

Exam on Neural Network Theory February 6, 2020

Please note:

- Exam duration: 180 minutes
- Maximum number of points: 100
- You are not allowed to use any printed or handwritten material (i.e., books, lecture and discussion session notes, summaries), computers, tablets, smart phones or other electronic devices.
- Your solutions should be explained in detail and your handwriting needs to be clean and readable.
- Please do not use red or green pens. You may use pencils.
- Please note that the ETHZ "Disziplinarordnung RSETHZ 361.1" applies.

Before you start:

- 1. The problem statements consist of 5 pages including this page. Please verify that you have received all 5 pages.
- 2. Please fill in your name and your Legi-number below.
- 3. Please place an identification document on your desk so we can verify your identity.

During the exam:

- 4. For your solutions, please use only the empty sheets provided by us. Should you need more paper, please let us know.
- 5. Each problem consists of several subproblems. If you do not provide a solution to a subproblem, you may nonetheless assume its conclusion in the ensuing subproblems.

After the exam:

6. Please write your name on all the solution sheets. All sheets, including those containing problem statements, must be handed in. Please sign this page.

Family name:	First name:
Legi-No.:	
Signature:	

For every vector $\boldsymbol{x} \in \mathbb{R}^2$, let x_1 and x_2 denote the first and second component of \boldsymbol{x} , respectively. Let $\alpha, \beta \in \mathbb{R}$ with $\alpha, \beta > 0$ be fixed parameters and consider the function $K \colon \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$ defined according to

$$K(\boldsymbol{x}, \boldsymbol{y}) = \alpha x_1^2 y_1^2 + \beta x_2^2 y_2^2$$

- (a) Prove that $K(\boldsymbol{x}, \boldsymbol{y})$ is a symmetric kernel.
- (b) Prove that for every $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^2$ and $\varepsilon > 0$, there exists a $\delta = \delta(\varepsilon, \boldsymbol{x}, \boldsymbol{y}) > 0$ depending on ε , \boldsymbol{x} , and \boldsymbol{y} such that if $\boldsymbol{u}, \boldsymbol{v} \in \mathbb{R}^2$ satisfy

$$\left\| \begin{pmatrix} \boldsymbol{x} \\ \boldsymbol{y} \end{pmatrix} - \begin{pmatrix} \boldsymbol{u} \\ \boldsymbol{v} \end{pmatrix} \right\|_{2} < \delta, \tag{1}$$

then $|K(\boldsymbol{x}, \boldsymbol{y}) - K(\boldsymbol{u}, \boldsymbol{v})| < \varepsilon$, i.e., $K(\boldsymbol{x}, \boldsymbol{y})$ is a continuous function.

Hint. Prove the following substeps:

Step 1: Show that $|K(\boldsymbol{x}, \boldsymbol{y}) - K(\boldsymbol{u}, \boldsymbol{v})| \le \alpha |x_1^2 y_1^2 - u_1^2 v_1^2| + \beta |x_2^2 y_2^2 - u_2^2 v_2^2|$. *Step 2: Use the fact that (1) implies*

 $\begin{aligned} |x_1 - u_1| < \delta, \quad |y_1 - v_1| < \delta, \quad |x_2 - u_2| < \delta, \quad \text{and} \quad |y_2 - v_2| < \delta \\ \text{to find a constant } C &= C(\varepsilon, \boldsymbol{x}, \boldsymbol{y}) \text{ such that } \delta < C \text{ implies} \\ \left| x_1^2 y_1^2 - u_1^2 v_1^2 \right| < \frac{\varepsilon}{2\alpha} \quad \text{and} \quad \left| x_2^2 y_2^2 - u_2^2 v_2^2 \right| < \frac{\varepsilon}{2\beta}. \end{aligned}$

(c) Prove that, for every $k \in \mathbb{N}$ and $x_1, \ldots, x_k \in \mathbb{R}^2$, the $k \times k$ Gramian matrix

$$\boldsymbol{K}(\boldsymbol{x}_1,\ldots,\boldsymbol{x}_k) = \begin{pmatrix} K(\boldsymbol{x}_1,\boldsymbol{x}_1) & K(\boldsymbol{x}_1,\boldsymbol{x}_2) & \ldots & K(\boldsymbol{x}_1,\boldsymbol{x}_k) \\ K(\boldsymbol{x}_2,\boldsymbol{x}_1) & K(\boldsymbol{x}_2,\boldsymbol{x}_2) & \ldots & K(\boldsymbol{x}_2,\boldsymbol{x}_k) \\ \vdots & \vdots & \ddots & \vdots \\ K(\boldsymbol{x}_k,\boldsymbol{x}_1) & K(\boldsymbol{x}_k,\boldsymbol{x}_2) & \ldots & K(\boldsymbol{x}_k,\boldsymbol{x}_k) \end{pmatrix}$$

is positive semidefinite, i.e., $K(\boldsymbol{x}, \boldsymbol{y})$ is a positive semidefinite kernel. *Hint.* Write $K(\boldsymbol{x}, \boldsymbol{y})$ in the form $K(\boldsymbol{x}, \boldsymbol{y}) = \Phi(\boldsymbol{x})^{\mathsf{T}} \Phi(\boldsymbol{y})$ with $\Phi(\boldsymbol{x}) = (\sqrt{\alpha}x_1^2 \sqrt{\beta}x_2^2)^{\mathsf{T}}$ and show that $\boldsymbol{c}^{\mathsf{T}} \boldsymbol{K}(\boldsymbol{x}_1, \dots, \boldsymbol{x}_k) \boldsymbol{c} \ge 0$, for all $\boldsymbol{c} \in \mathbb{R}^k$.

- (d) It follows from (a)–(c) that $K(\boldsymbol{x}, \boldsymbol{y})$ is a Mercer kernel. Determine the reproducing kernel Hilbert space \mathcal{H}_K corresponding to $K(\boldsymbol{x}, \boldsymbol{y})$.
- (e) Construct an orthonormal basis for the reproducing kernel Hilbert space \mathcal{H}_K corresponding to $K(\boldsymbol{x}, \boldsymbol{y})$.

Hint. Note that \mathcal{H}_K is finite-dimensional with corresponding inner product $\langle \cdot, \cdot \rangle_{\mathcal{H}_K}$ satisfying the reproducing property $\langle K_{\boldsymbol{y}}, f \rangle_{\mathcal{H}_K} = f(\boldsymbol{y})$, for all $f \in \mathcal{H}_K$ with $K_{\boldsymbol{y}} \colon \mathbb{R}^2 \to \mathbb{R}$ defined according to $K_{\boldsymbol{y}}(\boldsymbol{x}) = K(\boldsymbol{x}, \boldsymbol{y})$, for all $\boldsymbol{x}, \boldsymbol{y} \in \mathcal{H}_K$. A basis $\{e_i : i \in \mathcal{I}\} \subseteq \mathcal{H}_K$ is an orthonormal basis if $\langle e_i, e_j \rangle_{\mathcal{H}_K} = 0$, for all $i, j \in \mathcal{I}$ with $i \neq j$ and $\langle e_i, e_i \rangle_{\mathcal{H}_K} = 1$, for all $i \in \mathcal{I}$.

In this problem, we explicitly solve the support vector machine algorithm to construct the best possible straight line separating two sets of vectors in \mathbb{R}^2 . Specifically, consider the vectors

$$oldsymbol{x}_1 = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \quad oldsymbol{x}_2 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}, \quad oldsymbol{x}_3 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \quad ext{and} \quad oldsymbol{x}_4 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

and let $y_1 = 1$, $y_2 = 1$, $y_3 = -1$, and $y_4 = -1$.

- (a) Draw a picture depicting x_1, x_2, x_3 , and x_4 and a straight line separating $\{x_1, x_2\}$ from $\{x_3, x_4\}$.
- (b) Consider the optimization problem

$$\min_{\boldsymbol{w} \in \mathbb{R}^2, b \in \mathbb{R}} \frac{1}{2} \|\boldsymbol{w}\|_2^2$$
such that $y_i(\langle \boldsymbol{w}, \boldsymbol{x}_i \rangle_2 - b) \ge 1$, for $i = 1, \dots, 4$.

Write down the Lagrange function L(w, b, c) corresponding to this optimization problem, where $c = (c_1 \dots c_4)^T$ is a vector containing the Lagrange multipliers $c_1, \dots, c_4 \in \mathbb{R}$.

(c) Consider the Lagrange function L(w, b, c) from subproblem (b). The corresponding Lagrange dual function has the form

$$g(\boldsymbol{c}) = \boldsymbol{a}^{\mathsf{T}}\boldsymbol{c} - \frac{1}{2}\boldsymbol{c}^{\mathsf{T}}\boldsymbol{A}\,\boldsymbol{c},$$

where $a \in \mathbb{R}^4$ and $A \in \mathbb{R}^{4 \times 4}$. Compute *a* and *A* explicitly.

(d) Consider the Lagrange dual function g(c) from subproblem (c). Solve the corresponding Lagrange dual problem

$$\max_{\boldsymbol{c} \in \mathbb{R}^4} g(\boldsymbol{c})$$

such that $c_i \ge 0$, for $i = 1, \dots, 4$ and $\sum_{i=1}^4 c_i y_i = 0$

and identify the corresponding support vectors in the set $\{x_1, \ldots, x_4\}$.

Hint. The function $f(t) = 2t - t^2/2$ is strictly concave on $(0, \infty)$ and, therefore, maximized at the point satisfying df(t)/dt = 0.

(e) Compute a solution (\tilde{w}, \tilde{b}) of the optimization problem in subproblem (b) and write down the expression for the corresponding hard margin binary classifier.

Consider the function

$$f(x) = \begin{cases} 0, & x \le 0; \\ 4x, & 0 < x < \frac{1}{4}; \\ 1, & \frac{1}{4} \le x \le \frac{3}{4}; \\ 4 - 4x, & \frac{3}{4} < x < 1; \\ 0, & x \ge 1. \end{cases}$$

.

- (a) Plot f(x).
- (b) Realize f(x) through a depth-2 ReLU network (see the Handout for the definition of a depth-*L* ReLU network). Specify the width and the connectivity of the resulting network.
- (c) Consider the function h(x) = f(4x) + f(4x 3). Realize h(x) through a depth-2 ReLU network. Specify the width and the connectivity of the resulting network.
- (d) In subproblem (c) h(x) = f(4x) + f(4x 3) was realized by a ReLU network of depth 2. Find a deeper ReLU network that realizes h(x) with a width of 4. Specify the depth and the connectivity of the resulting network.

Hint. Try to write h(x) as a composition of two functions.

- (a) Let (\mathcal{X}, ρ) be a metric space and \mathcal{C} a compact set in \mathcal{X} . State the definitions of the ϵ -covering number $N(\epsilon; \mathcal{C}, \rho)$ and the ϵ -packing number $M(\epsilon; \mathcal{C}, \rho)$.
- (b) Let C be the ℓ_2 -ball $C = \{x \in \mathbb{R}^d \mid ||x||_2 \leq 1\}$. By considering the volumes of ℓ_2 -balls in \mathbb{R}^d , show that for any $\epsilon \leq 2$, $M(\epsilon; C, || \cdot ||_2) \leq (\frac{4}{\epsilon})^d$. *Hint.* The volume of the ℓ_2 -ball in \mathbb{R}^d scales as r^d , where r is its radius.