Problem 1 Overcomplete expansion in \(\mathbb{R}^2 \)

Consider the following example discussed in class. For the vectors
\[
e_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \quad e_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \quad e_3 = e_1 - e_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}
\]
we found that any vector \(x \in \mathbb{R}^2 \) can be represented according to
\[
x = \langle x, \hat{e}_1 \rangle e_1 + \langle x, \hat{e}_2 \rangle e_2 + \langle x, \hat{e}_3 \rangle e_3
\]
where
\[
\hat{e}_1 = 2e_1, \quad \hat{e}_2 = -e_3, \quad \hat{e}_3 = -e_1.
\]

a) Find another set of vectors \(\tilde{e}_1', \tilde{e}_2', \tilde{e}_3' \), neither of which is collinear to neither of the vectors \(\hat{e}_1, \hat{e}_2, \hat{e}_3 \) and such that any vector \(x \in \mathbb{R}^2 \) can be represented as
\[
x = \langle x, \tilde{e}_1' \rangle e_1 + \langle x, \tilde{e}_2' \rangle e_2 + \langle x, \tilde{e}_3' \rangle e_3.
\]

Hint: Look for another right-inverse of the matrix
\[
\begin{bmatrix}
1 & 0 & 1 \\
0 & 1 & -1
\end{bmatrix}.
\]

b) Now consider the following example discussed in class. For the vectors
\[
e_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \quad e_2 = \begin{bmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \end{bmatrix}, \quad \hat{e}_1 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}, \quad \hat{e}_2 = \begin{bmatrix} 0 \\ \sqrt{2} \end{bmatrix}
\]
any vector \(x \in \mathbb{R}^2 \) can be represented as
\[
x = \langle x, \hat{e}_1 \rangle \hat{e}_1 + \langle x, \hat{e}_2 \rangle \hat{e}_2.
\]

Show that \(x \) can also be written as
\[
x = \langle x, \hat{e}_1 \rangle e_1 + \langle x, \hat{e}_2 \rangle e_2.
\]

Is it possible to find two vectors \(e_1', e_2' \), neither of which is collinear to neither of the vectors \(e_1, e_2 \) such that
\[
x = \langle x, e_1' \rangle \hat{e}_1 + \langle x, e_2' \rangle \hat{e}_2?
\]
If the answer is “yes”, find these vectors. If the answer is “no”, explain why this is not possible.

Problem 2 Equality in the Cauchy-Schwarz inequality

Prove that if the elements \(x \) and \(y \) of a complex Hilbert space \(\mathcal{H} \) satisfy \(|\langle x, y \rangle| = \|x\|\|y\| \) and \(y \neq 0 \), then \(x = cy \) for some \(c \in \mathbb{C} \).

Hint: Assume \(\|x\| = \|y\| = 1 \) and \(\langle x, y \rangle = 1 \). Then \(x - y \) and \(x \) are orthogonal, while \(x = x - y + y \). Therefore, \(\|x\|^2 = \|x - y\|^2 + \|y\|^2 \).

Problem 3 Parallelogram law

a) Let \((\mathcal{X}, \langle \cdot, \cdot \rangle) \) be an inner product space and \(\| \cdot \| \) the norm induced by \(\langle \cdot, \cdot \rangle \). Show that for all \(x, y \in \mathcal{X} \), the following holds

\[
\|x - y\|^2 + \|x + y\|^2 = 2\|x\|^2 + 2\|y\|^2.
\]

(1)

b) Let \((\mathcal{X}, \| \cdot \|) \) be a normed space. Show that if (1) holds for all \(x, y \in \mathcal{X} \), then there exists an inner product \(\langle \cdot, \cdot \rangle \) such that \(\|x\| = \sqrt{\langle x, x \rangle} \) for all \(x \in \mathcal{X} \). For simplicity, you may assume that \(\mathcal{X} \) is a real normed space.

Use the last statement to show that \(\ell^2(\mathbb{Z}) \) is a Hilbert space. What about \(\ell^1(\mathbb{Z}) \)?

Recall: \(\ell^p(\mathbb{Z}) \), \(p \in [1, \infty) \), is the space

\[
\ell^p(\mathbb{Z}) \triangleq \left\{ \{u_k\}_{k \in \mathbb{Z}} : \sum_{k=\infty}^{+\infty} |u_k|^p < \infty \right\}
\]

equipped with the norm

\[
\|u\|_{\ell^p(\mathbb{Z})} \triangleq \left(\sum_{k=\infty}^{+\infty} |u_k|^p \right)^{1/p}.
\]

Problem 4 Projection on closed subspaces

Let \(\mathcal{H} \) be a Hilbert space, \(x \in \mathcal{H} \), and \(S \) a closed subspace of \(\mathcal{H} \). We know that there exists a \(y \in S \) such that

\[
\|x - y\| = \min_{z \in S} \|x - z\|.
\]

(2)

a) Use the parallelogram law to show that \(y \) is the unique element in \(S \) fulfilling (2).

b) Show that \(y \) is the unique element in \(S \) such that \((x - y) \in S^\perp \).
Problem 5 A surjective linear isometry is unitary
Let \mathcal{H} be a real Hilbert space and $T: \mathcal{H} \to \mathcal{H}$ a surjective linear isometry. By applying the polarization formula
\[\langle x, y \rangle = \frac{1}{4} \left(\|x + y\|^2 - \|x - y\|^2 \right), \quad \forall x, y \in \mathcal{H}, \]
show that $\langle Tx, Ty \rangle = \langle x, y \rangle$ for all $x, y \in \mathcal{H}$. Deduce that T is unitary. Where did you use the fact that T is surjective?

Problem 6 Unconditional convergence
Let $\mathcal{H} = l_2(\mathbb{N})$ and define
\[x_k = (0, \ldots, 0, 1/k, 0, \ldots, 0, \ldots), \quad k \in \mathbb{N}, \]
where the only non-zero entry $1/k$ of the sequence x_k is at position $k \in \mathbb{N}$. Does the sum
\[\sum_{k=1}^{\infty} x_k \]
converge unconditionallly?

Problem 7 Discrete Fourier Transform (DFT) as a signal expansion
The DFT of an N-point signal $f(n)$, $n = 0, 1, \ldots, N - 1$, is defined as
\[\tilde{f}(k) = \frac{1}{\sqrt{N}} \sum_{n=0}^{N-1} f(n) e^{-i2\pi \frac{k}{N} n} \]
Find the corresponding inverse transform and show that the DFT can be interpreted as a signal expansion in \mathbb{C}^N.