Problem 1 Change of basis matrix between ONBs is unitary

We have to verify that $U^* U = U U^* = \text{Id}$. First note that, for $j, k \in [N]$, we have

$$
\langle h_k, h_j \rangle = \left(\sum_{\ell=1}^{N} \langle h_k, g_{\ell} \rangle g_{\ell} \right) \left(\sum_{\ell' = 1}^{N} \langle h_j, g_{\ell'} \rangle g_{\ell'} \right) = \sum_{\ell=1}^{N} \sum_{\ell' = 1}^{N} \langle h_k, g_{\ell} \rangle \langle h_j, g_{\ell'} \rangle \langle g_{\ell}, g_{\ell'} \rangle = \delta_{\ell \ell'},
$$

Therefore, for $j, k \in [N]$, we have

$$
[U^* U]_{jk} = \sum_{\ell=1}^{N} [U^*]_{j \ell} U_{\ell k} = \sum_{\ell=1}^{N} U_{\ell j} U_{\ell k} = \sum_{\ell=1}^{N} \langle h_j, g_{\ell} \rangle \langle h_k, g_{\ell} \rangle = \delta_{jk},
$$

and so $U^* U = \text{Id}$. A completely analogous computation shows that $U U^* = \text{Id}$.

Problem 2 Oversampled A/D conversion

(i) Take $\{a_k\}_{k \in \mathbb{Z}} \in \mathcal{R}(\mathbb{T})$. By definition of A, we have

$$
A \{a_k\}_{k \in \mathbb{Z}} = \sum_{k \in \mathbb{Z}} a_k h_{\text{LP}} \left(\frac{t}{T} - k \right).
$$

The result now follows immediately by noting that

$$
\hat{T}^* \{a_k\}_{k \in \mathbb{Z}} = \sum_{k \in \mathbb{Z}} a_k \hat{g}_k(t),
$$

where $\hat{g}_k(t) = T g_k(t) = h_{\text{LP}} \left(\frac{t}{T} - k \right)$.

(ii) Take \(\{b_k\}_{k \in \mathbb{Z}} \in \mathcal{R}(T)^\perp \). Then,
\[
A\{b_k\}_{k \in \mathbb{Z}} = \sum_{k \in \mathbb{Z}} b_k h_{\text{LP}} \left(\frac{t}{T} - k \right) \\
= \sum_{k \in \mathbb{Z}} b_k \int_{-1/2}^{1/2} \hat{h}_{\text{LP}}(f) e^{2\pi i f(t/T - k)} df \\
= \int_{-1/2}^{1/2} \hat{h}_{\text{LP}}(f) e^{2\pi i f/T} \sum_{k = -\infty}^{\infty} b_k e^{-2\pi ikf} df \\
= \int_{-1/2}^{1/2} \hat{b}(f) \hat{h}_{\text{LP}}(f) e^{2\pi i f/T} df \\
= 0, \tag{1}
\]
where the last equality follows because \(\hat{b}(f) \) is supported on the set \([-1/2, -BT] \cup [BT, 1/2] \) and \(\hat{h}_{\text{LP}}(f) \) is supported on the set \([-BT, BT] \).

(iii) Take \(\{c_k\}_{k \in \mathbb{Z}} \in \ell^2(\mathbb{Z}) \). We can write \(\{c_k\}_{k \in \mathbb{Z}} = \{a_k\}_{k \in \mathbb{Z}} + \{b_k\}_{k \in \mathbb{Z}} \) with \(\{a_k\}_{k \in \mathbb{Z}} \in \mathcal{R}(T) \) and \(\{b_k\}_{k \in \mathbb{Z}} \in \mathcal{R}(T)^\perp \). It was proved above that \(A\{a_k\}_{k \in \mathbb{Z}} = \hat{T}^*\{a_k\}_{k \in \mathbb{Z}} \) and \(A\{b_k\}_{k \in \mathbb{Z}} = 0 \). Therefore,
\[
A\{c_k\}_{k \in \mathbb{Z}} = A\{a_k\}_{k \in \mathbb{Z}} + \underbrace{A\{b_k\}_{k \in \mathbb{Z}}}_{0} = \hat{T}^*\{a_k\}_{k \in \mathbb{Z}}.
\]
Since \(\{a_k\}_{k \in \mathbb{Z}} \in \mathcal{R}(T) \) and \(\mathbb{P} \) is the orthogonal projection operator onto \(\mathcal{R}(T) \), we have \(\mathbb{P}\{a_k\}_{k \in \mathbb{Z}} = \{a_k\}_{k \in \mathbb{Z}} \). Similarly, since \(\{b_k\}_{k \in \mathbb{Z}} \) is in the orthogonal complement of \(\mathcal{R}(T) \), we have \(\mathbb{P}\{b_k\}_{k \in \mathbb{Z}} = 0 \). Therefore,
\[
\hat{T}^*\mathbb{P}\{c_k\}_{k \in \mathbb{Z}} = \hat{T}^*\underbrace{\mathbb{P}\{a_k\}_{k \in \mathbb{Z}}}_{\{a_k\}_{k \in \mathbb{Z}}} + \hat{T}^*\underbrace{\mathbb{P}\{b_k\}_{k \in \mathbb{Z}}}_{0} = \hat{T}^*\{a_k\}_{k \in \mathbb{Z}}.
\]
We conclude that \(A = \hat{T}^*\mathbb{P} \), as required.

(iv) Take \(\{b_k\}_{k \in \mathbb{Z}} \in \mathcal{R}(T) \). Then,
\[
B\{b_k\}_{k \in \mathbb{Z}} = \sum_{k = -\infty}^{\infty} b_k h_{\text{out}} \left(\frac{t}{T} - k \right) \\
= \int_{-1/2}^{1/2} \hat{b}(f) \hat{h}_{\text{out}}(f) e^{2\pi i f/T} df \\
= 0,
\]
where the third equality follows because \(\hat{b}(f) \) is supported on the set \([-BT, BT] \) and \(\hat{h}_{\text{out}}(f) \) is supported on the set \([-1/2, -BT] \cup [BT, 1/2] \).

Next, take \(\{c_k\}_{k \in \mathbb{Z}} \in \ell^2(\mathbb{Z}) \). We can write \(\{c_k\}_{k \in \mathbb{Z}} = \{a_k\}_{k \in \mathbb{Z}} + \{b_k\}_{k \in \mathbb{Z}} \) with \(\{a_k\}_{k \in \mathbb{Z}} \in \mathcal{R}(T)^\perp \) and \(\{b_k\}_{k \in \mathbb{Z}} \in \mathcal{R}(T) \). Then, as \(\mathbb{B}\{b_k\}_{k \in \mathbb{Z}} = 0 \), we have that
\[
\mathbb{B}\{c_k\}_{k \in \mathbb{Z}} = \mathbb{B}\{a_k\}_{k \in \mathbb{Z}} + \underbrace{\mathbb{B}\{b_k\}_{k \in \mathbb{Z}}}_{0} = \mathbb{B}\{a_k\}_{k \in \mathbb{Z}}. \tag{1}
\]
Since \(\{a_k\}_{k \in \mathbb{Z}} \) is in the orthogonal complement of \(\mathcal{R}(T) \) and \(\mathbb{P} \) is the orthogonal projection operator onto \(\mathcal{R}(T) \), we have \(\mathbb{P}\{a_k\}_{k \in \mathbb{Z}} = 0 \), or, equivalently, \((\text{Id}_{\ell^2(\mathbb{Z})} - \mathbb{P})\{a_k\}_{k \in \mathbb{Z}} = \{a_k\}_{k \in \mathbb{Z}} \). Similarly, since \(\{b_k\}_{k \in \mathbb{Z}} \in \mathcal{R}(T) \), we have \(\mathbb{P}\{b_k\}_{k \in \mathbb{Z}} = \{b_k\}_{k \in \mathbb{Z}} \), or, equivalently \((\text{Id}_{\ell^2(\mathbb{Z})} - \mathbb{P})\{b_k\}_{k \in \mathbb{Z}} = 0 \).
Therefore,
\[
\mathbb{E}(\text{Id}_{L^2(\mathbb{Z})} - P)\{c_k\}_{k \in \mathbb{Z}} = \mathbb{E}(\text{Id}_{L^2(\mathbb{Z})} - P)\{a_k\}_{k \in \mathbb{Z}} + \mathbb{E}(\text{Id}_{L^2(\mathbb{Z})} - P)\{b_k\}_{k \in \mathbb{Z}} = \mathbb{E}\{a_k\}_{k \in \mathbb{Z}}.
\] (2)

Comparing (1) and (2), we can therefore conclude that \(\mathbb{E} = \mathbb{E}(\text{Id}_{L^2(\mathbb{Z})} - P) \), as desired.

Problem 3 Frames for \(\mathbb{C}^M\)

Assume that \(\{f_k\}_{k=1}^N\) is a frame for \(\mathbb{C}^M\) with frame bounds \(A, B > 0\) and set
\[
g_k = \begin{cases}
\text{Re}\{f_k\}, & 1 \leq k \leq N \\
\text{Im}\{f_{k-N}\}, & N + 1 \leq k \leq 2N.
\end{cases}
\]

For all \(f \in \mathbb{R}^M\), we then have
\[
\sum_{k=1}^{2N} |\langle f, g_k \rangle|^2 = \sum_{k=1}^{N} |\langle f, \text{Re}\{f_k\} \rangle|^2 + |\langle f, \text{Im}\{f_k\} \rangle|^2 = \sum_{k=1}^{N} |\langle f, \text{Re}\{f_k\} \rangle - i\langle f, \text{Im}\{f_k\} \rangle|^2
\]
\[
= \sum_{k=1}^{N} |\langle f, \text{Re}\{f_k\} + i\text{Im}\{f_k\} \rangle|^2 = \sum_{k=1}^{N} |\langle f, f_k \rangle|^2,
\]
which implies that \(\{g_k\}_{k=1}^{2N}\) is a frame for \(\mathbb{R}^M\) with frame bounds \(A, B > 0\).

Problem 4 Tight frames

Let \(\{f_k\}_{k=0}^\infty\) be a frame for the Hilbert space \(\mathcal{H}\).

- Assume that \(\{f_k\}_{k=0}^\infty\) is tight. Then there exists a constant \(A > 0\) such that
\[
\sum_{k=0}^\infty |\langle f, f_k \rangle|^2 = A\|f\|^2
\]
for all \(f \in \mathcal{H}\). We can define \(g_k = A^{-1}f_k\) for all \(k \in \mathbb{N}\). We have then
\[
\sum_{k=0}^\infty \langle f, g_k \rangle f_k = \sum_{k=0}^\infty \langle f, f_k \rangle g_k = A^{-1} \sum_{k=0}^\infty \langle f, f_k \rangle f_k = f,
\]
where we used the fact that the frame operator \(S\) satisfies \(S = A\|f\|^2\) since \(\{f_k\}_{k=0}^\infty\) is a tight frame with frame bound \(A\). Therefore, \(\{g_k\}_{k=0}^\infty\) forms a dual frame\(^1\) of \(\{f_k\}_{k=0}^\infty\).

- Conversely, assume that \(\{f_k\}_{k=0}^\infty\) has a dual of the form \(g_k = Cf_k\) with \(C > 0\). Then for all \(f \in \mathcal{H}\), we have
\[
f = \sum_{k=0}^\infty \langle f, g_k \rangle f_k = \sum_{k=0}^\infty \langle f, f_k \rangle g_k = C \sum_{k=0}^\infty \langle f, f_k \rangle f_k = CSf,
\]
which shows that the frame operator is \(S = C^{-1}I\), and that \(\{f_k\}_{k=0}^\infty\) is hence a tight frame.

\(^1\)Note that \(\{g_k\}_{k=0}^\infty\) is in fact the canonical dual frame of \(\{f_k\}_{k=0}^\infty\), since \(g_k = S^{-1}f_k\) for all \(k \in \mathbb{N}\).
Problem 5 Unitary transformation of a frame

Since \(\{f_k\}_{k \in K} \) is a frame with frame bounds \(A \) and \(B \), we have
\[
A \|f\|^2 \leq \sum_{k \in K} |\langle f, f_k \rangle|^2 \leq B \|f\|^2.
\]

Moreover, since \(U \) is a unitary operator, one has \(U^* U = UU^* = I \). Hence, we have
\[
\|U^* f\|^2 = \langle U^* f, U^* f \rangle = \langle UU^* f, f \rangle = \langle f, f \rangle = \|f\|^2.
\]

We have then
\[
\sum_{k \in K} |\langle f, U f_k \rangle|^2 = \sum_{k \in K} |\langle U^* f, f_k \rangle|^2 \leq B \|U^* f\|^2 = B \|f\|^2,
\]
which establishes the upper frame bound. Next,
\[
\sum_{k \in K} |\langle f, U f_k \rangle|^2 = \sum_{j \in K} |\langle U^* f, f_k \rangle|^2 \geq A \|U^* f\|^2 = A \|f\|^2,
\]
which establishes the lower frame bound. Therefore, \(\{U f_k\}_{k \in K} \) is a frame for \(\mathcal{H} \) with the same frame bounds as \(\{f_k\}_{k \in K} \).

Problem 6 Redundancy of a frame

a) Assume that \(\{f_k\}_{k=1}^N \) is a tight frame for \(\mathbb{C}^M \) with frame bound \(A \) such that \(\|f_k\| = 1 \) for all \(1 \leq k \leq N \). Choose an orthonormal basis \(\{e_k\}_{k=1}^M \) for \(\mathbb{C}^M \). Using Parseval’s equality and the fact that the \(f_k, 1 \leq k \leq N \), are normalized, we obtain
\[
1 = \|f_k\|^2 = \sum_{\ell=1}^M |\langle f_k, e_\ell \rangle|^2
\]
for all \(1 \leq k \leq N \). On the other hand, since \(\{f_k\}_{k=1}^N \) is a tight frame with frame bound \(A \), we have
\[
A = A \|e_\ell\|^2 = \sum_{k=1}^N |\langle e_\ell, f_k \rangle|^2
\]
(1)
for all \(1 \leq \ell \leq M \). Summing (1) for all \(1 \leq \ell \leq M \) yields
\[
MA = \sum_{\ell=1}^M \sum_{k=1}^N |\langle e_\ell, f_k \rangle|^2 = \sum_{k=1}^N \sum_{\ell=1}^M |\langle f_k, e_\ell \rangle|^2 = N.
\]

As a result, we have necessarily \(A = N/M \).

b) Assume that \(\{f_k\}_{k=1}^N \) is a frame for \(\mathbb{C}^M \) with frame bounds \(A \) and \(B \) such that \(\|f_k\| = 1 \) for all \(1 \leq k \leq N \). As in 1., choose an orthonormal basis \(\{e_k\}_{k=1}^M \) for \(\mathbb{C}^M \). Again, using Parseval’s equality and the fact that the \(f_k, 1 \leq k \leq N \), are normalized, we obtain
\[
1 = \|f_k\|^2 = \sum_{\ell=1}^M |\langle f_k, e_\ell \rangle|^2
\]
for all \(1 \leq k \leq N \). Since \(\{f_k\}_{k=1}^N \) is a frame for \(\mathbb{C}^M \) with frame bounds \(A, B \), we have for
all \(1 \leq \ell \leq M \) that
\[
A = A\|e_\ell\|^2 \leq \sum_{k=1}^{N} |\langle e_\ell, f_k \rangle|^2 \leq B\|e_\ell\|^2 = B. \tag{2}
\]

Summing (2) for all \(1 \leq \ell \leq M \) then gives
\[
AM \leq \sum_{\ell=1}^{M} \sum_{n=1}^{N} |\langle e_\ell, f_k \rangle|^2 = \sum_{n=1}^{N} \sum_{\ell=1}^{M} |\langle f_k, e_\ell \rangle|^2 \leq BM,
\]

which results in \(A \leq N/M \leq B \).

Problem 7 Frame expansion with noise

We have the following:
\[
E\|f - f_w\|^2 = E\left\| \frac{1}{A} \sum_{j=1}^{M} w_j g_j \right\|^2 = E\frac{1}{A^2} \sum_{j=1}^{M} \sum_{\ell=1}^{M} w_j w_\ell \langle g_j \rangle \langle g_\ell \rangle = N_0 \frac{1}{A^2} \sum_{j=1}^{M} \|g_j\|^2 = N_0 M = N_0 N \frac{1}{r}.
\]

For any Hilbert space of dimension \(N \), the MSE is inversely proportional to the redundancy. Therefore, it is an advantage to formulate algorithms involving frames than bases, which have redundancy \(r = 1 \).