ‖f‖L2(R) as
j →∞. We can now finally deduce

‖f − PVjf‖2L2(R) = ‖f‖2L2(R) − 〈f − PVjf, PVjf〉︸ ︷︷ ︸
=0

−‖PVjf‖2L2(R) → 0, as j →∞,

(8)

where 〈f − PVjf, PVjf〉 = 0 follows by the properties PVj
2 = PVj and

P ∗Vj = PVj .
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(iii) We have

‖PVjf‖2L2(R) ≤ ‖PVjf‖2L2(R) + ‖PVj(f(· − 2−(j+1)))‖2L2(R)

= 2
∥∥∥ϕ̂(2−j · )f̂∥∥∥2

L2(R)
→ 0 as j → −∞, (9)

where the last step follows from the assumption in the problem statement.

(c) We verify the four conditions in the definition of the multiresolution approxi-
mation:

(I) Let f ∈
⋂
j∈Z Vj , i.e., f ∈ Vj for all j ∈ Z. Then f = PVjf for all j ∈ Z,

so by (b)(iii) we have ‖f‖L2(R) = ‖PVjf‖L2(R) → 0 as j → −∞, and hence
‖f‖L2(R) = 0. Therefore

⋂
j∈Z Vj = 0, which implies f = 0.

Now, let f ∈ L2(R) be arbitrary. Then by (b)(ii) we have that for any ε > 0 we
can find a jε ∈ Z such that ‖f − PVjεf‖L2(R) < ε. Since PVjεf ∈ Vjε ⊂

⋃
j∈Z Vj ,

and ε was arbitrary, we deduce that
⋃
j∈Z Vj is dense in L2(R).

(II) Let f ∈ L2(R). By definition of Vj , we have f ∈ Vj if and only if f(2−j·) ∈ V0.
But f(2−j·) = f(2−(j+1)(2·)), so f ∈ Vj is equivalent to f(2−(j+1)(2 ·)) ∈ V0.
Now, by definition of Vj+1, we see that f(2−(j+1)(2 ·)) ∈ V0 is equivalent to
f(2 ·) ∈ Vj+1. Therefore, we have shown that f ∈ Vj if and only if f(2 ·) ∈
Vj+1.

(III) Since {ϕ(· − k) : k ∈ Z} is an orthonormal basis for V0, we can expand an
arbitrary f ∈ V0 according to

f =
∑
l∈Z

al ϕ(· − l),

for some {al}l∈Z ∈ `2(Z). Then, we have

f(· − k) =
∑
l∈Z

al ϕ(· − k − l)
l 7→ l+k
=

∑
l∈Z

al+k ϕ(· − l),

and so f(· − k) ∈ V0, for all k ∈ Z and f ∈ V0.
(IV) Since {ϕ(· − k) : k ∈ Z} is an orthonormal basis for V0, it is, in particular, a

Riesz basis for V0.
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Problem 3

(a) Let f, g ∈ L2(R) and x, y ∈ R be arbitrary. We have the following reconstructi-
on formula:

f−x,−y =
∑
m,n∈Z

〈f−x,−y, g̃mT,nF 〉 gmT,nF

=
∑
m,n∈Z

〈f−x,0, g̃mT,nF+y〉 gmT,nF

=
∑
m,n∈Z

〈f, e−2πi(nF+y)x g̃mT+x,nF+y〉 gmT,nF .

Now we take the inner product of both sides of this equation with h−x,−y to obtain

〈f−x,−y, h−x,−y〉 =
∑
m,n∈Z

〈f, e−2πi(nF+y)x g̃mT+x,nF+y〉〈gmT,nF , h−x,−y〉

=
∑
m,n∈Z

〈f, e−2πi(nF+y)x g̃mT+x,nF+y〉〈gmT,nF+y, h−x,0〉

=
∑
m,n∈Z

〈f, e−2πi(nF+y)x g̃mT+x,nF+y〉〈e−2πi(nF+y)x gmT+x,nF+y, h〉

=
∑
m,n∈Z

〈f, g̃mT+x,nF+y〉〈gmT+x,nF+y, h〉.

Finally, note that 〈f−x,−y, h−x,−y〉 = 〈f, h〉. Together with the previous equation,
this yields the desired identity.

(b) Integrating as suggested, we get

TF 〈f, h〉 =
∫ F

0

∫ T

0

∑
m,n∈Z

〈f, g̃mT+x,nF+y〉〈gmT+x,nF+y, h〉 dx dy

=
∑
m,n∈Z

∫ F

0

∫ T

0

〈f, g̃mT+x,nF+y〉〈gmT+x,nF+y, h〉 dx dy (10)

=
∑
m,n∈Z

∫ (n+1)F

nF

∫ (m+1)T

mT

〈f, g̃x,y〉〈gx,y, h〉 dx dy

=

∫
R2

〈f, g̃x,y〉〈gx,y, h〉 dx dy =

∫
R2

〈f, g̃x,y〉〈h, gx,y〉 dx dy

= 〈f, h〉〈g̃, g〉,

where the last step follows by the identity (IR) given in the problem statement.
Since f and h were arbitrary (and in particular can be chosen so that
〈f, h〉 = 1), we deduce 〈g, g̃〉 = TF . To justify the change of order of summation
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and integration in (10), observe that∑
m,n∈Z

∫ F

0

∫ T

0

|〈f, g̃mT+x,nF+y〉〈gmT+x,nF+y, h〉| dx dy =

=

∫
R2

|〈f, g̃x,y〉| |〈gx,y, h〉| dx dy

= 〈F1, F2〉L2(R2) ≤ ‖F1‖L2(R2)‖F2‖L2(R2) <∞, (11)

where F1(x, y) = |〈f, g̃x,y〉| and F2(x, y) = |〈h, gx,y〉| are L2(R2) functions by the
assumption at the beginning of the problem statement.

(c) We have the following two expansions:

g =
∑
m,n∈Z

〈g, g̃mT,nF 〉 gmT,nF = 1 · g0,0 +
∑
m,n∈Z

(m,n)6=(0,0)

0 · gmT,nF .

Now, by the Lemma given in the problem statement, we have

12 +
∑
m,n∈Z

(m,n)6=(0,0)

02 =
∑
m,n∈Z

|〈g, g̃mT,nF 〉|2 + |〈g, g̃0,0〉 − 1|2 +
∑
m,n∈Z

(m,n)6=(0,0)

|〈g, g̃mT,nF 〉 − 0|2

≥ |〈g, g̃0,0〉|2 + |〈g, g̃0,0〉 − 1|2 ≥ |〈g, g̃〉|2 = (TF )2, (12)

where the first inequality is obtained by discarding all the terms on the right-hand
side of the first equality except for the summands with (m,n) = (0, 0). Thus, we
have shown that TF ≤ 1.
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Problem 4

(a) Let en = 1[n−1/2, n+1/2] be the indicator function of the interval [n − 1/2, n +
1/2]. Note that ‖en‖L2(R) = 1, and so en ∈ L2(R). Then, by the Cauchy-Schwarz
inequality we have∣∣∣∣∣

∫ n+1/2

n−1/2
x(t) dt

∣∣∣∣∣ = |〈en, x〉| ≤ ‖en‖L2(R)‖x‖L2(R) = ‖x‖L2(R),

for any x ∈ L2(R) and n ∈ Z, and thus (Ax)n is well-defined for all x ∈ L2(R)
and n ∈ Z. To show that Ax ∈ `2(Z) whenever x ∈ L2(R), we again use the
Cauchy-Schwarz inequality to get

‖Ax‖2`2(Z) =
∑
n∈Z

|(Ax)n|2 =
∑
n∈Z2

∣∣∣∣∣
∫ n+1/2

n−1/2
x(t) dt

∣∣∣∣∣
2

≤
∑
n∈Z2

∫ n+1/2

n−1/2
|x(t)|2 dt =

∫
R
|x(t)|2 dt = ‖x‖2L2(R),

for all x ∈ L2(R). In particular, we have ‖Ax‖`2(Z) <∞, and so A is well-defined.
Also, A is linear, because integration is a linear operation. Finally, since
‖Ax‖2`2(Z) ≤ ‖x‖L2(R), for all x ∈ L2(R), we have that A is bounded.

By definition of adjoint operators, A∗ is the unique operator such that

〈Ax, y〉`2(Z) = 〈x,A∗y〉L2(R),

for all x ∈ L2(R) and y ∈ `2(Z). For arbitrary, but fixed x and y, we calculate

〈Ax, y〉`2(Z) =
∑
n∈Z

(Ax)n · yn =
∑
n∈Z

∫ n+1/2

n−1/2
x(t) dt · yn

=
∑
n∈Z

∫ n+1/2

n−1/2
x(t) yn dt

=

∫
R
x(t)(A∗y)(t) dy, (13)

where A∗y is the piecewise-constant function given by (A∗y)(t) = yn
for t ∈ [n− 1

2
, n+ 1

2
).

(b) It follows from the (a) that

‖A∗y‖2L2(R) =
∑
n∈Z

∫ n+1/2

n−1/2
|yn|2 dt =

∑
n∈Z

|yn|2 = ‖y‖2`2(Z) for all y ∈ `2(Z),

as desired.

(c) Let {en}n∈Z be the indicator functions defined at the beginning of (a). To show
that G = {en : n ∈ Z} is a frame for Im(A∗), take an arbitrary x = A∗y ∈ Im(A∗).
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Then, we have

∑
n∈Z

|〈x, en〉|2 =
∑
n∈Z

|〈A∗y, en〉|2 =
∑
n∈Z

∣∣∣∣∣
∫ n+1/2

n−1/2
yn dt

∣∣∣∣∣
2

= ‖y‖2`2(Z) = ‖A∗y‖2L2(R) = ‖x‖2L2(R),

and so G is a (tight) frame for Im(A∗). Thus we have

Ax = {〈x, en〉 : n ∈ Z},

for all x ∈ Im(A∗) ⊂ L2(R), and so A is the analysis operator associated with the
frame G for the Hilbert space Im(A∗).
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