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1. Problem 1

(a) A unitary operator on a general Hilbert space X is a bounded linear operator
U: X — X thatis invertible and satisfies U~! = U*.

(b)(i) Let F be a function in the space L?(R?). Then we have

ITeF e = [ 1P = )P dady

- [ ([ 1wy -nras)a
2 [ (1w - o)Pa)
= [ ([ 1F P ay) ao= 17 e,

Thus 7, is a well-defined map on L?(R?). Now let F' and G be two L?(R?) functi-
ons. Then

ToF.G) = [ Ploy )G dady

[ P )Gl v ddy
R2

= <F7 E*G>’
where 7°G ( ) G(u ,u) Now for any F' € L*(R?) and (z,y) € R* we have
TT*F( ) ( F)(y,y—x)=Fy—(y—2),y) = Flz,y).
Therefore 7,7, = T,7." = Id and hence 7, is invertible with inverse 7,".

(ii) Take any f, g € L*(R). First note that f ® g € L*(R?), and thus also 7,(f ®9) €
L*(R?). Therefore 7,(f ® g) lies in the domain of F, and so F7,(f ® g) is well
defined. Now note that (7,(f ® 9)) (z,t) = f(t)g(t — z). Applying the Cauchy-
Schwarz inequality for an arbitrary, but fixed z € R, yields

/R [F(®)g(t = x)|dt = ([f],]g9(- = 2)I)

< fllzewllg(- = o)l 22y
= | fll2®ll9ll L2y < o0,



where in the last step we used f,g € L*(R). Therefore (7,(f ® 7)) (z,-) € L'(R),
for all z € R, and thus the partial Fourier transform formula applies to 7,(f ® 7).
Finally, for any (z,w) € R? we have

FTuf ©7)(@.w) = / (Tolf © 7)) (. D) 2"tdt

B /Rfu)g‘(t —n)e AL = (V,f) (,w),

as desired.

(c) Now, V, f € L*(R?) for f, g € L*(R) follows since f ®g € L*(R?) for such f and
g, and 7, and F; are well-defined operators mapping L?(R?) functions to L*(R?)
functions. Since 7, and F; are unitary, we have
Vor f1, Voo fo) = (FTa([1 @ 91), FoTa(fo ® G2))

= (To(1 ®G1), Ta(f2 @ G2))

= (h®g fr05)

= (f1, f2)(91, 92),
for all fi, fo, g1, 92 € L*(R).
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It is sufficient to verify that >, |¢(£ + n)|> = 1, for all ¢ € R. Due to the
1-periodicity of Y, _, [#(£ 4+ n)|?, it suffices to verify this on an interval of

[—3,2 —3,3),asin

this case one summand evaluates to 1, and all the remaining ones evaluate

to 0. When ¢ € [3, 2], we have

length 1, for instance ]. Equality clearly holds when ¢ € |

So16e + )P = cos? (5 (36— 1)) +cos? (T30 - ) - 1))

nez
= sin? <3§§) + cos? <3§§) =1, (1)

as desired.

(b)(i) First calculate

Pin(6) = / 2%90(2% _ k)e—Qﬂifx dor
R

xH2_j(y+k)/ 2%90<y)e—27ri§2*jy6727ri§2*jk27j dy
R




Now we have
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(ii)

where we used the Plancherel identity in (2), (4) and (6) hold since
supp p(277 ) C [—21 ,27], and (5) follows since

{en(&) =275 ¢ S m e Z} is an orthonormal basis for L?([—27, 27]).

Sipce 1p(279)f — f||L2(R2) — 0as j — oo, we have lim;_,, [|¢(277 - )f||L2(R) =
| fllz2) = || fll z2(r)- Now we have

tm i || Py 32e) = liminf [200(27 ) f 3z = 1Py (F(- = 2750)) gy

= 2| fl13 2@ — limsup || Py, f(- — 27012, 5
(R) X (R)

J]—00

> 2| f 172 — limsup || f(- = 279FD))[|72 g )

J—00

= 2| fll 2@y — limsup || ]2
j—o0
= £l

where in (7) we used the fact that projections are norm-bounded by 1. On the
other hand || Py, f||z2w) < || fllz2@w) for all j € Z, so || Py, fl|z2@®) — [|f|lz2®) as
Jj — 00. We can now flnally deduce

1f = P fllzem = 1wy = (F = P fs Py £) = 1P Fllz2gm) — 0, @s j — oo,

_0

(8)

where (f — Py, f, Py, f) = 0 follows by the properties PV}Z = Py, and
P;, = Py,



(iii)

We have
1Py, fll72m) < 1Py, fIl72@ + 1Py, (f(- = 279|122

. ~12
R I 9)

where the last step follows from the assumption in the problem statement.

(c) We verify the four conditions in the definition of the multiresolution approxi-
mation:

@

(ID)

(II1)

Let f € Nz Vi ie, f € Vyforall j € Z. Then f = Py, f forall j € Z,
so by (b)(111) we have | fl|r2®) = ||Pv, fllz2®) — 0as j — —oo, and hence
| fllL2@®y = 0. Therefore [, V; = 0, which implies f = 0.

Now, let f € L*(R) be arbitrary. Then by (b)(ii) we have that for any € > 0 we
can find a j. € Z such that || f — Py, f|l12) < €. Since Py, f € V;, C U, Vj,
and e was arbitrary, we deduce that Ujez V is dense in LQ(R)

Let f € L*(R). By definition of V;, we have f € V; if and only if f(277-) € Vj.
But f(277.) = f(27U*V(2.)),s0 f € V} is equlvalent to f(270FD(2.) € 1.
Now, by definition of V};, we see that f(27UFD(2.)) € Vj is equivalent to
f(2-) € Vj11. Therefore, we have shown that f € Vj if and only if f(2-) €
Vi,

Since {¢(- — k) : k € Z} is an orthonormal basis for V;, we can expand an
arbitrary f € Vj according to

f = Zalgp(' - l)a
lez
for some {a; }icz € (*(Z). Then, we have

=k = apt-—k=1) "= a0 —1),

leZ l€Z

andso f(-— k) € Vp, forall k € Zand f € V}.

(IV) Since {¢(- — k) : k € Z} is an orthonormal basis for V4, it is, in particular, a

Riesz basis for Vj,.



Problem 3

(a) Let f,g € L*(R) and z, y € R be arbitrary. We have the following reconstructi-
on formula:

f—w,—y = Z <f—m,—y7 ng,nF> ImT nF

m,nel

= Z (f —,09 §mT,nF+y> ImTnF
m,nel

= Z <f7 € —2mi(nFy)e nger nF+y> 9mTnF-
m,ne’l

Now we take the inner product of both sides of this equation with h_, _, to obtain

oo hay) = > (e OFD G riy) (Gt Py

m,neL

- Z <f7 € —2mi(nf4y)e ng+a: nF+y> <ng nF+y; h—a: 0>

m,ne”z

= Z <f7 6—27r7,(nF+y)w ng+a: nF+y> <e—27ri(nF+y)z ng+a:,nF+ya h>

m,nez

- Z <f7 ng+az,nF+y> <ng+:c,nF+y; h)

m,neZ

Finally, note that (f_, _,,h_, ) = (f, h). Together with the previous equation,
this yields the desired identity.

(b) Integrating as suggested, we get

F(fv h> = / / f ng—i—x,nF+y> <ng+a:,nF+y7 h> dl‘ dy

m,neZ

= Z / / (fs Gmrsonpty) (GmTta, np+y,h> dx dy (10)

m,ne”z

(n+1)F  p(m+1)T
- / / fagxy gxy>h>d$dy

m,neZ

= /R2 (f, g:v,y><g:r,y7 h)drdy = /R2 (f, g:fc,y><h7 gm,y> dxdy
= (f,1){3.9).

where the last step follows by the identity (IR) given in the problem statement.

Since f and h were arbitrary (and in particular can be chosen so that
(f,h) = 1), we deduce (g, g) = T'F. To justify the change of order of summation
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and integration in (10), observe that

F T
Z / / | <f7 ng+:v,nF+y> <ng+:c,nF+y7 h) | dz dy =
0 0

m,ne’

= [ 1030 g ]ty
= (F1, Fa)rege) < || Filz2eey | P2l 2 we) < oo, (11)

where Fi(z,y) = [{f, Gzy)| and Fy(z,y) = |(h, g.,)| are L?*(R?) functions by the
assumption at the beginning of the problem statement.

(c) We have the following two expansions:

9= Z (9, GnTnF) gmTr =1 goo + Z 0 gmrnr-
m,neL m,ne’
(m,n)#(0,0)

Now, by the Lemma given in the problem statement, we have

12 + ZOQ = Z ‘<g7ng,nF>|2 + |<97§0,0> - 1|2 + Z |<ga§mT,nF> - 0’2

m,nEL m,nEL m,neEL
(m,n)#(0,0) (m,n)#(0,0)
> (g, Go.o)|* + {9, Goo) — 1> > g, 9)* = (TF)?, (12)

where the first inequality is obtained by discarding all the terms on the right-hand
side of the first equality except for the summands with (m,n) = (0,0). Thus, we
have shown that TF < 1.



Problem 4

(a) Let e, = 1p,—1/2,n+1/2) be the indicator function of the interval [n — 1/2,n +
1/2]. Note that ||e,||;2®) = 1, and so e, € L*(R). Then, by the Cauchy-Schwarz
inequality we have

n+1/2
/ x(t)dt

—-1/2

= [{en, )| < llenll 2@l 2@ = 2] 2 @),

for any € L*(R) and n € Z, and thus (Ax), is well-defined for all z € L*(R)
and n € Z. To show that Az € (*(Z) whenever z € L*(R), we again use the
Cauchy-Schwarz inequality to get

Azl = Y 1(A2)l =)

2

n+1/2
/ () dt

nez n€ezZ? —1/2
n+1/2
2 2 2
<3 / ()P dt = / (@) dt = ||| e,
nez2 n—1/2 R

for all z € L*(R). In particular, we have ||Az»2(z) < 0o, and so A is well-defined.
Also, A is linear, because integration is a linear operation. Finally, since
[ Az|| 5 < [|2]|2(), for all 2 € L*(R), we have that A is bounded.

By definition of adjoint operators, .A* is the unique operator such that
<A$,y>f2(z) = <$aA*y>L2(R),
forall z € L*(R) and y € ¢*(Z). For arbitrary, but fixed x and y, we calculate

n+1/2
(A, ) = S (A T = Y / o(0)dt T
nez nez n71/2
n+1/2
= z(t) vy, dt
% /n i ()7
- / £(t) (A%y)(t) dy, (13)

where A*y is the piecewise-constant function given by (A*y)(t) =y,
fort € [n—3,n+1).

(b) It follows from the (a) that

A Yy = 3 /

nez v "

n+1/2
|y, |? dt = Z |yn|? = Hy“?z(z) forall y € (*(Z),
—1/2 nez

as desired.

(c) Let {e,, }nez be the indicator functions defined at the beginning of (a). To show
that G = {e, : n € Z} is a frame for Im(.A*), take an arbitrary z = A*y € Im(A*).
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Then, we have
2

n+1/2
S e =3 Ay e =S / yudt
nez nez nez |/n—1/2
= lllz@ = 1A I 2@ = 272,

and so G is a (tight) frame for Im(.A*). Thus we have
Ax = {(z,e,) :n € Z},

for all z € Im(A*) C L*(R), and so A is the analysis operator associated with the
frame G for the Hilbert space Im(.A*).



